ipmi.c revision 1.14 1 /* $NetBSD: ipmi.c,v 1.14 2024/12/04 15:26:07 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2019 Michael van Elst
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 */
27 /*
28 * Copyright (c) 2006 Manuel Bouyer.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
40 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
41 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
42 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
43 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
48 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49 *
50 */
51
52 /*
53 * Copyright (c) 2005 Jordan Hargrave
54 * All rights reserved.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted provided that the following conditions
58 * are met:
59 * 1. Redistributions of source code must retain the above copyright
60 * notice, this list of conditions and the following disclaimer.
61 * 2. Redistributions in binary form must reproduce the above copyright
62 * notice, this list of conditions and the following disclaimer in the
63 * documentation and/or other materials provided with the distribution.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
69 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.14 2024/12/04 15:26:07 riastradh Exp $");
80
81 #include <sys/types.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/extent.h>
87 #include <sys/callout.h>
88 #include <sys/envsys.h>
89 #include <sys/malloc.h>
90 #include <sys/kthread.h>
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <sys/ioctl.h>
94 #include <sys/poll.h>
95 #include <sys/conf.h>
96
97 #include <dev/isa/isareg.h>
98 #include <dev/isa/isavar.h>
99
100 #include <sys/ipmi.h>
101 #include <dev/ipmivar.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include "ioconf.h"
106
107 static dev_type_open(ipmi_open);
108 static dev_type_close(ipmi_close);
109 static dev_type_ioctl(ipmi_ioctl);
110 static dev_type_poll(ipmi_poll);
111
112 const struct cdevsw ipmi_cdevsw = {
113 .d_open = ipmi_open,
114 .d_close = ipmi_close,
115 .d_read = noread,
116 .d_write = nowrite,
117 .d_ioctl = ipmi_ioctl,
118 .d_stop = nostop,
119 .d_tty = notty,
120 .d_poll = ipmi_poll,
121 .d_mmap = nommap,
122 .d_kqfilter = nokqfilter,
123 .d_discard = nodiscard,
124 .d_flag = D_OTHER
125 };
126
127 #define IPMIUNIT(n) (minor(n))
128
129 struct ipmi_sensor {
130 uint8_t *i_sdr;
131 int i_num;
132 int i_stype;
133 int i_etype;
134 char i_envdesc[64];
135 int i_envtype; /* envsys compatible type */
136 int i_envnum; /* envsys index */
137 sysmon_envsys_lim_t i_limits, i_deflims;
138 uint32_t i_props, i_defprops;
139 SLIST_ENTRY(ipmi_sensor) i_list;
140 int32_t i_prevval; /* feed rnd source on change */
141 };
142
143 #if 0
144 static int ipmi_nintr;
145 #endif
146 static int ipmi_dbg = 0;
147 static int ipmi_enabled = 0;
148
149 #define SENSOR_REFRESH_RATE (hz / 2)
150
151 #define IPMI_BTMSG_LEN 0
152 #define IPMI_BTMSG_NFLN 1
153 #define IPMI_BTMSG_SEQ 2
154 #define IPMI_BTMSG_CMD 3
155 #define IPMI_BTMSG_CCODE 4
156 #define IPMI_BTMSG_DATASND 4
157 #define IPMI_BTMSG_DATARCV 5
158
159 #define IPMI_MSG_NFLN 0
160 #define IPMI_MSG_CMD 1
161 #define IPMI_MSG_CCODE 2
162 #define IPMI_MSG_DATASND 2
163 #define IPMI_MSG_DATARCV 3
164
165 #define IPMI_SENSOR_TYPE_TEMP 0x0101
166 #define IPMI_SENSOR_TYPE_VOLT 0x0102
167 #define IPMI_SENSOR_TYPE_FAN 0x0104
168 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05
169 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08
170
171 #define IPMI_NAME_UNICODE 0x00
172 #define IPMI_NAME_BCDPLUS 0x01
173 #define IPMI_NAME_ASCII6BIT 0x02
174 #define IPMI_NAME_ASCII8BIT 0x03
175
176 #define IPMI_ENTITY_PWRSUPPLY 0x0A
177
178 #define IPMI_SENSOR_SCANNING_ENABLED (1L << 6)
179 #define IPMI_SENSOR_UNAVAILABLE (1L << 5)
180 #define IPMI_INVALID_SENSOR_P(x) \
181 (((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
182 != IPMI_SENSOR_SCANNING_ENABLED)
183
184 #define IPMI_SDR_TYPEFULL 1
185 #define IPMI_SDR_TYPECOMPACT 2
186
187 #define byteof(x) ((x) >> 3)
188 #define bitof(x) (1L << ((x) & 0x7))
189 #define TB(b,m) (data[2+byteof(b)] & bitof(b))
190
191 #define dbg_printf(lvl, fmt...) \
192 if (ipmi_dbg >= lvl) \
193 printf(fmt);
194 #define dbg_dump(lvl, msg, len, buf) \
195 if (len && ipmi_dbg >= lvl) \
196 dumpb(msg, len, (const uint8_t *)(buf));
197
198 static long signextend(unsigned long, int);
199
200 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
201 static struct ipmi_sensors_head ipmi_sensor_list =
202 SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);
203
204 static void dumpb(const char *, int, const uint8_t *);
205
206 static int read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
207 static int add_sdr_sensor(struct ipmi_softc *, uint8_t *);
208 static int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
209 uint8_t, uint8_t, void *, uint16_t *);
210 static int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);
211
212 static char *ipmi_buf_acquire(struct ipmi_softc *, size_t);
213 static void ipmi_buf_release(struct ipmi_softc *, char *);
214 static int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
215 static int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
216 static void ipmi_delay(struct ipmi_softc *, int);
217
218 static int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *);
219 static int ipmi_watchdog_setmode(struct sysmon_wdog *);
220 static int ipmi_watchdog_tickle(struct sysmon_wdog *);
221 static void ipmi_dotickle(struct ipmi_softc *);
222
223 #if 0
224 static int ipmi_intr(void *);
225 #endif
226
227 static int ipmi_match(device_t, cfdata_t, void *);
228 static void ipmi_attach(device_t, device_t, void *);
229 static int ipmi_detach(device_t, int);
230
231 static long ipmi_convert(uint8_t, struct sdrtype1 *, long);
232 static void ipmi_sensor_name(char *, int, uint8_t, uint8_t *);
233
234 /* BMC Helper Functions */
235 static uint8_t bmc_read(struct ipmi_softc *, int);
236 static void bmc_write(struct ipmi_softc *, int, uint8_t);
237 static int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
238 static int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
239 static int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);
240
241 static void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
242
243 static int getbits(uint8_t *, int, int);
244 static int ipmi_sensor_type(int, int, int);
245
246 static void ipmi_refresh_sensors(struct ipmi_softc *);
247 static int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
248 static void ipmi_unmap_regs(struct ipmi_softc *);
249
250 static int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
251 static void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
252 sysmon_envsys_lim_t *, uint32_t *);
253 static void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
254 sysmon_envsys_lim_t *, uint32_t *);
255 static void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
256 sysmon_envsys_lim_t *, uint32_t *);
257 static int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
258 envsys_data_t *, uint8_t *);
259
260 static int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
261 int, int, int, const char *);
262
263 static bool ipmi_suspend(device_t, const pmf_qual_t *);
264
265 static int kcs_probe(struct ipmi_softc *);
266 static int kcs_reset(struct ipmi_softc *);
267 static int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *);
268 static int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *);
269
270 static void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
271 static int bt_probe(struct ipmi_softc *);
272 static int bt_reset(struct ipmi_softc *);
273 static int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *);
274 static int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
275
276 static int smic_probe(struct ipmi_softc *);
277 static int smic_reset(struct ipmi_softc *);
278 static int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *);
279 static int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
280
281 static struct ipmi_if kcs_if = {
282 "KCS",
283 IPMI_IF_KCS_NREGS,
284 cmn_buildmsg,
285 kcs_sendmsg,
286 kcs_recvmsg,
287 kcs_reset,
288 kcs_probe,
289 };
290
291 static struct ipmi_if smic_if = {
292 "SMIC",
293 IPMI_IF_SMIC_NREGS,
294 cmn_buildmsg,
295 smic_sendmsg,
296 smic_recvmsg,
297 smic_reset,
298 smic_probe,
299 };
300
301 static struct ipmi_if bt_if = {
302 "BT",
303 IPMI_IF_BT_NREGS,
304 bt_buildmsg,
305 bt_sendmsg,
306 bt_recvmsg,
307 bt_reset,
308 bt_probe,
309 };
310
311 static struct ipmi_if *ipmi_get_if(int);
312
313 static struct ipmi_if *
314 ipmi_get_if(int iftype)
315 {
316 switch (iftype) {
317 case IPMI_IF_KCS:
318 return &kcs_if;
319 case IPMI_IF_SMIC:
320 return &smic_if;
321 case IPMI_IF_BT:
322 return &bt_if;
323 default:
324 return NULL;
325 }
326 }
327
328 /*
329 * BMC Helper Functions
330 */
331 static uint8_t
332 bmc_read(struct ipmi_softc *sc, int offset)
333 {
334 return bus_space_read_1(sc->sc_iot, sc->sc_ioh,
335 offset * sc->sc_if_iospacing);
336 }
337
338 static void
339 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
340 {
341 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
342 offset * sc->sc_if_iospacing, val);
343 }
344
345 static int
346 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
347 uint8_t value)
348 {
349 int retries;
350 uint8_t v;
351
352 KASSERT(mutex_owned(&sc->sc_cmd_mtx));
353
354 for (retries = 0; retries < sc->sc_max_retries; retries++) {
355 v = bmc_read(sc, offset);
356 if ((v & mask) == value)
357 return v;
358 kpause("ipmicmd", /*intr*/false, /*timo*/1, /*mtx*/NULL);
359 }
360 return -1;
361 }
362
363 static int
364 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
365 const char *lbl)
366 {
367 int v;
368
369 v = bmc_io_wait_spin(sc, offset, mask, value);
370 if (cold || v != -1)
371 return v;
372
373 return bmc_io_wait_sleep(sc, offset, mask, value);
374 }
375
376 static int
377 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
378 uint8_t value)
379 {
380 uint8_t v;
381 int count = cold ? 15000 : 500;
382 /* ~us */
383
384 while (count--) {
385 v = bmc_read(sc, offset);
386 if ((v & mask) == value)
387 return v;
388
389 delay(1);
390 }
391
392 return -1;
393
394 }
395
396 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
397 #define GET_NETFN(m) (((m) >> 2)
398 #define GET_LUN(m) ((m) & 0x03)
399
400 /*
401 * BT interface
402 */
403 #define _BT_CTRL_REG 0
404 #define BT_CLR_WR_PTR (1L << 0)
405 #define BT_CLR_RD_PTR (1L << 1)
406 #define BT_HOST2BMC_ATN (1L << 2)
407 #define BT_BMC2HOST_ATN (1L << 3)
408 #define BT_EVT_ATN (1L << 4)
409 #define BT_HOST_BUSY (1L << 6)
410 #define BT_BMC_BUSY (1L << 7)
411
412 #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)
413
414 #define _BT_DATAIN_REG 1
415 #define _BT_DATAOUT_REG 1
416
417 #define _BT_INTMASK_REG 2
418 #define BT_IM_HIRQ_PEND (1L << 1)
419 #define BT_IM_SCI_EN (1L << 2)
420 #define BT_IM_SMI_EN (1L << 3)
421 #define BT_IM_NMI2SMI (1L << 4)
422
423 static int bt_read(struct ipmi_softc *, int);
424 static int bt_write(struct ipmi_softc *, int, uint8_t);
425
426 static int
427 bt_read(struct ipmi_softc *sc, int reg)
428 {
429 return bmc_read(sc, reg);
430 }
431
432 static int
433 bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
434 {
435 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0)
436 return -1;
437
438 bmc_write(sc, reg, data);
439 return 0;
440 }
441
442 static int
443 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
444 {
445 int i;
446
447 bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
448 for (i = 0; i < len; i++)
449 bt_write(sc, _BT_DATAOUT_REG, data[i]);
450
451 bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
452 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
453 __func__) < 0)
454 return -1;
455
456 return 0;
457 }
458
459 static int
460 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
461 {
462 uint8_t len, v, i;
463
464 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
465 __func__) < 0)
466 return -1;
467
468 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
469 bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
470 bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
471 len = bt_read(sc, _BT_DATAIN_REG);
472 for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
473 v = bt_read(sc, _BT_DATAIN_REG);
474 if (i != IPMI_BTMSG_SEQ)
475 *(data++) = v;
476 }
477 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
478 *rxlen = len - 1;
479
480 return 0;
481 }
482
483 static int
484 bt_reset(struct ipmi_softc *sc)
485 {
486 return -1;
487 }
488
489 static int
490 bt_probe(struct ipmi_softc *sc)
491 {
492 uint8_t rv;
493
494 rv = bmc_read(sc, _BT_CTRL_REG);
495 rv &= BT_HOST_BUSY;
496 rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
497 bmc_write(sc, _BT_CTRL_REG, rv);
498
499 rv = bmc_read(sc, _BT_INTMASK_REG);
500 rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
501 rv |= BT_IM_HIRQ_PEND;
502 bmc_write(sc, _BT_INTMASK_REG, rv);
503
504 #if 0
505 printf("%s: %2x\n", __func__, v);
506 printf(" WR : %2x\n", v & BT_CLR_WR_PTR);
507 printf(" RD : %2x\n", v & BT_CLR_RD_PTR);
508 printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN);
509 printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN);
510 printf(" EVT : %2x\n", v & BT_EVT_ATN);
511 printf(" HBSY : %2x\n", v & BT_HOST_BUSY);
512 printf(" BBSY : %2x\n", v & BT_BMC_BUSY);
513 #endif
514 return 0;
515 }
516
517 /*
518 * SMIC interface
519 */
520 #define _SMIC_DATAIN_REG 0
521 #define _SMIC_DATAOUT_REG 0
522
523 #define _SMIC_CTRL_REG 1
524 #define SMS_CC_GET_STATUS 0x40
525 #define SMS_CC_START_TRANSFER 0x41
526 #define SMS_CC_NEXT_TRANSFER 0x42
527 #define SMS_CC_END_TRANSFER 0x43
528 #define SMS_CC_START_RECEIVE 0x44
529 #define SMS_CC_NEXT_RECEIVE 0x45
530 #define SMS_CC_END_RECEIVE 0x46
531 #define SMS_CC_TRANSFER_ABORT 0x47
532
533 #define SMS_SC_READY 0xc0
534 #define SMS_SC_WRITE_START 0xc1
535 #define SMS_SC_WRITE_NEXT 0xc2
536 #define SMS_SC_WRITE_END 0xc3
537 #define SMS_SC_READ_START 0xc4
538 #define SMS_SC_READ_NEXT 0xc5
539 #define SMS_SC_READ_END 0xc6
540
541 #define _SMIC_FLAG_REG 2
542 #define SMIC_BUSY (1L << 0)
543 #define SMIC_SMS_ATN (1L << 2)
544 #define SMIC_EVT_ATN (1L << 3)
545 #define SMIC_SMI (1L << 4)
546 #define SMIC_TX_DATA_RDY (1L << 6)
547 #define SMIC_RX_DATA_RDY (1L << 7)
548
549 static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
550 static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
551 static int smic_read_data(struct ipmi_softc *, uint8_t *);
552
553 static int
554 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
555 {
556 int v;
557
558 /* Wait for expected flag bits */
559 v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__);
560 if (v < 0)
561 return -1;
562
563 /* Return current status */
564 v = bmc_read(sc, _SMIC_CTRL_REG);
565 dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v);
566 return v;
567 }
568
569 static int
570 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
571 {
572 int sts, v;
573
574 dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1);
575 sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
576 "smic_write_cmd_data ready");
577 if (sts < 0)
578 return sts;
579
580 bmc_write(sc, _SMIC_CTRL_REG, cmd);
581 if (data)
582 bmc_write(sc, _SMIC_DATAOUT_REG, *data);
583
584 /* Toggle BUSY bit, then wait for busy bit to clear */
585 v = bmc_read(sc, _SMIC_FLAG_REG);
586 bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);
587
588 return smic_wait(sc, SMIC_BUSY, 0, __func__);
589 }
590
591 static int
592 smic_read_data(struct ipmi_softc *sc, uint8_t *data)
593 {
594 int sts;
595
596 sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
597 __func__);
598 if (sts >= 0) {
599 *data = bmc_read(sc, _SMIC_DATAIN_REG);
600 dbg_printf(50, "%s: %#.2x\n", __func__, *data);
601 }
602 return sts;
603 }
604
605 #define ErrStat(a, ...) if (a) printf(__VA_ARGS__);
606
607 static int
608 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
609 {
610 int sts, idx;
611
612 sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
613 ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__);
614 for (idx = 1; idx < len - 1; idx++) {
615 sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
616 &data[idx]);
617 ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__);
618 }
619 sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
620 if (sts != SMS_SC_WRITE_END) {
621 dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts);
622 return -1;
623 }
624
625 return 0;
626 }
627
628 static int
629 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
630 {
631 int sts, idx;
632
633 *len = 0;
634 sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__);
635 if (sts < 0)
636 return -1;
637
638 sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
639 ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__);
640 for (idx = 0;; ) {
641 sts = smic_read_data(sc, &data[idx++]);
642 if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
643 break;
644 smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
645 }
646 ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__);
647
648 *len = idx;
649
650 sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
651 if (sts != SMS_SC_READY) {
652 dbg_printf(50, "%s: %d/%d = %#.2x\n",
653 __func__, idx, maxlen, sts);
654 return -1;
655 }
656
657 return 0;
658 }
659
660 static int
661 smic_reset(struct ipmi_softc *sc)
662 {
663 return -1;
664 }
665
666 static int
667 smic_probe(struct ipmi_softc *sc)
668 {
669 /* Flag register should not be 0xFF on a good system */
670 if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
671 return -1;
672
673 return 0;
674 }
675
676 /*
677 * KCS interface
678 */
679 #define _KCS_DATAIN_REGISTER 0
680 #define _KCS_DATAOUT_REGISTER 0
681 #define KCS_READ_NEXT 0x68
682
683 #define _KCS_COMMAND_REGISTER 1
684 #define KCS_GET_STATUS 0x60
685 #define KCS_WRITE_START 0x61
686 #define KCS_WRITE_END 0x62
687
688 #define _KCS_STATUS_REGISTER 1
689 #define KCS_OBF (1L << 0)
690 #define KCS_IBF (1L << 1)
691 #define KCS_SMS_ATN (1L << 2)
692 #define KCS_CD (1L << 3)
693 #define KCS_OEM1 (1L << 4)
694 #define KCS_OEM2 (1L << 5)
695 #define KCS_STATE_MASK 0xc0
696 #define KCS_IDLE_STATE 0x00
697 #define KCS_READ_STATE 0x40
698 #define KCS_WRITE_STATE 0x80
699 #define KCS_ERROR_STATE 0xC0
700
701 static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
702 static int kcs_write_cmd(struct ipmi_softc *, uint8_t);
703 static int kcs_write_data(struct ipmi_softc *, uint8_t);
704 static int kcs_read_data(struct ipmi_softc *, uint8_t *);
705
706 static int
707 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
708 {
709 int v;
710
711 v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
712 if (v < 0)
713 return v;
714
715 /* Check if output buffer full, read dummy byte */
716 if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
717 bmc_read(sc, _KCS_DATAIN_REGISTER);
718
719 /* Check for error state */
720 if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
721 bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
722 while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
723 ;
724 aprint_error_dev(sc->sc_dev, "error code: %#x\n",
725 bmc_read(sc, _KCS_DATAIN_REGISTER));
726 }
727
728 return v & KCS_STATE_MASK;
729 }
730
731 static int
732 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
733 {
734 /* ASSERT: IBF and OBF are clear */
735 dbg_printf(50, "%s: %#.2x\n", __func__, cmd);
736 bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);
737
738 return kcs_wait(sc, KCS_IBF, 0, "write_cmd");
739 }
740
741 static int
742 kcs_write_data(struct ipmi_softc *sc, uint8_t data)
743 {
744 /* ASSERT: IBF and OBF are clear */
745 dbg_printf(50, "%s: %#.2x\n", __func__, data);
746 bmc_write(sc, _KCS_DATAOUT_REGISTER, data);
747
748 return kcs_wait(sc, KCS_IBF, 0, "write_data");
749 }
750
751 static int
752 kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
753 {
754 int sts;
755
756 sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__);
757 if (sts != KCS_READ_STATE)
758 return sts;
759
760 /* ASSERT: OBF is set read data, request next byte */
761 *data = bmc_read(sc, _KCS_DATAIN_REGISTER);
762 bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);
763
764 dbg_printf(50, "%s: %#.2x\n", __func__, *data);
765
766 return sts;
767 }
768
769 /* Exported KCS functions */
770 static int
771 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
772 {
773 int idx, sts;
774
775 /* ASSERT: IBF is clear */
776 dbg_dump(50, __func__, len, data);
777 sts = kcs_write_cmd(sc, KCS_WRITE_START);
778 for (idx = 0; idx < len; idx++) {
779 if (idx == len - 1)
780 sts = kcs_write_cmd(sc, KCS_WRITE_END);
781
782 if (sts != KCS_WRITE_STATE)
783 break;
784
785 sts = kcs_write_data(sc, data[idx]);
786 }
787 if (sts != KCS_READ_STATE) {
788 dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts);
789 dbg_dump(1, __func__, len, data);
790 return -1;
791 }
792
793 return 0;
794 }
795
796 static int
797 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
798 {
799 int idx, sts;
800
801 for (idx = 0; idx < maxlen; idx++) {
802 sts = kcs_read_data(sc, &data[idx]);
803 if (sts != KCS_READ_STATE)
804 break;
805 }
806 sts = kcs_wait(sc, KCS_IBF, 0, __func__);
807 *rxlen = idx;
808 if (sts != KCS_IDLE_STATE) {
809 dbg_printf(1, "%s: %d/%d <%#.2x>\n",
810 __func__, idx, maxlen, sts);
811 return -1;
812 }
813
814 dbg_dump(50, __func__, idx, data);
815
816 return 0;
817 }
818
819 static int
820 kcs_reset(struct ipmi_softc *sc)
821 {
822 return -1;
823 }
824
825 static int
826 kcs_probe(struct ipmi_softc *sc)
827 {
828 uint8_t v;
829
830 v = bmc_read(sc, _KCS_STATUS_REGISTER);
831 #if 0
832 printf("%s: %2x\n", __func__, v);
833 printf(" STS: %2x\n", v & KCS_STATE_MASK);
834 printf(" ATN: %2x\n", v & KCS_SMS_ATN);
835 printf(" C/D: %2x\n", v & KCS_CD);
836 printf(" IBF: %2x\n", v & KCS_IBF);
837 printf(" OBF: %2x\n", v & KCS_OBF);
838 #else
839 __USE(v);
840 #endif
841 return 0;
842 }
843
844 /*
845 * IPMI code
846 */
847 #define READ_SMS_BUFFER 0x37
848 #define WRITE_I2C 0x50
849
850 #define GET_MESSAGE_CMD 0x33
851 #define SEND_MESSAGE_CMD 0x34
852
853 #define IPMB_CHANNEL_NUMBER 0
854
855 #define PUBLIC_BUS 0
856
857 #define MIN_I2C_PACKET_SIZE 3
858 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */
859
860 #define MIN_BTBMC_REQ_SIZE 4
861 #define MIN_BTBMC_RSP_SIZE 5
862 #define MIN_BMC_REQ_SIZE 2
863 #define MIN_BMC_RSP_SIZE 3
864
865 #define BMC_SA 0x20 /* BMC/ESM3 */
866 #define FPC_SA 0x22 /* front panel */
867 #define BP_SA 0xC0 /* Primary Backplane */
868 #define BP2_SA 0xC2 /* Secondary Backplane */
869 #define PBP_SA 0xC4 /* Peripheral Backplane */
870 #define DRAC_SA 0x28 /* DRAC-III */
871 #define DRAC3_SA 0x30 /* DRAC-III */
872 #define BMC_LUN 0
873 #define SMS_LUN 2
874
875 struct ipmi_request {
876 uint8_t rsSa;
877 uint8_t rsLun;
878 uint8_t netFn;
879 uint8_t cmd;
880 uint8_t data_len;
881 uint8_t *data;
882 };
883
884 struct ipmi_response {
885 uint8_t cCode;
886 uint8_t data_len;
887 uint8_t *data;
888 };
889
890 struct ipmi_bmc_request {
891 uint8_t bmc_nfLn;
892 uint8_t bmc_cmd;
893 uint8_t bmc_data_len;
894 uint8_t bmc_data[1];
895 };
896
897 struct ipmi_bmc_response {
898 uint8_t bmc_nfLn;
899 uint8_t bmc_cmd;
900 uint8_t bmc_cCode;
901 uint8_t bmc_data_len;
902 uint8_t bmc_data[1];
903 };
904
905
906 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
907 ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);
908
909 static void
910 dumpb(const char *lbl, int len, const uint8_t *data)
911 {
912 int idx;
913
914 printf("%s: ", lbl);
915 for (idx = 0; idx < len; idx++)
916 printf("%.2x ", data[idx]);
917
918 printf("\n");
919 }
920
921 /*
922 * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
923 * This is used by BT protocol
924 *
925 * Returns a buffer to an allocated message, txlen contains length
926 * of allocated message
927 */
928 static void *
929 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
930 const void *data, int *txlen)
931 {
932 uint8_t *buf;
933
934 /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
935 *txlen = len + 4;
936 buf = ipmi_buf_acquire(sc, *txlen);
937 if (buf == NULL)
938 return NULL;
939
940 buf[IPMI_BTMSG_LEN] = len + 3;
941 buf[IPMI_BTMSG_NFLN] = nfLun;
942 buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
943 buf[IPMI_BTMSG_CMD] = cmd;
944 if (len && data)
945 memcpy(buf + IPMI_BTMSG_DATASND, data, len);
946
947 return buf;
948 }
949
950 /*
951 * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
952 * This is used by both SMIC and KCS protocols
953 *
954 * Returns a buffer to an allocated message, txlen contains length
955 * of allocated message
956 */
957 static void *
958 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
959 const void *data, int *txlen)
960 {
961 uint8_t *buf;
962
963 /* Common needs two extra bytes: nfLun/cmd + data */
964 *txlen = len + 2;
965 buf = ipmi_buf_acquire(sc, *txlen);
966 if (buf == NULL)
967 return NULL;
968
969 buf[IPMI_MSG_NFLN] = nfLun;
970 buf[IPMI_MSG_CMD] = cmd;
971 if (len && data)
972 memcpy(buf + IPMI_MSG_DATASND, data, len);
973
974 return buf;
975 }
976
977 /*
978 * ipmi_sendcmd: caller must hold sc_cmd_mtx.
979 *
980 * Send an IPMI command
981 */
982 static int
983 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
984 int txlen, const void *data)
985 {
986 uint8_t *buf;
987 int rc = -1;
988
989 dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n",
990 __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
991 dbg_dump(10, __func__, txlen, data);
992 if (rssa != BMC_SA) {
993 #if 0
994 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
995 APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
996 pI2C->bus = (sc->if_ver == 0x09) ?
997 PUBLIC_BUS :
998 IPMB_CHANNEL_NUMBER;
999
1000 imbreq->rsSa = rssa;
1001 imbreq->nfLn = NETFN_LUN(netfn, rslun);
1002 imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
1003 imbreq->rqSa = BMC_SA;
1004 imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
1005 imbreq->cmd = cmd;
1006 if (txlen)
1007 memcpy(imbreq->data, data, txlen);
1008 /* Set message checksum */
1009 imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
1010 #endif
1011 goto done;
1012 } else
1013 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
1014 txlen, data, &txlen);
1015
1016 if (buf == NULL) {
1017 aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n");
1018 goto done;
1019 }
1020 rc = sc->sc_if->sendmsg(sc, txlen, buf);
1021 ipmi_buf_release(sc, buf);
1022
1023 ipmi_delay(sc, 50); /* give bmc chance to digest command */
1024
1025 done:
1026 return rc;
1027 }
1028
1029 static void
1030 ipmi_buf_release(struct ipmi_softc *sc, char *buf)
1031 {
1032 KASSERT(sc->sc_buf_rsvd);
1033 KASSERT(sc->sc_buf == buf);
1034 sc->sc_buf_rsvd = false;
1035 }
1036
1037 static char *
1038 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
1039 {
1040 KASSERT(len <= sizeof(sc->sc_buf));
1041
1042 if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
1043 return NULL;
1044 sc->sc_buf_rsvd = true;
1045 return sc->sc_buf;
1046 }
1047
1048 /*
1049 * ipmi_recvcmd: caller must hold sc_cmd_mtx.
1050 */
1051 static int
1052 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
1053 {
1054 uint8_t *buf, rc = 0;
1055 int rawlen;
1056
1057 /* Need three extra bytes: netfn/cmd/ccode + data */
1058 buf = ipmi_buf_acquire(sc, maxlen + 3);
1059 if (buf == NULL) {
1060 aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__);
1061 return -1;
1062 }
1063 /* Receive message from interface, copy out result data */
1064 if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
1065 ipmi_buf_release(sc, buf);
1066 return -1;
1067 }
1068
1069 *rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0;
1070 if (*rxlen > 0 && data)
1071 memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);
1072
1073 if ((rc = buf[IPMI_MSG_CCODE]) != 0)
1074 dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__,
1075 buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);
1076
1077 dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n",
1078 __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD],
1079 buf[IPMI_MSG_CCODE], *rxlen);
1080 dbg_dump(10, __func__, *rxlen, data);
1081
1082 ipmi_buf_release(sc, buf);
1083
1084 return rc;
1085 }
1086
1087 /*
1088 * ipmi_delay: caller must hold sc_cmd_mtx.
1089 */
1090 static void
1091 ipmi_delay(struct ipmi_softc *sc, int ms)
1092 {
1093 if (cold) {
1094 delay(ms * 1000);
1095 return;
1096 }
1097 kpause("ipmicmd", /*intr*/false, /*timo*/mstohz(ms), /*mtx*/NULL);
1098 }
1099
1100 /* Read a partial SDR entry */
1101 static int
1102 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
1103 uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
1104 {
1105 union {
1106 struct {
1107 uint16_t reserveId;
1108 uint16_t recordId;
1109 uint8_t offset;
1110 uint8_t length;
1111 } __packed cmd;
1112 struct {
1113 uint16_t nxtRecordId;
1114 uint8_t data[262];
1115 } __packed msg;
1116 } u;
1117 int len;
1118
1119 __CTASSERT(sizeof(u) == 256 + 8);
1120 __CTASSERT(sizeof(u.cmd) == 6);
1121 __CTASSERT(offsetof(typeof(u.msg), data) == 2);
1122
1123 u.cmd.reserveId = reserveId;
1124 u.cmd.recordId = recordId;
1125 u.cmd.offset = offset;
1126 u.cmd.length = length;
1127 mutex_enter(&sc->sc_cmd_mtx);
1128 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR,
1129 sizeof(u.cmd), &u.cmd)) {
1130 mutex_exit(&sc->sc_cmd_mtx);
1131 aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__);
1132 return -1;
1133 }
1134 if (ipmi_recvcmd(sc, 8 + length, &len, &u.msg)) {
1135 mutex_exit(&sc->sc_cmd_mtx);
1136 aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__);
1137 return -1;
1138 }
1139 mutex_exit(&sc->sc_cmd_mtx);
1140 if (nxtRecordId)
1141 *nxtRecordId = u.msg.nxtRecordId;
1142 memcpy(buffer, u.msg.data, len - offsetof(typeof(u.msg), data));
1143
1144 return 0;
1145 }
1146
1147 static int maxsdrlen = 0x10;
1148
1149 /* Read an entire SDR; pass to add sensor */
1150 static int
1151 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
1152 {
1153 uint16_t resid = 0;
1154 int len, sdrlen, offset;
1155 uint8_t *psdr;
1156 struct sdrhdr shdr;
1157
1158 mutex_enter(&sc->sc_cmd_mtx);
1159 /* Reserve SDR */
1160 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
1161 0, NULL)) {
1162 mutex_exit(&sc->sc_cmd_mtx);
1163 aprint_error_dev(sc->sc_dev, "reserve send fails\n");
1164 return -1;
1165 }
1166 if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
1167 mutex_exit(&sc->sc_cmd_mtx);
1168 aprint_error_dev(sc->sc_dev, "reserve recv fails\n");
1169 return -1;
1170 }
1171 mutex_exit(&sc->sc_cmd_mtx);
1172 /* Get SDR Header */
1173 if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
1174 aprint_error_dev(sc->sc_dev, "get header fails\n");
1175 return -1;
1176 }
1177 /* Allocate space for entire SDR Length of SDR in header does not
1178 * include header length */
1179 sdrlen = sizeof(shdr) + shdr.record_length;
1180 psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK);
1181 if (psdr == NULL)
1182 return -1;
1183
1184 memcpy(psdr, &shdr, sizeof(shdr));
1185
1186 /* Read SDR Data maxsdrlen bytes at a time */
1187 for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
1188 len = sdrlen - offset;
1189 if (len > maxsdrlen)
1190 len = maxsdrlen;
1191
1192 if (get_sdr_partial(sc, recid, resid, offset, len,
1193 psdr + offset, NULL)) {
1194 aprint_error_dev(sc->sc_dev,
1195 "get chunk : %d,%d fails\n", offset, len);
1196 free(psdr, M_DEVBUF);
1197 return -1;
1198 }
1199 }
1200
1201 /* Add SDR to sensor list, if not wanted, free buffer */
1202 if (add_sdr_sensor(sc, psdr) == 0)
1203 free(psdr, M_DEVBUF);
1204
1205 return 0;
1206 }
1207
1208 static int
1209 getbits(uint8_t *bytes, int bitpos, int bitlen)
1210 {
1211 int v;
1212 int mask;
1213
1214 bitpos += bitlen - 1;
1215 for (v = 0; bitlen--;) {
1216 v <<= 1;
1217 mask = 1L << (bitpos & 7);
1218 if (bytes[bitpos >> 3] & mask)
1219 v |= 1;
1220 bitpos--;
1221 }
1222
1223 return v;
1224 }
1225
1226 /* Decode IPMI sensor name */
1227 static void
1228 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
1229 {
1230 int i, slen;
1231 char bcdplus[] = "0123456789 -.:,_";
1232
1233 slen = typelen & 0x1F;
1234 switch (typelen >> 6) {
1235 case IPMI_NAME_UNICODE:
1236 //unicode
1237 break;
1238
1239 case IPMI_NAME_BCDPLUS:
1240 /* Characters are encoded in 4-bit BCDPLUS */
1241 if (len < slen * 2 + 1)
1242 slen = (len >> 1) - 1;
1243 for (i = 0; i < slen; i++) {
1244 *(name++) = bcdplus[bits[i] >> 4];
1245 *(name++) = bcdplus[bits[i] & 0xF];
1246 }
1247 break;
1248
1249 case IPMI_NAME_ASCII6BIT:
1250 /* Characters are encoded in 6-bit ASCII
1251 * 0x00 - 0x3F maps to 0x20 - 0x5F */
1252 /* XXX: need to calculate max len: slen = 3/4 * len */
1253 if (len < slen + 1)
1254 slen = len - 1;
1255 for (i = 0; i < slen * 8; i += 6)
1256 *(name++) = getbits(bits, i, 6) + ' ';
1257 break;
1258
1259 case IPMI_NAME_ASCII8BIT:
1260 /* Characters are 8-bit ascii */
1261 if (len < slen + 1)
1262 slen = len - 1;
1263 while (slen--)
1264 *(name++) = *(bits++);
1265 break;
1266 }
1267 *name = 0;
1268 }
1269
1270 /* Sign extend a n-bit value */
1271 static long
1272 signextend(unsigned long val, int bits)
1273 {
1274 long msk = (1L << (bits-1))-1;
1275
1276 return -(val & ~msk) | val;
1277 }
1278
1279
1280 /* fixpoint arithmetic */
1281 #define FIX2INT(x) ((int64_t)((x) >> 32))
1282 #define INT2FIX(x) ((int64_t)((uint64_t)(x) << 32))
1283
1284 #define FIX2 0x0000000200000000ll /* 2.0 */
1285 #define FIX3 0x0000000300000000ll /* 3.0 */
1286 #define FIXE 0x00000002b7e15163ll /* 2.71828182845904523536 */
1287 #define FIX10 0x0000000a00000000ll /* 10.0 */
1288 #define FIXMONE 0xffffffff00000000ll /* -1.0 */
1289 #define FIXHALF 0x0000000080000000ll /* 0.5 */
1290 #define FIXTHIRD 0x0000000055555555ll /* 0.33333333333333333333 */
1291
1292 #define FIX1LOG2 0x0000000171547653ll /* 1.0/log(2) */
1293 #define FIX1LOGE 0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
1294 #define FIX1LOG10 0x000000006F2DEC55ll /* 1.0/log(10) */
1295
1296 #define FIX1E 0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */
1297
1298 static int64_t fixlog_a[] = {
1299 0x0000000100000000ll /* 1.0/1.0 */,
1300 0xffffffff80000000ll /* -1.0/2.0 */,
1301 0x0000000055555555ll /* 1.0/3.0 */,
1302 0xffffffffc0000000ll /* -1.0/4.0 */,
1303 0x0000000033333333ll /* 1.0/5.0 */,
1304 0x000000002aaaaaabll /* -1.0/6.0 */,
1305 0x0000000024924925ll /* 1.0/7.0 */,
1306 0x0000000020000000ll /* -1.0/8.0 */,
1307 0x000000001c71c71cll /* 1.0/9.0 */
1308 };
1309
1310 static int64_t fixexp_a[] = {
1311 0x0000000100000000ll /* 1.0/1.0 */,
1312 0x0000000100000000ll /* 1.0/1.0 */,
1313 0x0000000080000000ll /* 1.0/2.0 */,
1314 0x000000002aaaaaabll /* 1.0/6.0 */,
1315 0x000000000aaaaaabll /* 1.0/24.0 */,
1316 0x0000000002222222ll /* 1.0/120.0 */,
1317 0x00000000005b05b0ll /* 1.0/720.0 */,
1318 0x00000000000d00d0ll /* 1.0/5040.0 */,
1319 0x000000000001a01all /* 1.0/40320.0 */
1320 };
1321
1322 static int64_t
1323 fixmul(int64_t x, int64_t y)
1324 {
1325 int64_t z;
1326 int64_t a,b,c,d;
1327 int neg;
1328
1329 neg = 0;
1330 if (x < 0) {
1331 x = -x;
1332 neg = !neg;
1333 }
1334 if (y < 0) {
1335 y = -y;
1336 neg = !neg;
1337 }
1338
1339 a = FIX2INT(x);
1340 b = x - INT2FIX(a);
1341 c = FIX2INT(y);
1342 d = y - INT2FIX(c);
1343
1344 z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);
1345
1346 return neg ? -z : z;
1347 }
1348
1349 static int64_t
1350 poly(int64_t x0, int64_t x, int64_t a[], int n)
1351 {
1352 int64_t z;
1353 int i;
1354
1355 z = fixmul(x0, a[0]);
1356 for (i=1; i<n; ++i) {
1357 x0 = fixmul(x0, x);
1358 z = fixmul(x0, a[i]) + z;
1359 }
1360 return z;
1361 }
1362
1363 static int64_t
1364 logx(int64_t x, int64_t y)
1365 {
1366 int64_t z;
1367
1368 if (x <= INT2FIX(0)) {
1369 z = INT2FIX(-99999);
1370 goto done;
1371 }
1372
1373 z = INT2FIX(0);
1374 while (x >= FIXE) {
1375 x = fixmul(x, FIX1E);
1376 z += INT2FIX(1);
1377 }
1378 while (x < INT2FIX(1)) {
1379 x = fixmul(x, FIXE);
1380 z -= INT2FIX(1);
1381 }
1382
1383 x -= INT2FIX(1);
1384 z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
1385 z = fixmul(z, y);
1386
1387 done:
1388 return z;
1389 }
1390
1391 static int64_t
1392 powx(int64_t x, int64_t y)
1393 {
1394 int64_t k;
1395
1396 if (x == INT2FIX(0))
1397 goto done;
1398
1399 x = logx(x,y);
1400
1401 if (x < INT2FIX(0)) {
1402 x = INT2FIX(0) - x;
1403 k = -FIX2INT(x);
1404 x = INT2FIX(-k) - x;
1405 } else {
1406 k = FIX2INT(x);
1407 x = x - INT2FIX(k);
1408 }
1409
1410 x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));
1411
1412 while (k < 0) {
1413 x = fixmul(x, FIX1E);
1414 ++k;
1415 }
1416 while (k > 0) {
1417 x = fixmul(x, FIXE);
1418 --k;
1419 }
1420
1421 done:
1422 return x;
1423 }
1424
1425 /* Convert IPMI reading from sensor factors */
1426 static long
1427 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
1428 {
1429 int64_t M, B;
1430 char K1, K2;
1431 int64_t val, v1, v2, vs;
1432 int sign = (s1->units1 >> 6) & 0x3;
1433
1434 vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
1435 if ((vs < 0) && (sign == 0x1))
1436 vs++;
1437
1438 /* Calculate linear reading variables */
1439 M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
1440 B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
1441 K1 = signextend(s1->rbexp & 0xF, 4);
1442 K2 = signextend(s1->rbexp >> 4, 4);
1443
1444 /* Calculate sensor reading:
1445 * y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
1446 *
1447 * This commutes out to:
1448 * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
1449 v1 = powx(FIX10, INT2FIX(K2 + adj));
1450 v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
1451 val = M * vs * v1 + B * v2;
1452
1453 /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
1454 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
1455 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
1456 * root(x) */
1457 switch (s1->linear & 0x7f) {
1458 case 0: break;
1459 case 1: val = logx(val,FIX1LOGE); break;
1460 case 2: val = logx(val,FIX1LOG10); break;
1461 case 3: val = logx(val,FIX1LOG2); break;
1462 case 4: val = powx(FIXE,val); break;
1463 case 5: val = powx(FIX10,val); break;
1464 case 6: val = powx(FIX2,val); break;
1465 case 7: val = powx(val,FIXMONE); break;
1466 case 8: val = powx(val,FIX2); break;
1467 case 9: val = powx(val,FIX3); break;
1468 case 10: val = powx(val,FIXHALF); break;
1469 case 11: val = powx(val,FIXTHIRD); break;
1470 }
1471
1472 return FIX2INT(val);
1473 }
1474
1475 static int32_t
1476 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
1477 {
1478 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
1479 int32_t val;
1480
1481 switch (psensor->i_envtype) {
1482 case ENVSYS_STEMP:
1483 val = ipmi_convert(reading[0], s1, 6) + 273150000;
1484 break;
1485
1486 case ENVSYS_SVOLTS_DC:
1487 val = ipmi_convert(reading[0], s1, 6);
1488 break;
1489
1490 case ENVSYS_SFANRPM:
1491 val = ipmi_convert(reading[0], s1, 0);
1492 if (((s1->units1>>3)&0x7) == 0x3)
1493 val *= 60; /* RPS -> RPM */
1494 break;
1495 default:
1496 val = 0;
1497 break;
1498 }
1499 return val;
1500 }
1501
1502 static void
1503 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1504 sysmon_envsys_lim_t *limits, uint32_t *props)
1505 {
1506 struct ipmi_sensor *ipmi_s;
1507
1508 /* Find the ipmi_sensor corresponding to this edata */
1509 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1510 if (ipmi_s->i_envnum == edata->sensor) {
1511 if (limits == NULL) {
1512 limits = &ipmi_s->i_deflims;
1513 props = &ipmi_s->i_defprops;
1514 }
1515 *props |= PROP_DRIVER_LIMITS;
1516 ipmi_s->i_limits = *limits;
1517 ipmi_s->i_props = *props;
1518 return;
1519 }
1520 }
1521 return;
1522 }
1523
1524 static void
1525 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1526 sysmon_envsys_lim_t *limits, uint32_t *props)
1527 {
1528 struct ipmi_sensor *ipmi_s;
1529 struct ipmi_softc *sc = sme->sme_cookie;
1530
1531 /* Find the ipmi_sensor corresponding to this edata */
1532 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1533 if (ipmi_s->i_envnum == edata->sensor) {
1534 ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
1535 ipmi_s->i_limits = *limits;
1536 ipmi_s->i_props = *props;
1537 if (ipmi_s->i_defprops == 0) {
1538 ipmi_s->i_defprops = *props;
1539 ipmi_s->i_deflims = *limits;
1540 }
1541 return;
1542 }
1543 }
1544 return;
1545 }
1546
1547 /* valid bits for (upper,lower) x (non-recoverable, critical, warn) */
1548 #define UN 0x20
1549 #define UC 0x10
1550 #define UW 0x08
1551 #define LN 0x04
1552 #define LC 0x02
1553 #define LW 0x01
1554
1555 static void
1556 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1557 sysmon_envsys_lim_t *limits, uint32_t *props)
1558 {
1559 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
1560 bool failure;
1561 int rxlen;
1562 uint8_t data[32], valid;
1563 uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
1564 int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;
1565
1566 *props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
1567 data[0] = psensor->i_num;
1568 mutex_enter(&sc->sc_cmd_mtx);
1569 failure =
1570 ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
1571 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
1572 ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
1573 mutex_exit(&sc->sc_cmd_mtx);
1574 if (failure)
1575 return;
1576
1577 dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
1578 __func__, data[0], data[1], data[2], data[3], data[4], data[5],
1579 data[6]);
1580
1581 switch (s1->linear & 0x7f) {
1582 case 7: /* 1/x sensor, exchange upper and lower limits */
1583 prop_critmax = PROP_CRITMIN;
1584 prop_warnmax = PROP_WARNMIN;
1585 prop_critmin = PROP_CRITMAX;
1586 prop_warnmin = PROP_WARNMAX;
1587 pcritmax = &limits->sel_critmin;
1588 pwarnmax = &limits->sel_warnmin;
1589 pcritmin = &limits->sel_critmax;
1590 pwarnmin = &limits->sel_warnmax;
1591 break;
1592 default:
1593 prop_critmax = PROP_CRITMAX;
1594 prop_warnmax = PROP_WARNMAX;
1595 prop_critmin = PROP_CRITMIN;
1596 prop_warnmin = PROP_WARNMIN;
1597 pcritmax = &limits->sel_critmax;
1598 pwarnmax = &limits->sel_warnmax;
1599 pcritmin = &limits->sel_critmin;
1600 pwarnmin = &limits->sel_warnmin;
1601 break;
1602 }
1603
1604 valid = data[0];
1605
1606 /* if upper non-recoverable < warning, ignore it */
1607 if ((valid & (UN|UW)) == (UN|UW) && data[6] < data[4])
1608 valid ^= UN;
1609 /* if upper critical < warning, ignore it */
1610 if ((valid & (UC|UW)) == (UC|UW) && data[5] < data[4])
1611 valid ^= UC;
1612
1613 /* if lower non-recoverable > warning, ignore it */
1614 if ((data[0] & (LN|LW)) == (LN|LW) && data[3] > data[1])
1615 valid ^= LN;
1616 /* if lower critical > warning, ignore it */
1617 if ((data[0] & (LC|LW)) == (LC|LW) && data[2] > data[1])
1618 valid ^= LC;
1619
1620 if (valid & UN && data[6] != 0xff) {
1621 *pcritmax = ipmi_convert_sensor(&data[6], psensor);
1622 *props |= prop_critmax;
1623 }
1624 if (valid & UC && data[5] != 0xff) {
1625 *pcritmax = ipmi_convert_sensor(&data[5], psensor);
1626 *props |= prop_critmax;
1627 }
1628 if (valid & UW && data[4] != 0xff) {
1629 *pwarnmax = ipmi_convert_sensor(&data[4], psensor);
1630 *props |= prop_warnmax;
1631 }
1632 if (valid & LN && data[3] != 0x00) {
1633 *pcritmin = ipmi_convert_sensor(&data[3], psensor);
1634 *props |= prop_critmin;
1635 }
1636 if (valid & LC && data[2] != 0x00) {
1637 *pcritmin = ipmi_convert_sensor(&data[2], psensor);
1638 *props |= prop_critmin;
1639 }
1640 if (valid & LW && data[1] != 0x00) {
1641 *pwarnmin = ipmi_convert_sensor(&data[1], psensor);
1642 *props |= prop_warnmin;
1643 }
1644 return;
1645 }
1646
1647 static int
1648 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1649 envsys_data_t *edata, uint8_t *reading)
1650 {
1651 int etype;
1652
1653 /* Get reading of sensor */
1654 edata->value_cur = ipmi_convert_sensor(reading, psensor);
1655
1656 /* Return Sensor Status */
1657 etype = (psensor->i_etype << 8) + psensor->i_stype;
1658 switch (etype) {
1659 case IPMI_SENSOR_TYPE_TEMP:
1660 case IPMI_SENSOR_TYPE_VOLT:
1661 case IPMI_SENSOR_TYPE_FAN:
1662 if (psensor->i_props & PROP_CRITMAX &&
1663 edata->value_cur > psensor->i_limits.sel_critmax)
1664 return ENVSYS_SCRITOVER;
1665
1666 if (psensor->i_props & PROP_WARNMAX &&
1667 edata->value_cur > psensor->i_limits.sel_warnmax)
1668 return ENVSYS_SWARNOVER;
1669
1670 if (psensor->i_props & PROP_CRITMIN &&
1671 edata->value_cur < psensor->i_limits.sel_critmin)
1672 return ENVSYS_SCRITUNDER;
1673
1674 if (psensor->i_props & PROP_WARNMIN &&
1675 edata->value_cur < psensor->i_limits.sel_warnmin)
1676 return ENVSYS_SWARNUNDER;
1677
1678 break;
1679
1680 case IPMI_SENSOR_TYPE_INTRUSION:
1681 edata->value_cur = (reading[2] & 1) ? 0 : 1;
1682 if (reading[2] & 0x1)
1683 return ENVSYS_SCRITICAL;
1684 break;
1685
1686 case IPMI_SENSOR_TYPE_PWRSUPPLY:
1687 /* Reading: 1 = present+powered, 0 = otherwise */
1688 edata->value_cur = (reading[2] & 1) ? 0 : 1;
1689 if (reading[2] & 0x10) {
1690 /* XXX: Need envsys type for Power Supply types
1691 * ok: power supply installed && powered
1692 * warn: power supply installed && !powered
1693 * crit: power supply !installed
1694 */
1695 return ENVSYS_SCRITICAL;
1696 }
1697 if (reading[2] & 0x08) {
1698 /* Power supply AC lost */
1699 return ENVSYS_SWARNOVER;
1700 }
1701 break;
1702 }
1703
1704 return ENVSYS_SVALID;
1705 }
1706
1707 static int
1708 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
1709 {
1710 struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr;
1711 uint8_t data[8];
1712 int rxlen;
1713 envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];
1714
1715 memset(data, 0, sizeof(data));
1716 data[0] = psensor->i_num;
1717
1718 mutex_enter(&sc->sc_cmd_mtx);
1719 if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
1720 SE_GET_SENSOR_READING, 1, data))
1721 goto err;
1722
1723 if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
1724 goto err;
1725 mutex_exit(&sc->sc_cmd_mtx);
1726
1727 dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, "
1728 "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b,
1729 s1->b_accuracy, s1->rbexp, s1->linear);
1730 dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n",
1731 data[0],data[1],data[2],data[3], edata->desc);
1732 if (IPMI_INVALID_SENSOR_P(data[1])) {
1733 /* Check if sensor is valid */
1734 edata->state = ENVSYS_SINVALID;
1735 } else {
1736 edata->state = ipmi_sensor_status(sc, psensor, edata, data);
1737 }
1738 return 0;
1739 err:
1740 mutex_exit(&sc->sc_cmd_mtx);
1741 return -1;
1742 }
1743
1744 static int
1745 ipmi_sensor_type(int type, int ext_type, int entity)
1746 {
1747 switch (ext_type << 8L | type) {
1748 case IPMI_SENSOR_TYPE_TEMP:
1749 return ENVSYS_STEMP;
1750
1751 case IPMI_SENSOR_TYPE_VOLT:
1752 return ENVSYS_SVOLTS_DC;
1753
1754 case IPMI_SENSOR_TYPE_FAN:
1755 return ENVSYS_SFANRPM;
1756
1757 case IPMI_SENSOR_TYPE_PWRSUPPLY:
1758 if (entity == IPMI_ENTITY_PWRSUPPLY)
1759 return ENVSYS_INDICATOR;
1760 break;
1761
1762 case IPMI_SENSOR_TYPE_INTRUSION:
1763 return ENVSYS_INDICATOR;
1764 }
1765
1766 return -1;
1767 }
1768
1769 /* Add Sensor to BSD Sysctl interface */
1770 static int
1771 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
1772 {
1773 int rc;
1774 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr;
1775 struct sdrtype2 *s2 = (struct sdrtype2 *)psdr;
1776 char name[64];
1777
1778 switch (s1->sdrhdr.record_type) {
1779 case IPMI_SDR_TYPEFULL:
1780 ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
1781 rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
1782 s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
1783 break;
1784
1785 case IPMI_SDR_TYPECOMPACT:
1786 ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
1787 rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
1788 s2->sensor_num, s2->sensor_type, s2->event_code,
1789 s2->share2 & 0x7F, s2->entity_id, name);
1790 break;
1791
1792 default:
1793 return 0;
1794 }
1795
1796 return rc;
1797 }
1798
1799 static int
1800 ipmi_is_dupname(char *name)
1801 {
1802 struct ipmi_sensor *ipmi_s;
1803
1804 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1805 if (strcmp(ipmi_s->i_envdesc, name) == 0) {
1806 return 1;
1807 }
1808 }
1809 return 0;
1810 }
1811
1812 static int
1813 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
1814 int sensor_num, int sensor_type, int ext_type, int sensor_base,
1815 int entity, const char *name)
1816 {
1817 int typ, idx, dupcnt, c;
1818 char *e;
1819 struct ipmi_sensor *psensor;
1820 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr;
1821
1822 typ = ipmi_sensor_type(sensor_type, ext_type, entity);
1823 if (typ == -1) {
1824 dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x "
1825 "name:%s\n", sensor_type, ext_type, sensor_num, name);
1826 return 0;
1827 }
1828 dupcnt = 0;
1829 sc->sc_nsensors += count;
1830 for (idx = 0; idx < count; idx++) {
1831 psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
1832 M_WAITOK);
1833 if (psensor == NULL)
1834 break;
1835
1836 memset(psensor, 0, sizeof(struct ipmi_sensor));
1837
1838 /* Initialize BSD Sensor info */
1839 psensor->i_sdr = psdr;
1840 psensor->i_num = sensor_num + idx;
1841 psensor->i_stype = sensor_type;
1842 psensor->i_etype = ext_type;
1843 psensor->i_envtype = typ;
1844 if (count > 1)
1845 snprintf(psensor->i_envdesc,
1846 sizeof(psensor->i_envdesc),
1847 "%s - %d", name, sensor_base + idx);
1848 else
1849 strlcpy(psensor->i_envdesc, name,
1850 sizeof(psensor->i_envdesc));
1851
1852 /*
1853 * Check for duplicates. If there are duplicates,
1854 * make sure there is space in the name (if not,
1855 * truncate to make space) for a count (1-99) to
1856 * add to make the name unique. If we run the
1857 * counter out, just accept the duplicate (@name99)
1858 * for now.
1859 */
1860 if (ipmi_is_dupname(psensor->i_envdesc)) {
1861 if (strlen(psensor->i_envdesc) >=
1862 sizeof(psensor->i_envdesc) - 3) {
1863 e = psensor->i_envdesc +
1864 sizeof(psensor->i_envdesc) - 3;
1865 } else {
1866 e = psensor->i_envdesc +
1867 strlen(psensor->i_envdesc);
1868 }
1869 c = psensor->i_envdesc +
1870 sizeof(psensor->i_envdesc) - e;
1871 do {
1872 dupcnt++;
1873 snprintf(e, c, "%d", dupcnt);
1874 } while (dupcnt < 100 &&
1875 ipmi_is_dupname(psensor->i_envdesc));
1876 }
1877
1878 dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n",
1879 __func__,
1880 s1->sdrhdr.record_id, s1->sensor_type,
1881 typ, s1->entity_id, s1->entity_instance,
1882 psensor->i_envdesc);
1883 SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
1884 }
1885
1886 return 1;
1887 }
1888
1889 #if 0
1890 /* Interrupt handler */
1891 static int
1892 ipmi_intr(void *arg)
1893 {
1894 struct ipmi_softc *sc = (struct ipmi_softc *)arg;
1895 int v;
1896
1897 v = bmc_read(sc, _KCS_STATUS_REGISTER);
1898 if (v & KCS_OBF)
1899 ++ipmi_nintr;
1900
1901 return 0;
1902 }
1903 #endif
1904
1905 /* Handle IPMI Timer - reread sensor values */
1906 static void
1907 ipmi_refresh_sensors(struct ipmi_softc *sc)
1908 {
1909
1910 if (SLIST_EMPTY(&ipmi_sensor_list))
1911 return;
1912
1913 sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
1914 if (sc->current_sensor == NULL)
1915 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
1916
1917 if (read_sensor(sc, sc->current_sensor)) {
1918 dbg_printf(1, "%s: error reading\n", __func__);
1919 }
1920 }
1921
1922 static int
1923 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
1924 {
1925 int error;
1926
1927 sc->sc_if = ipmi_get_if(ia->iaa_if_type);
1928 if (sc->sc_if == NULL)
1929 return -1;
1930
1931 if (ia->iaa_if_iotype == 'i')
1932 sc->sc_iot = ia->iaa_iot;
1933 else
1934 sc->sc_iot = ia->iaa_memt;
1935
1936 sc->sc_if_rev = ia->iaa_if_rev;
1937 sc->sc_if_iospacing = ia->iaa_if_iospacing;
1938 if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
1939 sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) {
1940 const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) :
1941 "ipmi0";
1942 aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x"
1943 ", 0, %p) type %c failed %d\n",
1944 xname, __func__, (uint64_t)ia->iaa_if_iobase,
1945 sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh,
1946 ia->iaa_if_iotype, error);
1947 return -1;
1948 }
1949 #if 0
1950 if (iaa->if_if_irq != -1)
1951 sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
1952 iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
1953 device_xname(sc->sc_dev);
1954 #endif
1955 return 0;
1956 }
1957
1958 static void
1959 ipmi_unmap_regs(struct ipmi_softc *sc)
1960 {
1961 bus_space_unmap(sc->sc_iot, sc->sc_ioh,
1962 sc->sc_if->nregs * sc->sc_if_iospacing);
1963 }
1964
1965 static int
1966 ipmi_match(device_t parent, cfdata_t cf, void *aux)
1967 {
1968 struct ipmi_softc sc;
1969 struct ipmi_attach_args *ia = aux;
1970 int rv = 0;
1971
1972 memset(&sc, 0, sizeof(sc));
1973
1974 /* Map registers */
1975 if (ipmi_map_regs(&sc, ia) != 0)
1976 return 0;
1977
1978 sc.sc_if->probe(&sc);
1979
1980 mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
1981
1982 if (ipmi_get_device_id(&sc, NULL) == 0)
1983 rv = 1;
1984
1985 mutex_destroy(&sc.sc_cmd_mtx);
1986 ipmi_unmap_regs(&sc);
1987
1988 return rv;
1989 }
1990
1991 static void
1992 ipmi_thread(void *cookie)
1993 {
1994 device_t self = cookie;
1995 struct ipmi_softc *sc = device_private(self);
1996 struct ipmi_attach_args *ia = &sc->sc_ia;
1997 uint16_t rec;
1998 struct ipmi_sensor *ipmi_s;
1999 struct ipmi_device_id id;
2000 int i;
2001
2002 sc->sc_thread_running = true;
2003
2004 /* setup ticker */
2005 sc->sc_max_retries = hz * 90; /* 90 seconds max */
2006
2007 /* Map registers */
2008 ipmi_map_regs(sc, ia);
2009
2010 /* Setup Watchdog timer */
2011 sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
2012 sc->sc_wdog.smw_cookie = sc;
2013 sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
2014 sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
2015 sysmon_wdog_register(&sc->sc_wdog);
2016
2017 /* Set up a power handler so we can possibly sleep */
2018 if (!pmf_device_register(self, ipmi_suspend, NULL))
2019 aprint_error_dev(self, "couldn't establish a power handler\n");
2020
2021 /*
2022 * Allow boot to proceed -- we'll do the rest asynchronously
2023 * since it requires talking to the device.
2024 */
2025 config_pending_decr(self);
2026
2027 memset(&id, 0, sizeof(id));
2028 if (ipmi_get_device_id(sc, &id))
2029 aprint_error_dev(self, "Failed to re-query device ID\n");
2030
2031 /* Scan SDRs, add sensors to list */
2032 for (rec = 0; rec != 0xFFFF;)
2033 if (get_sdr(sc, rec, &rec))
2034 break;
2035
2036 /* allocate and fill sensor arrays */
2037 sc->sc_sensor = malloc(sizeof(sc->sc_sensor[0]) * sc->sc_nsensors,
2038 M_DEVBUF, M_WAITOK | M_ZERO);
2039
2040 sc->sc_envsys = sysmon_envsys_create();
2041 sc->sc_envsys->sme_cookie = sc;
2042 sc->sc_envsys->sme_get_limits = ipmi_get_limits;
2043 sc->sc_envsys->sme_set_limits = ipmi_set_limits;
2044
2045 i = 0;
2046 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
2047 ipmi_s->i_props = 0;
2048 ipmi_s->i_envnum = -1;
2049 sc->sc_sensor[i].units = ipmi_s->i_envtype;
2050 sc->sc_sensor[i].state = ENVSYS_SINVALID;
2051 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
2052 /*
2053 * Monitor threshold limits in the sensors.
2054 */
2055 switch (sc->sc_sensor[i].units) {
2056 case ENVSYS_STEMP:
2057 case ENVSYS_SVOLTS_DC:
2058 case ENVSYS_SFANRPM:
2059 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
2060 break;
2061 default:
2062 sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
2063 }
2064 (void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
2065 sizeof(sc->sc_sensor[i].desc));
2066 ++i;
2067
2068 if (sysmon_envsys_sensor_attach(sc->sc_envsys,
2069 &sc->sc_sensor[i-1]))
2070 continue;
2071
2072 /* get reference number from envsys */
2073 ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
2074 }
2075
2076 sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
2077 sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;
2078
2079 if (sysmon_envsys_register(sc->sc_envsys)) {
2080 aprint_error_dev(self, "unable to register with sysmon\n");
2081 sysmon_envsys_destroy(sc->sc_envsys);
2082 sc->sc_envsys = NULL;
2083 }
2084
2085 /* initialize sensor list for thread */
2086 if (!SLIST_EMPTY(&ipmi_sensor_list))
2087 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
2088
2089 aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
2090 "0x%" PRIx64 "/%#x spacing %d\n",
2091 ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
2092 ia->iaa_if_iotype == 'i' ? "io" : "mem",
2093 (uint64_t)ia->iaa_if_iobase,
2094 ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
2095 if (ia->iaa_if_irq != -1)
2096 aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);
2097
2098 if (id.deviceid != 0) {
2099 aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n",
2100 id.deviceid, (id.revision & 0xf),
2101 (id.version & 0xf), (id.version >> 4) & 0xf,
2102 (id.fwrev1 & 0x80) ? " Initializing" : " Available",
2103 (id.revision & 0x80) ? " +SDRs" : "");
2104 if (id.additional != 0)
2105 aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n",
2106 (id.additional & 0x80) ? " Chassis" : "",
2107 (id.additional & 0x40) ? " Bridge" : "",
2108 (id.additional & 0x20) ? " IPMBGen" : "",
2109 (id.additional & 0x10) ? " IPMBRcv" : "",
2110 (id.additional & 0x08) ? " FRU" : "",
2111 (id.additional & 0x04) ? " SEL" : "",
2112 (id.additional & 0x02) ? " SDR" : "",
2113 (id.additional & 0x01) ? " Sensor" : "");
2114 aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n",
2115 (id.manufacturer[2] & 0xf) << 16
2116 | id.manufacturer[1] << 8
2117 | id.manufacturer[0],
2118 id.product[1] << 8
2119 | id.manufacturer[0]);
2120 aprint_verbose_dev(self, "Firmware %u.%x\n",
2121 (id.fwrev1 & 0x7f), id.fwrev2);
2122 }
2123
2124 /* setup flag to exclude iic */
2125 ipmi_enabled = 1;
2126
2127 mutex_enter(&sc->sc_poll_mtx);
2128 sc->sc_thread_ready = true;
2129 cv_broadcast(&sc->sc_mode_cv);
2130 while (sc->sc_thread_running) {
2131 while (sc->sc_mode == IPMI_MODE_COMMAND)
2132 cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2133 sc->sc_mode = IPMI_MODE_ENVSYS;
2134
2135 if (sc->sc_tickle_due) {
2136 ipmi_dotickle(sc);
2137 sc->sc_tickle_due = false;
2138 }
2139 ipmi_refresh_sensors(sc);
2140
2141 sc->sc_mode = IPMI_MODE_IDLE;
2142 cv_broadcast(&sc->sc_mode_cv);
2143 cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
2144 SENSOR_REFRESH_RATE);
2145 }
2146 mutex_exit(&sc->sc_poll_mtx);
2147 kthread_exit(0);
2148 }
2149
2150 static void
2151 ipmi_attach(device_t parent, device_t self, void *aux)
2152 {
2153 struct ipmi_softc *sc = device_private(self);
2154
2155 sc->sc_ia = *(struct ipmi_attach_args *)aux;
2156 sc->sc_dev = self;
2157 aprint_naive("\n");
2158 aprint_normal("\n");
2159
2160 /* lock around read_sensor so that no one messes with the bmc regs */
2161 mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2162
2163 mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2164 cv_init(&sc->sc_poll_cv, "ipmipoll");
2165 cv_init(&sc->sc_mode_cv, "ipmimode");
2166
2167 if (kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, ipmi_thread, self,
2168 &sc->sc_kthread, "%s", device_xname(self)) != 0) {
2169 aprint_error_dev(self, "unable to create thread, disabled\n");
2170 } else
2171 config_pending_incr(self);
2172 }
2173
2174 static int
2175 ipmi_detach(device_t self, int flags)
2176 {
2177 struct ipmi_sensor *i;
2178 int rc;
2179 struct ipmi_softc *sc = device_private(self);
2180
2181 mutex_enter(&sc->sc_poll_mtx);
2182 sc->sc_thread_running = false;
2183 cv_signal(&sc->sc_poll_cv);
2184 mutex_exit(&sc->sc_poll_mtx);
2185 if (sc->sc_kthread)
2186 (void)kthread_join(sc->sc_kthread);
2187
2188 if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
2189 if (rc == ERESTART)
2190 rc = EINTR;
2191 return rc;
2192 }
2193
2194 /* cancel any pending countdown */
2195 sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
2196 sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
2197 sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;
2198
2199 if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
2200 return rc;
2201
2202 ipmi_enabled = 0;
2203
2204 if (sc->sc_envsys != NULL) {
2205 /* _unregister also destroys */
2206 sysmon_envsys_unregister(sc->sc_envsys);
2207 sc->sc_envsys = NULL;
2208 }
2209
2210 while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
2211 SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
2212 free(i, M_DEVBUF);
2213 }
2214
2215 if (sc->sc_sensor != NULL) {
2216 free(sc->sc_sensor, M_DEVBUF);
2217 sc->sc_sensor = NULL;
2218 }
2219
2220 ipmi_unmap_regs(sc);
2221
2222 cv_destroy(&sc->sc_mode_cv);
2223 cv_destroy(&sc->sc_poll_cv);
2224 mutex_destroy(&sc->sc_poll_mtx);
2225 mutex_destroy(&sc->sc_cmd_mtx);
2226
2227 return 0;
2228 }
2229
2230 static int
2231 ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res)
2232 {
2233 uint8_t buf[32];
2234 int len;
2235 int rc;
2236
2237 mutex_enter(&sc->sc_cmd_mtx);
2238 /* Identify BMC device early to detect lying bios */
2239 rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL);
2240 if (rc) {
2241 dbg_printf(1, ": unable to send get device id "
2242 "command\n");
2243 goto done;
2244 }
2245 rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf);
2246 if (rc) {
2247 dbg_printf(1, ": unable to retrieve device id\n");
2248 }
2249 done:
2250 mutex_exit(&sc->sc_cmd_mtx);
2251
2252 if (rc == 0 && res != NULL)
2253 memcpy(res, buf, MIN(sizeof(*res), len));
2254
2255 return rc;
2256 }
2257
2258 static int
2259 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
2260 {
2261 struct ipmi_softc *sc = smwdog->smw_cookie;
2262 struct ipmi_get_watchdog gwdog;
2263 struct ipmi_set_watchdog swdog;
2264 int rc, len;
2265
2266 if (smwdog->smw_period < 10)
2267 return EINVAL;
2268 if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
2269 sc->sc_wdog.smw_period = 10;
2270 else
2271 sc->sc_wdog.smw_period = smwdog->smw_period;
2272
2273 /* Wait until the device is initialized */
2274 rc = 0;
2275 mutex_enter(&sc->sc_poll_mtx);
2276 while (sc->sc_thread_ready)
2277 rc = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2278 mutex_exit(&sc->sc_poll_mtx);
2279 if (rc)
2280 return rc;
2281
2282 mutex_enter(&sc->sc_cmd_mtx);
2283 /* see if we can properly task to the watchdog */
2284 rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2285 APP_GET_WATCHDOG_TIMER, 0, NULL);
2286 rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
2287 mutex_exit(&sc->sc_cmd_mtx);
2288 if (rc) {
2289 aprint_error_dev(sc->sc_dev,
2290 "APP_GET_WATCHDOG_TIMER returned %#x\n", rc);
2291 return EIO;
2292 }
2293
2294 memset(&swdog, 0, sizeof(swdog));
2295 /* Period is 10ths/sec */
2296 swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
2297 if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
2298 swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
2299 else
2300 swdog.wdog_action = IPMI_WDOG_ACT_RESET;
2301 swdog.wdog_use = IPMI_WDOG_USE_USE_OS;
2302
2303 mutex_enter(&sc->sc_cmd_mtx);
2304 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2305 APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
2306 rc = ipmi_recvcmd(sc, 0, &len, NULL);
2307 mutex_exit(&sc->sc_cmd_mtx);
2308 if (rc) {
2309 aprint_error_dev(sc->sc_dev,
2310 "APP_SET_WATCHDOG_TIMER returned %#x\n", rc);
2311 return EIO;
2312 }
2313
2314 return 0;
2315 }
2316
2317 static int
2318 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
2319 {
2320 struct ipmi_softc *sc = smwdog->smw_cookie;
2321
2322 mutex_enter(&sc->sc_poll_mtx);
2323 sc->sc_tickle_due = true;
2324 cv_signal(&sc->sc_poll_cv);
2325 mutex_exit(&sc->sc_poll_mtx);
2326 return 0;
2327 }
2328
2329 static void
2330 ipmi_dotickle(struct ipmi_softc *sc)
2331 {
2332 int rc, len;
2333
2334 mutex_enter(&sc->sc_cmd_mtx);
2335 /* tickle the watchdog */
2336 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2337 APP_RESET_WATCHDOG, 0, NULL)) == 0)
2338 rc = ipmi_recvcmd(sc, 0, &len, NULL);
2339 mutex_exit(&sc->sc_cmd_mtx);
2340 if (rc != 0) {
2341 aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n",
2342 rc);
2343 }
2344 }
2345
2346 static bool
2347 ipmi_suspend(device_t dev, const pmf_qual_t *qual)
2348 {
2349 struct ipmi_softc *sc = device_private(dev);
2350
2351 /* Don't allow suspend if watchdog is armed */
2352 if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
2353 return false;
2354 return true;
2355 }
2356
2357 static int
2358 ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l)
2359 {
2360 struct ipmi_softc *sc;
2361 int unit;
2362
2363 unit = IPMIUNIT(dev);
2364 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2365 return (ENXIO);
2366
2367 return 0;
2368 }
2369
2370 static int
2371 ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l)
2372 {
2373 struct ipmi_softc *sc;
2374 int unit;
2375
2376 unit = IPMIUNIT(dev);
2377 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2378 return (ENXIO);
2379
2380 mutex_enter(&sc->sc_poll_mtx);
2381 if (sc->sc_mode == IPMI_MODE_COMMAND) {
2382 sc->sc_mode = IPMI_MODE_IDLE;
2383 cv_broadcast(&sc->sc_mode_cv);
2384 }
2385 mutex_exit(&sc->sc_poll_mtx);
2386 return 0;
2387 }
2388
2389 static int
2390 ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
2391 {
2392 struct ipmi_softc *sc;
2393 int unit, error = 0, len;
2394 struct ipmi_req *req;
2395 struct ipmi_recv *recv;
2396 struct ipmi_addr addr;
2397 unsigned char ccode, *buf = NULL;
2398
2399 unit = IPMIUNIT(dev);
2400 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2401 return (ENXIO);
2402
2403 switch (cmd) {
2404 case IPMICTL_SEND_COMMAND:
2405 mutex_enter(&sc->sc_poll_mtx);
2406 while (sc->sc_mode == IPMI_MODE_ENVSYS) {
2407 error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2408 if (error == EINTR) {
2409 mutex_exit(&sc->sc_poll_mtx);
2410 return error;
2411 }
2412 }
2413 sc->sc_mode = IPMI_MODE_COMMAND;
2414 mutex_exit(&sc->sc_poll_mtx);
2415 break;
2416 }
2417
2418 mutex_enter(&sc->sc_cmd_mtx);
2419
2420 switch (cmd) {
2421 case IPMICTL_SEND_COMMAND:
2422 req = data;
2423 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2424
2425 len = req->msg.data_len;
2426 if (len < 0 || len > IPMI_MAX_RX) {
2427 error = EINVAL;
2428 break;
2429 }
2430
2431 /* clear pending result */
2432 if (sc->sc_sent)
2433 (void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2434
2435 /* XXX */
2436 error = copyin(req->addr, &addr, sizeof(addr));
2437 if (error)
2438 break;
2439
2440 error = copyin(req->msg.data, buf, len);
2441 if (error)
2442 break;
2443
2444 /* save for receive */
2445 sc->sc_msgid = req->msgid;
2446 sc->sc_netfn = req->msg.netfn;
2447 sc->sc_cmd = req->msg.cmd;
2448
2449 if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn,
2450 req->msg.cmd, len, buf)) {
2451 error = EIO;
2452 break;
2453 }
2454 sc->sc_sent = true;
2455 break;
2456 case IPMICTL_RECEIVE_MSG_TRUNC:
2457 case IPMICTL_RECEIVE_MSG:
2458 recv = data;
2459 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2460
2461 if (recv->msg.data_len < 1) {
2462 error = EINVAL;
2463 break;
2464 }
2465
2466 /* XXX */
2467 error = copyin(recv->addr, &addr, sizeof(addr));
2468 if (error)
2469 break;
2470
2471
2472 if (!sc->sc_sent) {
2473 error = EIO;
2474 break;
2475 }
2476
2477 len = 0;
2478 error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2479 if (error < 0) {
2480 error = EIO;
2481 break;
2482 }
2483 ccode = (unsigned char)error;
2484 sc->sc_sent = false;
2485
2486 if (len > recv->msg.data_len - 1) {
2487 if (cmd == IPMICTL_RECEIVE_MSG) {
2488 error = EMSGSIZE;
2489 break;
2490 }
2491 len = recv->msg.data_len - 1;
2492 }
2493
2494 addr.channel = IPMI_BMC_CHANNEL;
2495
2496 recv->recv_type = IPMI_RESPONSE_RECV_TYPE;
2497 recv->msgid = sc->sc_msgid;
2498 recv->msg.netfn = sc->sc_netfn;
2499 recv->msg.cmd = sc->sc_cmd;
2500 recv->msg.data_len = len+1;
2501
2502 error = copyout(&addr, recv->addr, sizeof(addr));
2503 if (error == 0)
2504 error = copyout(&ccode, recv->msg.data, 1);
2505 if (error == 0)
2506 error = copyout(buf, recv->msg.data+1, len);
2507 break;
2508 case IPMICTL_SET_MY_ADDRESS_CMD:
2509 sc->sc_address = *(int *)data;
2510 break;
2511 case IPMICTL_GET_MY_ADDRESS_CMD:
2512 *(int *)data = sc->sc_address;
2513 break;
2514 case IPMICTL_SET_MY_LUN_CMD:
2515 sc->sc_lun = *(int *)data & 0x3;
2516 break;
2517 case IPMICTL_GET_MY_LUN_CMD:
2518 *(int *)data = sc->sc_lun;
2519 break;
2520 case IPMICTL_SET_GETS_EVENTS_CMD:
2521 break;
2522 case IPMICTL_REGISTER_FOR_CMD:
2523 case IPMICTL_UNREGISTER_FOR_CMD:
2524 error = EOPNOTSUPP;
2525 break;
2526 default:
2527 error = ENODEV;
2528 break;
2529 }
2530
2531 if (buf)
2532 free(buf, M_DEVBUF);
2533
2534 mutex_exit(&sc->sc_cmd_mtx);
2535
2536 switch (cmd) {
2537 case IPMICTL_RECEIVE_MSG:
2538 case IPMICTL_RECEIVE_MSG_TRUNC:
2539 mutex_enter(&sc->sc_poll_mtx);
2540 sc->sc_mode = IPMI_MODE_IDLE;
2541 cv_broadcast(&sc->sc_mode_cv);
2542 mutex_exit(&sc->sc_poll_mtx);
2543 break;
2544 }
2545
2546 return error;
2547 }
2548
2549 static int
2550 ipmi_poll(dev_t dev, int events, lwp_t *l)
2551 {
2552 struct ipmi_softc *sc;
2553 int unit, revents = 0;
2554
2555 unit = IPMIUNIT(dev);
2556 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2557 return (ENXIO);
2558
2559 mutex_enter(&sc->sc_cmd_mtx);
2560 if (events & (POLLIN | POLLRDNORM)) {
2561 if (sc->sc_sent)
2562 revents |= events & (POLLIN | POLLRDNORM);
2563 }
2564 mutex_exit(&sc->sc_cmd_mtx);
2565
2566 return revents;
2567 }
2568