Home | History | Annotate | Line # | Download | only in ieee1394
if_fwip.c revision 1.29
      1 /*	$NetBSD: if_fwip.c,v 1.29 2018/11/15 10:23:55 maxv Exp $	*/
      2 /*-
      3  * Copyright (c) 2004
      4  *	Doug Rabson
      5  * Copyright (c) 2002-2003
      6  * 	Hidetoshi Shimokawa. All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *
     19  *	This product includes software developed by Hidetoshi Shimokawa.
     20  *
     21  * 4. Neither the name of the author nor the names of its contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.29 2018/11/15 10:23:55 maxv Exp $");
     42 
     43 #include <sys/param.h>
     44 #include <sys/bus.h>
     45 #include <sys/device.h>
     46 #include <sys/errno.h>
     47 #include <sys/malloc.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/mutex.h>
     50 #include <sys/sysctl.h>
     51 
     52 #include <net/bpf.h>
     53 #include <net/if.h>
     54 #include <net/if_ieee1394.h>
     55 #include <net/if_types.h>
     56 
     57 #include <dev/ieee1394/firewire.h>
     58 #include <dev/ieee1394/firewirereg.h>
     59 #include <dev/ieee1394/iec13213.h>
     60 #include <dev/ieee1394/if_fwipvar.h>
     61 
     62 /*
     63  * We really need a mechanism for allocating regions in the FIFO
     64  * address space. We pick a address in the OHCI controller's 'middle'
     65  * address space. This means that the controller will automatically
     66  * send responses for us, which is fine since we don't have any
     67  * important information to put in the response anyway.
     68  */
     69 #define INET_FIFO	0xfffe00000000LL
     70 
     71 #define FWIPDEBUG	if (fwipdebug) aprint_debug_ifnet
     72 #define TX_MAX_QUEUE	(FWMAXQUEUE - 1)
     73 
     74 
     75 struct fw_hwaddr {
     76 	uint32_t		sender_unique_ID_hi;
     77 	uint32_t		sender_unique_ID_lo;
     78 	uint8_t			sender_max_rec;
     79 	uint8_t			sspd;
     80 	uint16_t		sender_unicast_FIFO_hi;
     81 	uint32_t		sender_unicast_FIFO_lo;
     82 };
     83 
     84 
     85 static int fwipmatch(device_t, cfdata_t, void *);
     86 static void fwipattach(device_t, device_t, void *);
     87 static int fwipdetach(device_t, int);
     88 static int fwipactivate(device_t, enum devact);
     89 
     90 /* network interface */
     91 static void fwip_start(struct ifnet *);
     92 static int fwip_ioctl(struct ifnet *, u_long, void *);
     93 static int fwip_init(struct ifnet *);
     94 static void fwip_stop(struct ifnet *, int);
     95 
     96 static void fwip_post_busreset(void *);
     97 static void fwip_output_callback(struct fw_xfer *);
     98 static void fwip_async_output(struct fwip_softc *, struct ifnet *);
     99 static void fwip_stream_input(struct fw_xferq *);
    100 static void fwip_unicast_input(struct fw_xfer *);
    101 
    102 static int fwipdebug = 0;
    103 static int broadcast_channel = 0xc0 | 0x1f; /*  tag | channel(XXX) */
    104 static int tx_speed = 2;
    105 static int rx_queue_len = FWMAXQUEUE;
    106 
    107 /*
    108  * Setup sysctl(3) MIB, hw.fwip.*
    109  *
    110  * TBD condition CTLFLAG_PERMANENT on being a module or not
    111  */
    112 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup")
    113 {
    114 	int rc, fwip_node_num;
    115 	const struct sysctlnode *node;
    116 
    117 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    118 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip",
    119 	    SYSCTL_DESCR("fwip controls"),
    120 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
    121 		goto err;
    122 	}
    123 	fwip_node_num = node->sysctl_num;
    124 
    125 	/* fwip RX queue length */
    126 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    127 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    128 	    "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"),
    129 	    NULL, 0, &rx_queue_len,
    130 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
    131 		goto err;
    132 	}
    133 
    134 	/* fwip RX queue length */
    135 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    136 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
    137 	    "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"),
    138 	    NULL, 0, &fwipdebug,
    139 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
    140 		goto err;
    141 	}
    142 
    143 	return;
    144 
    145 err:
    146 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
    147 }
    148 
    149 
    150 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc),
    151     fwipmatch, fwipattach, fwipdetach, fwipactivate);
    152 
    153 
    154 static int
    155 fwipmatch(device_t parent, cfdata_t cf, void *aux)
    156 {
    157 	struct fw_attach_args *fwa = aux;
    158 
    159 	if (strcmp(fwa->name, "fwip") == 0)
    160 		return 1;
    161 	return 0;
    162 }
    163 
    164 static void
    165 fwipattach(device_t parent, device_t self, void *aux)
    166 {
    167 	struct fwip_softc *sc = device_private(self);
    168 	struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
    169 	struct fw_hwaddr *hwaddr;
    170 	struct ifnet *ifp;
    171 
    172 	aprint_naive("\n");
    173 	aprint_normal(": IP over IEEE1394\n");
    174 
    175 	sc->sc_fd.dev = self;
    176 	sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if;
    177 	hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr;
    178 
    179 	ifp = sc->sc_eth.fwip_ifp;
    180 
    181 	mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET);
    182 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
    183 
    184 	/* XXX */
    185 	sc->sc_dma_ch = -1;
    186 
    187 	sc->sc_fd.fc = fwa->fc;
    188 	if (tx_speed < 0)
    189 		tx_speed = sc->sc_fd.fc->speed;
    190 
    191 	sc->sc_fd.post_explore = NULL;
    192 	sc->sc_fd.post_busreset = fwip_post_busreset;
    193 	sc->sc_eth.fwip = sc;
    194 
    195 	/*
    196 	 * Encode our hardware the way that arp likes it.
    197 	 */
    198 	hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi);
    199 	hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo);
    200 	hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec;
    201 	hwaddr->sspd = sc->sc_fd.fc->speed;
    202 	hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
    203 	hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
    204 
    205 	/* fill the rest and attach interface */
    206 	ifp->if_softc = &sc->sc_eth;
    207 
    208 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    209 	ifp->if_start = fwip_start;
    210 	ifp->if_ioctl = fwip_ioctl;
    211 	ifp->if_init = fwip_init;
    212 	ifp->if_stop = fwip_stop;
    213 	ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
    214 	IFQ_SET_READY(&ifp->if_snd);
    215 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE);
    216 
    217 	if_attach(ifp);
    218 	ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr);
    219 
    220 	if (!pmf_device_register(self, NULL, NULL))
    221 		aprint_error_dev(self, "couldn't establish power handler\n");
    222 	else
    223 		pmf_class_network_register(self, ifp);
    224 
    225 	FWIPDEBUG(ifp, "interface created\n");
    226 	return;
    227 }
    228 
    229 static int
    230 fwipdetach(device_t self, int flags)
    231 {
    232 	struct fwip_softc *sc = device_private(self);
    233 	struct ifnet *ifp = sc->sc_eth.fwip_ifp;
    234 
    235 	fwip_stop(sc->sc_eth.fwip_ifp, 1);
    236 	ieee1394_ifdetach(ifp);
    237 	if_detach(ifp);
    238 	mutex_destroy(&sc->sc_mtx);
    239 	mutex_destroy(&sc->sc_fwb.fwb_mtx);
    240 	return 0;
    241 }
    242 
    243 static int
    244 fwipactivate(device_t self, enum devact act)
    245 {
    246 	struct fwip_softc *sc = device_private(self);
    247 
    248 	switch (act) {
    249 	case DVACT_DEACTIVATE:
    250 		if_deactivate(sc->sc_eth.fwip_ifp);
    251 		return 0;
    252 	default:
    253 		return EOPNOTSUPP;
    254 	}
    255 }
    256 
    257 static void
    258 fwip_start(struct ifnet *ifp)
    259 {
    260 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
    261 
    262 	FWIPDEBUG(ifp, "starting\n");
    263 
    264 	if (sc->sc_dma_ch < 0) {
    265 		struct mbuf *m = NULL;
    266 
    267 		FWIPDEBUG(ifp, "not ready\n");
    268 
    269 		do {
    270 			IF_DEQUEUE(&ifp->if_snd, m);
    271 			if (m != NULL)
    272 				m_freem(m);
    273 			ifp->if_oerrors++;
    274 		} while (m != NULL);
    275 
    276 		return;
    277 	}
    278 
    279 	ifp->if_flags |= IFF_OACTIVE;
    280 
    281 	if (ifp->if_snd.ifq_len != 0)
    282 		fwip_async_output(sc, ifp);
    283 
    284 	ifp->if_flags &= ~IFF_OACTIVE;
    285 }
    286 
    287 static int
    288 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    289 {
    290 	int s, error = 0;
    291 
    292 	s = splnet();
    293 
    294 	switch (cmd) {
    295 	case SIOCSIFFLAGS:
    296 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
    297 			break;
    298 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
    299 		case IFF_RUNNING:
    300 			fwip_stop(ifp, 0);
    301 			break;
    302 		case IFF_UP:
    303 			fwip_init(ifp);
    304 			break;
    305 		default:
    306 			break;
    307 		}
    308 		break;
    309 
    310 	case SIOCADDMULTI:
    311 	case SIOCDELMULTI:
    312 		break;
    313 
    314 	default:
    315 		error = ieee1394_ioctl(ifp, cmd, data);
    316 		if (error == ENETRESET)
    317 			error = 0;
    318 		break;
    319 	}
    320 
    321 	splx(s);
    322 
    323 	return error;
    324 }
    325 
    326 static int
    327 fwip_init(struct ifnet *ifp)
    328 {
    329 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
    330 	struct firewire_comm *fc;
    331 	struct fw_xferq *xferq;
    332 	struct fw_xfer *xfer;
    333 	struct mbuf *m;
    334 	int i;
    335 
    336 	FWIPDEBUG(ifp, "initializing\n");
    337 
    338 	fc = sc->sc_fd.fc;
    339 	if (sc->sc_dma_ch < 0) {
    340 		sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0);
    341 		if (sc->sc_dma_ch < 0)
    342 			return ENXIO;
    343 		xferq = fc->ir[sc->sc_dma_ch];
    344 		xferq->flag |=
    345 		    FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM;
    346 		xferq->flag &= ~0xff;
    347 		xferq->flag |= broadcast_channel & 0xff;
    348 		/* register fwip_input handler */
    349 		xferq->sc = (void *) sc;
    350 		xferq->hand = fwip_stream_input;
    351 		xferq->bnchunk = rx_queue_len;
    352 		xferq->bnpacket = 1;
    353 		xferq->psize = MCLBYTES;
    354 		xferq->queued = 0;
    355 		xferq->buf = NULL;
    356 		xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
    357 			sizeof(struct fw_bulkxfer) * xferq->bnchunk,
    358 							M_FW, M_WAITOK);
    359 		if (xferq->bulkxfer == NULL) {
    360 			aprint_error_ifnet(ifp, "if_fwip: malloc failed\n");
    361 			return ENOMEM;
    362 		}
    363 		STAILQ_INIT(&xferq->stvalid);
    364 		STAILQ_INIT(&xferq->stfree);
    365 		STAILQ_INIT(&xferq->stdma);
    366 		xferq->stproc = NULL;
    367 		for (i = 0; i < xferq->bnchunk; i++) {
    368 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
    369 			xferq->bulkxfer[i].mbuf = m;
    370 			if (m != NULL) {
    371 				m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
    372 				STAILQ_INSERT_TAIL(&xferq->stfree,
    373 						&xferq->bulkxfer[i], link);
    374 			} else
    375 				aprint_error_ifnet(ifp,
    376 				    "fwip_as_input: m_getcl failed\n");
    377 		}
    378 
    379 		sc->sc_fwb.start = INET_FIFO;
    380 		sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */
    381 
    382 		/* pre-allocate xfer */
    383 		STAILQ_INIT(&sc->sc_fwb.xferlist);
    384 		for (i = 0; i < rx_queue_len; i++) {
    385 			xfer = fw_xfer_alloc(M_FW);
    386 			if (xfer == NULL)
    387 				break;
    388 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
    389 			xfer->recv.payload = mtod(m, uint32_t *);
    390 			xfer->recv.pay_len = MCLBYTES;
    391 			xfer->hand = fwip_unicast_input;
    392 			xfer->fc = fc;
    393 			xfer->sc = (void *) sc;
    394 			xfer->mbuf = m;
    395 			STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
    396 		}
    397 		fw_bindadd(fc, &sc->sc_fwb);
    398 
    399 		STAILQ_INIT(&sc->sc_xferlist);
    400 		for (i = 0; i < TX_MAX_QUEUE; i++) {
    401 			xfer = fw_xfer_alloc(M_FW);
    402 			if (xfer == NULL)
    403 				break;
    404 			xfer->send.spd = tx_speed;
    405 			xfer->fc = sc->sc_fd.fc;
    406 			xfer->sc = (void *)sc;
    407 			xfer->hand = fwip_output_callback;
    408 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
    409 		}
    410 	} else
    411 		xferq = fc->ir[sc->sc_dma_ch];
    412 
    413 	sc->sc_last_dest.hi = 0;
    414 	sc->sc_last_dest.lo = 0;
    415 
    416 	/* start dma */
    417 	if ((xferq->flag & FWXFERQ_RUNNING) == 0)
    418 		fc->irx_enable(fc, sc->sc_dma_ch);
    419 
    420 	ifp->if_flags |= IFF_RUNNING;
    421 	ifp->if_flags &= ~IFF_OACTIVE;
    422 
    423 #if 0
    424 	/* attempt to start output */
    425 	fwip_start(ifp);
    426 #endif
    427 	return 0;
    428 }
    429 
    430 static void
    431 fwip_stop(struct ifnet *ifp, int disable)
    432 {
    433 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
    434 	struct firewire_comm *fc = sc->sc_fd.fc;
    435 	struct fw_xferq *xferq;
    436 	struct fw_xfer *xfer, *next;
    437 	int i;
    438 
    439 	if (sc->sc_dma_ch >= 0) {
    440 		xferq = fc->ir[sc->sc_dma_ch];
    441 
    442 		if (xferq->flag & FWXFERQ_RUNNING)
    443 			fc->irx_disable(fc, sc->sc_dma_ch);
    444 		xferq->flag &=
    445 			~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
    446 			FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
    447 		xferq->hand = NULL;
    448 
    449 		for (i = 0; i < xferq->bnchunk; i++)
    450 			m_freem(xferq->bulkxfer[i].mbuf);
    451 		free(xferq->bulkxfer, M_FW);
    452 
    453 		fw_bindremove(fc, &sc->sc_fwb);
    454 		for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL;
    455 		    xfer = next) {
    456 			next = STAILQ_NEXT(xfer, link);
    457 			fw_xfer_free(xfer);
    458 		}
    459 
    460 		for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL;
    461 		    xfer = next) {
    462 			next = STAILQ_NEXT(xfer, link);
    463 			fw_xfer_free(xfer);
    464 		}
    465 
    466 		xferq->bulkxfer = NULL;
    467 		sc->sc_dma_ch = -1;
    468 	}
    469 
    470 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    471 }
    472 
    473 static void
    474 fwip_post_busreset(void *arg)
    475 {
    476 	struct fwip_softc *sc = arg;
    477 	struct crom_src *src;
    478 	struct crom_chunk *root;
    479 
    480 	src = sc->sc_fd.fc->crom_src;
    481 	root = sc->sc_fd.fc->crom_root;
    482 
    483 	/* RFC2734 IPv4 over IEEE1394 */
    484 	memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk));
    485 	crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR);
    486 	crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF);
    487 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA");
    488 	crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1);
    489 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4");
    490 
    491 	/* RFC3146 IPv6 over IEEE1394 */
    492 	memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk));
    493 	crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR);
    494 	crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF);
    495 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA");
    496 	crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2);
    497 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6");
    498 
    499 	sc->sc_last_dest.hi = 0;
    500 	sc->sc_last_dest.lo = 0;
    501 	ieee1394_drain(sc->sc_eth.fwip_ifp);
    502 }
    503 
    504 static void
    505 fwip_output_callback(struct fw_xfer *xfer)
    506 {
    507 	struct fwip_softc *sc = (struct fwip_softc *)xfer->sc;
    508 	struct ifnet *ifp;
    509 
    510 	ifp = sc->sc_eth.fwip_ifp;
    511 	/* XXX error check */
    512 	FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
    513 	if (xfer->resp != 0)
    514 		ifp->if_oerrors++;
    515 
    516 	m_freem(xfer->mbuf);
    517 	fw_xfer_unload(xfer);
    518 
    519 	mutex_enter(&sc->sc_mtx);
    520 	STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
    521 	mutex_exit(&sc->sc_mtx);
    522 
    523 	/* for queue full */
    524 	if (ifp->if_snd.ifq_head != NULL)
    525 		fwip_start(ifp);
    526 }
    527 
    528 /* Async. stream output */
    529 static void
    530 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp)
    531 {
    532 	struct firewire_comm *fc = sc->sc_fd.fc;
    533 	struct mbuf *m;
    534 	struct m_tag *mtag;
    535 	struct fw_hwaddr *destfw;
    536 	struct fw_xfer *xfer;
    537 	struct fw_xferq *xferq;
    538 	struct fw_pkt *fp;
    539 	uint16_t nodeid;
    540 	int error;
    541 	int i = 0;
    542 
    543 	xfer = NULL;
    544 	xferq = fc->atq;
    545 	while ((xferq->queued < xferq->maxq - 1) &&
    546 	    (ifp->if_snd.ifq_head != NULL)) {
    547 		mutex_enter(&sc->sc_mtx);
    548 		if (STAILQ_EMPTY(&sc->sc_xferlist)) {
    549 			mutex_exit(&sc->sc_mtx);
    550 #if 0
    551 			aprint_normal("if_fwip: lack of xfer\n");
    552 #endif
    553 			break;
    554 		}
    555 		IF_DEQUEUE(&ifp->if_snd, m);
    556 		if (m == NULL) {
    557 			mutex_exit(&sc->sc_mtx);
    558 			break;
    559 		}
    560 		xfer = STAILQ_FIRST(&sc->sc_xferlist);
    561 		STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link);
    562 		mutex_exit(&sc->sc_mtx);
    563 
    564 		/*
    565 		 * Dig out the link-level address which
    566 		 * firewire_output got via arp or neighbour
    567 		 * discovery. If we don't have a link-level address,
    568 		 * just stick the thing on the broadcast channel.
    569 		 */
    570 		mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR);
    571 		if (mtag == NULL)
    572 			destfw = 0;
    573 		else
    574 			destfw = (struct fw_hwaddr *) (mtag + 1);
    575 
    576 		/*
    577 		 * Put the mbuf in the xfer early in case we hit an
    578 		 * error case below - fwip_output_callback will free
    579 		 * the mbuf.
    580 		 */
    581 		xfer->mbuf = m;
    582 
    583 		/*
    584 		 * We use the arp result (if any) to add a suitable firewire
    585 		 * packet header before handing off to the bus.
    586 		 */
    587 		fp = &xfer->send.hdr;
    588 		nodeid = FWLOCALBUS | fc->nodeid;
    589 		if ((m->m_flags & M_BCAST) || !destfw) {
    590 			/*
    591 			 * Broadcast packets are sent as GASP packets with
    592 			 * specifier ID 0x00005e, version 1 on the broadcast
    593 			 * channel. To be conservative, we send at the
    594 			 * slowest possible speed.
    595 			 */
    596 			uint32_t *p;
    597 
    598 			M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT);
    599 			p = mtod(m, uint32_t *);
    600 			fp->mode.stream.len = m->m_pkthdr.len;
    601 			fp->mode.stream.chtag = broadcast_channel;
    602 			fp->mode.stream.tcode = FWTCODE_STREAM;
    603 			fp->mode.stream.sy = 0;
    604 			xfer->send.spd = 0;
    605 			p[0] = htonl(nodeid << 16);
    606 			p[1] = htonl((0x5e << 24) | 1);
    607 		} else {
    608 			/*
    609 			 * Unicast packets are sent as block writes to the
    610 			 * target's unicast fifo address. If we can't
    611 			 * find the node address, we just give up. We
    612 			 * could broadcast it but that might overflow
    613 			 * the packet size limitations due to the
    614 			 * extra GASP header. Note: the hardware
    615 			 * address is stored in network byte order to
    616 			 * make life easier for ARP.
    617 			 */
    618 			struct fw_device *fd;
    619 			struct fw_eui64 eui;
    620 
    621 			eui.hi = ntohl(destfw->sender_unique_ID_hi);
    622 			eui.lo = ntohl(destfw->sender_unique_ID_lo);
    623 			if (sc->sc_last_dest.hi != eui.hi ||
    624 			    sc->sc_last_dest.lo != eui.lo) {
    625 				fd = fw_noderesolve_eui64(fc, &eui);
    626 				if (!fd) {
    627 					/* error */
    628 					ifp->if_oerrors++;
    629 					/* XXX set error code */
    630 					fwip_output_callback(xfer);
    631 					continue;
    632 
    633 				}
    634 				sc->sc_last_hdr.mode.wreqb.dst =
    635 				    FWLOCALBUS | fd->dst;
    636 				sc->sc_last_hdr.mode.wreqb.tlrt = 0;
    637 				sc->sc_last_hdr.mode.wreqb.tcode =
    638 				    FWTCODE_WREQB;
    639 				sc->sc_last_hdr.mode.wreqb.pri = 0;
    640 				sc->sc_last_hdr.mode.wreqb.src = nodeid;
    641 				sc->sc_last_hdr.mode.wreqb.dest_hi =
    642 					ntohs(destfw->sender_unicast_FIFO_hi);
    643 				sc->sc_last_hdr.mode.wreqb.dest_lo =
    644 					ntohl(destfw->sender_unicast_FIFO_lo);
    645 				sc->sc_last_hdr.mode.wreqb.extcode = 0;
    646 				sc->sc_last_dest = eui;
    647 			}
    648 
    649 			fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb;
    650 			fp->mode.wreqb.len = m->m_pkthdr.len;
    651 			xfer->send.spd = uimin(destfw->sspd, fc->speed);
    652 		}
    653 
    654 		xfer->send.pay_len = m->m_pkthdr.len;
    655 
    656 		error = fw_asyreq(fc, -1, xfer);
    657 		if (error == EAGAIN) {
    658 			/*
    659 			 * We ran out of tlabels - requeue the packet
    660 			 * for later transmission.
    661 			 */
    662 			xfer->mbuf = 0;
    663 			mutex_enter(&sc->sc_mtx);
    664 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
    665 			mutex_exit(&sc->sc_mtx);
    666 			IF_PREPEND(&ifp->if_snd, m);
    667 			break;
    668 		}
    669 		if (error) {
    670 			/* error */
    671 			ifp->if_oerrors++;
    672 			/* XXX set error code */
    673 			fwip_output_callback(xfer);
    674 			continue;
    675 		} else {
    676 			ifp->if_opackets++;
    677 			i++;
    678 		}
    679 	}
    680 #if 0
    681 	if (i > 1)
    682 		aprint_normal("%d queued\n", i);
    683 #endif
    684 	if (i > 0)
    685 		xferq->start(fc);
    686 }
    687 
    688 /* Async. stream output */
    689 static void
    690 fwip_stream_input(struct fw_xferq *xferq)
    691 {
    692 	struct mbuf *m, *m0;
    693 	struct m_tag *mtag;
    694 	struct ifnet *ifp;
    695 	struct fwip_softc *sc;
    696 	struct fw_bulkxfer *sxfer;
    697 	struct fw_pkt *fp;
    698 	uint16_t src;
    699 	uint32_t *p;
    700 
    701 	sc = (struct fwip_softc *)xferq->sc;
    702 	ifp = sc->sc_eth.fwip_ifp;
    703 	while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
    704 		STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
    705 		fp = mtod(sxfer->mbuf, struct fw_pkt *);
    706 		if (sc->sc_fd.fc->irx_post != NULL)
    707 			sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld);
    708 		m = sxfer->mbuf;
    709 
    710 		/* insert new rbuf */
    711 		sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    712 		if (m0 != NULL) {
    713 			m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
    714 			STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
    715 		} else
    716 			aprint_error_ifnet(ifp,
    717 			    "fwip_as_input: m_getcl failed\n");
    718 
    719 		/*
    720 		 * We must have a GASP header - leave the
    721 		 * encapsulation sanity checks to the generic
    722 		 * code. Remeber that we also have the firewire async
    723 		 * stream header even though that isn't accounted for
    724 		 * in mode.stream.len.
    725 		 */
    726 		if (sxfer->resp != 0 ||
    727 		    fp->mode.stream.len < 2 * sizeof(uint32_t)) {
    728 			m_freem(m);
    729 			ifp->if_ierrors++;
    730 			continue;
    731 		}
    732 		m->m_len = m->m_pkthdr.len = fp->mode.stream.len
    733 			+ sizeof(fp->mode.stream);
    734 
    735 		/*
    736 		 * If we received the packet on the broadcast channel,
    737 		 * mark it as broadcast, otherwise we assume it must
    738 		 * be multicast.
    739 		 */
    740 		if (fp->mode.stream.chtag == broadcast_channel)
    741 			m->m_flags |= M_BCAST;
    742 		else
    743 			m->m_flags |= M_MCAST;
    744 
    745 		/*
    746 		 * Make sure we recognise the GASP specifier and
    747 		 * version.
    748 		 */
    749 		p = mtod(m, uint32_t *);
    750 		if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) !=
    751 								0x00005e ||
    752 		    (ntohl(p[2]) & 0xffffff) != 1) {
    753 			FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
    754 			    ntohl(p[1]), ntohl(p[2]));
    755 			m_freem(m);
    756 			ifp->if_ierrors++;
    757 			continue;
    758 		}
    759 
    760 		/*
    761 		 * Record the sender ID for possible BPF usage.
    762 		 */
    763 		src = ntohl(p[1]) >> 16;
    764 		if (ifp->if_bpf) {
    765 			mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
    766 			    2 * sizeof(uint32_t), M_NOWAIT);
    767 			if (mtag) {
    768 				/* bpf wants it in network byte order */
    769 				struct fw_device *fd;
    770 				uint32_t *p2 = (uint32_t *) (mtag + 1);
    771 
    772 				fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
    773 				    src & 0x3f);
    774 				if (fd) {
    775 					p2[0] = htonl(fd->eui.hi);
    776 					p2[1] = htonl(fd->eui.lo);
    777 				} else {
    778 					p2[0] = 0;
    779 					p2[1] = 0;
    780 				}
    781 				m_tag_prepend(m, mtag);
    782 			}
    783 		}
    784 
    785 		/*
    786 		 * Trim off the GASP header
    787 		 */
    788 		m_adj(m, 3*sizeof(uint32_t));
    789 		m_set_rcvif(m, ifp);
    790 		ieee1394_input(ifp, m, src);
    791 		ifp->if_ipackets++;
    792 	}
    793 	if (STAILQ_FIRST(&xferq->stfree) != NULL)
    794 		sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch);
    795 }
    796 
    797 static inline void
    798 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer)
    799 {
    800 	struct mbuf *m;
    801 
    802 	/*
    803 	 * We have finished with a unicast xfer. Allocate a new
    804 	 * cluster and stick it on the back of the input queue.
    805 	 */
    806 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    807 	if (m == NULL)
    808 		aprint_error_dev(sc->sc_fd.dev,
    809 		    "fwip_unicast_input_recycle: m_getcl failed\n");
    810 	xfer->recv.payload = mtod(m, uint32_t *);
    811 	xfer->recv.pay_len = MCLBYTES;
    812 	xfer->mbuf = m;
    813 	mutex_enter(&sc->sc_fwb.fwb_mtx);
    814 	STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
    815 	mutex_exit(&sc->sc_fwb.fwb_mtx);
    816 }
    817 
    818 static void
    819 fwip_unicast_input(struct fw_xfer *xfer)
    820 {
    821 	uint64_t address;
    822 	struct mbuf *m;
    823 	struct m_tag *mtag;
    824 	struct ifnet *ifp;
    825 	struct fwip_softc *sc;
    826 	struct fw_pkt *fp;
    827 	int rtcode;
    828 
    829 	sc = (struct fwip_softc *)xfer->sc;
    830 	ifp = sc->sc_eth.fwip_ifp;
    831 	m = xfer->mbuf;
    832 	xfer->mbuf = 0;
    833 	fp = &xfer->recv.hdr;
    834 
    835 	/*
    836 	 * Check the fifo address - we only accept addresses of
    837 	 * exactly INET_FIFO.
    838 	 */
    839 	address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
    840 		| fp->mode.wreqb.dest_lo;
    841 	if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
    842 		rtcode = FWRCODE_ER_TYPE;
    843 	} else if (address != INET_FIFO) {
    844 		rtcode = FWRCODE_ER_ADDR;
    845 	} else {
    846 		rtcode = FWRCODE_COMPLETE;
    847 	}
    848 
    849 	/*
    850 	 * Pick up a new mbuf and stick it on the back of the receive
    851 	 * queue.
    852 	 */
    853 	fwip_unicast_input_recycle(sc, xfer);
    854 
    855 	/*
    856 	 * If we've already rejected the packet, give up now.
    857 	 */
    858 	if (rtcode != FWRCODE_COMPLETE) {
    859 		m_freem(m);
    860 		ifp->if_ierrors++;
    861 		return;
    862 	}
    863 
    864 	if (ifp->if_bpf) {
    865 		/*
    866 		 * Record the sender ID for possible BPF usage.
    867 		 */
    868 		mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
    869 		    2 * sizeof(uint32_t), M_NOWAIT);
    870 		if (mtag) {
    871 			/* bpf wants it in network byte order */
    872 			struct fw_device *fd;
    873 			uint32_t *p = (uint32_t *) (mtag + 1);
    874 
    875 			fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
    876 			    fp->mode.wreqb.src & 0x3f);
    877 			if (fd) {
    878 				p[0] = htonl(fd->eui.hi);
    879 				p[1] = htonl(fd->eui.lo);
    880 			} else {
    881 				p[0] = 0;
    882 				p[1] = 0;
    883 			}
    884 			m_tag_prepend(m, mtag);
    885 		}
    886 	}
    887 
    888 	/*
    889 	 * Hand off to the generic encapsulation code. We don't use
    890 	 * ifp->if_input so that we can pass the source nodeid as an
    891 	 * argument to facilitate link-level fragment reassembly.
    892 	 */
    893 	m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
    894 	m_set_rcvif(m, ifp);
    895 	ieee1394_input(ifp, m, fp->mode.wreqb.src);
    896 	ifp->if_ipackets++;
    897 }
    898