ess.c revision 1.12 1 /* $NetBSD: ess.c,v 1.12 1998/08/09 03:48:42 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 **--
63 */
64
65 /*
66 * Modification by Lennart Augustsson:
67 * Adapt for bus dma.
68 * Change to 1.3 audio interface.
69 * Major cleanup.
70 */
71
72 /*
73 * TODO (falling priority):
74 * - add looping DMA for input.
75 */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/errno.h>
80 #include <sys/ioctl.h>
81 #include <sys/syslog.h>
82 #include <sys/device.h>
83 #include <sys/proc.h>
84
85 #include <machine/cpu.h>
86 #include <machine/intr.h>
87 #include <machine/bus.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/auconv.h>
92 #include <dev/mulaw.h>
93
94 #include <dev/isa/isavar.h>
95 #include <dev/isa/isadmavar.h>
96
97 #include <dev/isa/essvar.h>
98 #include <dev/isa/essreg.h>
99
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x) if (essdebug) printf x
102 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
103 int essdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108
109 #if 0
110 unsigned uuu;
111 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
112 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
113 #else
114 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
115 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
116 #endif
117
118
119 int ess_setup_sc __P((struct ess_softc *, int));
120
121 int ess_open __P((void *, int));
122 void ess_close __P((void *));
123 int ess_getdev __P((void *, struct audio_device *));
124 int ess_drain __P((void *));
125
126 int ess_query_encoding __P((void *, struct audio_encoding *));
127
128 int ess_set_params __P((void *, int, int, struct audio_params *,
129 struct audio_params *));
130 int ess_set_in_sr __P((void *, u_long));
131 int ess_set_out_sr __P((void *, u_long));
132 int ess_set_in_precision __P((void *, u_int));
133 int ess_set_out_precision __P((void *, u_int));
134 int ess_set_in_channels __P((void *, int));
135 int ess_set_out_channels __P((void *, int));
136
137 int ess_round_blocksize __P((void *, int));
138
139 int ess_dma_init_output __P((void *, void *, int));
140 int ess_dma_output __P((void *, void *, int, void (*)(void *), void *));
141 int ess_dma_init_input __P((void *, void *, int));
142 int ess_dma_input __P((void *, void *, int, void (*)(void *), void *));
143 int ess_halt_output __P((void *));
144 int ess_halt_input __P((void *));
145
146 int ess_intr_output __P((void *));
147 int ess_intr_input __P((void *));
148
149 int ess_speaker_ctl __P((void *, int));
150
151 int ess_getdev __P((void *, struct audio_device *));
152
153 int ess_set_port __P((void *, mixer_ctrl_t *));
154 int ess_get_port __P((void *, mixer_ctrl_t *));
155
156 void *ess_malloc __P((void *, unsigned long, int, int));
157 void ess_free __P((void *, void *, int));
158 unsigned long ess_round __P((void *, unsigned long));
159 int ess_mappage __P((void *, void *, int, int));
160
161
162 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
163 int ess_get_props __P((void *));
164
165 void ess_speaker_on __P((struct ess_softc *));
166 void ess_speaker_off __P((struct ess_softc *));
167
168 int ess_config_addr __P((struct ess_softc *));
169 void ess_config_irq __P((struct ess_softc *));
170 void ess_config_drq __P((struct ess_softc *));
171 void ess_setup __P((struct ess_softc *));
172 int ess_identify __P((struct ess_softc *));
173
174 int ess_reset __P((struct ess_softc *));
175 void ess_set_gain __P((struct ess_softc *, int, int));
176 int ess_set_in_ports __P((struct ess_softc *, int));
177 u_int ess_srtotc __P((u_int));
178 u_int ess_srtofc __P((u_int));
179 u_char ess_get_dsp_status __P((struct ess_softc *));
180 u_char ess_dsp_read_ready __P((struct ess_softc *));
181 u_char ess_dsp_write_ready __P((struct ess_softc *sc));
182 int ess_rdsp __P((struct ess_softc *));
183 int ess_wdsp __P((struct ess_softc *, u_char));
184 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
185 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
186 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
187 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
188 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
189 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
190 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
191 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
192
193 static char *essmodel[] = {
194 "unsupported",
195 "1888",
196 "1887",
197 "888"
198 };
199
200 struct audio_device ess_device = {
201 "ESS Technology",
202 "x",
203 "ess"
204 };
205
206 /*
207 * Define our interface to the higher level audio driver.
208 */
209
210 struct audio_hw_if ess_hw_if = {
211 ess_open,
212 ess_close,
213 ess_drain,
214 ess_query_encoding,
215 ess_set_params,
216 ess_round_blocksize,
217 NULL,
218 ess_dma_init_output,
219 ess_dma_init_input,
220 ess_dma_output,
221 ess_dma_input,
222 ess_halt_output,
223 ess_halt_input,
224 ess_speaker_ctl,
225 ess_getdev,
226 NULL,
227 ess_set_port,
228 ess_get_port,
229 ess_query_devinfo,
230 ess_malloc,
231 ess_free,
232 ess_round,
233 ess_mappage,
234 ess_get_props,
235 };
236
237 #ifdef AUDIO_DEBUG
238 void ess_printsc __P((struct ess_softc *));
239 void ess_dump_mixer __P((struct ess_softc *));
240
241 void
242 ess_printsc(sc)
243 struct ess_softc *sc;
244 {
245 int i;
246
247 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
248 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
249 sc->in_port, sc->spkr_state ? "on" : "off");
250
251 printf("play: dmachan %d irq %d nintr %lu intr %p arg %p\n",
252 sc->sc_out.drq, sc->sc_out.irq, sc->sc_out.nintr,
253 sc->sc_out.intr, sc->sc_out.arg);
254
255 printf("record: dmachan %d irq %d nintr %lu intr %p arg %p\n",
256 sc->sc_in.drq, sc->sc_in.irq, sc->sc_in.nintr,
257 sc->sc_in.intr, sc->sc_in.arg);
258
259 printf("gain:");
260 for (i = 0; i < ESS_NDEVS; i++)
261 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
262 printf("\n");
263 }
264
265 void
266 ess_dump_mixer(sc)
267 struct ess_softc *sc;
268 {
269 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
270 0x7C, ess_read_mix_reg(sc, 0x7C));
271 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
272 0x1A, ess_read_mix_reg(sc, 0x1A));
273 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
274 0x3E, ess_read_mix_reg(sc, 0x3E));
275 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
276 0x36, ess_read_mix_reg(sc, 0x36));
277 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
278 0x38, ess_read_mix_reg(sc, 0x38));
279 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
280 0x3A, ess_read_mix_reg(sc, 0x3A));
281 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
282 0x32, ess_read_mix_reg(sc, 0x32));
283 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
284 0x3C, ess_read_mix_reg(sc, 0x3C));
285 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
286 0x69, ess_read_mix_reg(sc, 0x69));
287 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
288 0x68, ess_read_mix_reg(sc, 0x68));
289 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
290 0x6E, ess_read_mix_reg(sc, 0x6E));
291 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
292 0x6B, ess_read_mix_reg(sc, 0x6B));
293 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
294 0x6A, ess_read_mix_reg(sc, 0x6A));
295 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
296 0x6C, ess_read_mix_reg(sc, 0x6C));
297 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
298 0xB4, ess_read_x_reg(sc, 0xB4));
299 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
300 0x14, ess_read_mix_reg(sc, 0x14));
301
302 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
303 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
304 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
305 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
306 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
307 0x1c, ess_read_mix_reg(sc, 0x1c),
308 0x7a, ess_read_mix_reg(sc, 0x7a));
309 }
310
311 #endif
312
313 /*
314 * Configure the ESS chip for the desired audio base address.
315 */
316 int
317 ess_config_addr(sc)
318 struct ess_softc *sc;
319 {
320 int iobase = sc->sc_iobase;
321 bus_space_tag_t iot = sc->sc_iot;
322
323 /*
324 * Configure using the System Control Register method. This
325 * method is used when the AMODE line is tied high, which is
326 * the case for the Shark, but not for the evaluation board.
327 */
328
329 bus_space_handle_t scr_access_ioh;
330 bus_space_handle_t scr_ioh;
331 u_short scr_value;
332
333 /*
334 * Set the SCR bit to enable audio.
335 */
336 scr_value = ESS_SCR_AUDIO_ENABLE;
337
338 /*
339 * Set the SCR bits necessary to select the specified audio
340 * base address.
341 */
342 switch(iobase) {
343 case 0x220:
344 scr_value |= ESS_SCR_AUDIO_220;
345 break;
346 case 0x230:
347 scr_value |= ESS_SCR_AUDIO_230;
348 break;
349 case 0x240:
350 scr_value |= ESS_SCR_AUDIO_240;
351 break;
352 case 0x250:
353 scr_value |= ESS_SCR_AUDIO_250;
354 break;
355 default:
356 printf("ess: configured iobase 0x%x invalid\n", iobase);
357 return (1);
358 break;
359 }
360
361 /*
362 * Get a mapping for the System Control Register (SCR) access
363 * registers and the SCR data registers.
364 */
365 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
366 0, &scr_access_ioh)) {
367 printf("ess: can't map SCR access registers\n");
368 return (1);
369 }
370 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
371 0, &scr_ioh)) {
372 printf("ess: can't map SCR registers\n");
373 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
374 return (1);
375 }
376
377 /* Unlock the SCR. */
378 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
379
380 /* Write the base address information into SCR[0]. */
381 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
382 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
383
384 /* Lock the SCR. */
385 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
386
387 /* Unmap the SCR access ports and the SCR data ports. */
388 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
389 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
390
391 return 0;
392 }
393
394
395 /*
396 * Configure the ESS chip for the desired IRQ and DMA channels.
397 * ESS ISA
398 * --------
399 * IRQA irq9
400 * IRQB irq5
401 * IRQC irq7
402 * IRQD irq10
403 * IRQE irq15
404 *
405 * DRQA drq0
406 * DRQB drq1
407 * DRQC drq3
408 * DRQD drq5
409 */
410 void
411 ess_config_irq(sc)
412 struct ess_softc *sc;
413 {
414 int v;
415
416 DPRINTFN(2,("ess_config_irq\n"));
417
418 if (sc->sc_in.irq != sc->sc_out.irq) {
419 /* Configure Audio 1 (record) for the appropriate IRQ line. */
420 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
421 switch(sc->sc_in.irq) {
422 case 5:
423 v |= ESS_IRQ_CTRL_INTRB;
424 break;
425 case 7:
426 v |= ESS_IRQ_CTRL_INTRC;
427 break;
428 case 9:
429 v |= ESS_IRQ_CTRL_INTRA;
430 break;
431 case 10:
432 v |= ESS_IRQ_CTRL_INTRD;
433 break;
434 #ifdef DIAGNOSTIC
435 default:
436 printf("ess: configured irq %d not supported for Audio 1\n",
437 sc->sc_in.irq);
438 return;
439 #endif
440 }
441 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
442 /* irq2 is hardwired to 15 in this mode */
443 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
444 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
445 /* Use old method. */
446 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
447 } else {
448 /* Use new method, both interrupts are the same. */
449 v = ESS_IS_SELECT_IRQ; /* enable intrs */
450 switch(sc->sc_out.irq) {
451 case 5:
452 v |= ESS_IS_INTRB;
453 break;
454 case 7:
455 v |= ESS_IS_INTRC;
456 break;
457 case 9:
458 v |= ESS_IS_INTRA;
459 break;
460 case 10:
461 v |= ESS_IS_INTRD;
462 break;
463 case 15:
464 v |= ESS_IS_INTRE;
465 break;
466 #ifdef DIAGNOSTIC
467 default:
468 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
469 sc->sc_in.irq);
470 return;
471 #endif
472 }
473 /* Set the IRQ */
474 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
475 }
476 }
477
478
479 void
480 ess_config_drq(sc)
481 struct ess_softc *sc;
482 {
483 int v;
484
485 DPRINTFN(2,("ess_config_drq\n"));
486
487 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
488 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
489 switch(sc->sc_in.drq) {
490 case 0:
491 v |= ESS_DRQ_CTRL_DRQA;
492 break;
493 case 1:
494 v |= ESS_DRQ_CTRL_DRQB;
495 break;
496 case 3:
497 v |= ESS_DRQ_CTRL_DRQC;
498 break;
499 #ifdef DIAGNOSTIC
500 default:
501 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
502 sc->sc_in.drq);
503 return;
504 #endif
505 }
506 /* Set DRQ1 */
507 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
508
509 /* Configure DRQ2 */
510 v = ESS_AUDIO2_CTRL3_DRQ_PD;
511 switch(sc->sc_out.drq) {
512 case 0:
513 v |= ESS_AUDIO2_CTRL3_DRQA;
514 break;
515 case 1:
516 v |= ESS_AUDIO2_CTRL3_DRQB;
517 break;
518 case 3:
519 v |= ESS_AUDIO2_CTRL3_DRQC;
520 break;
521 case 5:
522 v |= ESS_AUDIO2_CTRL3_DRQC;
523 break;
524 #ifdef DIAGNOSTIC
525 default:
526 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
527 sc->sc_out.drq);
528 return;
529 #endif
530 }
531 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
532 /* Enable DMA 2 */
533 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
534 ESS_AUDIO2_CTRL2_DMA_ENABLE);
535 }
536
537 /*
538 * Set up registers after a reset.
539 */
540 void
541 ess_setup(sc)
542 struct ess_softc *sc;
543 {
544 ess_config_irq(sc);
545 ess_config_drq(sc);
546 if (IS16BITDRQ(sc->sc_out.drq))
547 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
548 ESS_AUDIO2_CTRL1_XFER_SIZE);
549 else
550 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
551 ESS_AUDIO2_CTRL1_XFER_SIZE);
552
553 #if 0
554 /* Use 8 bytes per output DMA. */
555 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, ESS_AUDIO2_CTRL1_DEMAND_8);
556 /* Use 4 bytes per input DMA. */
557 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
558 #endif
559
560 DPRINTFN(2,("ess_setup: done\n"));
561 }
562
563 /*
564 * Determine the model of ESS chip we are talking to. Currently we
565 * only support ES1888, ES1887 and ES888. The method of determining
566 * the chip is based on the information on page 27 of the ES1887 data
567 * sheet.
568 *
569 * This routine sets the values of sc->sc_model and sc->sc_version.
570 */
571 int
572 ess_identify(sc)
573 struct ess_softc *sc;
574 {
575 u_char reg1;
576 u_char reg2;
577 u_char reg3;
578
579 sc->sc_model = ESS_UNSUPPORTED;
580 sc->sc_version = 0;
581
582
583 /*
584 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
585 * n >= 8 for an ES1887 or an ES888. Other values indicate
586 * earlier (unsupported) chips.
587 */
588 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
589
590 if ((reg1 = ess_rdsp(sc)) != 0x68) {
591 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
592 return 1;
593 }
594
595 reg2 = ess_rdsp(sc);
596 if (((reg2 & 0xf0) != 0x80) ||
597 ((reg2 & 0x0f) < 8)) {
598 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
599 return 1;
600 }
601
602 /*
603 * Store the ID bytes as the version.
604 */
605 sc->sc_version = (reg1 << 8) + reg2;
606
607
608 /*
609 * 2. Verify we can change bit 2 in mixer register 0x64. This
610 * should be possible on all supported chips.
611 */
612 reg1 = ess_read_mix_reg(sc, 0x64);
613 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
614
615 ess_write_mix_reg(sc, 0x64, reg2);
616
617 if (ess_read_mix_reg(sc, 0x64) != reg2) {
618 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
619 return 1;
620 }
621
622 /*
623 * Restore the original value of mixer register 0x64.
624 */
625 ess_write_mix_reg(sc, 0x64, reg1);
626
627
628 /*
629 * 3. Verify we can change the value of mixer register
630 * ESS_MREG_SAMPLE_RATE.
631 * This should be possible on all supported chips.
632 * It is not necessary to restore the value of this mixer register.
633 */
634 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
635 reg2 = reg1 ^ 0xff; /* toggle all bits */
636
637 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
638
639 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
640 printf("ess: Hardware error (unable to change mixer register 0x70)\n");
641 return 1;
642 }
643
644 /*
645 * 4. Determine if we can change bit 5 in mixer register 0x64.
646 * This determines whether we have an ES1887:
647 *
648 * - can change indicates ES1887
649 * - can't change indicates ES1888 or ES888
650 */
651 reg1 = ess_read_mix_reg(sc, 0x64);
652 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
653
654 ess_write_mix_reg(sc, 0x64, reg2);
655
656 if (ess_read_mix_reg(sc, 0x64) == reg2) {
657 sc->sc_model = ESS_1887;
658
659 /*
660 * Restore the original value of mixer register 0x64.
661 */
662 ess_write_mix_reg(sc, 0x64, reg1);
663 } else {
664 /*
665 * 5. Determine if we can change the value of mixer
666 * register 0x69 independently of mixer register
667 * 0x68. This determines which chip we have:
668 *
669 * - can modify idependently indicates ES888
670 * - register 0x69 is an alias of 0x68 indicates ES1888
671 */
672 reg1 = ess_read_mix_reg(sc, 0x68);
673 reg2 = ess_read_mix_reg(sc, 0x69);
674 reg3 = reg2 ^ 0xff; /* toggle all bits */
675
676 /*
677 * Write different values to each register.
678 */
679 ess_write_mix_reg(sc, 0x68, reg2);
680 ess_write_mix_reg(sc, 0x69, reg3);
681
682 if (ess_read_mix_reg(sc, 0x68) == reg2)
683 sc->sc_model = ESS_888;
684 else
685 sc->sc_model = ESS_1888;
686
687 /*
688 * Restore the original value of the registers.
689 */
690 ess_write_mix_reg(sc, 0x68, reg1);
691 ess_write_mix_reg(sc, 0x69, reg2);
692 }
693
694 return 0;
695 }
696
697
698 int
699 ess_setup_sc(sc, doinit)
700 struct ess_softc *sc;
701 int doinit;
702 {
703 /* Reset the chip. */
704 if (ess_reset(sc) != 0) {
705 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
706 return (1);
707 }
708
709 /* Identify the ESS chip, and check that it is supported. */
710 if (ess_identify(sc)) {
711 DPRINTF(("ess_setup_sc: couldn't identify\n"));
712 return (1);
713 }
714
715 return (0);
716 }
717
718 /*
719 * Probe for the ESS hardware.
720 */
721 int
722 essmatch(sc)
723 struct ess_softc *sc;
724 {
725 if (!ESS_BASE_VALID(sc->sc_iobase)) {
726 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
727 return (0);
728 }
729
730 /* Configure the ESS chip for the desired audio base address. */
731 if (ess_config_addr(sc))
732 return (0);
733
734 if (ess_setup_sc(sc, 1))
735 return (0);
736
737 if (sc->sc_model == ESS_UNSUPPORTED) {
738 DPRINTF(("ess: Unsupported model\n"));
739 return (0);
740 }
741
742 /* Check that requested DMA channels are valid and different. */
743 if (!ESS_DRQ1_VALID(sc->sc_in.drq)) {
744 printf("ess: record dma chan %d invalid\n", sc->sc_in.drq);
745 return (0);
746 }
747 if (!ESS_DRQ2_VALID(sc->sc_out.drq, sc->sc_model)) {
748 printf("ess: play dma chan %d invalid\n", sc->sc_out.drq);
749 return (0);
750 }
751 if (sc->sc_in.drq == sc->sc_out.drq) {
752 printf("ess: play and record dma chan both %d\n",
753 sc->sc_in.drq);
754 return (0);
755 }
756
757 if (sc->sc_model == ESS_1887) {
758 /*
759 * Either use the 1887 interrupt mode with all interrupts
760 * mapped to the same irq, or use the 1888 method with
761 * irq fixed at 15.
762 */
763 if (sc->sc_in.irq == sc->sc_out.irq) {
764 if (!ESS_IRQ12_VALID(sc->sc_in.irq)) {
765 printf("ess: irq %d invalid\n", sc->sc_in.irq);
766 return (0);
767 }
768 goto irq_not1888;
769 }
770 } else {
771 /* Must use separate interrupts */
772 if (sc->sc_in.irq == sc->sc_out.irq) {
773 printf("ess: play and record irq both %d\n",
774 sc->sc_in.irq);
775 return (0);
776 }
777 }
778
779 /* Check that requested IRQ lines are valid and different. */
780 if (!ESS_IRQ1_VALID(sc->sc_in.irq)) {
781 printf("ess: record irq %d invalid\n", sc->sc_in.irq);
782 return (0);
783 }
784 if (!ESS_IRQ2_VALID(sc->sc_out.irq)) {
785 printf("ess: play irq %d invalid\n", sc->sc_out.irq);
786 return (0);
787 }
788 irq_not1888:
789
790 /* Check that the DRQs are free. */
791 if (!isa_drq_isfree(sc->sc_ic, sc->sc_in.drq) ||
792 !isa_drq_isfree(sc->sc_ic, sc->sc_out.drq))
793 return (0);
794 /* XXX should we check IRQs as well? */
795
796 return (1);
797 }
798
799
800 /*
801 * Attach hardware to driver, attach hardware driver to audio
802 * pseudo-device driver.
803 */
804 void
805 essattach(sc)
806 struct ess_softc *sc;
807 {
808 struct audio_params pparams, rparams;
809 int i;
810 u_int v;
811
812 if (ess_setup_sc(sc, 0)) {
813 printf("%s: setup failed\n", sc->sc_dev.dv_xname);
814 return;
815 }
816
817 sc->sc_out.ih = isa_intr_establish(sc->sc_ic, sc->sc_out.irq,
818 sc->sc_out.ist, IPL_AUDIO,
819 ess_intr_output, sc);
820 sc->sc_in.ih = isa_intr_establish(sc->sc_ic, sc->sc_in.irq,
821 sc->sc_in.ist, IPL_AUDIO,
822 ess_intr_input, sc);
823
824 /* Create our DMA maps. */
825 if (isa_dmamap_create(sc->sc_ic, sc->sc_in.drq,
826 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
827 printf("%s: can't create map for drq %d\n",
828 sc->sc_dev.dv_xname, sc->sc_in.drq);
829 return;
830 }
831 if (isa_dmamap_create(sc->sc_ic, sc->sc_out.drq,
832 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
833 printf("%s: can't create map for drq %d\n",
834 sc->sc_dev.dv_xname, sc->sc_out.drq);
835 return;
836 }
837
838 printf(" ESS Technology ES%s [version 0x%04x]\n",
839 essmodel[sc->sc_model], sc->sc_version);
840
841 /*
842 * Set record and play parameters to default values defined in
843 * generic audio driver.
844 */
845 pparams = audio_default;
846 rparams = audio_default;
847 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
848
849 /* Do a hardware reset on the mixer. */
850 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
851
852 /*
853 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
854 * to playback mixer, since playback is always through Audio 2.
855 */
856 ess_write_mix_reg(sc, 0x14, 0);
857 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
858
859 /*
860 * Set hardware record source to use output of the record
861 * mixer. We do the selection of record source in software by
862 * setting the gain of the unused sources to zero. (See
863 * ess_set_in_ports.)
864 */
865 ess_set_mreg_bits(sc, 0x1c, 0x07);
866 ess_clear_mreg_bits(sc, 0x7a, 0x10);
867 ess_set_mreg_bits(sc, 0x7a, 0x08);
868
869 /*
870 * Set gain on each mixer device to a sensible value.
871 * Devices not normally used are turned off, and other devices
872 * are set to 75% volume.
873 */
874 for (i = 0; i < ESS_NDEVS; i++) {
875 switch(i) {
876 case ESS_MIC_PLAY_VOL:
877 case ESS_LINE_PLAY_VOL:
878 case ESS_CD_PLAY_VOL:
879 case ESS_AUXB_PLAY_VOL:
880 case ESS_DAC_REC_VOL:
881 case ESS_LINE_REC_VOL:
882 case ESS_SYNTH_REC_VOL:
883 case ESS_CD_REC_VOL:
884 case ESS_AUXB_REC_VOL:
885 v = 0;
886 break;
887 default:
888 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN * 3 / 4);
889 break;
890 }
891 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
892 ess_set_gain(sc, i, 1);
893 }
894
895 ess_setup(sc);
896
897 /* Disable the speaker until the device is opened. */
898 ess_speaker_off(sc);
899 sc->spkr_state = SPKR_OFF;
900
901 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
902 sprintf(ess_device.version, "0x%04x", sc->sc_version);
903
904 audio_attach_mi(&ess_hw_if, 0, sc, &sc->sc_dev);
905
906 #ifdef AUDIO_DEBUG
907 ess_printsc(sc);
908 #endif
909 }
910
911 /*
912 * Various routines to interface to higher level audio driver
913 */
914
915 int
916 ess_open(addr, flags)
917 void *addr;
918 int flags;
919 {
920 struct ess_softc *sc = addr;
921
922 DPRINTF(("ess_open: sc=%p\n", sc));
923
924 if (sc->sc_open != 0 || ess_reset(sc) != 0)
925 return ENXIO;
926
927 ess_setup(sc); /* because we did a reset */
928
929 sc->sc_open = 1;
930
931 DPRINTF(("ess_open: opened\n"));
932
933 return (0);
934 }
935
936 void
937 ess_close(addr)
938 void *addr;
939 {
940 struct ess_softc *sc = addr;
941
942 DPRINTF(("ess_close: sc=%p\n", sc));
943
944 sc->sc_open = 0;
945 ess_speaker_off(sc);
946 sc->spkr_state = SPKR_OFF;
947 ess_halt_output(sc);
948 ess_halt_input(sc);
949 sc->sc_in.intr = 0;
950 sc->sc_out.intr = 0;
951
952 DPRINTF(("ess_close: closed\n"));
953 }
954
955 /*
956 * Wait for FIFO to drain, and analog section to settle.
957 * XXX should check FIFO full bit.
958 */
959 int
960 ess_drain(addr)
961 void *addr;
962 {
963 extern int hz; /* XXX */
964
965 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
966 return (0);
967 }
968
969 int
970 ess_speaker_ctl(addr, newstate)
971 void *addr;
972 int newstate;
973 {
974 struct ess_softc *sc = addr;
975
976 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
977 ess_speaker_on(sc);
978 sc->spkr_state = SPKR_ON;
979 }
980 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
981 ess_speaker_off(sc);
982 sc->spkr_state = SPKR_OFF;
983 }
984 return (0);
985 }
986
987 int
988 ess_getdev(addr, retp)
989 void *addr;
990 struct audio_device *retp;
991 {
992 *retp = ess_device;
993 return (0);
994 }
995
996 int
997 ess_query_encoding(addr, fp)
998 void *addr;
999 struct audio_encoding *fp;
1000 {
1001 /*struct ess_softc *sc = addr;*/
1002
1003 switch (fp->index) {
1004 case 0:
1005 strcpy(fp->name, AudioEulinear);
1006 fp->encoding = AUDIO_ENCODING_ULINEAR;
1007 fp->precision = 8;
1008 fp->flags = 0;
1009 return (0);
1010 case 1:
1011 strcpy(fp->name, AudioEmulaw);
1012 fp->encoding = AUDIO_ENCODING_ULAW;
1013 fp->precision = 8;
1014 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1015 return (0);
1016 case 2:
1017 strcpy(fp->name, AudioEalaw);
1018 fp->encoding = AUDIO_ENCODING_ALAW;
1019 fp->precision = 8;
1020 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1021 return (0);
1022 case 3:
1023 strcpy(fp->name, AudioEslinear);
1024 fp->encoding = AUDIO_ENCODING_SLINEAR;
1025 fp->precision = 8;
1026 fp->flags = 0;
1027 return (0);
1028 case 4:
1029 strcpy(fp->name, AudioEslinear_le);
1030 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1031 fp->precision = 16;
1032 fp->flags = 0;
1033 return (0);
1034 case 5:
1035 strcpy(fp->name, AudioEulinear_le);
1036 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1037 fp->precision = 16;
1038 fp->flags = 0;
1039 return (0);
1040 case 6:
1041 strcpy(fp->name, AudioEslinear_be);
1042 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1043 fp->precision = 16;
1044 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1045 return (0);
1046 case 7:
1047 strcpy(fp->name, AudioEulinear_be);
1048 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1049 fp->precision = 16;
1050 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1051 return (0);
1052 default:
1053 return EINVAL;
1054 }
1055 return (0);
1056 }
1057
1058 int
1059 ess_set_params(addr, setmode, usemode, play, rec)
1060 void *addr;
1061 int setmode, usemode;
1062 struct audio_params *play, *rec;
1063 {
1064 struct ess_softc *sc = addr;
1065 void (*swcode) __P((void *, u_char *buf, int cnt));
1066 struct audio_params *p;
1067 int mode;
1068
1069 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1070
1071 /* Set first record info, then play info */
1072 for(mode = AUMODE_RECORD; mode != -1;
1073 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1074 if ((setmode & mode) == 0)
1075 continue;
1076
1077 p = mode == AUMODE_PLAY ? play : rec;
1078 switch (mode) {
1079 case AUMODE_PLAY:
1080 if (ess_set_out_sr(sc, p->sample_rate) != 0 ||
1081 ess_set_out_precision(sc, p->precision) != 0 ||
1082 ess_set_out_channels(sc, p->channels) != 0) {
1083 return (EINVAL);
1084 }
1085 break;
1086
1087 case AUMODE_RECORD:
1088 if (ess_set_in_sr(sc, p->sample_rate) != 0 ||
1089 ess_set_in_precision(sc, p->precision) != 0 ||
1090 ess_set_in_channels(sc, p->channels) != 0) {
1091 return (EINVAL);
1092 }
1093 break;
1094 }
1095
1096 swcode = 0;
1097
1098 switch (p->encoding) {
1099 case AUDIO_ENCODING_SLINEAR_BE:
1100 if (p->precision == 16)
1101 swcode = swap_bytes;
1102 /* fall into */
1103 case AUDIO_ENCODING_SLINEAR_LE:
1104 if (mode == AUMODE_PLAY)
1105 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1106 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1107 else
1108 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1109 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1110 break;
1111 case AUDIO_ENCODING_ULINEAR_BE:
1112 if (p->precision == 16)
1113 swcode = swap_bytes;
1114 /* fall into */
1115 case AUDIO_ENCODING_ULINEAR_LE:
1116 ulin8:
1117 if (mode == AUMODE_PLAY)
1118 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1119 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1120 else
1121 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1122 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1123 break;
1124 case AUDIO_ENCODING_ULAW:
1125 swcode = mode == AUMODE_PLAY ?
1126 mulaw_to_ulinear8 : ulinear8_to_mulaw;
1127 goto ulin8;
1128 case AUDIO_ENCODING_ALAW:
1129 swcode = mode == AUMODE_PLAY ?
1130 alaw_to_ulinear8 : ulinear8_to_alaw;
1131 goto ulin8;
1132 default:
1133 return EINVAL;
1134 }
1135 p->sw_code = swcode;
1136 }
1137
1138 sc->sc_in.active = 0;
1139 sc->sc_out.active = 0;
1140
1141 return (0);
1142 }
1143 int
1144 ess_set_in_sr(addr, sr)
1145 void *addr;
1146 u_long sr;
1147 {
1148 struct ess_softc *sc = addr;
1149
1150 if (sr < ESS_MINRATE || sr > ESS_MAXRATE)
1151 return (EINVAL);
1152 /*
1153 * Program the sample rate and filter clock for the record
1154 * channel (Audio 1).
1155 */
1156 DPRINTF(("ess_set_in_sr: %ld\n", sr));
1157 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(sr));
1158 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(sr));
1159
1160 return (0);
1161 }
1162
1163 int
1164 ess_set_out_sr(addr, sr)
1165 void *addr;
1166 u_long sr;
1167 {
1168 struct ess_softc *sc = addr;
1169
1170 if (sr < ESS_MINRATE || sr > ESS_MAXRATE)
1171 return (EINVAL);
1172 /*
1173 * Program the sample rate and filter clock for the playback
1174 * channel (Audio 2).
1175 */
1176 DPRINTF(("ess_set_out_sr: %ld\n", sr));
1177 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(sr));
1178 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(sr));
1179
1180 return (0);
1181 }
1182
1183 int
1184 ess_set_in_precision(addr, precision)
1185 void *addr;
1186 u_int precision;
1187 {
1188 struct ess_softc *sc = addr;
1189
1190 /*
1191 * REVISIT: Should we set DMA transfer type to 2-byte or
1192 * 4-byte demand? This would probably better be done
1193 * when configuring the DMA channel. See xreg 0xB9.
1194 */
1195 DPRINTF(("ess_set_in_precision: %d\n", precision));
1196 switch (precision) {
1197 case 8:
1198 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1199 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1200 break;
1201
1202 case 16:
1203 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1204 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1205 break;
1206
1207 default:
1208 return (EINVAL);
1209 }
1210 return (0);
1211 }
1212
1213 int
1214 ess_set_out_precision(addr, precision)
1215 void *addr;
1216 u_int precision;
1217 {
1218 struct ess_softc *sc = addr;
1219
1220 DPRINTF(("ess_set_in_precision: %d\n", precision));
1221 switch (precision) {
1222 case 8:
1223 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1224 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1225 break;
1226
1227 case 16:
1228 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1229 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1230 break;
1231
1232 default:
1233 return (EINVAL);
1234 }
1235 return (0);
1236 }
1237
1238 int
1239 ess_set_in_channels(addr, channels)
1240 void *addr;
1241 int channels;
1242 {
1243 struct ess_softc *sc = addr;
1244
1245 switch(channels) {
1246 case 1:
1247 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1248 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1249 ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1250 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1251 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1252 break;
1253
1254 case 2:
1255 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1256 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1257 ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1258 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1259 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1260 break;
1261
1262 default:
1263 return (EINVAL);
1264 break;
1265 }
1266
1267 sc->sc_in.channels = channels;
1268
1269 return (0);
1270 }
1271
1272 int
1273 ess_set_out_channels(addr, channels)
1274 void *addr;
1275 int channels;
1276 {
1277 struct ess_softc *sc = addr;
1278
1279 switch(channels) {
1280 case 1:
1281 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1282 ESS_AUDIO2_CTRL2_CHANNELS);
1283 break;
1284
1285 case 2:
1286 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1287 ESS_AUDIO2_CTRL2_CHANNELS);
1288 break;
1289
1290 default:
1291 return (EINVAL);
1292 break;
1293 }
1294
1295 sc->sc_out.channels = channels;
1296
1297 return (0);
1298 }
1299
1300 int
1301 ess_dma_init_output(addr, buf, cc)
1302 void *addr;
1303 void *buf;
1304 int cc;
1305 {
1306 struct ess_softc *sc = addr;
1307
1308 DPRINTF(("ess_dma_init_output: buf=%p cc=%d chan=%d\n",
1309 buf, cc, sc->sc_out.drq));
1310 isa_dmastart(sc->sc_ic, sc->sc_out.drq, buf,
1311 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1312 return 0;
1313 }
1314
1315 int
1316 ess_dma_output(addr, p, cc, intr, arg)
1317 void *addr;
1318 void *p;
1319 int cc;
1320 void (*intr) __P((void *));
1321 void *arg;
1322 {
1323 struct ess_softc *sc = addr;
1324
1325 DPRINTFN(1,("ess_dma_output: cc=%d %p (%p)\n", cc, intr, arg));
1326 #ifdef DIAGNOSTIC
1327 if (sc->sc_out.channels == 2 && (cc & 1)) {
1328 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1329 return EIO;
1330 }
1331 #endif
1332
1333 sc->sc_out.intr = intr;
1334 sc->sc_out.arg = arg;
1335 if (sc->sc_out.active)
1336 return (0);
1337
1338 DPRINTF(("ess_dma_output: set up DMA\n"));
1339
1340 sc->sc_out.active = 1;
1341
1342 if (IS16BITDRQ(sc->sc_out.drq))
1343 cc >>= 1; /* use word count for 16 bit DMA */
1344 /* Program transfer count registers with 2's complement of count. */
1345 cc = -cc;
1346 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, cc);
1347 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, cc >> 8);
1348
1349 /* Start auto-init DMA */
1350 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1351 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1352 ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1353 ESS_AUDIO2_CTRL1_AUTO_INIT);
1354
1355 return (0);
1356
1357 }
1358
1359 int
1360 ess_dma_init_input(addr, buf, cc)
1361 void *addr;
1362 void *buf;
1363 int cc;
1364 {
1365 struct ess_softc *sc = addr;
1366
1367 DPRINTF(("ess_dma_init_input: buf=%p cc=%d chan=%d\n",
1368 buf, cc, sc->sc_in.drq));
1369 isa_dmastart(sc->sc_ic, sc->sc_in.drq, buf,
1370 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1371 return 0;
1372 }
1373
1374 int
1375 ess_dma_input(addr, p, cc, intr, arg)
1376 void *addr;
1377 void *p;
1378 int cc;
1379 void (*intr) __P((void *));
1380 void *arg;
1381 {
1382 struct ess_softc *sc = addr;
1383
1384 DPRINTFN(1,("ess_dma_input: cc=%d %p (%p)\n", cc, intr, arg));
1385 #ifdef DIAGNOSTIC
1386 if (sc->sc_in.channels == 2 && (cc & 1)) {
1387 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1388 return EIO;
1389 }
1390 #endif
1391
1392 sc->sc_in.intr = intr;
1393 sc->sc_in.arg = arg;
1394 if (sc->sc_in.active)
1395 return (0);
1396
1397 DPRINTF(("ess_dma_input: set up DMA\n"));
1398
1399 sc->sc_in.active = 1;
1400
1401 /* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1402 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1403 ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1404
1405 if (IS16BITDRQ(sc->sc_out.drq))
1406 cc >>= 1; /* use word count for 16 bit DMA */
1407 /* Program transfer count registers with 2's complement of count. */
1408 cc = -cc;
1409 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, cc);
1410 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, cc >> 8);
1411
1412 /* Start auto-init DMA */
1413 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1414 ESS_AUDIO1_CTRL2_DMA_READ |
1415 ESS_AUDIO1_CTRL2_ADC_ENABLE |
1416 ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1417 ESS_AUDIO1_CTRL2_AUTO_INIT);
1418
1419 return (0);
1420
1421 }
1422
1423 int
1424 ess_halt_output(addr)
1425 void *addr;
1426 {
1427 struct ess_softc *sc = addr;
1428
1429 DPRINTF(("ess_halt_output: sc=%p\n", sc));
1430
1431 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1432 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1433 return (0);
1434 }
1435
1436 int
1437 ess_halt_input(addr)
1438 void *addr;
1439 {
1440 struct ess_softc *sc = addr;
1441
1442 DPRINTF(("ess_halt_input: sc=%p\n", sc));
1443
1444 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1445 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1446 return (0);
1447 }
1448
1449 int
1450 ess_intr_output(arg)
1451 void *arg;
1452 {
1453 struct ess_softc *sc = arg;
1454
1455 DPRINTFN(1,("ess_intr_output: intr=%p\n", sc->sc_out.intr));
1456
1457 /* clear interrupt on Audio channel 2 */
1458 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1459 ESS_AUDIO2_CTRL2_IRQ_LATCH);
1460
1461 sc->sc_out.nintr++;
1462
1463 if (sc->sc_out.intr != 0)
1464 (*sc->sc_out.intr)(sc->sc_out.arg);
1465 else
1466 return (0);
1467
1468 return (1);
1469 }
1470
1471 int
1472 ess_intr_input(arg)
1473 void *arg;
1474 {
1475 struct ess_softc *sc = arg;
1476 u_char x;
1477
1478 DPRINTFN(1,("ess_intr_input: intr=%p\n", sc->sc_in.intr));
1479
1480 /* clear interrupt on Audio channel 1*/
1481 x = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1482
1483 sc->sc_in.nintr++;
1484
1485 if (sc->sc_in.intr != 0)
1486 (*sc->sc_in.intr)(sc->sc_in.arg);
1487 else
1488 return (0);
1489
1490 return (1);
1491 }
1492
1493 int
1494 ess_round_blocksize(addr, blk)
1495 void *addr;
1496 int blk;
1497 {
1498 return (blk & -8); /* round for max DMA size */
1499 }
1500
1501 int
1502 ess_set_port(addr, cp)
1503 void *addr;
1504 mixer_ctrl_t *cp;
1505 {
1506 struct ess_softc *sc = addr;
1507 int lgain, rgain;
1508
1509 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1510 cp->dev, cp->un.value.num_channels));
1511
1512 switch (cp->dev) {
1513 /*
1514 * The following mixer ports are all stereo. If we get a
1515 * single-channel gain value passed in, then we duplicate it
1516 * to both left and right channels.
1517 */
1518 case ESS_MASTER_VOL:
1519 case ESS_DAC_PLAY_VOL:
1520 case ESS_MIC_PLAY_VOL:
1521 case ESS_LINE_PLAY_VOL:
1522 case ESS_SYNTH_PLAY_VOL:
1523 case ESS_CD_PLAY_VOL:
1524 case ESS_AUXB_PLAY_VOL:
1525 case ESS_DAC_REC_VOL:
1526 case ESS_MIC_REC_VOL:
1527 case ESS_LINE_REC_VOL:
1528 case ESS_SYNTH_REC_VOL:
1529 case ESS_CD_REC_VOL:
1530 case ESS_AUXB_REC_VOL:
1531 case ESS_RECORD_VOL:
1532 if (cp->type != AUDIO_MIXER_VALUE)
1533 return EINVAL;
1534
1535 switch (cp->un.value.num_channels) {
1536 case 1:
1537 lgain = rgain = ESS_4BIT_GAIN(
1538 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1539 break;
1540 case 2:
1541 lgain = ESS_4BIT_GAIN(
1542 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1543 rgain = ESS_4BIT_GAIN(
1544 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1545 break;
1546 default:
1547 return EINVAL;
1548 }
1549
1550 sc->gain[cp->dev][ESS_LEFT] = lgain;
1551 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1552
1553 ess_set_gain(sc, cp->dev, 1);
1554 break;
1555
1556
1557 /*
1558 * The PC speaker port is mono. If we get a stereo gain value
1559 * passed in, then we return EINVAL.
1560 */
1561 case ESS_PCSPEAKER_VOL:
1562 if (cp->un.value.num_channels != 1)
1563 return EINVAL;
1564
1565 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1566 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1567 ess_set_gain(sc, cp->dev, 1);
1568 break;
1569
1570
1571 case ESS_MIC_PREAMP:
1572 if (cp->type != AUDIO_MIXER_ENUM)
1573 return EINVAL;
1574
1575 if (cp->un.ord)
1576 /* Enable microphone preamp */
1577 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1578 ESS_PREAMP_CTRL_ENABLE);
1579 else
1580 /* Disable microphone preamp */
1581 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1582 ESS_PREAMP_CTRL_ENABLE);
1583 break;
1584
1585 case ESS_RECORD_SOURCE:
1586 if (cp->type == AUDIO_MIXER_SET)
1587 return ess_set_in_ports(sc, cp->un.mask);
1588 else
1589 return EINVAL;
1590 break;
1591
1592 case ESS_RECORD_MONITOR:
1593 if (cp->type != AUDIO_MIXER_ENUM)
1594 return EINVAL;
1595
1596 if (cp->un.ord)
1597 /* Enable monitor */
1598 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1599 ESS_AUDIO_CTRL_MONITOR);
1600 else
1601 /* Disable monitor */
1602 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1603 ESS_AUDIO_CTRL_MONITOR);
1604 break;
1605
1606 default:
1607 return EINVAL;
1608 }
1609
1610 return (0);
1611 }
1612
1613 int
1614 ess_get_port(addr, cp)
1615 void *addr;
1616 mixer_ctrl_t *cp;
1617 {
1618 struct ess_softc *sc = addr;
1619
1620 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1621
1622 switch (cp->dev) {
1623 case ESS_DAC_PLAY_VOL:
1624 case ESS_MIC_PLAY_VOL:
1625 case ESS_LINE_PLAY_VOL:
1626 case ESS_SYNTH_PLAY_VOL:
1627 case ESS_CD_PLAY_VOL:
1628 case ESS_AUXB_PLAY_VOL:
1629 case ESS_MASTER_VOL:
1630 case ESS_PCSPEAKER_VOL:
1631 case ESS_DAC_REC_VOL:
1632 case ESS_MIC_REC_VOL:
1633 case ESS_LINE_REC_VOL:
1634 case ESS_SYNTH_REC_VOL:
1635 case ESS_CD_REC_VOL:
1636 case ESS_AUXB_REC_VOL:
1637 case ESS_RECORD_VOL:
1638 if (cp->dev == ESS_PCSPEAKER_VOL &&
1639 cp->un.value.num_channels != 1)
1640 return EINVAL;
1641
1642 switch (cp->un.value.num_channels) {
1643 case 1:
1644 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1645 sc->gain[cp->dev][ESS_LEFT];
1646 break;
1647 case 2:
1648 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1649 sc->gain[cp->dev][ESS_LEFT];
1650 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1651 sc->gain[cp->dev][ESS_RIGHT];
1652 break;
1653 default:
1654 return EINVAL;
1655 }
1656 break;
1657
1658 case ESS_MIC_PREAMP:
1659 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1660 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1661 break;
1662
1663 case ESS_RECORD_SOURCE:
1664 cp->un.mask = sc->in_mask;
1665 break;
1666
1667 case ESS_RECORD_MONITOR:
1668 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1669 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1670 break;
1671
1672 default:
1673 return EINVAL;
1674 }
1675
1676 return (0);
1677 }
1678
1679 int
1680 ess_query_devinfo(addr, dip)
1681 void *addr;
1682 mixer_devinfo_t *dip;
1683 {
1684 #ifdef AUDIO_DEBUG
1685 struct ess_softc *sc = addr;
1686 #endif
1687
1688 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1689 sc->sc_model, dip->index));
1690
1691 /*
1692 * REVISIT: There are some slight differences between the
1693 * mixers on the different ESS chips, which can
1694 * be sorted out using the chip model rather than a
1695 * separate mixer model.
1696 * This is currently coded assuming an ES1887; we
1697 * need to work out which bits are not applicable to
1698 * the other models (1888 and 888).
1699 */
1700 switch (dip->index) {
1701 case ESS_DAC_PLAY_VOL:
1702 dip->type = AUDIO_MIXER_VALUE;
1703 dip->mixer_class = ESS_INPUT_CLASS;
1704 dip->prev = AUDIO_MIXER_LAST;
1705 dip->next = AUDIO_MIXER_LAST;
1706 strcpy(dip->label.name, AudioNdac);
1707 dip->un.v.num_channels = 2;
1708 strcpy(dip->un.v.units.name, AudioNvolume);
1709 return (0);
1710
1711 case ESS_MIC_PLAY_VOL:
1712 dip->type = AUDIO_MIXER_VALUE;
1713 dip->mixer_class = ESS_INPUT_CLASS;
1714 dip->prev = AUDIO_MIXER_LAST;
1715 dip->next = AUDIO_MIXER_LAST;
1716 strcpy(dip->label.name, AudioNmicrophone);
1717 dip->un.v.num_channels = 2;
1718 strcpy(dip->un.v.units.name, AudioNvolume);
1719 return (0);
1720
1721 case ESS_LINE_PLAY_VOL:
1722 dip->type = AUDIO_MIXER_VALUE;
1723 dip->mixer_class = ESS_INPUT_CLASS;
1724 dip->prev = AUDIO_MIXER_LAST;
1725 dip->next = AUDIO_MIXER_LAST;
1726 strcpy(dip->label.name, AudioNline);
1727 dip->un.v.num_channels = 2;
1728 strcpy(dip->un.v.units.name, AudioNvolume);
1729 return (0);
1730
1731 case ESS_SYNTH_PLAY_VOL:
1732 dip->type = AUDIO_MIXER_VALUE;
1733 dip->mixer_class = ESS_INPUT_CLASS;
1734 dip->prev = AUDIO_MIXER_LAST;
1735 dip->next = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioNfmsynth);
1737 dip->un.v.num_channels = 2;
1738 strcpy(dip->un.v.units.name, AudioNvolume);
1739 return (0);
1740
1741 case ESS_CD_PLAY_VOL:
1742 dip->type = AUDIO_MIXER_VALUE;
1743 dip->mixer_class = ESS_INPUT_CLASS;
1744 dip->prev = AUDIO_MIXER_LAST;
1745 dip->next = AUDIO_MIXER_LAST;
1746 strcpy(dip->label.name, AudioNcd);
1747 dip->un.v.num_channels = 2;
1748 strcpy(dip->un.v.units.name, AudioNvolume);
1749 return (0);
1750
1751 case ESS_AUXB_PLAY_VOL:
1752 dip->type = AUDIO_MIXER_VALUE;
1753 dip->mixer_class = ESS_INPUT_CLASS;
1754 dip->prev = AUDIO_MIXER_LAST;
1755 dip->next = AUDIO_MIXER_LAST;
1756 strcpy(dip->label.name, "auxb");
1757 dip->un.v.num_channels = 2;
1758 strcpy(dip->un.v.units.name, AudioNvolume);
1759 return (0);
1760
1761 case ESS_INPUT_CLASS:
1762 dip->type = AUDIO_MIXER_CLASS;
1763 dip->mixer_class = ESS_INPUT_CLASS;
1764 dip->next = dip->prev = AUDIO_MIXER_LAST;
1765 strcpy(dip->label.name, AudioCinputs);
1766 return (0);
1767
1768
1769 case ESS_MASTER_VOL:
1770 dip->type = AUDIO_MIXER_VALUE;
1771 dip->mixer_class = ESS_OUTPUT_CLASS;
1772 dip->prev = dip->next = AUDIO_MIXER_LAST;
1773 strcpy(dip->label.name, AudioNmaster);
1774 dip->un.v.num_channels = 2;
1775 strcpy(dip->un.v.units.name, AudioNvolume);
1776 return (0);
1777
1778 case ESS_PCSPEAKER_VOL:
1779 dip->type = AUDIO_MIXER_VALUE;
1780 dip->mixer_class = ESS_OUTPUT_CLASS;
1781 dip->prev = AUDIO_MIXER_LAST;
1782 dip->next = AUDIO_MIXER_LAST;
1783 strcpy(dip->label.name, "pc_speaker");
1784 dip->un.v.num_channels = 1;
1785 strcpy(dip->un.v.units.name, AudioNvolume);
1786 return (0);
1787
1788 case ESS_OUTPUT_CLASS:
1789 dip->type = AUDIO_MIXER_CLASS;
1790 dip->mixer_class = ESS_OUTPUT_CLASS;
1791 dip->next = dip->prev = AUDIO_MIXER_LAST;
1792 strcpy(dip->label.name, AudioCoutputs);
1793 return (0);
1794
1795
1796 case ESS_DAC_REC_VOL:
1797 dip->type = AUDIO_MIXER_VALUE;
1798 dip->mixer_class = ESS_RECORD_CLASS;
1799 dip->prev = AUDIO_MIXER_LAST;
1800 dip->next = AUDIO_MIXER_LAST;
1801 strcpy(dip->label.name, AudioNdac);
1802 dip->un.v.num_channels = 2;
1803 strcpy(dip->un.v.units.name, AudioNvolume);
1804 return (0);
1805
1806 case ESS_MIC_REC_VOL:
1807 dip->type = AUDIO_MIXER_VALUE;
1808 dip->mixer_class = ESS_RECORD_CLASS;
1809 dip->prev = AUDIO_MIXER_LAST;
1810 dip->next = ESS_MIC_PREAMP;
1811 strcpy(dip->label.name, AudioNmicrophone);
1812 dip->un.v.num_channels = 2;
1813 strcpy(dip->un.v.units.name, AudioNvolume);
1814 return (0);
1815
1816 case ESS_LINE_REC_VOL:
1817 dip->type = AUDIO_MIXER_VALUE;
1818 dip->mixer_class = ESS_RECORD_CLASS;
1819 dip->prev = AUDIO_MIXER_LAST;
1820 dip->next = AUDIO_MIXER_LAST;
1821 strcpy(dip->label.name, AudioNline);
1822 dip->un.v.num_channels = 2;
1823 strcpy(dip->un.v.units.name, AudioNvolume);
1824 return (0);
1825
1826 case ESS_SYNTH_REC_VOL:
1827 dip->type = AUDIO_MIXER_VALUE;
1828 dip->mixer_class = ESS_RECORD_CLASS;
1829 dip->prev = AUDIO_MIXER_LAST;
1830 dip->next = AUDIO_MIXER_LAST;
1831 strcpy(dip->label.name, AudioNfmsynth);
1832 dip->un.v.num_channels = 2;
1833 strcpy(dip->un.v.units.name, AudioNvolume);
1834 return (0);
1835
1836 case ESS_CD_REC_VOL:
1837 dip->type = AUDIO_MIXER_VALUE;
1838 dip->mixer_class = ESS_RECORD_CLASS;
1839 dip->prev = AUDIO_MIXER_LAST;
1840 dip->next = AUDIO_MIXER_LAST;
1841 strcpy(dip->label.name, AudioNcd);
1842 dip->un.v.num_channels = 2;
1843 strcpy(dip->un.v.units.name, AudioNvolume);
1844 return (0);
1845
1846 case ESS_AUXB_REC_VOL:
1847 dip->type = AUDIO_MIXER_VALUE;
1848 dip->mixer_class = ESS_RECORD_CLASS;
1849 dip->prev = AUDIO_MIXER_LAST;
1850 dip->next = AUDIO_MIXER_LAST;
1851 strcpy(dip->label.name, "auxb");
1852 dip->un.v.num_channels = 2;
1853 strcpy(dip->un.v.units.name, AudioNvolume);
1854 return (0);
1855
1856 case ESS_MIC_PREAMP:
1857 dip->type = AUDIO_MIXER_ENUM;
1858 dip->mixer_class = ESS_RECORD_CLASS;
1859 dip->prev = ESS_MIC_REC_VOL;
1860 dip->next = AUDIO_MIXER_LAST;
1861 strcpy(dip->label.name, AudioNenhanced);
1862 dip->un.e.num_mem = 2;
1863 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1864 dip->un.e.member[0].ord = 0;
1865 strcpy(dip->un.e.member[1].label.name, AudioNon);
1866 dip->un.e.member[1].ord = 1;
1867 return (0);
1868
1869 case ESS_RECORD_VOL:
1870 dip->type = AUDIO_MIXER_VALUE;
1871 dip->mixer_class = ESS_RECORD_CLASS;
1872 dip->prev = AUDIO_MIXER_LAST;
1873 dip->next = AUDIO_MIXER_LAST;
1874 strcpy(dip->label.name, AudioNrecord);
1875 dip->un.v.num_channels = 2;
1876 strcpy(dip->un.v.units.name, AudioNvolume);
1877 return (0);
1878
1879 case ESS_RECORD_SOURCE:
1880 dip->mixer_class = ESS_RECORD_CLASS;
1881 dip->prev = dip->next = AUDIO_MIXER_LAST;
1882 strcpy(dip->label.name, AudioNsource);
1883 dip->type = AUDIO_MIXER_SET;
1884 dip->un.s.num_mem = 6;
1885 strcpy(dip->un.s.member[0].label.name, AudioNdac);
1886 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
1887 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
1888 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
1889 strcpy(dip->un.s.member[2].label.name, AudioNline);
1890 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
1891 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1892 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
1893 strcpy(dip->un.s.member[4].label.name, AudioNcd);
1894 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
1895 strcpy(dip->un.s.member[5].label.name, "auxb");
1896 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
1897 return (0);
1898
1899 case ESS_RECORD_CLASS:
1900 dip->type = AUDIO_MIXER_CLASS;
1901 dip->mixer_class = ESS_RECORD_CLASS;
1902 dip->next = dip->prev = AUDIO_MIXER_LAST;
1903 strcpy(dip->label.name, AudioCrecord);
1904 return (0);
1905
1906
1907 case ESS_RECORD_MONITOR:
1908 dip->mixer_class = ESS_MONITOR_CLASS;
1909 dip->prev = dip->next = AUDIO_MIXER_LAST;
1910 strcpy(dip->label.name, AudioNmonitor);
1911 dip->type = AUDIO_MIXER_ENUM;
1912 dip->un.e.num_mem = 2;
1913 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1914 dip->un.e.member[0].ord = 0;
1915 strcpy(dip->un.e.member[1].label.name, AudioNon);
1916 dip->un.e.member[1].ord = 1;
1917 return (0);
1918
1919 case ESS_MONITOR_CLASS:
1920 dip->type = AUDIO_MIXER_CLASS;
1921 dip->mixer_class = ESS_MONITOR_CLASS;
1922 dip->next = dip->prev = AUDIO_MIXER_LAST;
1923 strcpy(dip->label.name, AudioCmonitor);
1924 return (0);
1925 }
1926
1927 return (ENXIO);
1928 }
1929
1930 void *
1931 ess_malloc(addr, size, pool, flags)
1932 void *addr;
1933 unsigned long size;
1934 int pool;
1935 int flags;
1936 {
1937 struct ess_softc *sc = addr;
1938
1939 return isa_malloc(sc->sc_ic, 4, size, pool, flags);
1940 }
1941
1942 void
1943 ess_free(addr, ptr, pool)
1944 void *addr;
1945 void *ptr;
1946 int pool;
1947 {
1948 isa_free(ptr, pool);
1949 }
1950
1951 unsigned long
1952 ess_round(addr, size)
1953 void *addr;
1954 unsigned long size;
1955 {
1956 if (size > MAX_ISADMA)
1957 size = MAX_ISADMA;
1958 return size;
1959 }
1960
1961 int
1962 ess_mappage(addr, mem, off, prot)
1963 void *addr;
1964 void *mem;
1965 int off;
1966 int prot;
1967 {
1968 return (isa_mappage(mem, off, prot));
1969 }
1970
1971 int
1972 ess_get_props(addr)
1973 void *addr;
1974 {
1975 struct ess_softc *sc = addr;
1976 return (AUDIO_PROP_MMAP |
1977 (sc->sc_in.drq != sc->sc_out.drq ? AUDIO_PROP_FULLDUPLEX : 0));
1978 }
1979
1980 /* ============================================
1981 * Generic functions for ess, not used by audio h/w i/f
1982 * =============================================
1983 */
1984
1985 /*
1986 * Reset the chip.
1987 * Return non-zero if the chip isn't detected.
1988 */
1989 int
1990 ess_reset(sc)
1991 struct ess_softc *sc;
1992 {
1993 bus_space_tag_t iot = sc->sc_iot;
1994 bus_space_handle_t ioh = sc->sc_ioh;
1995
1996 sc->sc_in.intr = 0;
1997
1998 if (sc->sc_in.active) {
1999 isa_dmaabort(sc->sc_ic, sc->sc_in.drq);
2000 sc->sc_in.active = 0;
2001 }
2002
2003 sc->sc_out.intr = 0;
2004 sc->sc_out.dmacnt = 0;
2005 if (sc->sc_out.active) {
2006 isa_dmaabort(sc->sc_ic, sc->sc_out.drq);
2007 sc->sc_out.active = 0;
2008 }
2009
2010 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2011 delay(10000);
2012 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2013 if (ess_rdsp(sc) != ESS_MAGIC)
2014 return (1);
2015
2016 /* Enable access to the ESS extension commands. */
2017 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2018
2019 return (0);
2020 }
2021
2022 void
2023 ess_set_gain(sc, port, on)
2024 struct ess_softc *sc;
2025 int port;
2026 int on;
2027 {
2028 int gain, left, right;
2029 int mix;
2030 int src;
2031 int stereo;
2032
2033 /*
2034 * Most gain controls are found in the mixer registers and
2035 * are stereo. Any that are not, must set mix and stereo as
2036 * required.
2037 */
2038 mix = 1;
2039 stereo = 1;
2040
2041 switch (port) {
2042 case ESS_MASTER_VOL:
2043 src = 0x32;
2044 break;
2045 case ESS_DAC_PLAY_VOL:
2046 src = 0x7C;
2047 break;
2048 case ESS_MIC_PLAY_VOL:
2049 src = 0x1A;
2050 break;
2051 case ESS_LINE_PLAY_VOL:
2052 src = 0x3E;
2053 break;
2054 case ESS_SYNTH_PLAY_VOL:
2055 src = 0x36;
2056 break;
2057 case ESS_CD_PLAY_VOL:
2058 src = 0x38;
2059 break;
2060 case ESS_AUXB_PLAY_VOL:
2061 src = 0x3A;
2062 break;
2063 case ESS_PCSPEAKER_VOL:
2064 src = 0x3C;
2065 stereo = 0;
2066 break;
2067 case ESS_DAC_REC_VOL:
2068 src = 0x69;
2069 break;
2070 case ESS_MIC_REC_VOL:
2071 src = 0x68;
2072 break;
2073 case ESS_LINE_REC_VOL:
2074 src = 0x6E;
2075 break;
2076 case ESS_SYNTH_REC_VOL:
2077 src = 0x6B;
2078 break;
2079 case ESS_CD_REC_VOL:
2080 src = 0x6A;
2081 break;
2082 case ESS_AUXB_REC_VOL:
2083 src = 0x6C;
2084 break;
2085 case ESS_RECORD_VOL:
2086 src = 0xB4;
2087 mix = 0;
2088 break;
2089 default:
2090 return;
2091 }
2092
2093 if (on) {
2094 left = sc->gain[port][ESS_LEFT];
2095 right = sc->gain[port][ESS_RIGHT];
2096 } else {
2097 left = right = 0;
2098 }
2099
2100 if (stereo)
2101 gain = ESS_STEREO_GAIN(left, right);
2102 else
2103 gain = ESS_MONO_GAIN(left);
2104
2105 if (mix)
2106 ess_write_mix_reg(sc, src, gain);
2107 else
2108 ess_write_x_reg(sc, src, gain);
2109 }
2110
2111 int
2112 ess_set_in_ports(sc, mask)
2113 struct ess_softc *sc;
2114 int mask;
2115 {
2116 mixer_devinfo_t di;
2117 int i;
2118 int port;
2119 int tmp;
2120
2121 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2122
2123 /*
2124 * Get the device info for the record source control,
2125 * including the list of available sources.
2126 */
2127 di.index = ESS_RECORD_SOURCE;
2128 if (ess_query_devinfo(sc, &di))
2129 return EINVAL;
2130
2131 /*
2132 * Set or disable the record volume control for each of the
2133 * possible sources.
2134 */
2135 for (i = 0; i < di.un.s.num_mem; i++)
2136 {
2137 /*
2138 * Calculate the source port number from its mask.
2139 */
2140 tmp = di.un.s.member[i].mask >> 1;
2141 for (port = 0; tmp; port++) {
2142 tmp >>= 1;
2143 }
2144
2145 /*
2146 * Set the source gain:
2147 * to the current value if source is enabled
2148 * to zero if source is disabled
2149 */
2150 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2151 }
2152
2153 sc->in_mask = mask;
2154
2155 /*
2156 * We have to fake a single port since the upper layer expects
2157 * one only. We choose the lowest numbered port that is enabled.
2158 */
2159 for(i = 0; i < ESS_NPORT; i++) {
2160 if (mask & (1 << i)) {
2161 sc->in_port = i;
2162 break;
2163 }
2164 }
2165
2166 return (0);
2167 }
2168
2169 void
2170 ess_speaker_on(sc)
2171 struct ess_softc *sc;
2172 {
2173 /* Disable mute on left- and right-master volume. */
2174 ess_clear_mreg_bits(sc, 0x60, 0x40);
2175 ess_clear_mreg_bits(sc, 0x62, 0x40);
2176 }
2177
2178 void
2179 ess_speaker_off(sc)
2180 struct ess_softc *sc;
2181 {
2182 /* Enable mute on left- and right-master volume. */
2183 ess_set_mreg_bits(sc, 0x60, 0x40);
2184 ess_set_mreg_bits(sc, 0x62, 0x40);
2185 }
2186
2187 /*
2188 * Calculate the time constant for the requested sampling rate.
2189 */
2190 u_int
2191 ess_srtotc(rate)
2192 u_int rate;
2193 {
2194 u_int tc;
2195
2196 /* The following formulae are from the ESS data sheet. */
2197 if (rate <= 22050)
2198 tc = 128 - 397700L / rate;
2199 else
2200 tc = 256 - 795500L / rate;
2201
2202 return (tc);
2203 }
2204
2205
2206 /*
2207 * Calculate the filter constant for the reuqested sampling rate.
2208 */
2209 u_int
2210 ess_srtofc(rate)
2211 u_int rate;
2212 {
2213 /*
2214 * The following formula is derived from the information in
2215 * the ES1887 data sheet, based on a roll-off frequency of
2216 * 87%.
2217 */
2218 return (256 - 200279L / rate);
2219 }
2220
2221
2222 /*
2223 * Return the status of the DSP.
2224 */
2225 u_char
2226 ess_get_dsp_status(sc)
2227 struct ess_softc *sc;
2228 {
2229 bus_space_tag_t iot = sc->sc_iot;
2230 bus_space_handle_t ioh = sc->sc_ioh;
2231
2232 return (EREAD1(iot, ioh, ESS_DSP_RW_STATUS));
2233 }
2234
2235
2236 /*
2237 * Return the read status of the DSP: 1 -> DSP ready for reading
2238 * 0 -> DSP not ready for reading
2239 */
2240 u_char
2241 ess_dsp_read_ready(sc)
2242 struct ess_softc *sc;
2243 {
2244 return (((ess_get_dsp_status(sc) & ESS_DSP_READ_MASK) ==
2245 ESS_DSP_READ_READY) ? 1 : 0);
2246 }
2247
2248
2249 /*
2250 * Return the write status of the DSP: 1 -> DSP ready for writing
2251 * 0 -> DSP not ready for writing
2252 */
2253 u_char
2254 ess_dsp_write_ready(sc)
2255 struct ess_softc *sc;
2256 {
2257 return (((ess_get_dsp_status(sc) & ESS_DSP_WRITE_MASK) ==
2258 ESS_DSP_WRITE_READY) ? 1 : 0);
2259 }
2260
2261
2262 /*
2263 * Read a byte from the DSP.
2264 */
2265 int
2266 ess_rdsp(sc)
2267 struct ess_softc *sc;
2268 {
2269 bus_space_tag_t iot = sc->sc_iot;
2270 bus_space_handle_t ioh = sc->sc_ioh;
2271 int i;
2272
2273 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2274 if (ess_dsp_read_ready(sc)) {
2275 i = EREAD1(iot, ioh, ESS_DSP_READ);
2276 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2277 return i;
2278 } else
2279 delay(10);
2280 }
2281
2282 DPRINTF(("ess_rdsp: timed out\n"));
2283 return (-1);
2284 }
2285
2286 /*
2287 * Write a byte to the DSP.
2288 */
2289 int
2290 ess_wdsp(sc, v)
2291 struct ess_softc *sc;
2292 u_char v;
2293 {
2294 bus_space_tag_t iot = sc->sc_iot;
2295 bus_space_handle_t ioh = sc->sc_ioh;
2296 int i;
2297
2298 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2299
2300 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2301 if (ess_dsp_write_ready(sc)) {
2302 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2303 return (0);
2304 } else
2305 delay(10);
2306 }
2307
2308 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2309 return (-1);
2310 }
2311
2312 /*
2313 * Write a value to one of the ESS extended registers.
2314 */
2315 int
2316 ess_write_x_reg(sc, reg, val)
2317 struct ess_softc *sc;
2318 u_char reg;
2319 u_char val;
2320 {
2321 int error;
2322
2323 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2324 if ((error = ess_wdsp(sc, reg)) == 0)
2325 error = ess_wdsp(sc, val);
2326
2327 return error;
2328 }
2329
2330 /*
2331 * Read the value of one of the ESS extended registers.
2332 */
2333 u_char
2334 ess_read_x_reg(sc, reg)
2335 struct ess_softc *sc;
2336 u_char reg;
2337 {
2338 int error;
2339 int val;
2340
2341 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2342 error = ess_wdsp(sc, reg);
2343 if (error)
2344 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2345 /* REVISIT: what if an error is returned above? */
2346 val = ess_rdsp(sc);
2347 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2348 return val;
2349 }
2350
2351 void
2352 ess_clear_xreg_bits(sc, reg, mask)
2353 struct ess_softc *sc;
2354 u_char reg;
2355 u_char mask;
2356 {
2357 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2358 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2359 reg));
2360 }
2361
2362 void
2363 ess_set_xreg_bits(sc, reg, mask)
2364 struct ess_softc *sc;
2365 u_char reg;
2366 u_char mask;
2367 {
2368 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2369 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2370 reg));
2371 }
2372
2373
2374 /*
2375 * Write a value to one of the ESS mixer registers.
2376 */
2377 void
2378 ess_write_mix_reg(sc, reg, val)
2379 struct ess_softc *sc;
2380 u_char reg;
2381 u_char val;
2382 {
2383 bus_space_tag_t iot = sc->sc_iot;
2384 bus_space_handle_t ioh = sc->sc_ioh;
2385 int s;
2386
2387 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2388
2389 s = splaudio();
2390 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2391 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2392 splx(s);
2393 }
2394
2395 /*
2396 * Read the value of one of the ESS mixer registers.
2397 */
2398 u_char
2399 ess_read_mix_reg(sc, reg)
2400 struct ess_softc *sc;
2401 u_char reg;
2402 {
2403 bus_space_tag_t iot = sc->sc_iot;
2404 bus_space_handle_t ioh = sc->sc_ioh;
2405 int s;
2406 u_char val;
2407
2408 s = splaudio();
2409 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2410 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2411 splx(s);
2412
2413 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2414 return val;
2415 }
2416
2417 void
2418 ess_clear_mreg_bits(sc, reg, mask)
2419 struct ess_softc *sc;
2420 u_char reg;
2421 u_char mask;
2422 {
2423 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2424 }
2425
2426 void
2427 ess_set_mreg_bits(sc, reg, mask)
2428 struct ess_softc *sc;
2429 u_char reg;
2430 u_char mask;
2431 {
2432 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2433 }
2434