ipmi.c revision 1.12 1 /* $NetBSD: ipmi.c,v 1.12 2024/12/03 22:11:38 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2019 Michael van Elst
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 */
27 /*
28 * Copyright (c) 2006 Manuel Bouyer.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
40 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
41 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
42 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
43 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
48 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 *
50 */
51
52 /*
53 * Copyright (c) 2005 Jordan Hargrave
54 * All rights reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted provided that the following conditions
58 * are met:
59 * 1. Redistributions of source code must retain the above copyright
60 * notice, this list of conditions and the following disclaimer.
61 * 2. Redistributions in binary form must reproduce the above copyright
62 * notice, this list of conditions and the following disclaimer in the
63 * documentation and/or other materials provided with the distribution.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
69 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.12 2024/12/03 22:11:38 riastradh Exp $");
80
81 #include <sys/types.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/extent.h>
87 #include <sys/callout.h>
88 #include <sys/envsys.h>
89 #include <sys/malloc.h>
90 #include <sys/kthread.h>
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <sys/ioctl.h>
94 #include <sys/poll.h>
95 #include <sys/conf.h>
96
97 #include <dev/isa/isareg.h>
98 #include <dev/isa/isavar.h>
99
100 #include <sys/ipmi.h>
101 #include <dev/ipmivar.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include "ioconf.h"
106
107 static dev_type_open(ipmi_open);
108 static dev_type_close(ipmi_close);
109 static dev_type_ioctl(ipmi_ioctl);
110 static dev_type_poll(ipmi_poll);
111
112 const struct cdevsw ipmi_cdevsw = {
113 .d_open = ipmi_open,
114 .d_close = ipmi_close,
115 .d_read = noread,
116 .d_write = nowrite,
117 .d_ioctl = ipmi_ioctl,
118 .d_stop = nostop,
119 .d_tty = notty,
120 .d_poll = ipmi_poll,
121 .d_mmap = nommap,
122 .d_kqfilter = nokqfilter,
123 .d_discard = nodiscard,
124 .d_flag = D_OTHER
125 };
126
127 #define IPMIUNIT(n) (minor(n))
128
129 struct ipmi_sensor {
130 uint8_t *i_sdr;
131 int i_num;
132 int i_stype;
133 int i_etype;
134 char i_envdesc[64];
135 int i_envtype; /* envsys compatible type */
136 int i_envnum; /* envsys index */
137 sysmon_envsys_lim_t i_limits, i_deflims;
138 uint32_t i_props, i_defprops;
139 SLIST_ENTRY(ipmi_sensor) i_list;
140 int32_t i_prevval; /* feed rnd source on change */
141 };
142
143 #if 0
144 static int ipmi_nintr;
145 #endif
146 static int ipmi_dbg = 0;
147 static int ipmi_enabled = 0;
148
149 #define SENSOR_REFRESH_RATE (hz / 2)
150
151 #define IPMI_BTMSG_LEN 0
152 #define IPMI_BTMSG_NFLN 1
153 #define IPMI_BTMSG_SEQ 2
154 #define IPMI_BTMSG_CMD 3
155 #define IPMI_BTMSG_CCODE 4
156 #define IPMI_BTMSG_DATASND 4
157 #define IPMI_BTMSG_DATARCV 5
158
159 #define IPMI_MSG_NFLN 0
160 #define IPMI_MSG_CMD 1
161 #define IPMI_MSG_CCODE 2
162 #define IPMI_MSG_DATASND 2
163 #define IPMI_MSG_DATARCV 3
164
165 #define IPMI_SENSOR_TYPE_TEMP 0x0101
166 #define IPMI_SENSOR_TYPE_VOLT 0x0102
167 #define IPMI_SENSOR_TYPE_FAN 0x0104
168 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05
169 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08
170
171 #define IPMI_NAME_UNICODE 0x00
172 #define IPMI_NAME_BCDPLUS 0x01
173 #define IPMI_NAME_ASCII6BIT 0x02
174 #define IPMI_NAME_ASCII8BIT 0x03
175
176 #define IPMI_ENTITY_PWRSUPPLY 0x0A
177
178 #define IPMI_SENSOR_SCANNING_ENABLED (1L << 6)
179 #define IPMI_SENSOR_UNAVAILABLE (1L << 5)
180 #define IPMI_INVALID_SENSOR_P(x) \
181 (((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
182 != IPMI_SENSOR_SCANNING_ENABLED)
183
184 #define IPMI_SDR_TYPEFULL 1
185 #define IPMI_SDR_TYPECOMPACT 2
186
187 #define byteof(x) ((x) >> 3)
188 #define bitof(x) (1L << ((x) & 0x7))
189 #define TB(b,m) (data[2+byteof(b)] & bitof(b))
190
191 #define dbg_printf(lvl, fmt...) \
192 if (ipmi_dbg >= lvl) \
193 printf(fmt);
194 #define dbg_dump(lvl, msg, len, buf) \
195 if (len && ipmi_dbg >= lvl) \
196 dumpb(msg, len, (const uint8_t *)(buf));
197
198 static long signextend(unsigned long, int);
199
200 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
201 static struct ipmi_sensors_head ipmi_sensor_list =
202 SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);
203
204 static void dumpb(const char *, int, const uint8_t *);
205
206 static int read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
207 static int add_sdr_sensor(struct ipmi_softc *, uint8_t *);
208 static int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
209 uint8_t, uint8_t, void *, uint16_t *);
210 static int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);
211
212 static char *ipmi_buf_acquire(struct ipmi_softc *, size_t);
213 static void ipmi_buf_release(struct ipmi_softc *, char *);
214 static int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
215 static int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
216 static void ipmi_delay(struct ipmi_softc *, int);
217
218 static int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *);
219 static int ipmi_watchdog_setmode(struct sysmon_wdog *);
220 static int ipmi_watchdog_tickle(struct sysmon_wdog *);
221 static void ipmi_dotickle(struct ipmi_softc *);
222
223 #if 0
224 static int ipmi_intr(void *);
225 #endif
226
227 static int ipmi_match(device_t, cfdata_t, void *);
228 static void ipmi_attach(device_t, device_t, void *);
229 static int ipmi_detach(device_t, int);
230
231 static long ipmi_convert(uint8_t, struct sdrtype1 *, long);
232 static void ipmi_sensor_name(char *, int, uint8_t, uint8_t *);
233
234 /* BMC Helper Functions */
235 static uint8_t bmc_read(struct ipmi_softc *, int);
236 static void bmc_write(struct ipmi_softc *, int, uint8_t);
237 static int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
238 static int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
239 static int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);
240
241 static void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
242
243 static int getbits(uint8_t *, int, int);
244 static int ipmi_sensor_type(int, int, int);
245
246 static void ipmi_refresh_sensors(struct ipmi_softc *);
247 static int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
248 static void ipmi_unmap_regs(struct ipmi_softc *);
249
250 static int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
251 static void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
252 sysmon_envsys_lim_t *, uint32_t *);
253 static void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
254 sysmon_envsys_lim_t *, uint32_t *);
255 static void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
256 sysmon_envsys_lim_t *, uint32_t *);
257 static int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
258 envsys_data_t *, uint8_t *);
259
260 static int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
261 int, int, int, const char *);
262
263 static bool ipmi_suspend(device_t, const pmf_qual_t *);
264
265 static int kcs_probe(struct ipmi_softc *);
266 static int kcs_reset(struct ipmi_softc *);
267 static int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *);
268 static int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *);
269
270 static void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
271 static int bt_probe(struct ipmi_softc *);
272 static int bt_reset(struct ipmi_softc *);
273 static int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *);
274 static int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
275
276 static int smic_probe(struct ipmi_softc *);
277 static int smic_reset(struct ipmi_softc *);
278 static int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *);
279 static int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
280
281 static struct ipmi_if kcs_if = {
282 "KCS",
283 IPMI_IF_KCS_NREGS,
284 cmn_buildmsg,
285 kcs_sendmsg,
286 kcs_recvmsg,
287 kcs_reset,
288 kcs_probe,
289 };
290
291 static struct ipmi_if smic_if = {
292 "SMIC",
293 IPMI_IF_SMIC_NREGS,
294 cmn_buildmsg,
295 smic_sendmsg,
296 smic_recvmsg,
297 smic_reset,
298 smic_probe,
299 };
300
301 static struct ipmi_if bt_if = {
302 "BT",
303 IPMI_IF_BT_NREGS,
304 bt_buildmsg,
305 bt_sendmsg,
306 bt_recvmsg,
307 bt_reset,
308 bt_probe,
309 };
310
311 static struct ipmi_if *ipmi_get_if(int);
312
313 static struct ipmi_if *
314 ipmi_get_if(int iftype)
315 {
316 switch (iftype) {
317 case IPMI_IF_KCS:
318 return &kcs_if;
319 case IPMI_IF_SMIC:
320 return &smic_if;
321 case IPMI_IF_BT:
322 return &bt_if;
323 default:
324 return NULL;
325 }
326 }
327
328 /*
329 * BMC Helper Functions
330 */
331 static uint8_t
332 bmc_read(struct ipmi_softc *sc, int offset)
333 {
334 return bus_space_read_1(sc->sc_iot, sc->sc_ioh,
335 offset * sc->sc_if_iospacing);
336 }
337
338 static void
339 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
340 {
341 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
342 offset * sc->sc_if_iospacing, val);
343 }
344
345 static int
346 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
347 uint8_t value)
348 {
349 int retries;
350 uint8_t v;
351
352 KASSERT(mutex_owned(&sc->sc_cmd_mtx));
353
354 for (retries = 0; retries < sc->sc_max_retries; retries++) {
355 v = bmc_read(sc, offset);
356 if ((v & mask) == value)
357 return v;
358 mutex_enter(&sc->sc_sleep_mtx);
359 cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1);
360 mutex_exit(&sc->sc_sleep_mtx);
361 }
362 return -1;
363 }
364
365 static int
366 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
367 const char *lbl)
368 {
369 int v;
370
371 v = bmc_io_wait_spin(sc, offset, mask, value);
372 if (cold || v != -1)
373 return v;
374
375 return bmc_io_wait_sleep(sc, offset, mask, value);
376 }
377
378 static int
379 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
380 uint8_t value)
381 {
382 uint8_t v;
383 int count = cold ? 15000 : 500;
384 /* ~us */
385
386 while (count--) {
387 v = bmc_read(sc, offset);
388 if ((v & mask) == value)
389 return v;
390
391 delay(1);
392 }
393
394 return -1;
395
396 }
397
398 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
399 #define GET_NETFN(m) (((m) >> 2)
400 #define GET_LUN(m) ((m) & 0x03)
401
402 /*
403 * BT interface
404 */
405 #define _BT_CTRL_REG 0
406 #define BT_CLR_WR_PTR (1L << 0)
407 #define BT_CLR_RD_PTR (1L << 1)
408 #define BT_HOST2BMC_ATN (1L << 2)
409 #define BT_BMC2HOST_ATN (1L << 3)
410 #define BT_EVT_ATN (1L << 4)
411 #define BT_HOST_BUSY (1L << 6)
412 #define BT_BMC_BUSY (1L << 7)
413
414 #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)
415
416 #define _BT_DATAIN_REG 1
417 #define _BT_DATAOUT_REG 1
418
419 #define _BT_INTMASK_REG 2
420 #define BT_IM_HIRQ_PEND (1L << 1)
421 #define BT_IM_SCI_EN (1L << 2)
422 #define BT_IM_SMI_EN (1L << 3)
423 #define BT_IM_NMI2SMI (1L << 4)
424
425 static int bt_read(struct ipmi_softc *, int);
426 static int bt_write(struct ipmi_softc *, int, uint8_t);
427
428 static int
429 bt_read(struct ipmi_softc *sc, int reg)
430 {
431 return bmc_read(sc, reg);
432 }
433
434 static int
435 bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
436 {
437 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0)
438 return -1;
439
440 bmc_write(sc, reg, data);
441 return 0;
442 }
443
444 static int
445 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
446 {
447 int i;
448
449 bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
450 for (i = 0; i < len; i++)
451 bt_write(sc, _BT_DATAOUT_REG, data[i]);
452
453 bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
454 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
455 __func__) < 0)
456 return -1;
457
458 return 0;
459 }
460
461 static int
462 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
463 {
464 uint8_t len, v, i;
465
466 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
467 __func__) < 0)
468 return -1;
469
470 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
471 bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
472 bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
473 len = bt_read(sc, _BT_DATAIN_REG);
474 for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
475 v = bt_read(sc, _BT_DATAIN_REG);
476 if (i != IPMI_BTMSG_SEQ)
477 *(data++) = v;
478 }
479 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
480 *rxlen = len - 1;
481
482 return 0;
483 }
484
485 static int
486 bt_reset(struct ipmi_softc *sc)
487 {
488 return -1;
489 }
490
491 static int
492 bt_probe(struct ipmi_softc *sc)
493 {
494 uint8_t rv;
495
496 rv = bmc_read(sc, _BT_CTRL_REG);
497 rv &= BT_HOST_BUSY;
498 rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
499 bmc_write(sc, _BT_CTRL_REG, rv);
500
501 rv = bmc_read(sc, _BT_INTMASK_REG);
502 rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
503 rv |= BT_IM_HIRQ_PEND;
504 bmc_write(sc, _BT_INTMASK_REG, rv);
505
506 #if 0
507 printf("%s: %2x\n", __func__, v);
508 printf(" WR : %2x\n", v & BT_CLR_WR_PTR);
509 printf(" RD : %2x\n", v & BT_CLR_RD_PTR);
510 printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN);
511 printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN);
512 printf(" EVT : %2x\n", v & BT_EVT_ATN);
513 printf(" HBSY : %2x\n", v & BT_HOST_BUSY);
514 printf(" BBSY : %2x\n", v & BT_BMC_BUSY);
515 #endif
516 return 0;
517 }
518
519 /*
520 * SMIC interface
521 */
522 #define _SMIC_DATAIN_REG 0
523 #define _SMIC_DATAOUT_REG 0
524
525 #define _SMIC_CTRL_REG 1
526 #define SMS_CC_GET_STATUS 0x40
527 #define SMS_CC_START_TRANSFER 0x41
528 #define SMS_CC_NEXT_TRANSFER 0x42
529 #define SMS_CC_END_TRANSFER 0x43
530 #define SMS_CC_START_RECEIVE 0x44
531 #define SMS_CC_NEXT_RECEIVE 0x45
532 #define SMS_CC_END_RECEIVE 0x46
533 #define SMS_CC_TRANSFER_ABORT 0x47
534
535 #define SMS_SC_READY 0xc0
536 #define SMS_SC_WRITE_START 0xc1
537 #define SMS_SC_WRITE_NEXT 0xc2
538 #define SMS_SC_WRITE_END 0xc3
539 #define SMS_SC_READ_START 0xc4
540 #define SMS_SC_READ_NEXT 0xc5
541 #define SMS_SC_READ_END 0xc6
542
543 #define _SMIC_FLAG_REG 2
544 #define SMIC_BUSY (1L << 0)
545 #define SMIC_SMS_ATN (1L << 2)
546 #define SMIC_EVT_ATN (1L << 3)
547 #define SMIC_SMI (1L << 4)
548 #define SMIC_TX_DATA_RDY (1L << 6)
549 #define SMIC_RX_DATA_RDY (1L << 7)
550
551 static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
552 static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
553 static int smic_read_data(struct ipmi_softc *, uint8_t *);
554
555 static int
556 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
557 {
558 int v;
559
560 /* Wait for expected flag bits */
561 v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__);
562 if (v < 0)
563 return -1;
564
565 /* Return current status */
566 v = bmc_read(sc, _SMIC_CTRL_REG);
567 dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v);
568 return v;
569 }
570
571 static int
572 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
573 {
574 int sts, v;
575
576 dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1);
577 sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
578 "smic_write_cmd_data ready");
579 if (sts < 0)
580 return sts;
581
582 bmc_write(sc, _SMIC_CTRL_REG, cmd);
583 if (data)
584 bmc_write(sc, _SMIC_DATAOUT_REG, *data);
585
586 /* Toggle BUSY bit, then wait for busy bit to clear */
587 v = bmc_read(sc, _SMIC_FLAG_REG);
588 bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);
589
590 return smic_wait(sc, SMIC_BUSY, 0, __func__);
591 }
592
593 static int
594 smic_read_data(struct ipmi_softc *sc, uint8_t *data)
595 {
596 int sts;
597
598 sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
599 __func__);
600 if (sts >= 0) {
601 *data = bmc_read(sc, _SMIC_DATAIN_REG);
602 dbg_printf(50, "%s: %#.2x\n", __func__, *data);
603 }
604 return sts;
605 }
606
607 #define ErrStat(a, ...) if (a) printf(__VA_ARGS__);
608
609 static int
610 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
611 {
612 int sts, idx;
613
614 sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
615 ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__);
616 for (idx = 1; idx < len - 1; idx++) {
617 sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
618 &data[idx]);
619 ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__);
620 }
621 sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
622 if (sts != SMS_SC_WRITE_END) {
623 dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts);
624 return -1;
625 }
626
627 return 0;
628 }
629
630 static int
631 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
632 {
633 int sts, idx;
634
635 *len = 0;
636 sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__);
637 if (sts < 0)
638 return -1;
639
640 sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
641 ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__);
642 for (idx = 0;; ) {
643 sts = smic_read_data(sc, &data[idx++]);
644 if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
645 break;
646 smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
647 }
648 ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__);
649
650 *len = idx;
651
652 sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
653 if (sts != SMS_SC_READY) {
654 dbg_printf(50, "%s: %d/%d = %#.2x\n",
655 __func__, idx, maxlen, sts);
656 return -1;
657 }
658
659 return 0;
660 }
661
662 static int
663 smic_reset(struct ipmi_softc *sc)
664 {
665 return -1;
666 }
667
668 static int
669 smic_probe(struct ipmi_softc *sc)
670 {
671 /* Flag register should not be 0xFF on a good system */
672 if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
673 return -1;
674
675 return 0;
676 }
677
678 /*
679 * KCS interface
680 */
681 #define _KCS_DATAIN_REGISTER 0
682 #define _KCS_DATAOUT_REGISTER 0
683 #define KCS_READ_NEXT 0x68
684
685 #define _KCS_COMMAND_REGISTER 1
686 #define KCS_GET_STATUS 0x60
687 #define KCS_WRITE_START 0x61
688 #define KCS_WRITE_END 0x62
689
690 #define _KCS_STATUS_REGISTER 1
691 #define KCS_OBF (1L << 0)
692 #define KCS_IBF (1L << 1)
693 #define KCS_SMS_ATN (1L << 2)
694 #define KCS_CD (1L << 3)
695 #define KCS_OEM1 (1L << 4)
696 #define KCS_OEM2 (1L << 5)
697 #define KCS_STATE_MASK 0xc0
698 #define KCS_IDLE_STATE 0x00
699 #define KCS_READ_STATE 0x40
700 #define KCS_WRITE_STATE 0x80
701 #define KCS_ERROR_STATE 0xC0
702
703 static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
704 static int kcs_write_cmd(struct ipmi_softc *, uint8_t);
705 static int kcs_write_data(struct ipmi_softc *, uint8_t);
706 static int kcs_read_data(struct ipmi_softc *, uint8_t *);
707
708 static int
709 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
710 {
711 int v;
712
713 v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
714 if (v < 0)
715 return v;
716
717 /* Check if output buffer full, read dummy byte */
718 if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
719 bmc_read(sc, _KCS_DATAIN_REGISTER);
720
721 /* Check for error state */
722 if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
723 bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
724 while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
725 ;
726 aprint_error_dev(sc->sc_dev, "error code: %#x\n",
727 bmc_read(sc, _KCS_DATAIN_REGISTER));
728 }
729
730 return v & KCS_STATE_MASK;
731 }
732
733 static int
734 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
735 {
736 /* ASSERT: IBF and OBF are clear */
737 dbg_printf(50, "%s: %#.2x\n", __func__, cmd);
738 bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);
739
740 return kcs_wait(sc, KCS_IBF, 0, "write_cmd");
741 }
742
743 static int
744 kcs_write_data(struct ipmi_softc *sc, uint8_t data)
745 {
746 /* ASSERT: IBF and OBF are clear */
747 dbg_printf(50, "%s: %#.2x\n", __func__, data);
748 bmc_write(sc, _KCS_DATAOUT_REGISTER, data);
749
750 return kcs_wait(sc, KCS_IBF, 0, "write_data");
751 }
752
753 static int
754 kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
755 {
756 int sts;
757
758 sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__);
759 if (sts != KCS_READ_STATE)
760 return sts;
761
762 /* ASSERT: OBF is set read data, request next byte */
763 *data = bmc_read(sc, _KCS_DATAIN_REGISTER);
764 bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);
765
766 dbg_printf(50, "%s: %#.2x\n", __func__, *data);
767
768 return sts;
769 }
770
771 /* Exported KCS functions */
772 static int
773 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
774 {
775 int idx, sts;
776
777 /* ASSERT: IBF is clear */
778 dbg_dump(50, __func__, len, data);
779 sts = kcs_write_cmd(sc, KCS_WRITE_START);
780 for (idx = 0; idx < len; idx++) {
781 if (idx == len - 1)
782 sts = kcs_write_cmd(sc, KCS_WRITE_END);
783
784 if (sts != KCS_WRITE_STATE)
785 break;
786
787 sts = kcs_write_data(sc, data[idx]);
788 }
789 if (sts != KCS_READ_STATE) {
790 dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts);
791 dbg_dump(1, __func__, len, data);
792 return -1;
793 }
794
795 return 0;
796 }
797
798 static int
799 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
800 {
801 int idx, sts;
802
803 for (idx = 0; idx < maxlen; idx++) {
804 sts = kcs_read_data(sc, &data[idx]);
805 if (sts != KCS_READ_STATE)
806 break;
807 }
808 sts = kcs_wait(sc, KCS_IBF, 0, __func__);
809 *rxlen = idx;
810 if (sts != KCS_IDLE_STATE) {
811 dbg_printf(1, "%s: %d/%d <%#.2x>\n",
812 __func__, idx, maxlen, sts);
813 return -1;
814 }
815
816 dbg_dump(50, __func__, idx, data);
817
818 return 0;
819 }
820
821 static int
822 kcs_reset(struct ipmi_softc *sc)
823 {
824 return -1;
825 }
826
827 static int
828 kcs_probe(struct ipmi_softc *sc)
829 {
830 uint8_t v;
831
832 v = bmc_read(sc, _KCS_STATUS_REGISTER);
833 #if 0
834 printf("%s: %2x\n", __func__, v);
835 printf(" STS: %2x\n", v & KCS_STATE_MASK);
836 printf(" ATN: %2x\n", v & KCS_SMS_ATN);
837 printf(" C/D: %2x\n", v & KCS_CD);
838 printf(" IBF: %2x\n", v & KCS_IBF);
839 printf(" OBF: %2x\n", v & KCS_OBF);
840 #else
841 __USE(v);
842 #endif
843 return 0;
844 }
845
846 /*
847 * IPMI code
848 */
849 #define READ_SMS_BUFFER 0x37
850 #define WRITE_I2C 0x50
851
852 #define GET_MESSAGE_CMD 0x33
853 #define SEND_MESSAGE_CMD 0x34
854
855 #define IPMB_CHANNEL_NUMBER 0
856
857 #define PUBLIC_BUS 0
858
859 #define MIN_I2C_PACKET_SIZE 3
860 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */
861
862 #define MIN_BTBMC_REQ_SIZE 4
863 #define MIN_BTBMC_RSP_SIZE 5
864 #define MIN_BMC_REQ_SIZE 2
865 #define MIN_BMC_RSP_SIZE 3
866
867 #define BMC_SA 0x20 /* BMC/ESM3 */
868 #define FPC_SA 0x22 /* front panel */
869 #define BP_SA 0xC0 /* Primary Backplane */
870 #define BP2_SA 0xC2 /* Secondary Backplane */
871 #define PBP_SA 0xC4 /* Peripheral Backplane */
872 #define DRAC_SA 0x28 /* DRAC-III */
873 #define DRAC3_SA 0x30 /* DRAC-III */
874 #define BMC_LUN 0
875 #define SMS_LUN 2
876
877 struct ipmi_request {
878 uint8_t rsSa;
879 uint8_t rsLun;
880 uint8_t netFn;
881 uint8_t cmd;
882 uint8_t data_len;
883 uint8_t *data;
884 };
885
886 struct ipmi_response {
887 uint8_t cCode;
888 uint8_t data_len;
889 uint8_t *data;
890 };
891
892 struct ipmi_bmc_request {
893 uint8_t bmc_nfLn;
894 uint8_t bmc_cmd;
895 uint8_t bmc_data_len;
896 uint8_t bmc_data[1];
897 };
898
899 struct ipmi_bmc_response {
900 uint8_t bmc_nfLn;
901 uint8_t bmc_cmd;
902 uint8_t bmc_cCode;
903 uint8_t bmc_data_len;
904 uint8_t bmc_data[1];
905 };
906
907
908 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
909 ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);
910
911 static void
912 dumpb(const char *lbl, int len, const uint8_t *data)
913 {
914 int idx;
915
916 printf("%s: ", lbl);
917 for (idx = 0; idx < len; idx++)
918 printf("%.2x ", data[idx]);
919
920 printf("\n");
921 }
922
923 /*
924 * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
925 * This is used by BT protocol
926 *
927 * Returns a buffer to an allocated message, txlen contains length
928 * of allocated message
929 */
930 static void *
931 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
932 const void *data, int *txlen)
933 {
934 uint8_t *buf;
935
936 /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
937 *txlen = len + 4;
938 buf = ipmi_buf_acquire(sc, *txlen);
939 if (buf == NULL)
940 return NULL;
941
942 buf[IPMI_BTMSG_LEN] = len + 3;
943 buf[IPMI_BTMSG_NFLN] = nfLun;
944 buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
945 buf[IPMI_BTMSG_CMD] = cmd;
946 if (len && data)
947 memcpy(buf + IPMI_BTMSG_DATASND, data, len);
948
949 return buf;
950 }
951
952 /*
953 * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
954 * This is used by both SMIC and KCS protocols
955 *
956 * Returns a buffer to an allocated message, txlen contains length
957 * of allocated message
958 */
959 static void *
960 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
961 const void *data, int *txlen)
962 {
963 uint8_t *buf;
964
965 /* Common needs two extra bytes: nfLun/cmd + data */
966 *txlen = len + 2;
967 buf = ipmi_buf_acquire(sc, *txlen);
968 if (buf == NULL)
969 return NULL;
970
971 buf[IPMI_MSG_NFLN] = nfLun;
972 buf[IPMI_MSG_CMD] = cmd;
973 if (len && data)
974 memcpy(buf + IPMI_MSG_DATASND, data, len);
975
976 return buf;
977 }
978
979 /*
980 * ipmi_sendcmd: caller must hold sc_cmd_mtx.
981 *
982 * Send an IPMI command
983 */
984 static int
985 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
986 int txlen, const void *data)
987 {
988 uint8_t *buf;
989 int rc = -1;
990
991 dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n",
992 __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
993 dbg_dump(10, __func__, txlen, data);
994 if (rssa != BMC_SA) {
995 #if 0
996 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
997 APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
998 pI2C->bus = (sc->if_ver == 0x09) ?
999 PUBLIC_BUS :
1000 IPMB_CHANNEL_NUMBER;
1001
1002 imbreq->rsSa = rssa;
1003 imbreq->nfLn = NETFN_LUN(netfn, rslun);
1004 imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
1005 imbreq->rqSa = BMC_SA;
1006 imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
1007 imbreq->cmd = cmd;
1008 if (txlen)
1009 memcpy(imbreq->data, data, txlen);
1010 /* Set message checksum */
1011 imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
1012 #endif
1013 goto done;
1014 } else
1015 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
1016 txlen, data, &txlen);
1017
1018 if (buf == NULL) {
1019 aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n");
1020 goto done;
1021 }
1022 rc = sc->sc_if->sendmsg(sc, txlen, buf);
1023 ipmi_buf_release(sc, buf);
1024
1025 ipmi_delay(sc, 50); /* give bmc chance to digest command */
1026
1027 done:
1028 return rc;
1029 }
1030
1031 static void
1032 ipmi_buf_release(struct ipmi_softc *sc, char *buf)
1033 {
1034 KASSERT(sc->sc_buf_rsvd);
1035 KASSERT(sc->sc_buf == buf);
1036 sc->sc_buf_rsvd = false;
1037 }
1038
1039 static char *
1040 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
1041 {
1042 KASSERT(len <= sizeof(sc->sc_buf));
1043
1044 if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
1045 return NULL;
1046 sc->sc_buf_rsvd = true;
1047 return sc->sc_buf;
1048 }
1049
1050 /*
1051 * ipmi_recvcmd: caller must hold sc_cmd_mtx.
1052 */
1053 static int
1054 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
1055 {
1056 uint8_t *buf, rc = 0;
1057 int rawlen;
1058
1059 /* Need three extra bytes: netfn/cmd/ccode + data */
1060 buf = ipmi_buf_acquire(sc, maxlen + 3);
1061 if (buf == NULL) {
1062 aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__);
1063 return -1;
1064 }
1065 /* Receive message from interface, copy out result data */
1066 if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
1067 ipmi_buf_release(sc, buf);
1068 return -1;
1069 }
1070
1071 *rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0;
1072 if (*rxlen > 0 && data)
1073 memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);
1074
1075 if ((rc = buf[IPMI_MSG_CCODE]) != 0)
1076 dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__,
1077 buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);
1078
1079 dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n",
1080 __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD],
1081 buf[IPMI_MSG_CCODE], *rxlen);
1082 dbg_dump(10, __func__, *rxlen, data);
1083
1084 ipmi_buf_release(sc, buf);
1085
1086 return rc;
1087 }
1088
1089 /*
1090 * ipmi_delay: caller must hold sc_cmd_mtx.
1091 */
1092 static void
1093 ipmi_delay(struct ipmi_softc *sc, int ms)
1094 {
1095 if (cold) {
1096 delay(ms * 1000);
1097 return;
1098 }
1099 mutex_enter(&sc->sc_sleep_mtx);
1100 cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms));
1101 mutex_exit(&sc->sc_sleep_mtx);
1102 }
1103
1104 /* Read a partial SDR entry */
1105 static int
1106 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
1107 uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
1108 {
1109 union {
1110 struct {
1111 uint16_t reserveId;
1112 uint16_t recordId;
1113 uint8_t offset;
1114 uint8_t length;
1115 } __packed cmd;
1116 struct {
1117 uint16_t nxtRecordId;
1118 uint8_t data[262];
1119 } __packed msg;
1120 } u;
1121 int len;
1122
1123 __CTASSERT(sizeof(u) == 256 + 8);
1124 __CTASSERT(sizeof(u.cmd) == 6);
1125 __CTASSERT(offsetof(typeof(u.msg), data) == 2);
1126
1127 u.cmd.reserveId = reserveId;
1128 u.cmd.recordId = recordId;
1129 u.cmd.offset = offset;
1130 u.cmd.length = length;
1131 mutex_enter(&sc->sc_cmd_mtx);
1132 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR,
1133 sizeof(u.cmd), &u.cmd)) {
1134 mutex_exit(&sc->sc_cmd_mtx);
1135 aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__);
1136 return -1;
1137 }
1138 if (ipmi_recvcmd(sc, 8 + length, &len, &u.msg)) {
1139 mutex_exit(&sc->sc_cmd_mtx);
1140 aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__);
1141 return -1;
1142 }
1143 mutex_exit(&sc->sc_cmd_mtx);
1144 if (nxtRecordId)
1145 *nxtRecordId = u.msg.nxtRecordId;
1146 memcpy(buffer, u.msg.data, len - offsetof(typeof(u.msg), data));
1147
1148 return 0;
1149 }
1150
1151 static int maxsdrlen = 0x10;
1152
1153 /* Read an entire SDR; pass to add sensor */
1154 static int
1155 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
1156 {
1157 uint16_t resid = 0;
1158 int len, sdrlen, offset;
1159 uint8_t *psdr;
1160 struct sdrhdr shdr;
1161
1162 mutex_enter(&sc->sc_cmd_mtx);
1163 /* Reserve SDR */
1164 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
1165 0, NULL)) {
1166 mutex_exit(&sc->sc_cmd_mtx);
1167 aprint_error_dev(sc->sc_dev, "reserve send fails\n");
1168 return -1;
1169 }
1170 if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
1171 mutex_exit(&sc->sc_cmd_mtx);
1172 aprint_error_dev(sc->sc_dev, "reserve recv fails\n");
1173 return -1;
1174 }
1175 mutex_exit(&sc->sc_cmd_mtx);
1176 /* Get SDR Header */
1177 if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
1178 aprint_error_dev(sc->sc_dev, "get header fails\n");
1179 return -1;
1180 }
1181 /* Allocate space for entire SDR Length of SDR in header does not
1182 * include header length */
1183 sdrlen = sizeof(shdr) + shdr.record_length;
1184 psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK);
1185 if (psdr == NULL)
1186 return -1;
1187
1188 memcpy(psdr, &shdr, sizeof(shdr));
1189
1190 /* Read SDR Data maxsdrlen bytes at a time */
1191 for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
1192 len = sdrlen - offset;
1193 if (len > maxsdrlen)
1194 len = maxsdrlen;
1195
1196 if (get_sdr_partial(sc, recid, resid, offset, len,
1197 psdr + offset, NULL)) {
1198 aprint_error_dev(sc->sc_dev,
1199 "get chunk : %d,%d fails\n", offset, len);
1200 free(psdr, M_DEVBUF);
1201 return -1;
1202 }
1203 }
1204
1205 /* Add SDR to sensor list, if not wanted, free buffer */
1206 if (add_sdr_sensor(sc, psdr) == 0)
1207 free(psdr, M_DEVBUF);
1208
1209 return 0;
1210 }
1211
1212 static int
1213 getbits(uint8_t *bytes, int bitpos, int bitlen)
1214 {
1215 int v;
1216 int mask;
1217
1218 bitpos += bitlen - 1;
1219 for (v = 0; bitlen--;) {
1220 v <<= 1;
1221 mask = 1L << (bitpos & 7);
1222 if (bytes[bitpos >> 3] & mask)
1223 v |= 1;
1224 bitpos--;
1225 }
1226
1227 return v;
1228 }
1229
1230 /* Decode IPMI sensor name */
1231 static void
1232 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
1233 {
1234 int i, slen;
1235 char bcdplus[] = "0123456789 -.:,_";
1236
1237 slen = typelen & 0x1F;
1238 switch (typelen >> 6) {
1239 case IPMI_NAME_UNICODE:
1240 //unicode
1241 break;
1242
1243 case IPMI_NAME_BCDPLUS:
1244 /* Characters are encoded in 4-bit BCDPLUS */
1245 if (len < slen * 2 + 1)
1246 slen = (len >> 1) - 1;
1247 for (i = 0; i < slen; i++) {
1248 *(name++) = bcdplus[bits[i] >> 4];
1249 *(name++) = bcdplus[bits[i] & 0xF];
1250 }
1251 break;
1252
1253 case IPMI_NAME_ASCII6BIT:
1254 /* Characters are encoded in 6-bit ASCII
1255 * 0x00 - 0x3F maps to 0x20 - 0x5F */
1256 /* XXX: need to calculate max len: slen = 3/4 * len */
1257 if (len < slen + 1)
1258 slen = len - 1;
1259 for (i = 0; i < slen * 8; i += 6)
1260 *(name++) = getbits(bits, i, 6) + ' ';
1261 break;
1262
1263 case IPMI_NAME_ASCII8BIT:
1264 /* Characters are 8-bit ascii */
1265 if (len < slen + 1)
1266 slen = len - 1;
1267 while (slen--)
1268 *(name++) = *(bits++);
1269 break;
1270 }
1271 *name = 0;
1272 }
1273
1274 /* Sign extend a n-bit value */
1275 static long
1276 signextend(unsigned long val, int bits)
1277 {
1278 long msk = (1L << (bits-1))-1;
1279
1280 return -(val & ~msk) | val;
1281 }
1282
1283
1284 /* fixpoint arithmetic */
1285 #define FIX2INT(x) ((int64_t)((x) >> 32))
1286 #define INT2FIX(x) ((int64_t)((uint64_t)(x) << 32))
1287
1288 #define FIX2 0x0000000200000000ll /* 2.0 */
1289 #define FIX3 0x0000000300000000ll /* 3.0 */
1290 #define FIXE 0x00000002b7e15163ll /* 2.71828182845904523536 */
1291 #define FIX10 0x0000000a00000000ll /* 10.0 */
1292 #define FIXMONE 0xffffffff00000000ll /* -1.0 */
1293 #define FIXHALF 0x0000000080000000ll /* 0.5 */
1294 #define FIXTHIRD 0x0000000055555555ll /* 0.33333333333333333333 */
1295
1296 #define FIX1LOG2 0x0000000171547653ll /* 1.0/log(2) */
1297 #define FIX1LOGE 0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
1298 #define FIX1LOG10 0x000000006F2DEC55ll /* 1.0/log(10) */
1299
1300 #define FIX1E 0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */
1301
1302 static int64_t fixlog_a[] = {
1303 0x0000000100000000ll /* 1.0/1.0 */,
1304 0xffffffff80000000ll /* -1.0/2.0 */,
1305 0x0000000055555555ll /* 1.0/3.0 */,
1306 0xffffffffc0000000ll /* -1.0/4.0 */,
1307 0x0000000033333333ll /* 1.0/5.0 */,
1308 0x000000002aaaaaabll /* -1.0/6.0 */,
1309 0x0000000024924925ll /* 1.0/7.0 */,
1310 0x0000000020000000ll /* -1.0/8.0 */,
1311 0x000000001c71c71cll /* 1.0/9.0 */
1312 };
1313
1314 static int64_t fixexp_a[] = {
1315 0x0000000100000000ll /* 1.0/1.0 */,
1316 0x0000000100000000ll /* 1.0/1.0 */,
1317 0x0000000080000000ll /* 1.0/2.0 */,
1318 0x000000002aaaaaabll /* 1.0/6.0 */,
1319 0x000000000aaaaaabll /* 1.0/24.0 */,
1320 0x0000000002222222ll /* 1.0/120.0 */,
1321 0x00000000005b05b0ll /* 1.0/720.0 */,
1322 0x00000000000d00d0ll /* 1.0/5040.0 */,
1323 0x000000000001a01all /* 1.0/40320.0 */
1324 };
1325
1326 static int64_t
1327 fixmul(int64_t x, int64_t y)
1328 {
1329 int64_t z;
1330 int64_t a,b,c,d;
1331 int neg;
1332
1333 neg = 0;
1334 if (x < 0) {
1335 x = -x;
1336 neg = !neg;
1337 }
1338 if (y < 0) {
1339 y = -y;
1340 neg = !neg;
1341 }
1342
1343 a = FIX2INT(x);
1344 b = x - INT2FIX(a);
1345 c = FIX2INT(y);
1346 d = y - INT2FIX(c);
1347
1348 z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);
1349
1350 return neg ? -z : z;
1351 }
1352
1353 static int64_t
1354 poly(int64_t x0, int64_t x, int64_t a[], int n)
1355 {
1356 int64_t z;
1357 int i;
1358
1359 z = fixmul(x0, a[0]);
1360 for (i=1; i<n; ++i) {
1361 x0 = fixmul(x0, x);
1362 z = fixmul(x0, a[i]) + z;
1363 }
1364 return z;
1365 }
1366
1367 static int64_t
1368 logx(int64_t x, int64_t y)
1369 {
1370 int64_t z;
1371
1372 if (x <= INT2FIX(0)) {
1373 z = INT2FIX(-99999);
1374 goto done;
1375 }
1376
1377 z = INT2FIX(0);
1378 while (x >= FIXE) {
1379 x = fixmul(x, FIX1E);
1380 z += INT2FIX(1);
1381 }
1382 while (x < INT2FIX(1)) {
1383 x = fixmul(x, FIXE);
1384 z -= INT2FIX(1);
1385 }
1386
1387 x -= INT2FIX(1);
1388 z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
1389 z = fixmul(z, y);
1390
1391 done:
1392 return z;
1393 }
1394
1395 static int64_t
1396 powx(int64_t x, int64_t y)
1397 {
1398 int64_t k;
1399
1400 if (x == INT2FIX(0))
1401 goto done;
1402
1403 x = logx(x,y);
1404
1405 if (x < INT2FIX(0)) {
1406 x = INT2FIX(0) - x;
1407 k = -FIX2INT(x);
1408 x = INT2FIX(-k) - x;
1409 } else {
1410 k = FIX2INT(x);
1411 x = x - INT2FIX(k);
1412 }
1413
1414 x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));
1415
1416 while (k < 0) {
1417 x = fixmul(x, FIX1E);
1418 ++k;
1419 }
1420 while (k > 0) {
1421 x = fixmul(x, FIXE);
1422 --k;
1423 }
1424
1425 done:
1426 return x;
1427 }
1428
1429 /* Convert IPMI reading from sensor factors */
1430 static long
1431 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
1432 {
1433 int64_t M, B;
1434 char K1, K2;
1435 int64_t val, v1, v2, vs;
1436 int sign = (s1->units1 >> 6) & 0x3;
1437
1438 vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
1439 if ((vs < 0) && (sign == 0x1))
1440 vs++;
1441
1442 /* Calculate linear reading variables */
1443 M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
1444 B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
1445 K1 = signextend(s1->rbexp & 0xF, 4);
1446 K2 = signextend(s1->rbexp >> 4, 4);
1447
1448 /* Calculate sensor reading:
1449 * y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
1450 *
1451 * This commutes out to:
1452 * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
1453 v1 = powx(FIX10, INT2FIX(K2 + adj));
1454 v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
1455 val = M * vs * v1 + B * v2;
1456
1457 /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
1458 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
1459 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
1460 * root(x) */
1461 switch (s1->linear & 0x7f) {
1462 case 0: break;
1463 case 1: val = logx(val,FIX1LOGE); break;
1464 case 2: val = logx(val,FIX1LOG10); break;
1465 case 3: val = logx(val,FIX1LOG2); break;
1466 case 4: val = powx(FIXE,val); break;
1467 case 5: val = powx(FIX10,val); break;
1468 case 6: val = powx(FIX2,val); break;
1469 case 7: val = powx(val,FIXMONE); break;
1470 case 8: val = powx(val,FIX2); break;
1471 case 9: val = powx(val,FIX3); break;
1472 case 10: val = powx(val,FIXHALF); break;
1473 case 11: val = powx(val,FIXTHIRD); break;
1474 }
1475
1476 return FIX2INT(val);
1477 }
1478
1479 static int32_t
1480 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
1481 {
1482 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
1483 int32_t val;
1484
1485 switch (psensor->i_envtype) {
1486 case ENVSYS_STEMP:
1487 val = ipmi_convert(reading[0], s1, 6) + 273150000;
1488 break;
1489
1490 case ENVSYS_SVOLTS_DC:
1491 val = ipmi_convert(reading[0], s1, 6);
1492 break;
1493
1494 case ENVSYS_SFANRPM:
1495 val = ipmi_convert(reading[0], s1, 0);
1496 if (((s1->units1>>3)&0x7) == 0x3)
1497 val *= 60; /* RPS -> RPM */
1498 break;
1499 default:
1500 val = 0;
1501 break;
1502 }
1503 return val;
1504 }
1505
1506 static void
1507 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1508 sysmon_envsys_lim_t *limits, uint32_t *props)
1509 {
1510 struct ipmi_sensor *ipmi_s;
1511
1512 /* Find the ipmi_sensor corresponding to this edata */
1513 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1514 if (ipmi_s->i_envnum == edata->sensor) {
1515 if (limits == NULL) {
1516 limits = &ipmi_s->i_deflims;
1517 props = &ipmi_s->i_defprops;
1518 }
1519 *props |= PROP_DRIVER_LIMITS;
1520 ipmi_s->i_limits = *limits;
1521 ipmi_s->i_props = *props;
1522 return;
1523 }
1524 }
1525 return;
1526 }
1527
1528 static void
1529 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1530 sysmon_envsys_lim_t *limits, uint32_t *props)
1531 {
1532 struct ipmi_sensor *ipmi_s;
1533 struct ipmi_softc *sc = sme->sme_cookie;
1534
1535 /* Find the ipmi_sensor corresponding to this edata */
1536 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1537 if (ipmi_s->i_envnum == edata->sensor) {
1538 ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
1539 ipmi_s->i_limits = *limits;
1540 ipmi_s->i_props = *props;
1541 if (ipmi_s->i_defprops == 0) {
1542 ipmi_s->i_defprops = *props;
1543 ipmi_s->i_deflims = *limits;
1544 }
1545 return;
1546 }
1547 }
1548 return;
1549 }
1550
1551 /* valid bits for (upper,lower) x (non-recoverable, critical, warn) */
1552 #define UN 0x20
1553 #define UC 0x10
1554 #define UW 0x08
1555 #define LN 0x04
1556 #define LC 0x02
1557 #define LW 0x01
1558
1559 static void
1560 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1561 sysmon_envsys_lim_t *limits, uint32_t *props)
1562 {
1563 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
1564 bool failure;
1565 int rxlen;
1566 uint8_t data[32], valid;
1567 uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
1568 int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;
1569
1570 *props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
1571 data[0] = psensor->i_num;
1572 mutex_enter(&sc->sc_cmd_mtx);
1573 failure =
1574 ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
1575 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
1576 ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
1577 mutex_exit(&sc->sc_cmd_mtx);
1578 if (failure)
1579 return;
1580
1581 dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
1582 __func__, data[0], data[1], data[2], data[3], data[4], data[5],
1583 data[6]);
1584
1585 switch (s1->linear & 0x7f) {
1586 case 7: /* 1/x sensor, exchange upper and lower limits */
1587 prop_critmax = PROP_CRITMIN;
1588 prop_warnmax = PROP_WARNMIN;
1589 prop_critmin = PROP_CRITMAX;
1590 prop_warnmin = PROP_WARNMAX;
1591 pcritmax = &limits->sel_critmin;
1592 pwarnmax = &limits->sel_warnmin;
1593 pcritmin = &limits->sel_critmax;
1594 pwarnmin = &limits->sel_warnmax;
1595 break;
1596 default:
1597 prop_critmax = PROP_CRITMAX;
1598 prop_warnmax = PROP_WARNMAX;
1599 prop_critmin = PROP_CRITMIN;
1600 prop_warnmin = PROP_WARNMIN;
1601 pcritmax = &limits->sel_critmax;
1602 pwarnmax = &limits->sel_warnmax;
1603 pcritmin = &limits->sel_critmin;
1604 pwarnmin = &limits->sel_warnmin;
1605 break;
1606 }
1607
1608 valid = data[0];
1609
1610 /* if upper non-recoverable < warning, ignore it */
1611 if ((valid & (UN|UW)) == (UN|UW) && data[6] < data[4])
1612 valid ^= UN;
1613 /* if upper critical < warning, ignore it */
1614 if ((valid & (UC|UW)) == (UC|UW) && data[5] < data[4])
1615 valid ^= UC;
1616
1617 /* if lower non-recoverable > warning, ignore it */
1618 if ((data[0] & (LN|LW)) == (LN|LW) && data[3] > data[1])
1619 valid ^= LN;
1620 /* if lower critical > warning, ignore it */
1621 if ((data[0] & (LC|LW)) == (LC|LW) && data[2] > data[1])
1622 valid ^= LC;
1623
1624 if (valid & UN && data[6] != 0xff) {
1625 *pcritmax = ipmi_convert_sensor(&data[6], psensor);
1626 *props |= prop_critmax;
1627 }
1628 if (valid & UC && data[5] != 0xff) {
1629 *pcritmax = ipmi_convert_sensor(&data[5], psensor);
1630 *props |= prop_critmax;
1631 }
1632 if (valid & UW && data[4] != 0xff) {
1633 *pwarnmax = ipmi_convert_sensor(&data[4], psensor);
1634 *props |= prop_warnmax;
1635 }
1636 if (valid & LN && data[3] != 0x00) {
1637 *pcritmin = ipmi_convert_sensor(&data[3], psensor);
1638 *props |= prop_critmin;
1639 }
1640 if (valid & LC && data[2] != 0x00) {
1641 *pcritmin = ipmi_convert_sensor(&data[2], psensor);
1642 *props |= prop_critmin;
1643 }
1644 if (valid & LW && data[1] != 0x00) {
1645 *pwarnmin = ipmi_convert_sensor(&data[1], psensor);
1646 *props |= prop_warnmin;
1647 }
1648 return;
1649 }
1650
1651 static int
1652 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1653 envsys_data_t *edata, uint8_t *reading)
1654 {
1655 int etype;
1656
1657 /* Get reading of sensor */
1658 edata->value_cur = ipmi_convert_sensor(reading, psensor);
1659
1660 /* Return Sensor Status */
1661 etype = (psensor->i_etype << 8) + psensor->i_stype;
1662 switch (etype) {
1663 case IPMI_SENSOR_TYPE_TEMP:
1664 case IPMI_SENSOR_TYPE_VOLT:
1665 case IPMI_SENSOR_TYPE_FAN:
1666 if (psensor->i_props & PROP_CRITMAX &&
1667 edata->value_cur > psensor->i_limits.sel_critmax)
1668 return ENVSYS_SCRITOVER;
1669
1670 if (psensor->i_props & PROP_WARNMAX &&
1671 edata->value_cur > psensor->i_limits.sel_warnmax)
1672 return ENVSYS_SWARNOVER;
1673
1674 if (psensor->i_props & PROP_CRITMIN &&
1675 edata->value_cur < psensor->i_limits.sel_critmin)
1676 return ENVSYS_SCRITUNDER;
1677
1678 if (psensor->i_props & PROP_WARNMIN &&
1679 edata->value_cur < psensor->i_limits.sel_warnmin)
1680 return ENVSYS_SWARNUNDER;
1681
1682 break;
1683
1684 case IPMI_SENSOR_TYPE_INTRUSION:
1685 edata->value_cur = (reading[2] & 1) ? 0 : 1;
1686 if (reading[2] & 0x1)
1687 return ENVSYS_SCRITICAL;
1688 break;
1689
1690 case IPMI_SENSOR_TYPE_PWRSUPPLY:
1691 /* Reading: 1 = present+powered, 0 = otherwise */
1692 edata->value_cur = (reading[2] & 1) ? 0 : 1;
1693 if (reading[2] & 0x10) {
1694 /* XXX: Need envsys type for Power Supply types
1695 * ok: power supply installed && powered
1696 * warn: power supply installed && !powered
1697 * crit: power supply !installed
1698 */
1699 return ENVSYS_SCRITICAL;
1700 }
1701 if (reading[2] & 0x08) {
1702 /* Power supply AC lost */
1703 return ENVSYS_SWARNOVER;
1704 }
1705 break;
1706 }
1707
1708 return ENVSYS_SVALID;
1709 }
1710
1711 static int
1712 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
1713 {
1714 struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr;
1715 uint8_t data[8];
1716 int rxlen;
1717 envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];
1718
1719 memset(data, 0, sizeof(data));
1720 data[0] = psensor->i_num;
1721
1722 mutex_enter(&sc->sc_cmd_mtx);
1723 if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
1724 SE_GET_SENSOR_READING, 1, data))
1725 goto err;
1726
1727 if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
1728 goto err;
1729 mutex_exit(&sc->sc_cmd_mtx);
1730
1731 dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, "
1732 "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b,
1733 s1->b_accuracy, s1->rbexp, s1->linear);
1734 dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n",
1735 data[0],data[1],data[2],data[3], edata->desc);
1736 if (IPMI_INVALID_SENSOR_P(data[1])) {
1737 /* Check if sensor is valid */
1738 edata->state = ENVSYS_SINVALID;
1739 } else {
1740 edata->state = ipmi_sensor_status(sc, psensor, edata, data);
1741 }
1742 return 0;
1743 err:
1744 mutex_exit(&sc->sc_cmd_mtx);
1745 return -1;
1746 }
1747
1748 static int
1749 ipmi_sensor_type(int type, int ext_type, int entity)
1750 {
1751 switch (ext_type << 8L | type) {
1752 case IPMI_SENSOR_TYPE_TEMP:
1753 return ENVSYS_STEMP;
1754
1755 case IPMI_SENSOR_TYPE_VOLT:
1756 return ENVSYS_SVOLTS_DC;
1757
1758 case IPMI_SENSOR_TYPE_FAN:
1759 return ENVSYS_SFANRPM;
1760
1761 case IPMI_SENSOR_TYPE_PWRSUPPLY:
1762 if (entity == IPMI_ENTITY_PWRSUPPLY)
1763 return ENVSYS_INDICATOR;
1764 break;
1765
1766 case IPMI_SENSOR_TYPE_INTRUSION:
1767 return ENVSYS_INDICATOR;
1768 }
1769
1770 return -1;
1771 }
1772
1773 /* Add Sensor to BSD Sysctl interface */
1774 static int
1775 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
1776 {
1777 int rc;
1778 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr;
1779 struct sdrtype2 *s2 = (struct sdrtype2 *)psdr;
1780 char name[64];
1781
1782 switch (s1->sdrhdr.record_type) {
1783 case IPMI_SDR_TYPEFULL:
1784 ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
1785 rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
1786 s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
1787 break;
1788
1789 case IPMI_SDR_TYPECOMPACT:
1790 ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
1791 rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
1792 s2->sensor_num, s2->sensor_type, s2->event_code,
1793 s2->share2 & 0x7F, s2->entity_id, name);
1794 break;
1795
1796 default:
1797 return 0;
1798 }
1799
1800 return rc;
1801 }
1802
1803 static int
1804 ipmi_is_dupname(char *name)
1805 {
1806 struct ipmi_sensor *ipmi_s;
1807
1808 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1809 if (strcmp(ipmi_s->i_envdesc, name) == 0) {
1810 return 1;
1811 }
1812 }
1813 return 0;
1814 }
1815
1816 static int
1817 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
1818 int sensor_num, int sensor_type, int ext_type, int sensor_base,
1819 int entity, const char *name)
1820 {
1821 int typ, idx, dupcnt, c;
1822 char *e;
1823 struct ipmi_sensor *psensor;
1824 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr;
1825
1826 typ = ipmi_sensor_type(sensor_type, ext_type, entity);
1827 if (typ == -1) {
1828 dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x "
1829 "name:%s\n", sensor_type, ext_type, sensor_num, name);
1830 return 0;
1831 }
1832 dupcnt = 0;
1833 sc->sc_nsensors += count;
1834 for (idx = 0; idx < count; idx++) {
1835 psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
1836 M_WAITOK);
1837 if (psensor == NULL)
1838 break;
1839
1840 memset(psensor, 0, sizeof(struct ipmi_sensor));
1841
1842 /* Initialize BSD Sensor info */
1843 psensor->i_sdr = psdr;
1844 psensor->i_num = sensor_num + idx;
1845 psensor->i_stype = sensor_type;
1846 psensor->i_etype = ext_type;
1847 psensor->i_envtype = typ;
1848 if (count > 1)
1849 snprintf(psensor->i_envdesc,
1850 sizeof(psensor->i_envdesc),
1851 "%s - %d", name, sensor_base + idx);
1852 else
1853 strlcpy(psensor->i_envdesc, name,
1854 sizeof(psensor->i_envdesc));
1855
1856 /*
1857 * Check for duplicates. If there are duplicates,
1858 * make sure there is space in the name (if not,
1859 * truncate to make space) for a count (1-99) to
1860 * add to make the name unique. If we run the
1861 * counter out, just accept the duplicate (@name99)
1862 * for now.
1863 */
1864 if (ipmi_is_dupname(psensor->i_envdesc)) {
1865 if (strlen(psensor->i_envdesc) >=
1866 sizeof(psensor->i_envdesc) - 3) {
1867 e = psensor->i_envdesc +
1868 sizeof(psensor->i_envdesc) - 3;
1869 } else {
1870 e = psensor->i_envdesc +
1871 strlen(psensor->i_envdesc);
1872 }
1873 c = psensor->i_envdesc +
1874 sizeof(psensor->i_envdesc) - e;
1875 do {
1876 dupcnt++;
1877 snprintf(e, c, "%d", dupcnt);
1878 } while (dupcnt < 100 &&
1879 ipmi_is_dupname(psensor->i_envdesc));
1880 }
1881
1882 dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n",
1883 __func__,
1884 s1->sdrhdr.record_id, s1->sensor_type,
1885 typ, s1->entity_id, s1->entity_instance,
1886 psensor->i_envdesc);
1887 SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
1888 }
1889
1890 return 1;
1891 }
1892
1893 #if 0
1894 /* Interrupt handler */
1895 static int
1896 ipmi_intr(void *arg)
1897 {
1898 struct ipmi_softc *sc = (struct ipmi_softc *)arg;
1899 int v;
1900
1901 v = bmc_read(sc, _KCS_STATUS_REGISTER);
1902 if (v & KCS_OBF)
1903 ++ipmi_nintr;
1904
1905 return 0;
1906 }
1907 #endif
1908
1909 /* Handle IPMI Timer - reread sensor values */
1910 static void
1911 ipmi_refresh_sensors(struct ipmi_softc *sc)
1912 {
1913
1914 if (SLIST_EMPTY(&ipmi_sensor_list))
1915 return;
1916
1917 sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
1918 if (sc->current_sensor == NULL)
1919 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
1920
1921 if (read_sensor(sc, sc->current_sensor)) {
1922 dbg_printf(1, "%s: error reading\n", __func__);
1923 }
1924 }
1925
1926 static int
1927 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
1928 {
1929 int error;
1930
1931 sc->sc_if = ipmi_get_if(ia->iaa_if_type);
1932 if (sc->sc_if == NULL)
1933 return -1;
1934
1935 if (ia->iaa_if_iotype == 'i')
1936 sc->sc_iot = ia->iaa_iot;
1937 else
1938 sc->sc_iot = ia->iaa_memt;
1939
1940 sc->sc_if_rev = ia->iaa_if_rev;
1941 sc->sc_if_iospacing = ia->iaa_if_iospacing;
1942 if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
1943 sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) {
1944 const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) :
1945 "ipmi0";
1946 aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x"
1947 ", 0, %p) type %c failed %d\n",
1948 xname, __func__, (uint64_t)ia->iaa_if_iobase,
1949 sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh,
1950 ia->iaa_if_iotype, error);
1951 return -1;
1952 }
1953 #if 0
1954 if (iaa->if_if_irq != -1)
1955 sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
1956 iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
1957 device_xname(sc->sc_dev);
1958 #endif
1959 return 0;
1960 }
1961
1962 static void
1963 ipmi_unmap_regs(struct ipmi_softc *sc)
1964 {
1965 bus_space_unmap(sc->sc_iot, sc->sc_ioh,
1966 sc->sc_if->nregs * sc->sc_if_iospacing);
1967 }
1968
1969 static int
1970 ipmi_match(device_t parent, cfdata_t cf, void *aux)
1971 {
1972 struct ipmi_softc sc;
1973 struct ipmi_attach_args *ia = aux;
1974 int rv = 0;
1975
1976 memset(&sc, 0, sizeof(sc));
1977
1978 /* Map registers */
1979 if (ipmi_map_regs(&sc, ia) != 0)
1980 return 0;
1981
1982 sc.sc_if->probe(&sc);
1983
1984 mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
1985 cv_init(&sc.sc_cmd_sleep, "ipmimtch");
1986
1987 if (ipmi_get_device_id(&sc, NULL) == 0)
1988 rv = 1;
1989
1990 cv_destroy(&sc.sc_cmd_sleep);
1991 mutex_destroy(&sc.sc_cmd_mtx);
1992 ipmi_unmap_regs(&sc);
1993
1994 return rv;
1995 }
1996
1997 static void
1998 ipmi_thread(void *cookie)
1999 {
2000 device_t self = cookie;
2001 struct ipmi_softc *sc = device_private(self);
2002 struct ipmi_attach_args *ia = &sc->sc_ia;
2003 uint16_t rec;
2004 struct ipmi_sensor *ipmi_s;
2005 struct ipmi_device_id id;
2006 int i;
2007
2008 sc->sc_thread_running = true;
2009
2010 /* setup ticker */
2011 sc->sc_max_retries = hz * 90; /* 90 seconds max */
2012
2013 /* Map registers */
2014 ipmi_map_regs(sc, ia);
2015
2016 /* Setup Watchdog timer */
2017 sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
2018 sc->sc_wdog.smw_cookie = sc;
2019 sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
2020 sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
2021 sysmon_wdog_register(&sc->sc_wdog);
2022
2023 /* Set up a power handler so we can possibly sleep */
2024 if (!pmf_device_register(self, ipmi_suspend, NULL))
2025 aprint_error_dev(self, "couldn't establish a power handler\n");
2026
2027 /*
2028 * Allow boot to proceed -- we'll do the rest asynchronously
2029 * since it requires talking to the device.
2030 */
2031 config_pending_decr(self);
2032
2033 memset(&id, 0, sizeof(id));
2034 if (ipmi_get_device_id(sc, &id))
2035 aprint_error_dev(self, "Failed to re-query device ID\n");
2036
2037 /* Scan SDRs, add sensors to list */
2038 for (rec = 0; rec != 0xFFFF;)
2039 if (get_sdr(sc, rec, &rec))
2040 break;
2041
2042 /* allocate and fill sensor arrays */
2043 sc->sc_sensor = malloc(sizeof(sc->sc_sensor[0]) * sc->sc_nsensors,
2044 M_DEVBUF, M_WAITOK | M_ZERO);
2045
2046 sc->sc_envsys = sysmon_envsys_create();
2047 sc->sc_envsys->sme_cookie = sc;
2048 sc->sc_envsys->sme_get_limits = ipmi_get_limits;
2049 sc->sc_envsys->sme_set_limits = ipmi_set_limits;
2050
2051 i = 0;
2052 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
2053 ipmi_s->i_props = 0;
2054 ipmi_s->i_envnum = -1;
2055 sc->sc_sensor[i].units = ipmi_s->i_envtype;
2056 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2057 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
2058 /*
2059 * Monitor threshold limits in the sensors.
2060 */
2061 switch (sc->sc_sensor[i].units) {
2062 case ENVSYS_STEMP:
2063 case ENVSYS_SVOLTS_DC:
2064 case ENVSYS_SFANRPM:
2065 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
2066 break;
2067 default:
2068 sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
2069 }
2070 (void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
2071 sizeof(sc->sc_sensor[i].desc));
2072 ++i;
2073
2074 if (sysmon_envsys_sensor_attach(sc->sc_envsys,
2075 &sc->sc_sensor[i-1]))
2076 continue;
2077
2078 /* get reference number from envsys */
2079 ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
2080 }
2081
2082 sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
2083 sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;
2084
2085 if (sysmon_envsys_register(sc->sc_envsys)) {
2086 aprint_error_dev(self, "unable to register with sysmon\n");
2087 sysmon_envsys_destroy(sc->sc_envsys);
2088 sc->sc_envsys = NULL;
2089 }
2090
2091 /* initialize sensor list for thread */
2092 if (!SLIST_EMPTY(&ipmi_sensor_list))
2093 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
2094
2095 aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
2096 "0x%" PRIx64 "/%#x spacing %d\n",
2097 ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
2098 ia->iaa_if_iotype == 'i' ? "io" : "mem",
2099 (uint64_t)ia->iaa_if_iobase,
2100 ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
2101 if (ia->iaa_if_irq != -1)
2102 aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);
2103
2104 if (id.deviceid != 0) {
2105 aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n",
2106 id.deviceid, (id.revision & 0xf),
2107 (id.version & 0xf), (id.version >> 4) & 0xf,
2108 (id.fwrev1 & 0x80) ? " Initializing" : " Available",
2109 (id.revision & 0x80) ? " +SDRs" : "");
2110 if (id.additional != 0)
2111 aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n",
2112 (id.additional & 0x80) ? " Chassis" : "",
2113 (id.additional & 0x40) ? " Bridge" : "",
2114 (id.additional & 0x20) ? " IPMBGen" : "",
2115 (id.additional & 0x10) ? " IPMBRcv" : "",
2116 (id.additional & 0x08) ? " FRU" : "",
2117 (id.additional & 0x04) ? " SEL" : "",
2118 (id.additional & 0x02) ? " SDR" : "",
2119 (id.additional & 0x01) ? " Sensor" : "");
2120 aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n",
2121 (id.manufacturer[2] & 0xf) << 16
2122 | id.manufacturer[1] << 8
2123 | id.manufacturer[0],
2124 id.product[1] << 8
2125 | id.manufacturer[0]);
2126 aprint_verbose_dev(self, "Firmware %u.%x\n",
2127 (id.fwrev1 & 0x7f), id.fwrev2);
2128 }
2129
2130 /* setup flag to exclude iic */
2131 ipmi_enabled = 1;
2132
2133 mutex_enter(&sc->sc_poll_mtx);
2134 sc->sc_thread_ready = true;
2135 cv_broadcast(&sc->sc_mode_cv);
2136 while (sc->sc_thread_running) {
2137 while (sc->sc_mode == IPMI_MODE_COMMAND)
2138 cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2139 sc->sc_mode = IPMI_MODE_ENVSYS;
2140
2141 if (sc->sc_tickle_due) {
2142 ipmi_dotickle(sc);
2143 sc->sc_tickle_due = false;
2144 }
2145 ipmi_refresh_sensors(sc);
2146
2147 sc->sc_mode = IPMI_MODE_IDLE;
2148 cv_broadcast(&sc->sc_mode_cv);
2149 cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
2150 SENSOR_REFRESH_RATE);
2151 }
2152 mutex_exit(&sc->sc_poll_mtx);
2153 kthread_exit(0);
2154 }
2155
2156 static void
2157 ipmi_attach(device_t parent, device_t self, void *aux)
2158 {
2159 struct ipmi_softc *sc = device_private(self);
2160
2161 sc->sc_ia = *(struct ipmi_attach_args *)aux;
2162 sc->sc_dev = self;
2163 aprint_naive("\n");
2164 aprint_normal("\n");
2165
2166 /* lock around read_sensor so that no one messes with the bmc regs */
2167 mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2168 mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2169 cv_init(&sc->sc_cmd_sleep, "ipmicmd");
2170
2171 mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2172 cv_init(&sc->sc_poll_cv, "ipmipoll");
2173 cv_init(&sc->sc_mode_cv, "ipmimode");
2174
2175 if (kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, ipmi_thread, self,
2176 &sc->sc_kthread, "%s", device_xname(self)) != 0) {
2177 aprint_error_dev(self, "unable to create thread, disabled\n");
2178 } else
2179 config_pending_incr(self);
2180 }
2181
2182 static int
2183 ipmi_detach(device_t self, int flags)
2184 {
2185 struct ipmi_sensor *i;
2186 int rc;
2187 struct ipmi_softc *sc = device_private(self);
2188
2189 mutex_enter(&sc->sc_poll_mtx);
2190 sc->sc_thread_running = false;
2191 cv_signal(&sc->sc_poll_cv);
2192 mutex_exit(&sc->sc_poll_mtx);
2193 if (sc->sc_kthread)
2194 (void)kthread_join(sc->sc_kthread);
2195
2196 if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
2197 if (rc == ERESTART)
2198 rc = EINTR;
2199 return rc;
2200 }
2201
2202 /* cancel any pending countdown */
2203 sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
2204 sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
2205 sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;
2206
2207 if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
2208 return rc;
2209
2210 ipmi_enabled = 0;
2211
2212 if (sc->sc_envsys != NULL) {
2213 /* _unregister also destroys */
2214 sysmon_envsys_unregister(sc->sc_envsys);
2215 sc->sc_envsys = NULL;
2216 }
2217
2218 while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
2219 SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
2220 free(i, M_DEVBUF);
2221 }
2222
2223 if (sc->sc_sensor != NULL) {
2224 free(sc->sc_sensor, M_DEVBUF);
2225 sc->sc_sensor = NULL;
2226 }
2227
2228 ipmi_unmap_regs(sc);
2229
2230 cv_destroy(&sc->sc_mode_cv);
2231 cv_destroy(&sc->sc_poll_cv);
2232 mutex_destroy(&sc->sc_poll_mtx);
2233 cv_destroy(&sc->sc_cmd_sleep);
2234 mutex_destroy(&sc->sc_sleep_mtx);
2235 mutex_destroy(&sc->sc_cmd_mtx);
2236
2237 return 0;
2238 }
2239
2240 static int
2241 ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res)
2242 {
2243 uint8_t buf[32];
2244 int len;
2245 int rc;
2246
2247 mutex_enter(&sc->sc_cmd_mtx);
2248 /* Identify BMC device early to detect lying bios */
2249 rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL);
2250 if (rc) {
2251 dbg_printf(1, ": unable to send get device id "
2252 "command\n");
2253 goto done;
2254 }
2255 rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf);
2256 if (rc) {
2257 dbg_printf(1, ": unable to retrieve device id\n");
2258 }
2259 done:
2260 mutex_exit(&sc->sc_cmd_mtx);
2261
2262 if (rc == 0 && res != NULL)
2263 memcpy(res, buf, MIN(sizeof(*res), len));
2264
2265 return rc;
2266 }
2267
2268 static int
2269 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
2270 {
2271 struct ipmi_softc *sc = smwdog->smw_cookie;
2272 struct ipmi_get_watchdog gwdog;
2273 struct ipmi_set_watchdog swdog;
2274 int rc, len;
2275
2276 if (smwdog->smw_period < 10)
2277 return EINVAL;
2278 if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
2279 sc->sc_wdog.smw_period = 10;
2280 else
2281 sc->sc_wdog.smw_period = smwdog->smw_period;
2282
2283 /* Wait until the device is initialized */
2284 rc = 0;
2285 mutex_enter(&sc->sc_poll_mtx);
2286 while (sc->sc_thread_ready)
2287 rc = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2288 mutex_exit(&sc->sc_poll_mtx);
2289 if (rc)
2290 return rc;
2291
2292 mutex_enter(&sc->sc_cmd_mtx);
2293 /* see if we can properly task to the watchdog */
2294 rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2295 APP_GET_WATCHDOG_TIMER, 0, NULL);
2296 rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
2297 mutex_exit(&sc->sc_cmd_mtx);
2298 if (rc) {
2299 aprint_error_dev(sc->sc_dev,
2300 "APP_GET_WATCHDOG_TIMER returned %#x\n", rc);
2301 return EIO;
2302 }
2303
2304 memset(&swdog, 0, sizeof(swdog));
2305 /* Period is 10ths/sec */
2306 swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
2307 if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
2308 swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
2309 else
2310 swdog.wdog_action = IPMI_WDOG_ACT_RESET;
2311 swdog.wdog_use = IPMI_WDOG_USE_USE_OS;
2312
2313 mutex_enter(&sc->sc_cmd_mtx);
2314 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2315 APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
2316 rc = ipmi_recvcmd(sc, 0, &len, NULL);
2317 mutex_exit(&sc->sc_cmd_mtx);
2318 if (rc) {
2319 aprint_error_dev(sc->sc_dev,
2320 "APP_SET_WATCHDOG_TIMER returned %#x\n", rc);
2321 return EIO;
2322 }
2323
2324 return 0;
2325 }
2326
2327 static int
2328 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
2329 {
2330 struct ipmi_softc *sc = smwdog->smw_cookie;
2331
2332 mutex_enter(&sc->sc_poll_mtx);
2333 sc->sc_tickle_due = true;
2334 cv_signal(&sc->sc_poll_cv);
2335 mutex_exit(&sc->sc_poll_mtx);
2336 return 0;
2337 }
2338
2339 static void
2340 ipmi_dotickle(struct ipmi_softc *sc)
2341 {
2342 int rc, len;
2343
2344 mutex_enter(&sc->sc_cmd_mtx);
2345 /* tickle the watchdog */
2346 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2347 APP_RESET_WATCHDOG, 0, NULL)) == 0)
2348 rc = ipmi_recvcmd(sc, 0, &len, NULL);
2349 mutex_exit(&sc->sc_cmd_mtx);
2350 if (rc != 0) {
2351 aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n",
2352 rc);
2353 }
2354 }
2355
2356 static bool
2357 ipmi_suspend(device_t dev, const pmf_qual_t *qual)
2358 {
2359 struct ipmi_softc *sc = device_private(dev);
2360
2361 /* Don't allow suspend if watchdog is armed */
2362 if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
2363 return false;
2364 return true;
2365 }
2366
2367 static int
2368 ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l)
2369 {
2370 struct ipmi_softc *sc;
2371 int unit;
2372
2373 unit = IPMIUNIT(dev);
2374 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2375 return (ENXIO);
2376
2377 return 0;
2378 }
2379
2380 static int
2381 ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l)
2382 {
2383 struct ipmi_softc *sc;
2384 int unit;
2385
2386 unit = IPMIUNIT(dev);
2387 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2388 return (ENXIO);
2389
2390 mutex_enter(&sc->sc_poll_mtx);
2391 if (sc->sc_mode == IPMI_MODE_COMMAND) {
2392 sc->sc_mode = IPMI_MODE_IDLE;
2393 cv_broadcast(&sc->sc_mode_cv);
2394 }
2395 mutex_exit(&sc->sc_poll_mtx);
2396 return 0;
2397 }
2398
2399 static int
2400 ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
2401 {
2402 struct ipmi_softc *sc;
2403 int unit, error = 0, len;
2404 struct ipmi_req *req;
2405 struct ipmi_recv *recv;
2406 struct ipmi_addr addr;
2407 unsigned char ccode, *buf = NULL;
2408
2409 unit = IPMIUNIT(dev);
2410 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2411 return (ENXIO);
2412
2413 switch (cmd) {
2414 case IPMICTL_SEND_COMMAND:
2415 mutex_enter(&sc->sc_poll_mtx);
2416 while (sc->sc_mode == IPMI_MODE_ENVSYS) {
2417 error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2418 if (error == EINTR) {
2419 mutex_exit(&sc->sc_poll_mtx);
2420 return error;
2421 }
2422 }
2423 sc->sc_mode = IPMI_MODE_COMMAND;
2424 mutex_exit(&sc->sc_poll_mtx);
2425 break;
2426 }
2427
2428 mutex_enter(&sc->sc_cmd_mtx);
2429
2430 switch (cmd) {
2431 case IPMICTL_SEND_COMMAND:
2432 req = data;
2433 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2434
2435 len = req->msg.data_len;
2436 if (len < 0 || len > IPMI_MAX_RX) {
2437 error = EINVAL;
2438 break;
2439 }
2440
2441 /* clear pending result */
2442 if (sc->sc_sent)
2443 (void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2444
2445 /* XXX */
2446 error = copyin(req->addr, &addr, sizeof(addr));
2447 if (error)
2448 break;
2449
2450 error = copyin(req->msg.data, buf, len);
2451 if (error)
2452 break;
2453
2454 /* save for receive */
2455 sc->sc_msgid = req->msgid;
2456 sc->sc_netfn = req->msg.netfn;
2457 sc->sc_cmd = req->msg.cmd;
2458
2459 if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn,
2460 req->msg.cmd, len, buf)) {
2461 error = EIO;
2462 break;
2463 }
2464 sc->sc_sent = true;
2465 break;
2466 case IPMICTL_RECEIVE_MSG_TRUNC:
2467 case IPMICTL_RECEIVE_MSG:
2468 recv = data;
2469 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2470
2471 if (recv->msg.data_len < 1) {
2472 error = EINVAL;
2473 break;
2474 }
2475
2476 /* XXX */
2477 error = copyin(recv->addr, &addr, sizeof(addr));
2478 if (error)
2479 break;
2480
2481
2482 if (!sc->sc_sent) {
2483 error = EIO;
2484 break;
2485 }
2486
2487 len = 0;
2488 error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2489 if (error < 0) {
2490 error = EIO;
2491 break;
2492 }
2493 ccode = (unsigned char)error;
2494 sc->sc_sent = false;
2495
2496 if (len > recv->msg.data_len - 1) {
2497 if (cmd == IPMICTL_RECEIVE_MSG) {
2498 error = EMSGSIZE;
2499 break;
2500 }
2501 len = recv->msg.data_len - 1;
2502 }
2503
2504 addr.channel = IPMI_BMC_CHANNEL;
2505
2506 recv->recv_type = IPMI_RESPONSE_RECV_TYPE;
2507 recv->msgid = sc->sc_msgid;
2508 recv->msg.netfn = sc->sc_netfn;
2509 recv->msg.cmd = sc->sc_cmd;
2510 recv->msg.data_len = len+1;
2511
2512 error = copyout(&addr, recv->addr, sizeof(addr));
2513 if (error == 0)
2514 error = copyout(&ccode, recv->msg.data, 1);
2515 if (error == 0)
2516 error = copyout(buf, recv->msg.data+1, len);
2517 break;
2518 case IPMICTL_SET_MY_ADDRESS_CMD:
2519 sc->sc_address = *(int *)data;
2520 break;
2521 case IPMICTL_GET_MY_ADDRESS_CMD:
2522 *(int *)data = sc->sc_address;
2523 break;
2524 case IPMICTL_SET_MY_LUN_CMD:
2525 sc->sc_lun = *(int *)data & 0x3;
2526 break;
2527 case IPMICTL_GET_MY_LUN_CMD:
2528 *(int *)data = sc->sc_lun;
2529 break;
2530 case IPMICTL_SET_GETS_EVENTS_CMD:
2531 break;
2532 case IPMICTL_REGISTER_FOR_CMD:
2533 case IPMICTL_UNREGISTER_FOR_CMD:
2534 error = EOPNOTSUPP;
2535 break;
2536 default:
2537 error = ENODEV;
2538 break;
2539 }
2540
2541 if (buf)
2542 free(buf, M_DEVBUF);
2543
2544 mutex_exit(&sc->sc_cmd_mtx);
2545
2546 switch (cmd) {
2547 case IPMICTL_RECEIVE_MSG:
2548 case IPMICTL_RECEIVE_MSG_TRUNC:
2549 mutex_enter(&sc->sc_poll_mtx);
2550 sc->sc_mode = IPMI_MODE_IDLE;
2551 cv_broadcast(&sc->sc_mode_cv);
2552 mutex_exit(&sc->sc_poll_mtx);
2553 break;
2554 }
2555
2556 return error;
2557 }
2558
2559 static int
2560 ipmi_poll(dev_t dev, int events, lwp_t *l)
2561 {
2562 struct ipmi_softc *sc;
2563 int unit, revents = 0;
2564
2565 unit = IPMIUNIT(dev);
2566 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2567 return (ENXIO);
2568
2569 mutex_enter(&sc->sc_cmd_mtx);
2570 if (events & (POLLIN | POLLRDNORM)) {
2571 if (sc->sc_sent)
2572 revents |= events & (POLLIN | POLLRDNORM);
2573 }
2574 mutex_exit(&sc->sc_cmd_mtx);
2575
2576 return revents;
2577 }
2578