Home | History | Annotate | Line # | Download | only in dev
ipmi.c revision 1.5
      1 /*	$NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2019 Michael van Elst
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  *
     26  */
     27 /*
     28  * Copyright (c) 2006 Manuel Bouyer.
     29  *
     30  * Redistribution and use in source and binary forms, with or without
     31  * modification, are permitted provided that the following conditions
     32  * are met:
     33  * 1. Redistributions of source code must retain the above copyright
     34  *    notice, this list of conditions and the following disclaimer.
     35  * 2. Redistributions in binary form must reproduce the above copyright
     36  *    notice, this list of conditions and the following disclaimer in the
     37  *    documentation and/or other materials provided with the distribution.
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     40  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     41  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     42  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     43  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     45  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     46  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     47  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     48  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     49  *
     50  */
     51 
     52 /*
     53  * Copyright (c) 2005 Jordan Hargrave
     54  * All rights reserved.
     55  *
     56  * Redistribution and use in source and binary forms, with or without
     57  * modification, are permitted provided that the following conditions
     58  * are met:
     59  * 1. Redistributions of source code must retain the above copyright
     60  *    notice, this list of conditions and the following disclaimer.
     61  * 2. Redistributions in binary form must reproduce the above copyright
     62  *    notice, this list of conditions and the following disclaimer in the
     63  *    documentation and/or other materials provided with the distribution.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
     69  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $");
     80 
     81 #include <sys/types.h>
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/kernel.h>
     85 #include <sys/device.h>
     86 #include <sys/extent.h>
     87 #include <sys/callout.h>
     88 #include <sys/envsys.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kthread.h>
     91 #include <sys/bus.h>
     92 #include <sys/intr.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/poll.h>
     95 #include <sys/conf.h>
     96 
     97 #include <dev/isa/isareg.h>
     98 #include <dev/isa/isavar.h>
     99 
    100 #include <sys/ipmi.h>
    101 #include <dev/ipmivar.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #include "ioconf.h"
    106 
    107 static dev_type_open(ipmi_open);
    108 static dev_type_close(ipmi_close);
    109 static dev_type_ioctl(ipmi_ioctl);
    110 static dev_type_poll(ipmi_poll);
    111 
    112 const struct cdevsw ipmi_cdevsw = {
    113 	.d_open = ipmi_open,
    114 	.d_close = ipmi_close,
    115 	.d_read = noread,
    116 	.d_write = nowrite,
    117 	.d_ioctl = ipmi_ioctl,
    118 	.d_stop = nostop,
    119 	.d_tty = notty,
    120 	.d_poll = ipmi_poll,
    121 	.d_mmap = nommap,
    122 	.d_kqfilter = nokqfilter,
    123 	.d_discard = nodiscard,
    124 	.d_flag = D_OTHER
    125 };
    126 
    127 #define IPMIUNIT(n) (minor(n))
    128 
    129 struct ipmi_sensor {
    130 	uint8_t	*i_sdr;
    131 	int		i_num;
    132 	int		i_stype;
    133 	int		i_etype;
    134 	char		i_envdesc[64];
    135 	int 		i_envtype; /* envsys compatible type */
    136 	int		i_envnum; /* envsys index */
    137 	sysmon_envsys_lim_t i_limits, i_deflims;
    138 	uint32_t	i_props, i_defprops;
    139 	SLIST_ENTRY(ipmi_sensor) i_list;
    140 	int32_t		i_prevval;	/* feed rnd source on change */
    141 };
    142 
    143 #if 0
    144 static	int ipmi_nintr;
    145 #endif
    146 static	int ipmi_dbg = 0;
    147 static	int ipmi_enabled = 0;
    148 
    149 #define SENSOR_REFRESH_RATE (hz / 2)
    150 
    151 #define IPMI_BTMSG_LEN			0
    152 #define IPMI_BTMSG_NFLN			1
    153 #define IPMI_BTMSG_SEQ			2
    154 #define IPMI_BTMSG_CMD			3
    155 #define IPMI_BTMSG_CCODE		4
    156 #define IPMI_BTMSG_DATASND		4
    157 #define IPMI_BTMSG_DATARCV		5
    158 
    159 #define IPMI_MSG_NFLN			0
    160 #define IPMI_MSG_CMD			1
    161 #define IPMI_MSG_CCODE			2
    162 #define IPMI_MSG_DATASND		2
    163 #define IPMI_MSG_DATARCV		3
    164 
    165 #define IPMI_SENSOR_TYPE_TEMP		0x0101
    166 #define IPMI_SENSOR_TYPE_VOLT		0x0102
    167 #define IPMI_SENSOR_TYPE_FAN		0x0104
    168 #define IPMI_SENSOR_TYPE_INTRUSION	0x6F05
    169 #define IPMI_SENSOR_TYPE_PWRSUPPLY	0x6F08
    170 
    171 #define IPMI_NAME_UNICODE		0x00
    172 #define IPMI_NAME_BCDPLUS		0x01
    173 #define IPMI_NAME_ASCII6BIT		0x02
    174 #define IPMI_NAME_ASCII8BIT		0x03
    175 
    176 #define IPMI_ENTITY_PWRSUPPLY		0x0A
    177 
    178 #define IPMI_SENSOR_SCANNING_ENABLED	(1L << 6)
    179 #define IPMI_SENSOR_UNAVAILABLE		(1L << 5)
    180 #define IPMI_INVALID_SENSOR_P(x) \
    181 	(((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
    182 	!= IPMI_SENSOR_SCANNING_ENABLED)
    183 
    184 #define IPMI_SDR_TYPEFULL		1
    185 #define IPMI_SDR_TYPECOMPACT		2
    186 
    187 #define byteof(x) ((x) >> 3)
    188 #define bitof(x)  (1L << ((x) & 0x7))
    189 #define TB(b,m)	  (data[2+byteof(b)] & bitof(b))
    190 
    191 #define dbg_printf(lvl, fmt...) \
    192 	if (ipmi_dbg >= lvl) \
    193 		printf(fmt);
    194 #define dbg_dump(lvl, msg, len, buf) \
    195 	if (len && ipmi_dbg >= lvl) \
    196 		dumpb(msg, len, (const uint8_t *)(buf));
    197 
    198 static	long signextend(unsigned long, int);
    199 
    200 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
    201 static struct ipmi_sensors_head ipmi_sensor_list =
    202     SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);
    203 
    204 static	void dumpb(const char *, int, const uint8_t *);
    205 
    206 static	int read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
    207 static	int add_sdr_sensor(struct ipmi_softc *, uint8_t *);
    208 static	int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
    209 	    uint8_t, uint8_t, void *, uint16_t *);
    210 static	int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);
    211 
    212 static	char *ipmi_buf_acquire(struct ipmi_softc *, size_t);
    213 static	void ipmi_buf_release(struct ipmi_softc *, char *);
    214 static	int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
    215 static	int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
    216 static	void ipmi_delay(struct ipmi_softc *, int);
    217 
    218 static	int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *);
    219 static	int ipmi_watchdog_setmode(struct sysmon_wdog *);
    220 static	int ipmi_watchdog_tickle(struct sysmon_wdog *);
    221 static	void ipmi_dotickle(struct ipmi_softc *);
    222 
    223 #if 0
    224 static	int ipmi_intr(void *);
    225 #endif
    226 
    227 static	int ipmi_match(device_t, cfdata_t, void *);
    228 static	void ipmi_attach(device_t, device_t, void *);
    229 static	int ipmi_detach(device_t, int);
    230 
    231 static	long	ipmi_convert(uint8_t, struct sdrtype1 *, long);
    232 static	void	ipmi_sensor_name(char *, int, uint8_t, uint8_t *);
    233 
    234 /* BMC Helper Functions */
    235 static	uint8_t bmc_read(struct ipmi_softc *, int);
    236 static	void bmc_write(struct ipmi_softc *, int, uint8_t);
    237 static	int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
    238 static	int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
    239 static	int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);
    240 
    241 static	void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
    242 static	void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
    243 
    244 static	int getbits(uint8_t *, int, int);
    245 static	int ipmi_sensor_type(int, int, int);
    246 
    247 static	void ipmi_refresh_sensors(struct ipmi_softc *);
    248 static	int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
    249 static	void ipmi_unmap_regs(struct ipmi_softc *);
    250 
    251 static	int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
    252 static	void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
    253 		sysmon_envsys_lim_t *, uint32_t *);
    254 static	void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
    255 		sysmon_envsys_lim_t *, uint32_t *);
    256 static	void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
    257 		sysmon_envsys_lim_t *, uint32_t *);
    258 static	int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
    259 		envsys_data_t *, uint8_t *);
    260 
    261 static	int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
    262 		int, int, int, const char *);
    263 
    264 static	bool ipmi_suspend(device_t, const pmf_qual_t *);
    265 
    266 static	int kcs_probe(struct ipmi_softc *);
    267 static	int kcs_reset(struct ipmi_softc *);
    268 static	int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *);
    269 static	int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *);
    270 
    271 static	int bt_probe(struct ipmi_softc *);
    272 static	int bt_reset(struct ipmi_softc *);
    273 static	int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *);
    274 static	int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
    275 
    276 static	int smic_probe(struct ipmi_softc *);
    277 static	int smic_reset(struct ipmi_softc *);
    278 static	int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *);
    279 static	int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
    280 
    281 static struct ipmi_if kcs_if = {
    282 	"KCS",
    283 	IPMI_IF_KCS_NREGS,
    284 	cmn_buildmsg,
    285 	kcs_sendmsg,
    286 	kcs_recvmsg,
    287 	kcs_reset,
    288 	kcs_probe,
    289 };
    290 
    291 static struct ipmi_if smic_if = {
    292 	"SMIC",
    293 	IPMI_IF_SMIC_NREGS,
    294 	cmn_buildmsg,
    295 	smic_sendmsg,
    296 	smic_recvmsg,
    297 	smic_reset,
    298 	smic_probe,
    299 };
    300 
    301 static struct ipmi_if bt_if = {
    302 	"BT",
    303 	IPMI_IF_BT_NREGS,
    304 	bt_buildmsg,
    305 	bt_sendmsg,
    306 	bt_recvmsg,
    307 	bt_reset,
    308 	bt_probe,
    309 };
    310 
    311 static	struct ipmi_if *ipmi_get_if(int);
    312 
    313 static struct ipmi_if *
    314 ipmi_get_if(int iftype)
    315 {
    316 	switch (iftype) {
    317 	case IPMI_IF_KCS:
    318 		return &kcs_if;
    319 	case IPMI_IF_SMIC:
    320 		return &smic_if;
    321 	case IPMI_IF_BT:
    322 		return &bt_if;
    323 	default:
    324 		return NULL;
    325 	}
    326 }
    327 
    328 /*
    329  * BMC Helper Functions
    330  */
    331 static uint8_t
    332 bmc_read(struct ipmi_softc *sc, int offset)
    333 {
    334 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh,
    335 	    offset * sc->sc_if_iospacing);
    336 }
    337 
    338 static void
    339 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
    340 {
    341 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    342 	    offset * sc->sc_if_iospacing, val);
    343 }
    344 
    345 static int
    346 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
    347     uint8_t value)
    348 {
    349 	int retries;
    350 	uint8_t v;
    351 
    352 	KASSERT(mutex_owned(&sc->sc_cmd_mtx));
    353 
    354 	for (retries = 0; retries < sc->sc_max_retries; retries++) {
    355 		v = bmc_read(sc, offset);
    356 		if ((v & mask) == value)
    357 			return v;
    358 		mutex_enter(&sc->sc_sleep_mtx);
    359 		cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1);
    360 		mutex_exit(&sc->sc_sleep_mtx);
    361 	}
    362 	return -1;
    363 }
    364 
    365 static int
    366 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
    367     const char *lbl)
    368 {
    369 	int v;
    370 
    371 	v = bmc_io_wait_spin(sc, offset, mask, value);
    372 	if (cold || v != -1)
    373 		return v;
    374 
    375 	return bmc_io_wait_sleep(sc, offset, mask, value);
    376 }
    377 
    378 static int
    379 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
    380     uint8_t value)
    381 {
    382 	uint8_t	v;
    383 	int			count = cold ? 15000 : 500;
    384 	/* ~us */
    385 
    386 	while (count--) {
    387 		v = bmc_read(sc, offset);
    388 		if ((v & mask) == value)
    389 			return v;
    390 
    391 		delay(1);
    392 	}
    393 
    394 	return -1;
    395 
    396 }
    397 
    398 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
    399 #define GET_NETFN(m) (((m) >> 2)
    400 #define GET_LUN(m) ((m) & 0x03)
    401 
    402 /*
    403  * BT interface
    404  */
    405 #define _BT_CTRL_REG			0
    406 #define	  BT_CLR_WR_PTR			(1L << 0)
    407 #define	  BT_CLR_RD_PTR			(1L << 1)
    408 #define	  BT_HOST2BMC_ATN		(1L << 2)
    409 #define	  BT_BMC2HOST_ATN		(1L << 3)
    410 #define	  BT_EVT_ATN			(1L << 4)
    411 #define	  BT_HOST_BUSY			(1L << 6)
    412 #define	  BT_BMC_BUSY			(1L << 7)
    413 
    414 #define	  BT_READY	(BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)
    415 
    416 #define _BT_DATAIN_REG			1
    417 #define _BT_DATAOUT_REG			1
    418 
    419 #define _BT_INTMASK_REG			2
    420 #define	 BT_IM_HIRQ_PEND		(1L << 1)
    421 #define	 BT_IM_SCI_EN			(1L << 2)
    422 #define	 BT_IM_SMI_EN			(1L << 3)
    423 #define	 BT_IM_NMI2SMI			(1L << 4)
    424 
    425 static int bt_read(struct ipmi_softc *, int);
    426 static int bt_write(struct ipmi_softc *, int, uint8_t);
    427 
    428 static int
    429 bt_read(struct ipmi_softc *sc, int reg)
    430 {
    431 	return bmc_read(sc, reg);
    432 }
    433 
    434 static int
    435 bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
    436 {
    437 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0)
    438 		return -1;
    439 
    440 	bmc_write(sc, reg, data);
    441 	return 0;
    442 }
    443 
    444 static int
    445 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
    446 {
    447 	int i;
    448 
    449 	bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
    450 	for (i = 0; i < len; i++)
    451 		bt_write(sc, _BT_DATAOUT_REG, data[i]);
    452 
    453 	bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
    454 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
    455 	    __func__) < 0)
    456 		return -1;
    457 
    458 	return 0;
    459 }
    460 
    461 static int
    462 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
    463 {
    464 	uint8_t len, v, i;
    465 
    466 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
    467 	    __func__) < 0)
    468 		return -1;
    469 
    470 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
    471 	bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
    472 	bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
    473 	len = bt_read(sc, _BT_DATAIN_REG);
    474 	for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
    475 		v = bt_read(sc, _BT_DATAIN_REG);
    476 		if (i != IPMI_BTMSG_SEQ)
    477 			*(data++) = v;
    478 	}
    479 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
    480 	*rxlen = len - 1;
    481 
    482 	return 0;
    483 }
    484 
    485 static int
    486 bt_reset(struct ipmi_softc *sc)
    487 {
    488 	return -1;
    489 }
    490 
    491 static int
    492 bt_probe(struct ipmi_softc *sc)
    493 {
    494 	uint8_t rv;
    495 
    496 	rv = bmc_read(sc, _BT_CTRL_REG);
    497 	rv &= BT_HOST_BUSY;
    498 	rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
    499 	bmc_write(sc, _BT_CTRL_REG, rv);
    500 
    501 	rv = bmc_read(sc, _BT_INTMASK_REG);
    502 	rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
    503 	rv |= BT_IM_HIRQ_PEND;
    504 	bmc_write(sc, _BT_INTMASK_REG, rv);
    505 
    506 #if 0
    507 	printf("%s: %2x\n", __func__, v);
    508 	printf(" WR    : %2x\n", v & BT_CLR_WR_PTR);
    509 	printf(" RD    : %2x\n", v & BT_CLR_RD_PTR);
    510 	printf(" H2B   : %2x\n", v & BT_HOST2BMC_ATN);
    511 	printf(" B2H   : %2x\n", v & BT_BMC2HOST_ATN);
    512 	printf(" EVT   : %2x\n", v & BT_EVT_ATN);
    513 	printf(" HBSY  : %2x\n", v & BT_HOST_BUSY);
    514 	printf(" BBSY  : %2x\n", v & BT_BMC_BUSY);
    515 #endif
    516 	return 0;
    517 }
    518 
    519 /*
    520  * SMIC interface
    521  */
    522 #define _SMIC_DATAIN_REG		0
    523 #define _SMIC_DATAOUT_REG		0
    524 
    525 #define _SMIC_CTRL_REG			1
    526 #define	  SMS_CC_GET_STATUS		 0x40
    527 #define	  SMS_CC_START_TRANSFER		 0x41
    528 #define	  SMS_CC_NEXT_TRANSFER		 0x42
    529 #define	  SMS_CC_END_TRANSFER		 0x43
    530 #define	  SMS_CC_START_RECEIVE		 0x44
    531 #define	  SMS_CC_NEXT_RECEIVE		 0x45
    532 #define	  SMS_CC_END_RECEIVE		 0x46
    533 #define	  SMS_CC_TRANSFER_ABORT		 0x47
    534 
    535 #define	  SMS_SC_READY			 0xc0
    536 #define	  SMS_SC_WRITE_START		 0xc1
    537 #define	  SMS_SC_WRITE_NEXT		 0xc2
    538 #define	  SMS_SC_WRITE_END		 0xc3
    539 #define	  SMS_SC_READ_START		 0xc4
    540 #define	  SMS_SC_READ_NEXT		 0xc5
    541 #define	  SMS_SC_READ_END		 0xc6
    542 
    543 #define _SMIC_FLAG_REG			2
    544 #define	  SMIC_BUSY			(1L << 0)
    545 #define	  SMIC_SMS_ATN			(1L << 2)
    546 #define	  SMIC_EVT_ATN			(1L << 3)
    547 #define	  SMIC_SMI			(1L << 4)
    548 #define	  SMIC_TX_DATA_RDY		(1L << 6)
    549 #define	  SMIC_RX_DATA_RDY		(1L << 7)
    550 
    551 static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
    552 static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
    553 static int smic_read_data(struct ipmi_softc *, uint8_t *);
    554 
    555 static int
    556 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
    557 {
    558 	int v;
    559 
    560 	/* Wait for expected flag bits */
    561 	v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__);
    562 	if (v < 0)
    563 		return -1;
    564 
    565 	/* Return current status */
    566 	v = bmc_read(sc, _SMIC_CTRL_REG);
    567 	dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v);
    568 	return v;
    569 }
    570 
    571 static int
    572 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
    573 {
    574 	int	sts, v;
    575 
    576 	dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1);
    577 	sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
    578 	    "smic_write_cmd_data ready");
    579 	if (sts < 0)
    580 		return sts;
    581 
    582 	bmc_write(sc, _SMIC_CTRL_REG, cmd);
    583 	if (data)
    584 		bmc_write(sc, _SMIC_DATAOUT_REG, *data);
    585 
    586 	/* Toggle BUSY bit, then wait for busy bit to clear */
    587 	v = bmc_read(sc, _SMIC_FLAG_REG);
    588 	bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);
    589 
    590 	return smic_wait(sc, SMIC_BUSY, 0, __func__);
    591 }
    592 
    593 static int
    594 smic_read_data(struct ipmi_softc *sc, uint8_t *data)
    595 {
    596 	int sts;
    597 
    598 	sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
    599 	    __func__);
    600 	if (sts >= 0) {
    601 		*data = bmc_read(sc, _SMIC_DATAIN_REG);
    602 		dbg_printf(50, "%s: %#.2x\n", __func__, *data);
    603 	}
    604 	return sts;
    605 }
    606 
    607 #define ErrStat(a, ...) if (a) printf(__VA_ARGS__);
    608 
    609 static int
    610 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
    611 {
    612 	int sts, idx;
    613 
    614 	sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
    615 	ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__);
    616 	for (idx = 1; idx < len - 1; idx++) {
    617 		sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
    618 		    &data[idx]);
    619 		ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__);
    620 	}
    621 	sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
    622 	if (sts != SMS_SC_WRITE_END) {
    623 		dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts);
    624 		return -1;
    625 	}
    626 
    627 	return 0;
    628 }
    629 
    630 static int
    631 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
    632 {
    633 	int sts, idx;
    634 
    635 	*len = 0;
    636 	sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__);
    637 	if (sts < 0)
    638 		return -1;
    639 
    640 	sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
    641 	ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__);
    642 	for (idx = 0;; ) {
    643 		sts = smic_read_data(sc, &data[idx++]);
    644 		if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
    645 			break;
    646 		smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
    647 	}
    648 	ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__);
    649 
    650 	*len = idx;
    651 
    652 	sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
    653 	if (sts != SMS_SC_READY) {
    654 		dbg_printf(50, "%s: %d/%d = %#.2x\n",
    655 		    __func__, idx, maxlen, sts);
    656 		return -1;
    657 	}
    658 
    659 	return 0;
    660 }
    661 
    662 static int
    663 smic_reset(struct ipmi_softc *sc)
    664 {
    665 	return -1;
    666 }
    667 
    668 static int
    669 smic_probe(struct ipmi_softc *sc)
    670 {
    671 	/* Flag register should not be 0xFF on a good system */
    672 	if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
    673 		return -1;
    674 
    675 	return 0;
    676 }
    677 
    678 /*
    679  * KCS interface
    680  */
    681 #define _KCS_DATAIN_REGISTER		0
    682 #define _KCS_DATAOUT_REGISTER		0
    683 #define	  KCS_READ_NEXT			0x68
    684 
    685 #define _KCS_COMMAND_REGISTER		1
    686 #define	  KCS_GET_STATUS		0x60
    687 #define	  KCS_WRITE_START		0x61
    688 #define	  KCS_WRITE_END			0x62
    689 
    690 #define _KCS_STATUS_REGISTER		1
    691 #define	  KCS_OBF			(1L << 0)
    692 #define	  KCS_IBF			(1L << 1)
    693 #define	  KCS_SMS_ATN			(1L << 2)
    694 #define	  KCS_CD			(1L << 3)
    695 #define	  KCS_OEM1			(1L << 4)
    696 #define	  KCS_OEM2			(1L << 5)
    697 #define	  KCS_STATE_MASK		0xc0
    698 #define	    KCS_IDLE_STATE		0x00
    699 #define	    KCS_READ_STATE		0x40
    700 #define	    KCS_WRITE_STATE		0x80
    701 #define	    KCS_ERROR_STATE		0xC0
    702 
    703 static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
    704 static int kcs_write_cmd(struct ipmi_softc *, uint8_t);
    705 static int kcs_write_data(struct ipmi_softc *, uint8_t);
    706 static int kcs_read_data(struct ipmi_softc *, uint8_t *);
    707 
    708 static int
    709 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
    710 {
    711 	int v;
    712 
    713 	v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
    714 	if (v < 0)
    715 		return v;
    716 
    717 	/* Check if output buffer full, read dummy byte	 */
    718 	if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
    719 		bmc_read(sc, _KCS_DATAIN_REGISTER);
    720 
    721 	/* Check for error state */
    722 	if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
    723 		bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
    724 		while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
    725 			;
    726 		aprint_error_dev(sc->sc_dev, "error code: %#x\n",
    727 		    bmc_read(sc, _KCS_DATAIN_REGISTER));
    728 	}
    729 
    730 	return v & KCS_STATE_MASK;
    731 }
    732 
    733 static int
    734 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
    735 {
    736 	/* ASSERT: IBF and OBF are clear */
    737 	dbg_printf(50, "%s: %#.2x\n", __func__, cmd);
    738 	bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);
    739 
    740 	return kcs_wait(sc, KCS_IBF, 0, "write_cmd");
    741 }
    742 
    743 static int
    744 kcs_write_data(struct ipmi_softc *sc, uint8_t data)
    745 {
    746 	/* ASSERT: IBF and OBF are clear */
    747 	dbg_printf(50, "%s: %#.2x\n", __func__, data);
    748 	bmc_write(sc, _KCS_DATAOUT_REGISTER, data);
    749 
    750 	return kcs_wait(sc, KCS_IBF, 0, "write_data");
    751 }
    752 
    753 static int
    754 kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
    755 {
    756 	int sts;
    757 
    758 	sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__);
    759 	if (sts != KCS_READ_STATE)
    760 		return sts;
    761 
    762 	/* ASSERT: OBF is set read data, request next byte */
    763 	*data = bmc_read(sc, _KCS_DATAIN_REGISTER);
    764 	bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);
    765 
    766 	dbg_printf(50, "%s: %#.2x\n", __func__, *data);
    767 
    768 	return sts;
    769 }
    770 
    771 /* Exported KCS functions */
    772 static int
    773 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
    774 {
    775 	int idx, sts;
    776 
    777 	/* ASSERT: IBF is clear */
    778 	dbg_dump(50, __func__, len, data);
    779 	sts = kcs_write_cmd(sc, KCS_WRITE_START);
    780 	for (idx = 0; idx < len; idx++) {
    781 		if (idx == len - 1)
    782 			sts = kcs_write_cmd(sc, KCS_WRITE_END);
    783 
    784 		if (sts != KCS_WRITE_STATE)
    785 			break;
    786 
    787 		sts = kcs_write_data(sc, data[idx]);
    788 	}
    789 	if (sts != KCS_READ_STATE) {
    790 		dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts);
    791 		dbg_dump(1, __func__, len, data);
    792 		return -1;
    793 	}
    794 
    795 	return 0;
    796 }
    797 
    798 static int
    799 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
    800 {
    801 	int idx, sts;
    802 
    803 	for (idx = 0; idx < maxlen; idx++) {
    804 		sts = kcs_read_data(sc, &data[idx]);
    805 		if (sts != KCS_READ_STATE)
    806 			break;
    807 	}
    808 	sts = kcs_wait(sc, KCS_IBF, 0, __func__);
    809 	*rxlen = idx;
    810 	if (sts != KCS_IDLE_STATE) {
    811 		dbg_printf(1, "%s: %d/%d <%#.2x>\n",
    812 		    __func__, idx, maxlen, sts);
    813 		return -1;
    814 	}
    815 
    816 	dbg_dump(50, __func__, idx, data);
    817 
    818 	return 0;
    819 }
    820 
    821 static int
    822 kcs_reset(struct ipmi_softc *sc)
    823 {
    824 	return -1;
    825 }
    826 
    827 static int
    828 kcs_probe(struct ipmi_softc *sc)
    829 {
    830 	uint8_t v;
    831 
    832 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
    833 #if 0
    834 	printf("%s: %2x\n", __func__, v);
    835 	printf(" STS: %2x\n", v & KCS_STATE_MASK);
    836 	printf(" ATN: %2x\n", v & KCS_SMS_ATN);
    837 	printf(" C/D: %2x\n", v & KCS_CD);
    838 	printf(" IBF: %2x\n", v & KCS_IBF);
    839 	printf(" OBF: %2x\n", v & KCS_OBF);
    840 #else
    841 	__USE(v);
    842 #endif
    843 	return 0;
    844 }
    845 
    846 /*
    847  * IPMI code
    848  */
    849 #define READ_SMS_BUFFER		0x37
    850 #define WRITE_I2C		0x50
    851 
    852 #define GET_MESSAGE_CMD		0x33
    853 #define SEND_MESSAGE_CMD	0x34
    854 
    855 #define IPMB_CHANNEL_NUMBER	0
    856 
    857 #define PUBLIC_BUS		0
    858 
    859 #define MIN_I2C_PACKET_SIZE	3
    860 #define MIN_IMB_PACKET_SIZE	7	/* one byte for cksum */
    861 
    862 #define MIN_BTBMC_REQ_SIZE	4
    863 #define MIN_BTBMC_RSP_SIZE	5
    864 #define MIN_BMC_REQ_SIZE	2
    865 #define MIN_BMC_RSP_SIZE	3
    866 
    867 #define BMC_SA			0x20	/* BMC/ESM3 */
    868 #define FPC_SA			0x22	/* front panel */
    869 #define BP_SA			0xC0	/* Primary Backplane */
    870 #define BP2_SA			0xC2	/* Secondary Backplane */
    871 #define PBP_SA			0xC4	/* Peripheral Backplane */
    872 #define DRAC_SA			0x28	/* DRAC-III */
    873 #define DRAC3_SA		0x30	/* DRAC-III */
    874 #define BMC_LUN			0
    875 #define SMS_LUN			2
    876 
    877 struct ipmi_request {
    878 	uint8_t	rsSa;
    879 	uint8_t	rsLun;
    880 	uint8_t	netFn;
    881 	uint8_t	cmd;
    882 	uint8_t	data_len;
    883 	uint8_t	*data;
    884 };
    885 
    886 struct ipmi_response {
    887 	uint8_t	cCode;
    888 	uint8_t	data_len;
    889 	uint8_t	*data;
    890 };
    891 
    892 struct ipmi_bmc_request {
    893 	uint8_t	bmc_nfLn;
    894 	uint8_t	bmc_cmd;
    895 	uint8_t	bmc_data_len;
    896 	uint8_t	bmc_data[1];
    897 };
    898 
    899 struct ipmi_bmc_response {
    900 	uint8_t	bmc_nfLn;
    901 	uint8_t	bmc_cmd;
    902 	uint8_t	bmc_cCode;
    903 	uint8_t	bmc_data_len;
    904 	uint8_t	bmc_data[1];
    905 };
    906 
    907 
    908 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
    909     ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);
    910 
    911 static void
    912 dumpb(const char *lbl, int len, const uint8_t *data)
    913 {
    914 	int idx;
    915 
    916 	printf("%s: ", lbl);
    917 	for (idx = 0; idx < len; idx++)
    918 		printf("%.2x ", data[idx]);
    919 
    920 	printf("\n");
    921 }
    922 
    923 /*
    924  * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
    925  * This is used by BT protocol
    926  *
    927  * Returns a buffer to an allocated message, txlen contains length
    928  *   of allocated message
    929  */
    930 static void *
    931 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
    932     const void *data, int *txlen)
    933 {
    934 	uint8_t *buf;
    935 
    936 	/* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
    937 	*txlen = len + 4;
    938 	buf = ipmi_buf_acquire(sc, *txlen);
    939 	if (buf == NULL)
    940 		return NULL;
    941 
    942 	buf[IPMI_BTMSG_LEN] = len + 3;
    943 	buf[IPMI_BTMSG_NFLN] = nfLun;
    944 	buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
    945 	buf[IPMI_BTMSG_CMD] = cmd;
    946 	if (len && data)
    947 		memcpy(buf + IPMI_BTMSG_DATASND, data, len);
    948 
    949 	return buf;
    950 }
    951 
    952 /*
    953  * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
    954  * This is used by both SMIC and KCS protocols
    955  *
    956  * Returns a buffer to an allocated message, txlen contains length
    957  *   of allocated message
    958  */
    959 static void *
    960 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
    961     const void *data, int *txlen)
    962 {
    963 	uint8_t *buf;
    964 
    965 	/* Common needs two extra bytes: nfLun/cmd + data */
    966 	*txlen = len + 2;
    967 	buf = ipmi_buf_acquire(sc, *txlen);
    968 	if (buf == NULL)
    969 		return NULL;
    970 
    971 	buf[IPMI_MSG_NFLN] = nfLun;
    972 	buf[IPMI_MSG_CMD] = cmd;
    973 	if (len && data)
    974 		memcpy(buf + IPMI_MSG_DATASND, data, len);
    975 
    976 	return buf;
    977 }
    978 
    979 /*
    980  * ipmi_sendcmd: caller must hold sc_cmd_mtx.
    981  *
    982  * Send an IPMI command
    983  */
    984 static int
    985 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
    986     int txlen, const void *data)
    987 {
    988 	uint8_t	*buf;
    989 	int		rc = -1;
    990 
    991 	dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n",
    992 	    __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
    993 	dbg_dump(10, __func__, txlen, data);
    994 	if (rssa != BMC_SA) {
    995 #if 0
    996 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
    997 		    APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
    998 		pI2C->bus = (sc->if_ver == 0x09) ?
    999 		    PUBLIC_BUS :
   1000 		    IPMB_CHANNEL_NUMBER;
   1001 
   1002 		imbreq->rsSa = rssa;
   1003 		imbreq->nfLn = NETFN_LUN(netfn, rslun);
   1004 		imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
   1005 		imbreq->rqSa = BMC_SA;
   1006 		imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
   1007 		imbreq->cmd = cmd;
   1008 		if (txlen)
   1009 			memcpy(imbreq->data, data, txlen);
   1010 		/* Set message checksum */
   1011 		imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
   1012 #endif
   1013 		goto done;
   1014 	} else
   1015 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
   1016 		    txlen, data, &txlen);
   1017 
   1018 	if (buf == NULL) {
   1019 		aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n");
   1020 		goto done;
   1021 	}
   1022 	rc = sc->sc_if->sendmsg(sc, txlen, buf);
   1023 	ipmi_buf_release(sc, buf);
   1024 
   1025 	ipmi_delay(sc, 50); /* give bmc chance to digest command */
   1026 
   1027 done:
   1028 	return rc;
   1029 }
   1030 
   1031 static void
   1032 ipmi_buf_release(struct ipmi_softc *sc, char *buf)
   1033 {
   1034 	KASSERT(sc->sc_buf_rsvd);
   1035 	KASSERT(sc->sc_buf == buf);
   1036 	sc->sc_buf_rsvd = false;
   1037 }
   1038 
   1039 static char *
   1040 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
   1041 {
   1042 	KASSERT(len <= sizeof(sc->sc_buf));
   1043 
   1044 	if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
   1045 		return NULL;
   1046 	sc->sc_buf_rsvd = true;
   1047 	return sc->sc_buf;
   1048 }
   1049 
   1050 /*
   1051  * ipmi_recvcmd: caller must hold sc_cmd_mtx.
   1052  */
   1053 static int
   1054 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
   1055 {
   1056 	uint8_t	*buf, rc = 0;
   1057 	int		rawlen;
   1058 
   1059 	/* Need three extra bytes: netfn/cmd/ccode + data */
   1060 	buf = ipmi_buf_acquire(sc, maxlen + 3);
   1061 	if (buf == NULL) {
   1062 		aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__);
   1063 		return -1;
   1064 	}
   1065 	/* Receive message from interface, copy out result data */
   1066 	if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
   1067 		ipmi_buf_release(sc, buf);
   1068 		return -1;
   1069 	}
   1070 
   1071 	*rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0;
   1072 	if (*rxlen > 0 && data)
   1073 		memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);
   1074 
   1075 	if ((rc = buf[IPMI_MSG_CCODE]) != 0)
   1076 		dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__,
   1077 		    buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);
   1078 
   1079 	dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n",
   1080 	    __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD],
   1081 	    buf[IPMI_MSG_CCODE], *rxlen);
   1082 	dbg_dump(10, __func__, *rxlen, data);
   1083 
   1084 	ipmi_buf_release(sc, buf);
   1085 
   1086 	return rc;
   1087 }
   1088 
   1089 /*
   1090  * ipmi_delay: caller must hold sc_cmd_mtx.
   1091  */
   1092 static void
   1093 ipmi_delay(struct ipmi_softc *sc, int ms)
   1094 {
   1095 	if (cold) {
   1096 		delay(ms * 1000);
   1097 		return;
   1098 	}
   1099 	mutex_enter(&sc->sc_sleep_mtx);
   1100 	cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms));
   1101 	mutex_exit(&sc->sc_sleep_mtx);
   1102 }
   1103 
   1104 /* Read a partial SDR entry */
   1105 static int
   1106 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
   1107     uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
   1108 {
   1109 	uint8_t	cmd[256 + 8];
   1110 	int		len;
   1111 
   1112 	((uint16_t *) cmd)[0] = reserveId;
   1113 	((uint16_t *) cmd)[1] = recordId;
   1114 	cmd[4] = offset;
   1115 	cmd[5] = length;
   1116 	mutex_enter(&sc->sc_cmd_mtx);
   1117 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6,
   1118 	    cmd)) {
   1119 		mutex_exit(&sc->sc_cmd_mtx);
   1120 		aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__);
   1121 		return -1;
   1122 	}
   1123 	if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) {
   1124 		mutex_exit(&sc->sc_cmd_mtx);
   1125 		aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__);
   1126 		return -1;
   1127 	}
   1128 	mutex_exit(&sc->sc_cmd_mtx);
   1129 	if (nxtRecordId)
   1130 		*nxtRecordId = *(uint16_t *) cmd;
   1131 	memcpy(buffer, cmd + 2, len - 2);
   1132 
   1133 	return 0;
   1134 }
   1135 
   1136 static int maxsdrlen = 0x10;
   1137 
   1138 /* Read an entire SDR; pass to add sensor */
   1139 static int
   1140 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
   1141 {
   1142 	uint16_t	resid = 0;
   1143 	int		len, sdrlen, offset;
   1144 	uint8_t	*psdr;
   1145 	struct sdrhdr	shdr;
   1146 
   1147 	mutex_enter(&sc->sc_cmd_mtx);
   1148 	/* Reserve SDR */
   1149 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
   1150 	    0, NULL)) {
   1151 		mutex_exit(&sc->sc_cmd_mtx);
   1152 		aprint_error_dev(sc->sc_dev, "reserve send fails\n");
   1153 		return -1;
   1154 	}
   1155 	if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
   1156 		mutex_exit(&sc->sc_cmd_mtx);
   1157 		aprint_error_dev(sc->sc_dev, "reserve recv fails\n");
   1158 		return -1;
   1159 	}
   1160 	mutex_exit(&sc->sc_cmd_mtx);
   1161 	/* Get SDR Header */
   1162 	if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
   1163 		aprint_error_dev(sc->sc_dev, "get header fails\n");
   1164 		return -1;
   1165 	}
   1166 	/* Allocate space for entire SDR Length of SDR in header does not
   1167 	 * include header length */
   1168 	sdrlen = sizeof(shdr) + shdr.record_length;
   1169 	psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK);
   1170 	if (psdr == NULL)
   1171 		return -1;
   1172 
   1173 	memcpy(psdr, &shdr, sizeof(shdr));
   1174 
   1175 	/* Read SDR Data maxsdrlen bytes at a time */
   1176 	for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
   1177 		len = sdrlen - offset;
   1178 		if (len > maxsdrlen)
   1179 			len = maxsdrlen;
   1180 
   1181 		if (get_sdr_partial(sc, recid, resid, offset, len,
   1182 		    psdr + offset, NULL)) {
   1183 			aprint_error_dev(sc->sc_dev,
   1184 			    "get chunk : %d,%d fails\n", offset, len);
   1185 			free(psdr, M_DEVBUF);
   1186 			return -1;
   1187 		}
   1188 	}
   1189 
   1190 	/* Add SDR to sensor list, if not wanted, free buffer */
   1191 	if (add_sdr_sensor(sc, psdr) == 0)
   1192 		free(psdr, M_DEVBUF);
   1193 
   1194 	return 0;
   1195 }
   1196 
   1197 static int
   1198 getbits(uint8_t *bytes, int bitpos, int bitlen)
   1199 {
   1200 	int	v;
   1201 	int	mask;
   1202 
   1203 	bitpos += bitlen - 1;
   1204 	for (v = 0; bitlen--;) {
   1205 		v <<= 1;
   1206 		mask = 1L << (bitpos & 7);
   1207 		if (bytes[bitpos >> 3] & mask)
   1208 			v |= 1;
   1209 		bitpos--;
   1210 	}
   1211 
   1212 	return v;
   1213 }
   1214 
   1215 /* Decode IPMI sensor name */
   1216 static void
   1217 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
   1218 {
   1219 	int	i, slen;
   1220 	char	bcdplus[] = "0123456789 -.:,_";
   1221 
   1222 	slen = typelen & 0x1F;
   1223 	switch (typelen >> 6) {
   1224 	case IPMI_NAME_UNICODE:
   1225 		//unicode
   1226 		break;
   1227 
   1228 	case IPMI_NAME_BCDPLUS:
   1229 		/* Characters are encoded in 4-bit BCDPLUS */
   1230 		if (len < slen * 2 + 1)
   1231 			slen = (len >> 1) - 1;
   1232 		for (i = 0; i < slen; i++) {
   1233 			*(name++) = bcdplus[bits[i] >> 4];
   1234 			*(name++) = bcdplus[bits[i] & 0xF];
   1235 		}
   1236 		break;
   1237 
   1238 	case IPMI_NAME_ASCII6BIT:
   1239 		/* Characters are encoded in 6-bit ASCII
   1240 		 *   0x00 - 0x3F maps to 0x20 - 0x5F */
   1241 		/* XXX: need to calculate max len: slen = 3/4 * len */
   1242 		if (len < slen + 1)
   1243 			slen = len - 1;
   1244 		for (i = 0; i < slen * 8; i += 6)
   1245 			*(name++) = getbits(bits, i, 6) + ' ';
   1246 		break;
   1247 
   1248 	case IPMI_NAME_ASCII8BIT:
   1249 		/* Characters are 8-bit ascii */
   1250 		if (len < slen + 1)
   1251 			slen = len - 1;
   1252 		while (slen--)
   1253 			*(name++) = *(bits++);
   1254 		break;
   1255 	}
   1256 	*name = 0;
   1257 }
   1258 
   1259 /* Sign extend a n-bit value */
   1260 static long
   1261 signextend(unsigned long val, int bits)
   1262 {
   1263 	long msk = (1L << (bits-1))-1;
   1264 
   1265 	return -(val & ~msk) | val;
   1266 }
   1267 
   1268 
   1269 /* fixpoint arithmetic */
   1270 #define FIX2INT(x)   ((int64_t)((x) >> 32))
   1271 #define INT2FIX(x)   ((int64_t)((uint64_t)(x) << 32))
   1272 
   1273 #define FIX2            0x0000000200000000ll /* 2.0 */
   1274 #define FIX3            0x0000000300000000ll /* 3.0 */
   1275 #define FIXE            0x00000002b7e15163ll /* 2.71828182845904523536 */
   1276 #define FIX10           0x0000000a00000000ll /* 10.0 */
   1277 #define FIXMONE         0xffffffff00000000ll /* -1.0 */
   1278 #define FIXHALF         0x0000000080000000ll /* 0.5 */
   1279 #define FIXTHIRD        0x0000000055555555ll /* 0.33333333333333333333 */
   1280 
   1281 #define FIX1LOG2        0x0000000171547653ll /* 1.0/log(2) */
   1282 #define FIX1LOGE        0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
   1283 #define FIX1LOG10       0x000000006F2DEC55ll /* 1.0/log(10) */
   1284 
   1285 #define FIX1E           0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */
   1286 
   1287 static int64_t fixlog_a[] = {
   1288 	0x0000000100000000ll /* 1.0/1.0 */,
   1289 	0xffffffff80000000ll /* -1.0/2.0 */,
   1290 	0x0000000055555555ll /* 1.0/3.0 */,
   1291 	0xffffffffc0000000ll /* -1.0/4.0 */,
   1292 	0x0000000033333333ll /* 1.0/5.0 */,
   1293 	0x000000002aaaaaabll /* -1.0/6.0 */,
   1294 	0x0000000024924925ll /* 1.0/7.0 */,
   1295 	0x0000000020000000ll /* -1.0/8.0 */,
   1296 	0x000000001c71c71cll /* 1.0/9.0 */
   1297 };
   1298 
   1299 static int64_t fixexp_a[] = {
   1300 	0x0000000100000000ll /* 1.0/1.0 */,
   1301 	0x0000000100000000ll /* 1.0/1.0 */,
   1302 	0x0000000080000000ll /* 1.0/2.0 */,
   1303 	0x000000002aaaaaabll /* 1.0/6.0 */,
   1304 	0x000000000aaaaaabll /* 1.0/24.0 */,
   1305 	0x0000000002222222ll /* 1.0/120.0 */,
   1306 	0x00000000005b05b0ll /* 1.0/720.0 */,
   1307 	0x00000000000d00d0ll /* 1.0/5040.0 */,
   1308 	0x000000000001a01all /* 1.0/40320.0 */
   1309 };
   1310 
   1311 static int64_t
   1312 fixmul(int64_t x, int64_t y)
   1313 {
   1314 	int64_t z;
   1315 	int64_t a,b,c,d;
   1316 	int neg;
   1317 
   1318 	neg = 0;
   1319 	if (x < 0) {
   1320 		x = -x;
   1321 		neg = !neg;
   1322 	}
   1323 	if (y < 0) {
   1324 		y = -y;
   1325 		neg = !neg;
   1326 	}
   1327 
   1328 	a = FIX2INT(x);
   1329 	b = x - INT2FIX(a);
   1330 	c = FIX2INT(y);
   1331 	d = y - INT2FIX(c);
   1332 
   1333 	z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);
   1334 
   1335 	return neg ? -z : z;
   1336 }
   1337 
   1338 static int64_t
   1339 poly(int64_t x0, int64_t x, int64_t a[], int n)
   1340 {
   1341 	int64_t z;
   1342 	int i;
   1343 
   1344 	z  = fixmul(x0, a[0]);
   1345 	for (i=1; i<n; ++i) {
   1346 		x0 = fixmul(x0, x);
   1347 		z  = fixmul(x0, a[i]) + z;
   1348 	}
   1349 	return z;
   1350 }
   1351 
   1352 static int64_t
   1353 logx(int64_t x, int64_t y)
   1354 {
   1355 	int64_t z;
   1356 
   1357 	if (x <= INT2FIX(0)) {
   1358 		z = INT2FIX(-99999);
   1359 		goto done;
   1360 	}
   1361 
   1362 	z = INT2FIX(0);
   1363 	while (x >= FIXE) {
   1364 		x = fixmul(x, FIX1E);
   1365 		z += INT2FIX(1);
   1366 	}
   1367 	while (x < INT2FIX(1)) {
   1368 		x = fixmul(x, FIXE);
   1369 		z -= INT2FIX(1);
   1370 	}
   1371 
   1372 	x -= INT2FIX(1);
   1373 	z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
   1374 	z  = fixmul(z, y);
   1375 
   1376 done:
   1377 	return z;
   1378 }
   1379 
   1380 static int64_t
   1381 powx(int64_t x, int64_t y)
   1382 {
   1383 	int64_t k;
   1384 
   1385 	if (x == INT2FIX(0))
   1386 		goto done;
   1387 
   1388 	x = logx(x,y);
   1389 
   1390 	if (x < INT2FIX(0)) {
   1391 		x = INT2FIX(0) - x;
   1392 		k = -FIX2INT(x);
   1393 		x = INT2FIX(-k) - x;
   1394 	} else {
   1395 		k = FIX2INT(x);
   1396 		x = x - INT2FIX(k);
   1397 	}
   1398 
   1399 	x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));
   1400 
   1401 	while (k < 0) {
   1402 		x = fixmul(x, FIX1E);
   1403 		++k;
   1404 	}
   1405 	while (k > 0) {
   1406 		x = fixmul(x, FIXE);
   1407 		--k;
   1408 	}
   1409 
   1410 done:
   1411 	return x;
   1412 }
   1413 
   1414 /* Convert IPMI reading from sensor factors */
   1415 static long
   1416 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
   1417 {
   1418 	int64_t	M, B;
   1419 	char	K1, K2;
   1420 	int64_t	val, v1, v2, vs;
   1421 	int sign = (s1->units1 >> 6) & 0x3;
   1422 
   1423 	vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
   1424 	if ((vs < 0) && (sign == 0x1))
   1425 		vs++;
   1426 
   1427 	/* Calculate linear reading variables */
   1428 	M  = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
   1429 	B  = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
   1430 	K1 = signextend(s1->rbexp & 0xF, 4);
   1431 	K2 = signextend(s1->rbexp >> 4, 4);
   1432 
   1433 	/* Calculate sensor reading:
   1434 	 *  y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
   1435 	 *
   1436 	 * This commutes out to:
   1437 	 *  y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
   1438 	v1 = powx(FIX10, INT2FIX(K2 + adj));
   1439 	v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
   1440 	val = M * vs * v1 + B * v2;
   1441 
   1442 	/* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
   1443 	 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
   1444 	 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
   1445 	 * root(x) */
   1446 	switch (s1->linear & 0x7f) {
   1447 	case 0: break;
   1448 	case 1: val = logx(val,FIX1LOGE); break;
   1449 	case 2: val = logx(val,FIX1LOG10); break;
   1450 	case 3: val = logx(val,FIX1LOG2); break;
   1451 	case 4: val = powx(FIXE,val); break;
   1452 	case 5: val = powx(FIX10,val); break;
   1453 	case 6: val = powx(FIX2,val); break;
   1454 	case 7: val = powx(val,FIXMONE); break;
   1455 	case 8: val = powx(val,FIX2); break;
   1456 	case 9: val = powx(val,FIX3); break;
   1457 	case 10: val = powx(val,FIXHALF); break;
   1458 	case 11: val = powx(val,FIXTHIRD); break;
   1459 	}
   1460 
   1461 	return FIX2INT(val);
   1462 }
   1463 
   1464 static int32_t
   1465 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
   1466 {
   1467 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
   1468 	int32_t val;
   1469 
   1470 	switch (psensor->i_envtype) {
   1471 	case ENVSYS_STEMP:
   1472 		val = ipmi_convert(reading[0], s1, 6) + 273150000;
   1473 		break;
   1474 
   1475 	case ENVSYS_SVOLTS_DC:
   1476 		val = ipmi_convert(reading[0], s1, 6);
   1477 		break;
   1478 
   1479 	case ENVSYS_SFANRPM:
   1480 		val = ipmi_convert(reading[0], s1, 0);
   1481 		if (((s1->units1>>3)&0x7) == 0x3)
   1482 			val *= 60; /* RPS -> RPM */
   1483 		break;
   1484 	default:
   1485 		val = 0;
   1486 		break;
   1487 	}
   1488 	return val;
   1489 }
   1490 
   1491 static void
   1492 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
   1493 		sysmon_envsys_lim_t *limits, uint32_t *props)
   1494 {
   1495 	struct ipmi_sensor *ipmi_s;
   1496 
   1497 	/* Find the ipmi_sensor corresponding to this edata */
   1498 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
   1499 		if (ipmi_s->i_envnum == edata->sensor) {
   1500 			if (limits == NULL) {
   1501 				limits = &ipmi_s->i_deflims;
   1502 				props  = &ipmi_s->i_defprops;
   1503 			}
   1504 			*props |= PROP_DRIVER_LIMITS;
   1505 			ipmi_s->i_limits = *limits;
   1506 			ipmi_s->i_props  = *props;
   1507 			return;
   1508 		}
   1509 	}
   1510 	return;
   1511 }
   1512 
   1513 static void
   1514 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
   1515 		sysmon_envsys_lim_t *limits, uint32_t *props)
   1516 {
   1517 	struct ipmi_sensor *ipmi_s;
   1518 	struct ipmi_softc *sc = sme->sme_cookie;
   1519 
   1520 	/* Find the ipmi_sensor corresponding to this edata */
   1521 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
   1522 		if (ipmi_s->i_envnum == edata->sensor) {
   1523 			ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
   1524 			ipmi_s->i_limits = *limits;
   1525 			ipmi_s->i_props  = *props;
   1526 			if (ipmi_s->i_defprops == 0) {
   1527 				ipmi_s->i_defprops = *props;
   1528 				ipmi_s->i_deflims  = *limits;
   1529 			}
   1530 			return;
   1531 		}
   1532 	}
   1533 	return;
   1534 }
   1535 
   1536 static void
   1537 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
   1538 		       sysmon_envsys_lim_t *limits, uint32_t *props)
   1539 {
   1540 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
   1541 	bool failure;
   1542 	int	rxlen;
   1543 	uint8_t	data[32];
   1544 	uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
   1545 	int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;
   1546 
   1547 	*props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
   1548 	data[0] = psensor->i_num;
   1549 	mutex_enter(&sc->sc_cmd_mtx);
   1550 	failure =
   1551 	    ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
   1552 			 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
   1553 	    ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
   1554 	mutex_exit(&sc->sc_cmd_mtx);
   1555 	if (failure)
   1556 		return;
   1557 
   1558 	dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
   1559 	    __func__, data[0], data[1], data[2], data[3], data[4], data[5],
   1560 	    data[6]);
   1561 
   1562 	switch (s1->linear & 0x7f) {
   1563 	case 7: /* 1/x sensor, exchange upper and lower limits */
   1564 		prop_critmax = PROP_CRITMIN;
   1565 		prop_warnmax = PROP_WARNMIN;
   1566 		prop_critmin = PROP_CRITMAX;
   1567 		prop_warnmin = PROP_WARNMAX;
   1568 		pcritmax = &limits->sel_critmin;
   1569 		pwarnmax = &limits->sel_warnmin;
   1570 		pcritmin = &limits->sel_critmax;
   1571 		pwarnmin = &limits->sel_warnmax;
   1572 		break;
   1573 	default:
   1574 		prop_critmax = PROP_CRITMAX;
   1575 		prop_warnmax = PROP_WARNMAX;
   1576 		prop_critmin = PROP_CRITMIN;
   1577 		prop_warnmin = PROP_WARNMIN;
   1578 		pcritmax = &limits->sel_critmax;
   1579 		pwarnmax = &limits->sel_warnmax;
   1580 		pcritmin = &limits->sel_critmin;
   1581 		pwarnmin = &limits->sel_warnmin;
   1582 		break;
   1583 	}
   1584 
   1585 	if (data[0] & 0x20 && data[6] != 0xff) {
   1586 		*pcritmax = ipmi_convert_sensor(&data[6], psensor);
   1587 		*props |= prop_critmax;
   1588 	}
   1589 	if (data[0] & 0x10 && data[5] != 0xff) {
   1590 		*pcritmax = ipmi_convert_sensor(&data[5], psensor);
   1591 		*props |= prop_critmax;
   1592 	}
   1593 	if (data[0] & 0x08 && data[4] != 0xff) {
   1594 		*pwarnmax = ipmi_convert_sensor(&data[4], psensor);
   1595 		*props |= prop_warnmax;
   1596 	}
   1597 	if (data[0] & 0x04 && data[3] != 0x00) {
   1598 		*pcritmin = ipmi_convert_sensor(&data[3], psensor);
   1599 		*props |= prop_critmin;
   1600 	}
   1601 	if (data[0] & 0x02 && data[2] != 0x00) {
   1602 		*pcritmin = ipmi_convert_sensor(&data[2], psensor);
   1603 		*props |= prop_critmin;
   1604 	}
   1605 	if (data[0] & 0x01 && data[1] != 0x00) {
   1606 		*pwarnmin = ipmi_convert_sensor(&data[1], psensor);
   1607 		*props |= prop_warnmin;
   1608 	}
   1609 	return;
   1610 }
   1611 
   1612 static int
   1613 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
   1614     envsys_data_t *edata, uint8_t *reading)
   1615 {
   1616 	int	etype;
   1617 
   1618 	/* Get reading of sensor */
   1619 	edata->value_cur = ipmi_convert_sensor(reading, psensor);
   1620 
   1621 	/* Return Sensor Status */
   1622 	etype = (psensor->i_etype << 8) + psensor->i_stype;
   1623 	switch (etype) {
   1624 	case IPMI_SENSOR_TYPE_TEMP:
   1625 	case IPMI_SENSOR_TYPE_VOLT:
   1626 	case IPMI_SENSOR_TYPE_FAN:
   1627 		if (psensor->i_props & PROP_CRITMAX &&
   1628 		    edata->value_cur > psensor->i_limits.sel_critmax)
   1629 			return ENVSYS_SCRITOVER;
   1630 
   1631 		if (psensor->i_props & PROP_WARNMAX &&
   1632 		    edata->value_cur > psensor->i_limits.sel_warnmax)
   1633 			return ENVSYS_SWARNOVER;
   1634 
   1635 		if (psensor->i_props & PROP_CRITMIN &&
   1636 		    edata->value_cur < psensor->i_limits.sel_critmin)
   1637 			return ENVSYS_SCRITUNDER;
   1638 
   1639 		if (psensor->i_props & PROP_WARNMIN &&
   1640 		    edata->value_cur < psensor->i_limits.sel_warnmin)
   1641 			return ENVSYS_SWARNUNDER;
   1642 
   1643 		break;
   1644 
   1645 	case IPMI_SENSOR_TYPE_INTRUSION:
   1646 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
   1647 		if (reading[2] & 0x1)
   1648 			return ENVSYS_SCRITICAL;
   1649 		break;
   1650 
   1651 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
   1652 		/* Reading: 1 = present+powered, 0 = otherwise */
   1653 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
   1654 		if (reading[2] & 0x10) {
   1655 			/* XXX: Need envsys type for Power Supply types
   1656 			 *   ok: power supply installed && powered
   1657 			 * warn: power supply installed && !powered
   1658 			 * crit: power supply !installed
   1659 			 */
   1660 			return ENVSYS_SCRITICAL;
   1661 		}
   1662 		if (reading[2] & 0x08) {
   1663 			/* Power supply AC lost */
   1664 			return ENVSYS_SWARNOVER;
   1665 		}
   1666 		break;
   1667 	}
   1668 
   1669 	return ENVSYS_SVALID;
   1670 }
   1671 
   1672 static int
   1673 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
   1674 {
   1675 	struct sdrtype1	*s1 = (struct sdrtype1 *) psensor->i_sdr;
   1676 	uint8_t	data[8];
   1677 	int		rxlen;
   1678 	envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];
   1679 
   1680 	memset(data, 0, sizeof(data));
   1681 	data[0] = psensor->i_num;
   1682 
   1683 	mutex_enter(&sc->sc_cmd_mtx);
   1684 	if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
   1685 	    SE_GET_SENSOR_READING, 1, data))
   1686 		goto err;
   1687 
   1688 	if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
   1689 		goto err;
   1690 	mutex_exit(&sc->sc_cmd_mtx);
   1691 
   1692 	dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, "
   1693 	    "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b,
   1694 	    s1->b_accuracy, s1->rbexp, s1->linear);
   1695 	dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n",
   1696 	    data[0],data[1],data[2],data[3], edata->desc);
   1697 	if (IPMI_INVALID_SENSOR_P(data[1])) {
   1698 		/* Check if sensor is valid */
   1699 		edata->state = ENVSYS_SINVALID;
   1700 	} else {
   1701 		edata->state = ipmi_sensor_status(sc, psensor, edata, data);
   1702 	}
   1703 	return 0;
   1704 err:
   1705 	mutex_exit(&sc->sc_cmd_mtx);
   1706 	return -1;
   1707 }
   1708 
   1709 static int
   1710 ipmi_sensor_type(int type, int ext_type, int entity)
   1711 {
   1712 	switch (ext_type << 8L | type) {
   1713 	case IPMI_SENSOR_TYPE_TEMP:
   1714 		return ENVSYS_STEMP;
   1715 
   1716 	case IPMI_SENSOR_TYPE_VOLT:
   1717 		return ENVSYS_SVOLTS_DC;
   1718 
   1719 	case IPMI_SENSOR_TYPE_FAN:
   1720 		return ENVSYS_SFANRPM;
   1721 
   1722 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
   1723 		if (entity == IPMI_ENTITY_PWRSUPPLY)
   1724 			return ENVSYS_INDICATOR;
   1725 		break;
   1726 
   1727 	case IPMI_SENSOR_TYPE_INTRUSION:
   1728 		return ENVSYS_INDICATOR;
   1729 	}
   1730 
   1731 	return -1;
   1732 }
   1733 
   1734 /* Add Sensor to BSD Sysctl interface */
   1735 static int
   1736 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
   1737 {
   1738 	int			rc;
   1739 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
   1740 	struct sdrtype2		*s2 = (struct sdrtype2 *)psdr;
   1741 	char			name[64];
   1742 
   1743 	switch (s1->sdrhdr.record_type) {
   1744 	case IPMI_SDR_TYPEFULL:
   1745 		ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
   1746 		rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
   1747 		    s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
   1748 		break;
   1749 
   1750 	case IPMI_SDR_TYPECOMPACT:
   1751 		ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
   1752 		rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
   1753 		    s2->sensor_num, s2->sensor_type, s2->event_code,
   1754 		    s2->share2 & 0x7F, s2->entity_id, name);
   1755 		break;
   1756 
   1757 	default:
   1758 		return 0;
   1759 	}
   1760 
   1761 	return rc;
   1762 }
   1763 
   1764 static int
   1765 ipmi_is_dupname(char *name)
   1766 {
   1767 	struct ipmi_sensor *ipmi_s;
   1768 
   1769 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
   1770 		if (strcmp(ipmi_s->i_envdesc, name) == 0) {
   1771 			return 1;
   1772 		}
   1773 	}
   1774 	return 0;
   1775 }
   1776 
   1777 static int
   1778 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
   1779     int sensor_num, int sensor_type, int ext_type, int sensor_base,
   1780     int entity, const char *name)
   1781 {
   1782 	int			typ, idx, dupcnt, c;
   1783 	char			*e;
   1784 	struct ipmi_sensor	*psensor;
   1785 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
   1786 
   1787 	typ = ipmi_sensor_type(sensor_type, ext_type, entity);
   1788 	if (typ == -1) {
   1789 		dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x "
   1790 		    "name:%s\n", sensor_type, ext_type, sensor_num, name);
   1791 		return 0;
   1792 	}
   1793 	dupcnt = 0;
   1794 	sc->sc_nsensors += count;
   1795 	for (idx = 0; idx < count; idx++) {
   1796 		psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
   1797 		    M_WAITOK);
   1798 		if (psensor == NULL)
   1799 			break;
   1800 
   1801 		memset(psensor, 0, sizeof(struct ipmi_sensor));
   1802 
   1803 		/* Initialize BSD Sensor info */
   1804 		psensor->i_sdr = psdr;
   1805 		psensor->i_num = sensor_num + idx;
   1806 		psensor->i_stype = sensor_type;
   1807 		psensor->i_etype = ext_type;
   1808 		psensor->i_envtype = typ;
   1809 		if (count > 1)
   1810 			snprintf(psensor->i_envdesc,
   1811 			    sizeof(psensor->i_envdesc),
   1812 			    "%s - %d", name, sensor_base + idx);
   1813 		else
   1814 			strlcpy(psensor->i_envdesc, name,
   1815 			    sizeof(psensor->i_envdesc));
   1816 
   1817 		/*
   1818 		 * Check for duplicates.  If there are duplicates,
   1819 		 * make sure there is space in the name (if not,
   1820 		 * truncate to make space) for a count (1-99) to
   1821 		 * add to make the name unique.  If we run the
   1822 		 * counter out, just accept the duplicate (@name99)
   1823 		 * for now.
   1824 		 */
   1825 		if (ipmi_is_dupname(psensor->i_envdesc)) {
   1826 			if (strlen(psensor->i_envdesc) >=
   1827 			    sizeof(psensor->i_envdesc) - 3) {
   1828 				e = psensor->i_envdesc +
   1829 				    sizeof(psensor->i_envdesc) - 3;
   1830 			} else {
   1831 				e = psensor->i_envdesc +
   1832 				    strlen(psensor->i_envdesc);
   1833 			}
   1834 			c = psensor->i_envdesc +
   1835 			    sizeof(psensor->i_envdesc) - e;
   1836 			do {
   1837 				dupcnt++;
   1838 				snprintf(e, c, "%d", dupcnt);
   1839 			} while (dupcnt < 100 &&
   1840 			         ipmi_is_dupname(psensor->i_envdesc));
   1841 		}
   1842 
   1843 		dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n",
   1844 		    __func__,
   1845 		    s1->sdrhdr.record_id, s1->sensor_type,
   1846 		    typ, s1->entity_id, s1->entity_instance,
   1847 		    psensor->i_envdesc);
   1848 		SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
   1849 	}
   1850 
   1851 	return 1;
   1852 }
   1853 
   1854 #if 0
   1855 /* Interrupt handler */
   1856 static int
   1857 ipmi_intr(void *arg)
   1858 {
   1859 	struct ipmi_softc	*sc = (struct ipmi_softc *)arg;
   1860 	int			v;
   1861 
   1862 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
   1863 	if (v & KCS_OBF)
   1864 		++ipmi_nintr;
   1865 
   1866 	return 0;
   1867 }
   1868 #endif
   1869 
   1870 /* Handle IPMI Timer - reread sensor values */
   1871 static void
   1872 ipmi_refresh_sensors(struct ipmi_softc *sc)
   1873 {
   1874 
   1875 	if (SLIST_EMPTY(&ipmi_sensor_list))
   1876 		return;
   1877 
   1878 	sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
   1879 	if (sc->current_sensor == NULL)
   1880 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
   1881 
   1882 	if (read_sensor(sc, sc->current_sensor)) {
   1883 		dbg_printf(1, "%s: error reading\n", __func__);
   1884 	}
   1885 }
   1886 
   1887 static int
   1888 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
   1889 {
   1890 	int error;
   1891 
   1892 	sc->sc_if = ipmi_get_if(ia->iaa_if_type);
   1893 	if (sc->sc_if == NULL)
   1894 		return -1;
   1895 
   1896 	if (ia->iaa_if_iotype == 'i')
   1897 		sc->sc_iot = ia->iaa_iot;
   1898 	else
   1899 		sc->sc_iot = ia->iaa_memt;
   1900 
   1901 	sc->sc_if_rev = ia->iaa_if_rev;
   1902 	sc->sc_if_iospacing = ia->iaa_if_iospacing;
   1903 	if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
   1904 	    sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) {
   1905 		const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) :
   1906 		    "ipmi0";
   1907 		aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x"
   1908 		    ", 0, %p) type %c failed %d\n",
   1909 		    xname, __func__, (uint64_t)ia->iaa_if_iobase,
   1910 		    sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh,
   1911 		    ia->iaa_if_iotype, error);
   1912 		return -1;
   1913 	}
   1914 #if 0
   1915 	if (iaa->if_if_irq != -1)
   1916 		sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
   1917 		    iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
   1918 		    device_xname(sc->sc_dev);
   1919 #endif
   1920 	return 0;
   1921 }
   1922 
   1923 static void
   1924 ipmi_unmap_regs(struct ipmi_softc *sc)
   1925 {
   1926 	bus_space_unmap(sc->sc_iot, sc->sc_ioh,
   1927 	    sc->sc_if->nregs * sc->sc_if_iospacing);
   1928 }
   1929 
   1930 static int
   1931 ipmi_match(device_t parent, cfdata_t cf, void *aux)
   1932 {
   1933 	struct ipmi_softc sc;
   1934 	struct ipmi_attach_args *ia = aux;
   1935 	int			rv = 0;
   1936 
   1937 	memset(&sc, 0, sizeof(sc));
   1938 
   1939 	/* Map registers */
   1940 	if (ipmi_map_regs(&sc, ia) != 0)
   1941 		return 0;
   1942 
   1943 	sc.sc_if->probe(&sc);
   1944 
   1945 	mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
   1946 	cv_init(&sc.sc_cmd_sleep, "ipmimtch");
   1947 
   1948 	if (ipmi_get_device_id(&sc, NULL) == 0)
   1949 		rv = 1;
   1950 
   1951 	cv_destroy(&sc.sc_cmd_sleep);
   1952 	mutex_destroy(&sc.sc_cmd_mtx);
   1953 	ipmi_unmap_regs(&sc);
   1954 
   1955 	return rv;
   1956 }
   1957 
   1958 static void
   1959 ipmi_thread(void *cookie)
   1960 {
   1961 	device_t		self = cookie;
   1962 	struct ipmi_softc	*sc = device_private(self);
   1963 	struct ipmi_attach_args *ia = &sc->sc_ia;
   1964 	uint16_t		rec;
   1965 	struct ipmi_sensor *ipmi_s;
   1966 	struct ipmi_device_id	id;
   1967 	int i;
   1968 
   1969 	sc->sc_thread_running = true;
   1970 
   1971 	/* setup ticker */
   1972 	sc->sc_max_retries = hz * 90; /* 90 seconds max */
   1973 
   1974 	/* Map registers */
   1975 	ipmi_map_regs(sc, ia);
   1976 
   1977 	memset(&id, 0, sizeof(id));
   1978 	if (ipmi_get_device_id(sc, &id))
   1979 		aprint_error_dev(self, "Failed to re-query device ID\n");
   1980 
   1981 	/* Scan SDRs, add sensors to list */
   1982 	for (rec = 0; rec != 0xFFFF;)
   1983 		if (get_sdr(sc, rec, &rec))
   1984 			break;
   1985 
   1986 	/* allocate and fill sensor arrays */
   1987 	sc->sc_sensor =
   1988 	    malloc(sizeof(envsys_data_t) * sc->sc_nsensors,
   1989 	        M_DEVBUF, M_WAITOK | M_ZERO);
   1990 	if (sc->sc_sensor == NULL) {
   1991 		aprint_error_dev(self, "can't allocate envsys_data_t\n");
   1992 		kthread_exit(0);
   1993 	}
   1994 
   1995 	sc->sc_envsys = sysmon_envsys_create();
   1996 	sc->sc_envsys->sme_cookie = sc;
   1997 	sc->sc_envsys->sme_get_limits = ipmi_get_limits;
   1998 	sc->sc_envsys->sme_set_limits = ipmi_set_limits;
   1999 
   2000 	i = 0;
   2001 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
   2002 		ipmi_s->i_props = 0;
   2003 		ipmi_s->i_envnum = -1;
   2004 		sc->sc_sensor[i].units = ipmi_s->i_envtype;
   2005 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
   2006 		sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
   2007 		/*
   2008 		 * Monitor threshold limits in the sensors.
   2009 		 */
   2010 		switch (sc->sc_sensor[i].units) {
   2011 		case ENVSYS_STEMP:
   2012 		case ENVSYS_SVOLTS_DC:
   2013 		case ENVSYS_SFANRPM:
   2014 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
   2015 			break;
   2016 		default:
   2017 			sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
   2018 		}
   2019 		(void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
   2020 		    sizeof(sc->sc_sensor[i].desc));
   2021 		++i;
   2022 
   2023 		if (sysmon_envsys_sensor_attach(sc->sc_envsys,
   2024 						&sc->sc_sensor[i-1]))
   2025 			continue;
   2026 
   2027 		/* get reference number from envsys */
   2028 		ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
   2029 	}
   2030 
   2031 	sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
   2032 	sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;
   2033 
   2034 	if (sysmon_envsys_register(sc->sc_envsys)) {
   2035 		aprint_error_dev(self, "unable to register with sysmon\n");
   2036 		sysmon_envsys_destroy(sc->sc_envsys);
   2037 	}
   2038 
   2039 	/* initialize sensor list for thread */
   2040 	if (!SLIST_EMPTY(&ipmi_sensor_list))
   2041 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
   2042 
   2043 	aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
   2044 	    "0x%" PRIx64 "/%#x spacing %d\n",
   2045 	    ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
   2046 	    ia->iaa_if_iotype == 'i' ? "io" : "mem",
   2047 	    (uint64_t)ia->iaa_if_iobase,
   2048 	    ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
   2049 	if (ia->iaa_if_irq != -1)
   2050 		aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);
   2051 
   2052 	if (id.deviceid != 0) {
   2053 		aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n",
   2054 			id.deviceid, (id.revision & 0xf),
   2055 			(id.version & 0xf), (id.version >> 4) & 0xf,
   2056 			(id.fwrev1 & 0x80) ? " Initializing" : " Available",
   2057 			(id.revision & 0x80) ? " +SDRs" : "");
   2058 		if (id.additional != 0)
   2059 			aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n",
   2060 				(id.additional & 0x80) ? " Chassis" : "",
   2061 				(id.additional & 0x40) ? " Bridge" : "",
   2062 				(id.additional & 0x20) ? " IPMBGen" : "",
   2063 				(id.additional & 0x10) ? " IPMBRcv" : "",
   2064 				(id.additional & 0x08) ? " FRU" : "",
   2065 				(id.additional & 0x04) ? " SEL" : "",
   2066 				(id.additional & 0x02) ? " SDR" : "",
   2067 				(id.additional & 0x01) ? " Sensor" : "");
   2068 		aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n",
   2069 			(id.manufacturer[2] & 0xf) << 16
   2070 			    | id.manufacturer[1] << 8
   2071 			    | id.manufacturer[0],
   2072 			id.product[1] << 8
   2073 			    | id.manufacturer[0]);
   2074 		aprint_verbose_dev(self, "Firmware %u.%x\n",
   2075 			(id.fwrev1 & 0x7f), id.fwrev2);
   2076 	}
   2077 
   2078 	/* setup flag to exclude iic */
   2079 	ipmi_enabled = 1;
   2080 
   2081 	/* Setup Watchdog timer */
   2082 	sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
   2083 	sc->sc_wdog.smw_cookie = sc;
   2084 	sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
   2085 	sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
   2086 	sysmon_wdog_register(&sc->sc_wdog);
   2087 
   2088 	/* Set up a power handler so we can possibly sleep */
   2089 	if (!pmf_device_register(self, ipmi_suspend, NULL))
   2090                 aprint_error_dev(self, "couldn't establish a power handler\n");
   2091 
   2092 	mutex_enter(&sc->sc_poll_mtx);
   2093 	while (sc->sc_thread_running) {
   2094 		while (sc->sc_mode == IPMI_MODE_COMMAND)
   2095 			cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx);
   2096 		sc->sc_mode = IPMI_MODE_ENVSYS;
   2097 
   2098 		if (sc->sc_tickle_due) {
   2099 			ipmi_dotickle(sc);
   2100 			sc->sc_tickle_due = false;
   2101 		}
   2102 		ipmi_refresh_sensors(sc);
   2103 
   2104 		sc->sc_mode = IPMI_MODE_IDLE;
   2105 		cv_broadcast(&sc->sc_mode_cv);
   2106 		cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
   2107 		    SENSOR_REFRESH_RATE);
   2108 	}
   2109 	mutex_exit(&sc->sc_poll_mtx);
   2110 	self->dv_flags &= ~DVF_ATTACH_INPROGRESS;
   2111 	kthread_exit(0);
   2112 }
   2113 
   2114 static void
   2115 ipmi_attach(device_t parent, device_t self, void *aux)
   2116 {
   2117 	struct ipmi_softc	*sc = device_private(self);
   2118 
   2119 	sc->sc_ia = *(struct ipmi_attach_args *)aux;
   2120 	sc->sc_dev = self;
   2121 	aprint_naive("\n");
   2122 	aprint_normal("\n");
   2123 
   2124 	/* lock around read_sensor so that no one messes with the bmc regs */
   2125 	mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
   2126 	mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
   2127 	cv_init(&sc->sc_cmd_sleep, "ipmicmd");
   2128 
   2129 	mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
   2130 	cv_init(&sc->sc_poll_cv, "ipmipoll");
   2131 	cv_init(&sc->sc_mode_cv, "ipmimode");
   2132 
   2133 	if (kthread_create(PRI_NONE, 0, NULL, ipmi_thread, self,
   2134 	    &sc->sc_kthread, "%s", device_xname(self)) != 0) {
   2135 		aprint_error_dev(self, "unable to create thread, disabled\n");
   2136 	} else
   2137 		self->dv_flags |= DVF_ATTACH_INPROGRESS;
   2138 }
   2139 
   2140 static int
   2141 ipmi_detach(device_t self, int flags)
   2142 {
   2143 	struct ipmi_sensor *i;
   2144 	int rc;
   2145 	struct ipmi_softc *sc = device_private(self);
   2146 
   2147 	mutex_enter(&sc->sc_poll_mtx);
   2148 	sc->sc_thread_running = false;
   2149 	cv_signal(&sc->sc_poll_cv);
   2150 	mutex_exit(&sc->sc_poll_mtx);
   2151 
   2152 	if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
   2153 		if (rc == ERESTART)
   2154 			rc = EINTR;
   2155 		return rc;
   2156 	}
   2157 
   2158 	/* cancel any pending countdown */
   2159 	sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
   2160 	sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
   2161 	sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;
   2162 
   2163 	if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
   2164 		return rc;
   2165 
   2166 	ipmi_enabled = 0;
   2167 
   2168 	if (sc->sc_envsys != NULL) {
   2169 		/* _unregister also destroys */
   2170 		sysmon_envsys_unregister(sc->sc_envsys);
   2171 		sc->sc_envsys = NULL;
   2172 	}
   2173 
   2174 	while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
   2175 		SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
   2176 		free(i, M_DEVBUF);
   2177 	}
   2178 
   2179 	if (sc->sc_sensor != NULL) {
   2180 		free(sc->sc_sensor, M_DEVBUF);
   2181 		sc->sc_sensor = NULL;
   2182 	}
   2183 
   2184 	ipmi_unmap_regs(sc);
   2185 
   2186 	cv_destroy(&sc->sc_mode_cv);
   2187 	cv_destroy(&sc->sc_poll_cv);
   2188 	mutex_destroy(&sc->sc_poll_mtx);
   2189 	cv_destroy(&sc->sc_cmd_sleep);
   2190 	mutex_destroy(&sc->sc_sleep_mtx);
   2191 	mutex_destroy(&sc->sc_cmd_mtx);
   2192 
   2193 	return 0;
   2194 }
   2195 
   2196 static int
   2197 ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res)
   2198 {
   2199 	uint8_t		buf[32];
   2200 	int		len;
   2201 	int		rc;
   2202 
   2203 	mutex_enter(&sc->sc_cmd_mtx);
   2204 	/* Identify BMC device early to detect lying bios */
   2205 	rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL);
   2206 	if (rc) {
   2207 		dbg_printf(1, ": unable to send get device id "
   2208 		    "command\n");
   2209 		goto done;
   2210 	}
   2211 	rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf);
   2212 	if (rc) {
   2213 		dbg_printf(1, ": unable to retrieve device id\n");
   2214 	}
   2215 done:
   2216 	mutex_exit(&sc->sc_cmd_mtx);
   2217 
   2218 	if (rc == 0 && res != NULL)
   2219 		memcpy(res, buf, MIN(sizeof(*res), len));
   2220 
   2221 	return rc;
   2222 }
   2223 
   2224 static int
   2225 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
   2226 {
   2227 	struct ipmi_softc	*sc = smwdog->smw_cookie;
   2228 	struct ipmi_get_watchdog gwdog;
   2229 	struct ipmi_set_watchdog swdog;
   2230 	int			rc, len;
   2231 
   2232 	if (smwdog->smw_period < 10)
   2233 		return EINVAL;
   2234 	if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
   2235 		sc->sc_wdog.smw_period = 10;
   2236 	else
   2237 		sc->sc_wdog.smw_period = smwdog->smw_period;
   2238 
   2239 	mutex_enter(&sc->sc_cmd_mtx);
   2240 	/* see if we can properly task to the watchdog */
   2241 	rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
   2242 	    APP_GET_WATCHDOG_TIMER, 0, NULL);
   2243 	rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
   2244 	mutex_exit(&sc->sc_cmd_mtx);
   2245 	if (rc) {
   2246 		aprint_error_dev(sc->sc_dev,
   2247 		    "APP_GET_WATCHDOG_TIMER returned %#x\n", rc);
   2248 		return EIO;
   2249 	}
   2250 
   2251 	memset(&swdog, 0, sizeof(swdog));
   2252 	/* Period is 10ths/sec */
   2253 	swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
   2254 	if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
   2255 		swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
   2256 	else
   2257 		swdog.wdog_action = IPMI_WDOG_ACT_RESET;
   2258 	swdog.wdog_use = IPMI_WDOG_USE_USE_OS;
   2259 
   2260 	mutex_enter(&sc->sc_cmd_mtx);
   2261 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
   2262 	    APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
   2263 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
   2264 	mutex_exit(&sc->sc_cmd_mtx);
   2265 	if (rc) {
   2266 		aprint_error_dev(sc->sc_dev,
   2267 		    "APP_SET_WATCHDOG_TIMER returned %#x\n", rc);
   2268 		return EIO;
   2269 	}
   2270 
   2271 	return 0;
   2272 }
   2273 
   2274 static int
   2275 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
   2276 {
   2277 	struct ipmi_softc	*sc = smwdog->smw_cookie;
   2278 
   2279 	mutex_enter(&sc->sc_poll_mtx);
   2280 	sc->sc_tickle_due = true;
   2281 	cv_signal(&sc->sc_poll_cv);
   2282 	mutex_exit(&sc->sc_poll_mtx);
   2283 	return 0;
   2284 }
   2285 
   2286 static void
   2287 ipmi_dotickle(struct ipmi_softc *sc)
   2288 {
   2289 	int			rc, len;
   2290 
   2291 	mutex_enter(&sc->sc_cmd_mtx);
   2292 	/* tickle the watchdog */
   2293 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
   2294 	    APP_RESET_WATCHDOG, 0, NULL)) == 0)
   2295 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
   2296 	mutex_exit(&sc->sc_cmd_mtx);
   2297 	if (rc != 0) {
   2298 		aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n",
   2299 		    rc);
   2300 	}
   2301 }
   2302 
   2303 static bool
   2304 ipmi_suspend(device_t dev, const pmf_qual_t *qual)
   2305 {
   2306 	struct ipmi_softc *sc = device_private(dev);
   2307 
   2308 	/* Don't allow suspend if watchdog is armed */
   2309 	if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
   2310 		return false;
   2311 	return true;
   2312 }
   2313 
   2314 static int
   2315 ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l)
   2316 {
   2317 	return 0;
   2318 }
   2319 
   2320 static int
   2321 ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l)
   2322 {
   2323 	struct ipmi_softc *sc;
   2324 	int unit;
   2325 
   2326 	unit = IPMIUNIT(dev);
   2327 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
   2328 		return (ENXIO);
   2329 
   2330 	mutex_enter(&sc->sc_poll_mtx);
   2331 	if (sc->sc_mode == IPMI_MODE_COMMAND) {
   2332 		sc->sc_mode = IPMI_MODE_IDLE;
   2333 		cv_broadcast(&sc->sc_mode_cv);
   2334 	}
   2335 	mutex_exit(&sc->sc_poll_mtx);
   2336 	return 0;
   2337 }
   2338 
   2339 static int
   2340 ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
   2341 {
   2342 	struct ipmi_softc *sc;
   2343 	int unit, error = 0, len;
   2344 	struct ipmi_req *req;
   2345 	struct ipmi_recv *recv;
   2346 	struct ipmi_addr addr;
   2347 	unsigned char ccode, *buf = NULL;
   2348 
   2349 	unit = IPMIUNIT(dev);
   2350 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
   2351 		return (ENXIO);
   2352 
   2353 	switch (cmd) {
   2354 	case IPMICTL_SEND_COMMAND:
   2355 		mutex_enter(&sc->sc_poll_mtx);
   2356 		while (sc->sc_mode == IPMI_MODE_ENVSYS) {
   2357 			error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
   2358 			if (error == EINTR) {
   2359 				mutex_exit(&sc->sc_poll_mtx);
   2360 				return error;
   2361 			}
   2362 		}
   2363 		sc->sc_mode = IPMI_MODE_COMMAND;
   2364 		mutex_exit(&sc->sc_poll_mtx);
   2365 		break;
   2366 	}
   2367 
   2368 	mutex_enter(&sc->sc_cmd_mtx);
   2369 
   2370 	switch (cmd) {
   2371 	case IPMICTL_SEND_COMMAND:
   2372 		req = data;
   2373 		buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
   2374 
   2375 		len = req->msg.data_len;
   2376 		if (len < 0 || len > IPMI_MAX_RX) {
   2377 			error = EINVAL;
   2378 			break;
   2379 		}
   2380 
   2381 		/* clear pending result */
   2382 		if (sc->sc_sent)
   2383 			(void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
   2384 
   2385 		/* XXX */
   2386 		error = copyin(req->addr, &addr, sizeof(addr));
   2387 		if (error)
   2388 			break;
   2389 
   2390 		error = copyin(req->msg.data, buf, len);
   2391 		if (error)
   2392 			break;
   2393 
   2394 		/* save for receive */
   2395 		sc->sc_msgid = req->msgid;
   2396 		sc->sc_netfn = req->msg.netfn;
   2397 		sc->sc_cmd = req->msg.cmd;
   2398 
   2399 		if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn,
   2400 		    req->msg.cmd, len, buf)) {
   2401 			error = EIO;
   2402 			break;
   2403 		}
   2404 		sc->sc_sent = true;
   2405 		break;
   2406 	case IPMICTL_RECEIVE_MSG_TRUNC:
   2407 	case IPMICTL_RECEIVE_MSG:
   2408 		recv = data;
   2409 		buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
   2410 
   2411 		if (recv->msg.data_len < 1) {
   2412 			error = EINVAL;
   2413 			break;
   2414 		}
   2415 
   2416 		/* XXX */
   2417 		error = copyin(recv->addr, &addr, sizeof(addr));
   2418 		if (error)
   2419 			break;
   2420 
   2421 
   2422 		if (!sc->sc_sent) {
   2423 			error = EIO;
   2424 			break;
   2425 		}
   2426 
   2427 		len = 0;
   2428 		error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
   2429 		if (error < 0) {
   2430 			error = EIO;
   2431 			break;
   2432 		}
   2433 		ccode = (unsigned char)error;
   2434 		sc->sc_sent = false;
   2435 
   2436 		if (len > recv->msg.data_len - 1) {
   2437 			if (cmd == IPMICTL_RECEIVE_MSG) {
   2438 				error = EMSGSIZE;
   2439 				break;
   2440 			}
   2441 			len = recv->msg.data_len - 1;
   2442 		}
   2443 
   2444 		addr.channel = IPMI_BMC_CHANNEL;
   2445 
   2446 		recv->recv_type = IPMI_RESPONSE_RECV_TYPE;
   2447 		recv->msgid = sc->sc_msgid;
   2448 		recv->msg.netfn = sc->sc_netfn;
   2449 		recv->msg.cmd = sc->sc_cmd;
   2450 		recv->msg.data_len = len+1;
   2451 
   2452 		error = copyout(&addr, recv->addr, sizeof(addr));
   2453 		if (error == 0)
   2454 			error = copyout(&ccode, recv->msg.data, 1);
   2455 		if (error == 0)
   2456 			error = copyout(buf, recv->msg.data+1, len);
   2457 		break;
   2458 	case IPMICTL_SET_MY_ADDRESS_CMD:
   2459 		sc->sc_address = *(int *)data;
   2460 		break;
   2461 	case IPMICTL_GET_MY_ADDRESS_CMD:
   2462 		*(int *)data = sc->sc_address;
   2463 		break;
   2464 	case IPMICTL_SET_MY_LUN_CMD:
   2465 		sc->sc_lun = *(int *)data & 0x3;
   2466 		break;
   2467 	case IPMICTL_GET_MY_LUN_CMD:
   2468 		*(int *)data = sc->sc_lun;
   2469 		break;
   2470 	case IPMICTL_SET_GETS_EVENTS_CMD:
   2471 		break;
   2472 	case IPMICTL_REGISTER_FOR_CMD:
   2473 	case IPMICTL_UNREGISTER_FOR_CMD:
   2474 		error = EOPNOTSUPP;
   2475 		break;
   2476 	default:
   2477 		error = ENODEV;
   2478 		break;
   2479 	}
   2480 
   2481 	if (buf)
   2482 		free(buf, M_DEVBUF);
   2483 
   2484 	mutex_exit(&sc->sc_cmd_mtx);
   2485 
   2486 	switch (cmd) {
   2487 	case IPMICTL_RECEIVE_MSG:
   2488 	case IPMICTL_RECEIVE_MSG_TRUNC:
   2489 		mutex_enter(&sc->sc_poll_mtx);
   2490 		sc->sc_mode = IPMI_MODE_IDLE;
   2491 		cv_broadcast(&sc->sc_mode_cv);
   2492 		mutex_exit(&sc->sc_poll_mtx);
   2493 		break;
   2494 	}
   2495 
   2496 	return error;
   2497 }
   2498 
   2499 static int
   2500 ipmi_poll(dev_t dev, int events, lwp_t *l)
   2501 {
   2502 	struct ipmi_softc *sc;
   2503 	int unit, revents = 0;
   2504 
   2505 	unit = IPMIUNIT(dev);
   2506 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
   2507 		return (ENXIO);
   2508 
   2509 	mutex_enter(&sc->sc_cmd_mtx);
   2510 	if (events & (POLLIN | POLLRDNORM)) {
   2511 		if (sc->sc_sent)
   2512 			revents |= events & (POLLIN | POLLRDNORM);
   2513 	}
   2514 	mutex_exit(&sc->sc_cmd_mtx);
   2515 
   2516 	return revents;
   2517 }
   2518