ess.c revision 1.34 1 /* $NetBSD: ess.c,v 1.34 1999/03/16 13:06:35 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/errno.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <sys/device.h>
74 #include <sys/proc.h>
75
76 #include <machine/cpu.h>
77 #include <machine/intr.h>
78 #include <machine/bus.h>
79
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82 #include <dev/auconv.h>
83 #include <dev/mulaw.h>
84
85 #include <dev/isa/isavar.h>
86 #include <dev/isa/isadmavar.h>
87
88 #include <dev/isa/essvar.h>
89 #include <dev/isa/essreg.h>
90
91 #ifdef AUDIO_DEBUG
92 #define DPRINTF(x) if (essdebug) printf x
93 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
94 int essdebug = 0;
95 #else
96 #define DPRINTF(x)
97 #define DPRINTFN(n,x)
98 #endif
99
100 #if 0
101 unsigned uuu;
102 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
103 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
104 #else
105 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
106 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
107 #endif
108
109
110 int ess_setup_sc __P((struct ess_softc *, int));
111
112 int ess_open __P((void *, int));
113 void ess_1788_close __P((void *));
114 void ess_1888_close __P((void *));
115 int ess_getdev __P((void *, struct audio_device *));
116 int ess_drain __P((void *));
117
118 int ess_query_encoding __P((void *, struct audio_encoding *));
119
120 int ess_set_params __P((void *, int, int, struct audio_params *,
121 struct audio_params *));
122
123 int ess_round_blocksize __P((void *, int));
124
125 int ess_1788_trigger_output __P((void *, void *, void *, int,
126 void (*)(void *), void *, struct audio_params *));
127 int ess_1888_trigger_output __P((void *, void *, void *, int,
128 void (*)(void *), void *, struct audio_params *));
129 int ess_trigger_input __P((void *, void *, void *, int,
130 void (*)(void *), void *, struct audio_params *));
131 int ess_1788_halt_output __P((void *));
132 int ess_1888_halt_output __P((void *));
133 int ess_halt_input __P((void *));
134
135 int ess_intr_audio2 __P((void *));
136 int ess_intr_audio1 __P((void *));
137
138 int ess_speaker_ctl __P((void *, int));
139
140 int ess_getdev __P((void *, struct audio_device *));
141
142 int ess_set_port __P((void *, mixer_ctrl_t *));
143 int ess_get_port __P((void *, mixer_ctrl_t *));
144
145 void *ess_malloc __P((void *, int, size_t, int, int));
146 void ess_free __P((void *, void *, int));
147 size_t ess_round_buffersize __P((void *, int, size_t));
148 int ess_mappage __P((void *, void *, int, int));
149
150
151 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
152 int ess_get_props __P((void *));
153
154 void ess_speaker_on __P((struct ess_softc *));
155 void ess_speaker_off __P((struct ess_softc *));
156
157 int ess_config_addr __P((struct ess_softc *));
158 void ess_config_irq __P((struct ess_softc *));
159 void ess_config_drq __P((struct ess_softc *));
160 void ess_setup __P((struct ess_softc *));
161 int ess_identify __P((struct ess_softc *));
162
163 int ess_reset __P((struct ess_softc *));
164 void ess_set_gain __P((struct ess_softc *, int, int));
165 int ess_set_in_port __P((struct ess_softc *, int));
166 int ess_set_in_ports __P((struct ess_softc *, int));
167 u_int ess_srtotc __P((u_int));
168 u_int ess_srtofc __P((u_int));
169 u_char ess_get_dsp_status __P((struct ess_softc *));
170 u_char ess_dsp_read_ready __P((struct ess_softc *));
171 u_char ess_dsp_write_ready __P((struct ess_softc *sc));
172 int ess_rdsp __P((struct ess_softc *));
173 int ess_wdsp __P((struct ess_softc *, u_char));
174 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
175 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
176 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
177 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
178 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
179 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
180 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
181 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
182
183 static char *essmodel[] = {
184 "unsupported",
185 "1888",
186 "1887",
187 "888",
188 "1788"
189 };
190
191 struct audio_device ess_device = {
192 "ESS Technology",
193 "x",
194 "ess"
195 };
196
197 /*
198 * Define our interface to the higher level audio driver.
199 */
200
201 struct audio_hw_if ess_1788_hw_if = {
202 ess_open,
203 ess_1788_close,
204 ess_drain,
205 ess_query_encoding,
206 ess_set_params,
207 ess_round_blocksize,
208 NULL,
209 NULL,
210 NULL,
211 NULL,
212 NULL,
213 ess_1788_halt_output,
214 ess_halt_input,
215 ess_speaker_ctl,
216 ess_getdev,
217 NULL,
218 ess_set_port,
219 ess_get_port,
220 ess_query_devinfo,
221 ess_malloc,
222 ess_free,
223 ess_round_buffersize,
224 ess_mappage,
225 ess_get_props,
226 ess_1788_trigger_output,
227 ess_trigger_input,
228 };
229
230 struct audio_hw_if ess_1888_hw_if = {
231 ess_open,
232 ess_1888_close,
233 ess_drain,
234 ess_query_encoding,
235 ess_set_params,
236 ess_round_blocksize,
237 NULL,
238 NULL,
239 NULL,
240 NULL,
241 NULL,
242 ess_1888_halt_output,
243 ess_halt_input,
244 ess_speaker_ctl,
245 ess_getdev,
246 NULL,
247 ess_set_port,
248 ess_get_port,
249 ess_query_devinfo,
250 ess_malloc,
251 ess_free,
252 ess_round_buffersize,
253 ess_mappage,
254 ess_get_props,
255 ess_1888_trigger_output,
256 ess_trigger_input,
257 };
258
259 #ifdef AUDIO_DEBUG
260 void ess_printsc __P((struct ess_softc *));
261 void ess_dump_mixer __P((struct ess_softc *));
262
263 void
264 ess_printsc(sc)
265 struct ess_softc *sc;
266 {
267 int i;
268
269 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
270 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
271 sc->in_port, sc->spkr_state ? "on" : "off");
272
273 printf("record: dmachan %d irq %d nintr %lu intr %p arg %p\n",
274 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
275 sc->sc_audio1.intr, sc->sc_audio1.arg);
276
277 if (sc->sc_model != ESS_1788)
278 printf("play: dmachan %d irq %d nintr %lu intr %p arg %p\n",
279 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
280 sc->sc_audio2.intr, sc->sc_audio2.arg);
281
282 printf("gain:");
283 for (i = 0; i < sc->ndevs; i++)
284 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
285 printf("\n");
286 }
287
288 void
289 ess_dump_mixer(sc)
290 struct ess_softc *sc;
291 {
292 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
293 0x7C, ess_read_mix_reg(sc, 0x7C));
294 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
295 0x1A, ess_read_mix_reg(sc, 0x1A));
296 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
297 0x3E, ess_read_mix_reg(sc, 0x3E));
298 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
299 0x36, ess_read_mix_reg(sc, 0x36));
300 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
301 0x38, ess_read_mix_reg(sc, 0x38));
302 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
303 0x3A, ess_read_mix_reg(sc, 0x3A));
304 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
305 0x32, ess_read_mix_reg(sc, 0x32));
306 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
307 0x3C, ess_read_mix_reg(sc, 0x3C));
308 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
309 0x69, ess_read_mix_reg(sc, 0x69));
310 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
311 0x68, ess_read_mix_reg(sc, 0x68));
312 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
313 0x6E, ess_read_mix_reg(sc, 0x6E));
314 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
315 0x6B, ess_read_mix_reg(sc, 0x6B));
316 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
317 0x6A, ess_read_mix_reg(sc, 0x6A));
318 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
319 0x6C, ess_read_mix_reg(sc, 0x6C));
320 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
321 0xB4, ess_read_x_reg(sc, 0xB4));
322 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
323 0x14, ess_read_mix_reg(sc, 0x14));
324
325 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
326 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
327 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
328 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
329 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
330 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
331 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
332 }
333
334 #endif
335
336 /*
337 * Configure the ESS chip for the desired audio base address.
338 */
339 int
340 ess_config_addr(sc)
341 struct ess_softc *sc;
342 {
343 int iobase = sc->sc_iobase;
344 bus_space_tag_t iot = sc->sc_iot;
345
346 /*
347 * Configure using the System Control Register method. This
348 * method is used when the AMODE line is tied high, which is
349 * the case for the Shark, but not for the evaluation board.
350 */
351
352 bus_space_handle_t scr_access_ioh;
353 bus_space_handle_t scr_ioh;
354 u_short scr_value;
355
356 /*
357 * Set the SCR bit to enable audio.
358 */
359 scr_value = ESS_SCR_AUDIO_ENABLE;
360
361 /*
362 * Set the SCR bits necessary to select the specified audio
363 * base address.
364 */
365 switch(iobase) {
366 case 0x220:
367 scr_value |= ESS_SCR_AUDIO_220;
368 break;
369 case 0x230:
370 scr_value |= ESS_SCR_AUDIO_230;
371 break;
372 case 0x240:
373 scr_value |= ESS_SCR_AUDIO_240;
374 break;
375 case 0x250:
376 scr_value |= ESS_SCR_AUDIO_250;
377 break;
378 default:
379 printf("ess: configured iobase 0x%x invalid\n", iobase);
380 return (1);
381 break;
382 }
383
384 /*
385 * Get a mapping for the System Control Register (SCR) access
386 * registers and the SCR data registers.
387 */
388 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
389 0, &scr_access_ioh)) {
390 printf("ess: can't map SCR access registers\n");
391 return (1);
392 }
393 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
394 0, &scr_ioh)) {
395 printf("ess: can't map SCR registers\n");
396 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
397 return (1);
398 }
399
400 /* Unlock the SCR. */
401 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
402
403 /* Write the base address information into SCR[0]. */
404 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
405 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
406
407 /* Lock the SCR. */
408 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
409
410 /* Unmap the SCR access ports and the SCR data ports. */
411 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
412 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
413
414 return 0;
415 }
416
417
418 /*
419 * Configure the ESS chip for the desired IRQ and DMA channels.
420 * ESS ISA
421 * --------
422 * IRQA irq9
423 * IRQB irq5
424 * IRQC irq7
425 * IRQD irq10
426 * IRQE irq15
427 *
428 * DRQA drq0
429 * DRQB drq1
430 * DRQC drq3
431 * DRQD drq5
432 */
433 void
434 ess_config_irq(sc)
435 struct ess_softc *sc;
436 {
437 int v;
438
439 DPRINTFN(2,("ess_config_irq\n"));
440
441 if (sc->sc_model == ESS_1887 &&
442 sc->sc_audio1.irq == sc->sc_audio2.irq) {
443 /* Use new method, both interrupts are the same. */
444 v = ESS_IS_SELECT_IRQ; /* enable intrs */
445 switch (sc->sc_audio2.irq) {
446 case 5:
447 v |= ESS_IS_INTRB;
448 break;
449 case 7:
450 v |= ESS_IS_INTRC;
451 break;
452 case 9:
453 v |= ESS_IS_INTRA;
454 break;
455 case 10:
456 v |= ESS_IS_INTRD;
457 break;
458 case 15:
459 v |= ESS_IS_INTRE;
460 break;
461 #ifdef DIAGNOSTIC
462 default:
463 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
464 sc->sc_audio1.irq);
465 return;
466 #endif
467 }
468 /* Set the IRQ */
469 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
470 return;
471 }
472
473 /* Configure Audio 1 (record) for the appropriate IRQ line. */
474 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
475 switch (sc->sc_audio1.irq) {
476 case 5:
477 v |= ESS_IRQ_CTRL_INTRB;
478 break;
479 case 7:
480 v |= ESS_IRQ_CTRL_INTRC;
481 break;
482 case 9:
483 v |= ESS_IRQ_CTRL_INTRA;
484 break;
485 case 10:
486 v |= ESS_IRQ_CTRL_INTRD;
487 break;
488 #ifdef DIAGNOSTIC
489 default:
490 printf("ess: configured irq %d not supported for Audio 1\n",
491 sc->sc_audio1.irq);
492 return;
493 #endif
494 }
495 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
496
497 if (sc->sc_model == ESS_1788)
498 return;
499
500 /* irq2 is hardwired to 15 in this mode */
501 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
502 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
503 /* Use old method. */
504 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
505 }
506
507
508 void
509 ess_config_drq(sc)
510 struct ess_softc *sc;
511 {
512 int v;
513
514 DPRINTFN(2,("ess_config_drq\n"));
515
516 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
517 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
518 switch (sc->sc_audio1.drq) {
519 case 0:
520 v |= ESS_DRQ_CTRL_DRQA;
521 break;
522 case 1:
523 v |= ESS_DRQ_CTRL_DRQB;
524 break;
525 case 3:
526 v |= ESS_DRQ_CTRL_DRQC;
527 break;
528 #ifdef DIAGNOSTIC
529 default:
530 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
531 sc->sc_audio1.drq);
532 return;
533 #endif
534 }
535 /* Set DRQ1 */
536 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
537
538 if (sc->sc_model == ESS_1788)
539 return;
540
541 /* Configure DRQ2 */
542 v = ESS_AUDIO2_CTRL3_DRQ_PD;
543 switch (sc->sc_audio2.drq) {
544 case 0:
545 v |= ESS_AUDIO2_CTRL3_DRQA;
546 break;
547 case 1:
548 v |= ESS_AUDIO2_CTRL3_DRQB;
549 break;
550 case 3:
551 v |= ESS_AUDIO2_CTRL3_DRQC;
552 break;
553 case 5:
554 v |= ESS_AUDIO2_CTRL3_DRQC;
555 break;
556 #ifdef DIAGNOSTIC
557 default:
558 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
559 sc->sc_audio2.drq);
560 return;
561 #endif
562 }
563 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
564 /* Enable DMA 2 */
565 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
566 ESS_AUDIO2_CTRL2_DMA_ENABLE);
567 }
568
569 /*
570 * Set up registers after a reset.
571 */
572 void
573 ess_setup(sc)
574 struct ess_softc *sc;
575 {
576
577 ess_config_irq(sc);
578 ess_config_drq(sc);
579
580 DPRINTFN(2,("ess_setup: done\n"));
581 }
582
583 /*
584 * Determine the model of ESS chip we are talking to. Currently we
585 * only support ES1888, ES1887 and ES888. The method of determining
586 * the chip is based on the information on page 27 of the ES1887 data
587 * sheet.
588 *
589 * This routine sets the values of sc->sc_model and sc->sc_version.
590 */
591 int
592 ess_identify(sc)
593 struct ess_softc *sc;
594 {
595 u_char reg1;
596 u_char reg2;
597 u_char reg3;
598
599 sc->sc_model = ESS_UNSUPPORTED;
600 sc->sc_version = 0;
601
602
603 /*
604 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
605 * n >= 8 for an ES1887 or an ES888. Other values indicate
606 * earlier (unsupported) chips.
607 */
608 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
609
610 if ((reg1 = ess_rdsp(sc)) != 0x68) {
611 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
612 return 1;
613 }
614
615 reg2 = ess_rdsp(sc);
616 if (((reg2 & 0xf0) != 0x80) ||
617 ((reg2 & 0x0f) < 8)) {
618 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
619 return 1;
620 }
621
622 /*
623 * Store the ID bytes as the version.
624 */
625 sc->sc_version = (reg1 << 8) + reg2;
626
627
628 /*
629 * 2. Verify we can change bit 2 in mixer register 0x64. This
630 * should be possible on all supported chips.
631 */
632 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
633 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
634
635 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
636
637 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
638 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
639 return 1;
640 }
641
642 /*
643 * Restore the original value of mixer register 0x64.
644 */
645 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
646
647
648 /*
649 * 3. Verify we can change the value of mixer register
650 * ESS_MREG_SAMPLE_RATE.
651 * This is possible on the 1888/1887/888, but not on the 1788.
652 * It is not necessary to restore the value of this mixer register.
653 */
654 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
655 reg2 = reg1 ^ 0xff; /* toggle all bits */
656
657 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
658
659 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
660 /* If we got this far before failing, it's a 1788. */
661 sc->sc_model = ESS_1788;
662 } else {
663 /*
664 * 4. Determine if we can change bit 5 in mixer register 0x64.
665 * This determines whether we have an ES1887:
666 *
667 * - can change indicates ES1887
668 * - can't change indicates ES1888 or ES888
669 */
670 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
671 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
672
673 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
674
675 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
676 sc->sc_model = ESS_1887;
677
678 /*
679 * Restore the original value of mixer register 0x64.
680 */
681 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
682 } else {
683 /*
684 * 5. Determine if we can change the value of mixer
685 * register 0x69 independently of mixer register
686 * 0x68. This determines which chip we have:
687 *
688 * - can modify idependently indicates ES888
689 * - register 0x69 is an alias of 0x68 indicates ES1888
690 */
691 reg1 = ess_read_mix_reg(sc, 0x68);
692 reg2 = ess_read_mix_reg(sc, 0x69);
693 reg3 = reg2 ^ 0xff; /* toggle all bits */
694
695 /*
696 * Write different values to each register.
697 */
698 ess_write_mix_reg(sc, 0x68, reg2);
699 ess_write_mix_reg(sc, 0x69, reg3);
700
701 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
702 ess_read_mix_reg(sc, 0x69) == reg3)
703 sc->sc_model = ESS_888;
704 else
705 sc->sc_model = ESS_1888;
706
707 /*
708 * Restore the original value of the registers.
709 */
710 ess_write_mix_reg(sc, 0x68, reg1);
711 ess_write_mix_reg(sc, 0x69, reg2);
712 }
713 }
714
715 return 0;
716 }
717
718
719 int
720 ess_setup_sc(sc, doinit)
721 struct ess_softc *sc;
722 int doinit;
723 {
724 /* Reset the chip. */
725 if (ess_reset(sc) != 0) {
726 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
727 return (1);
728 }
729
730 /* Identify the ESS chip, and check that it is supported. */
731 if (ess_identify(sc)) {
732 DPRINTF(("ess_setup_sc: couldn't identify\n"));
733 return (1);
734 }
735
736 return (0);
737 }
738
739 /*
740 * Probe for the ESS hardware.
741 */
742 int
743 essmatch(sc)
744 struct ess_softc *sc;
745 {
746 if (!ESS_BASE_VALID(sc->sc_iobase)) {
747 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
748 return (0);
749 }
750
751 /* Configure the ESS chip for the desired audio base address. */
752 if (ess_config_addr(sc))
753 return (0);
754
755 if (ess_setup_sc(sc, 1))
756 return (0);
757
758 if (sc->sc_model == ESS_UNSUPPORTED) {
759 DPRINTF(("ess: Unsupported model\n"));
760 return (0);
761 }
762
763 /* Check that requested DMA channels are valid and different. */
764 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
765 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
766 return (0);
767 }
768 if (sc->sc_model != ESS_1788) {
769 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq, sc->sc_model)) {
770 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
771 return (0);
772 }
773 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
774 printf("ess: play and record drq both %d\n",
775 sc->sc_audio1.drq);
776 return (0);
777 }
778 }
779
780 /*
781 * The 1887 has an additional IRQ mode where both channels are mapped
782 * to the same IRQ.
783 */
784 if (sc->sc_model == ESS_1887 &&
785 sc->sc_audio1.irq == sc->sc_audio2.irq &&
786 ESS_IRQ12_VALID(sc->sc_audio1.irq))
787 goto irq_not1888;
788
789 /* Check that requested IRQ lines are valid and different. */
790 if (!ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
791 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
792 return (0);
793 }
794 if (sc->sc_model != ESS_1788) {
795 if (!ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
796 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
797 return (0);
798 }
799 if (sc->sc_audio1.irq == sc->sc_audio2.irq) {
800 printf("ess: play and record irq both %d\n",
801 sc->sc_audio1.irq);
802 return (0);
803 }
804 }
805
806 irq_not1888:
807 /* Check that the DRQs are free. */
808 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq) ||
809 !isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
810 return (0);
811
812 /* XXX should we check IRQs as well? */
813
814 return (1);
815 }
816
817
818 /*
819 * Attach hardware to driver, attach hardware driver to audio
820 * pseudo-device driver.
821 */
822 void
823 essattach(sc)
824 struct ess_softc *sc;
825 {
826 struct audio_attach_args arg;
827 struct audio_params pparams, rparams;
828 int i;
829 u_int v;
830
831 if (ess_setup_sc(sc, 0)) {
832 printf("%s: setup failed\n", sc->sc_dev.dv_xname);
833 return;
834 }
835
836 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
837 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
838 ess_intr_audio1, sc);
839 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
840 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
841 printf("%s: can't create map for drq %d\n",
842 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
843 return;
844 }
845
846 if (sc->sc_model != ESS_1788) {
847 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
848 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
849 ess_intr_audio2, sc);
850 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
851 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
852 printf("%s: can't create map for drq %d\n",
853 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
854 return;
855 }
856 }
857
858 printf(" ESS Technology ES%s [version 0x%04x]\n",
859 essmodel[sc->sc_model], sc->sc_version);
860
861 /*
862 * Set record and play parameters to default values defined in
863 * generic audio driver.
864 */
865 pparams = audio_default;
866 rparams = audio_default;
867 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
868
869 /* Do a hardware reset on the mixer. */
870 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
871
872 /*
873 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
874 * to playback mixer, since playback is always through Audio 2.
875 */
876 if (sc->sc_model != ESS_1788)
877 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
878 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
879
880 if (sc->sc_model == ESS_1788) {
881 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
882 sc->in_port = ESS_SOURCE_MIC;
883 sc->ndevs = ESS_1788_NDEVS;
884 } else {
885 /*
886 * Set hardware record source to use output of the record
887 * mixer. We do the selection of record source in software by
888 * setting the gain of the unused sources to zero. (See
889 * ess_set_in_ports.)
890 */
891 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
892 sc->in_mask = 1 << ESS_MIC_REC_VOL;
893 sc->ndevs = ESS_1888_NDEVS;
894 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
895 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
896 }
897
898 /*
899 * Set gain on each mixer device to a sensible value.
900 * Devices not normally used are turned off, and other devices
901 * are set to 50% volume.
902 */
903 for (i = 0; i < sc->ndevs; i++) {
904 switch (i) {
905 case ESS_MIC_PLAY_VOL:
906 case ESS_LINE_PLAY_VOL:
907 case ESS_CD_PLAY_VOL:
908 case ESS_AUXB_PLAY_VOL:
909 case ESS_DAC_REC_VOL:
910 case ESS_LINE_REC_VOL:
911 case ESS_SYNTH_REC_VOL:
912 case ESS_CD_REC_VOL:
913 case ESS_AUXB_REC_VOL:
914 v = 0;
915 break;
916 default:
917 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
918 break;
919 }
920 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
921 ess_set_gain(sc, i, 1);
922 }
923
924 ess_setup(sc);
925
926 /* Disable the speaker until the device is opened. */
927 ess_speaker_off(sc);
928 sc->spkr_state = SPKR_OFF;
929
930 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
931 sprintf(ess_device.version, "0x%04x", sc->sc_version);
932
933 if (sc->sc_model == ESS_1788)
934 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
935 else
936 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
937
938 arg.type = AUDIODEV_TYPE_OPL;
939 arg.hwif = 0;
940 arg.hdl = 0;
941 (void)config_found(&sc->sc_dev, &arg, audioprint);
942
943 #ifdef AUDIO_DEBUG
944 if (essdebug > 0)
945 ess_printsc(sc);
946 #endif
947 }
948
949 /*
950 * Various routines to interface to higher level audio driver
951 */
952
953 int
954 ess_open(addr, flags)
955 void *addr;
956 int flags;
957 {
958 struct ess_softc *sc = addr;
959
960 DPRINTF(("ess_open: sc=%p\n", sc));
961
962 if (sc->sc_open != 0 || ess_reset(sc) != 0)
963 return ENXIO;
964
965 ess_setup(sc); /* because we did a reset */
966
967 sc->sc_open = 1;
968
969 DPRINTF(("ess_open: opened\n"));
970
971 return (0);
972 }
973
974 void
975 ess_1788_close(addr)
976 void *addr;
977 {
978 struct ess_softc *sc = addr;
979
980 DPRINTF(("ess_1788_close: sc=%p\n", sc));
981
982 ess_speaker_off(sc);
983 sc->spkr_state = SPKR_OFF;
984
985 ess_1788_halt_output(sc);
986 ess_halt_input(sc);
987
988 sc->sc_audio1.intr = 0;
989 sc->sc_open = 0;
990
991 DPRINTF(("ess_1788_close: closed\n"));
992 }
993
994 void
995 ess_1888_close(addr)
996 void *addr;
997 {
998 struct ess_softc *sc = addr;
999
1000 DPRINTF(("ess_1888_close: sc=%p\n", sc));
1001
1002 ess_speaker_off(sc);
1003 sc->spkr_state = SPKR_OFF;
1004
1005 ess_1888_halt_output(sc);
1006 ess_halt_input(sc);
1007
1008 sc->sc_audio1.intr = 0;
1009 sc->sc_audio2.intr = 0;
1010 sc->sc_open = 0;
1011
1012 DPRINTF(("ess_1888_close: closed\n"));
1013 }
1014
1015 /*
1016 * Wait for FIFO to drain, and analog section to settle.
1017 * XXX should check FIFO empty bit.
1018 */
1019 int
1020 ess_drain(addr)
1021 void *addr;
1022 {
1023 extern int hz; /* XXX */
1024
1025 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1026 return (0);
1027 }
1028
1029 /* XXX should use reference count */
1030 int
1031 ess_speaker_ctl(addr, newstate)
1032 void *addr;
1033 int newstate;
1034 {
1035 struct ess_softc *sc = addr;
1036
1037 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1038 ess_speaker_on(sc);
1039 sc->spkr_state = SPKR_ON;
1040 }
1041 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1042 ess_speaker_off(sc);
1043 sc->spkr_state = SPKR_OFF;
1044 }
1045 return (0);
1046 }
1047
1048 int
1049 ess_getdev(addr, retp)
1050 void *addr;
1051 struct audio_device *retp;
1052 {
1053 *retp = ess_device;
1054 return (0);
1055 }
1056
1057 int
1058 ess_query_encoding(addr, fp)
1059 void *addr;
1060 struct audio_encoding *fp;
1061 {
1062 /*struct ess_softc *sc = addr;*/
1063
1064 switch (fp->index) {
1065 case 0:
1066 strcpy(fp->name, AudioEulinear);
1067 fp->encoding = AUDIO_ENCODING_ULINEAR;
1068 fp->precision = 8;
1069 fp->flags = 0;
1070 return (0);
1071 case 1:
1072 strcpy(fp->name, AudioEmulaw);
1073 fp->encoding = AUDIO_ENCODING_ULAW;
1074 fp->precision = 8;
1075 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1076 return (0);
1077 case 2:
1078 strcpy(fp->name, AudioEalaw);
1079 fp->encoding = AUDIO_ENCODING_ALAW;
1080 fp->precision = 8;
1081 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1082 return (0);
1083 case 3:
1084 strcpy(fp->name, AudioEslinear);
1085 fp->encoding = AUDIO_ENCODING_SLINEAR;
1086 fp->precision = 8;
1087 fp->flags = 0;
1088 return (0);
1089 case 4:
1090 strcpy(fp->name, AudioEslinear_le);
1091 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1092 fp->precision = 16;
1093 fp->flags = 0;
1094 return (0);
1095 case 5:
1096 strcpy(fp->name, AudioEulinear_le);
1097 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1098 fp->precision = 16;
1099 fp->flags = 0;
1100 return (0);
1101 case 6:
1102 strcpy(fp->name, AudioEslinear_be);
1103 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1104 fp->precision = 16;
1105 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1106 return (0);
1107 case 7:
1108 strcpy(fp->name, AudioEulinear_be);
1109 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1110 fp->precision = 16;
1111 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1112 return (0);
1113 default:
1114 return EINVAL;
1115 }
1116 return (0);
1117 }
1118
1119 int
1120 ess_set_params(addr, setmode, usemode, play, rec)
1121 void *addr;
1122 int setmode, usemode;
1123 struct audio_params *play, *rec;
1124 {
1125 struct ess_softc *sc = addr;
1126 struct audio_params *p;
1127 int mode;
1128 int rate;
1129
1130 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1131
1132 /*
1133 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1134 * full-duplex operation the sample rates must be the same for both
1135 * channels. This appears to be false; the only bit in common is the
1136 * clock source selection. However, we'll be conservative here.
1137 * - mycroft
1138 */
1139 if (play->sample_rate != rec->sample_rate &&
1140 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1141 if (setmode == AUMODE_PLAY) {
1142 rec->sample_rate = play->sample_rate;
1143 setmode |= AUMODE_RECORD;
1144 } else if (setmode == AUMODE_RECORD) {
1145 play->sample_rate = rec->sample_rate;
1146 setmode |= AUMODE_PLAY;
1147 } else
1148 return (EINVAL);
1149 }
1150
1151 for (mode = AUMODE_RECORD; mode != -1;
1152 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1153 if ((setmode & mode) == 0)
1154 continue;
1155
1156 p = mode == AUMODE_PLAY ? play : rec;
1157
1158 if (p->sample_rate < ESS_MINRATE ||
1159 p->sample_rate > ESS_MAXRATE ||
1160 (p->precision != 8 && p->precision != 16) ||
1161 (p->channels != 1 && p->channels != 2))
1162 return (EINVAL);
1163
1164 p->factor = 1;
1165 p->sw_code = 0;
1166 switch (p->encoding) {
1167 case AUDIO_ENCODING_SLINEAR_BE:
1168 case AUDIO_ENCODING_ULINEAR_BE:
1169 if (p->precision == 16)
1170 p->sw_code = swap_bytes;
1171 break;
1172 case AUDIO_ENCODING_SLINEAR_LE:
1173 case AUDIO_ENCODING_ULINEAR_LE:
1174 break;
1175 case AUDIO_ENCODING_ULAW:
1176 if (mode == AUMODE_PLAY) {
1177 p->factor = 2;
1178 p->sw_code = mulaw_to_ulinear16;
1179 } else
1180 p->sw_code = ulinear8_to_mulaw;
1181 break;
1182 case AUDIO_ENCODING_ALAW:
1183 if (mode == AUMODE_PLAY) {
1184 p->factor = 2;
1185 p->sw_code = alaw_to_ulinear16;
1186 } else
1187 p->sw_code = ulinear8_to_alaw;
1188 break;
1189 default:
1190 return (EINVAL);
1191 }
1192 }
1193
1194 if (usemode == AUMODE_RECORD)
1195 rate = rec->sample_rate;
1196 else
1197 rate = play->sample_rate;
1198
1199 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1200 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1201
1202 if (sc->sc_model != ESS_1788) {
1203 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1204 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1205 }
1206
1207 return (0);
1208 }
1209
1210 int
1211 ess_1788_trigger_output(addr, start, end, blksize, intr, arg, param)
1212 void *addr;
1213 void *start, *end;
1214 int blksize;
1215 void (*intr) __P((void *));
1216 void *arg;
1217 struct audio_params *param;
1218 {
1219 struct ess_softc *sc = addr;
1220
1221 DPRINTFN(1, ("ess_1788_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1222 addr, start, end, blksize, intr, arg));
1223
1224 #ifdef DIAGNOSTIC
1225 if (param->channels == 2 && (blksize & 1)) {
1226 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1227 return EIO;
1228 }
1229 if (sc->sc_audio1.active)
1230 panic("ess_1788_trigger_output: already running");
1231 #endif
1232 sc->sc_audio1.active = 1;
1233
1234 sc->sc_audio1.intr = intr;
1235 sc->sc_audio1.arg = arg;
1236
1237 if (param->precision * param->factor == 16)
1238 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1239 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1240 else
1241 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1242 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1243
1244 if (param->channels == 2) {
1245 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1246 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1247 ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1248 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1249 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1250 } else {
1251 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1252 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1253 ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1254 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1255 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1256 }
1257
1258 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1259 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1260 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1261 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1262 else
1263 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1264 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1265
1266 /* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1267 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1268 ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1269
1270 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1271 (char *)end - (char *)start, NULL,
1272 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1273
1274 if (IS16BITDRQ(sc->sc_audio1.drq))
1275 blksize >>= 1; /* use word count for 16 bit DMA */
1276 /* Program transfer count registers with 2's complement of count. */
1277 blksize = -blksize;
1278 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1279 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1280
1281 /* Use 4 bytes per input DMA. */
1282 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
1283 ESS_DEMAND_CTRL_DEMAND_4);
1284
1285 /* Start auto-init DMA */
1286 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1287 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1288 ESS_AUDIO1_CTRL2_DMA_READ |
1289 ESS_AUDIO1_CTRL2_ADC_ENABLE);
1290 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1291 ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1292 ESS_AUDIO1_CTRL2_AUTO_INIT);
1293
1294 return (0);
1295
1296 }
1297
1298 int
1299 ess_1888_trigger_output(addr, start, end, blksize, intr, arg, param)
1300 void *addr;
1301 void *start, *end;
1302 int blksize;
1303 void (*intr) __P((void *));
1304 void *arg;
1305 struct audio_params *param;
1306 {
1307 struct ess_softc *sc = addr;
1308
1309 DPRINTFN(1, ("ess_1888_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1310 addr, start, end, blksize, intr, arg));
1311
1312 #ifdef DIAGNOSTIC
1313 if (param->channels == 2 && (blksize & 1)) {
1314 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1315 return EIO;
1316 }
1317 if (sc->sc_audio2.active)
1318 panic("ess_1888_trigger_output: already running");
1319 #endif
1320 sc->sc_audio2.active = 1;
1321
1322 sc->sc_audio2.intr = intr;
1323 sc->sc_audio2.arg = arg;
1324
1325 if (param->precision * param->factor == 16)
1326 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1327 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1328 else
1329 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1330 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1331
1332 if (param->channels == 2)
1333 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1334 ESS_AUDIO2_CTRL2_CHANNELS);
1335 else
1336 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1337 ESS_AUDIO2_CTRL2_CHANNELS);
1338
1339 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1340 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1341 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1342 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1343 else
1344 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1345 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1346
1347 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1348 (char *)end - (char *)start, NULL,
1349 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1350
1351 if (IS16BITDRQ(sc->sc_audio2.drq))
1352 blksize >>= 1; /* use word count for 16 bit DMA */
1353 /* Program transfer count registers with 2's complement of count. */
1354 blksize = -blksize;
1355 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1356 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1357
1358 if (IS16BITDRQ(sc->sc_audio2.drq))
1359 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1360 ESS_AUDIO2_CTRL1_XFER_SIZE);
1361 else
1362 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1363 ESS_AUDIO2_CTRL1_XFER_SIZE);
1364
1365 /* Use 8 bytes per output DMA. */
1366 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1367 ESS_AUDIO2_CTRL1_DEMAND_8);
1368
1369 /* Start auto-init DMA */
1370 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1371 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1372 ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1373 ESS_AUDIO2_CTRL1_AUTO_INIT);
1374
1375 return (0);
1376
1377 }
1378
1379 int
1380 ess_trigger_input(addr, start, end, blksize, intr, arg, param)
1381 void *addr;
1382 void *start, *end;
1383 int blksize;
1384 void (*intr) __P((void *));
1385 void *arg;
1386 struct audio_params *param;
1387 {
1388 struct ess_softc *sc = addr;
1389
1390 DPRINTFN(1, ("ess_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1391 addr, start, end, blksize, intr, arg));
1392
1393 #ifdef DIAGNOSTIC
1394 if (param->channels == 2 && (blksize & 1)) {
1395 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1396 return EIO;
1397 }
1398 if (sc->sc_audio1.active)
1399 panic("ess_trigger_input: already running");
1400 #endif
1401 sc->sc_audio1.active = 1;
1402
1403 sc->sc_audio1.intr = intr;
1404 sc->sc_audio1.arg = arg;
1405
1406 if (param->precision * param->factor == 16)
1407 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1408 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1409 else
1410 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1411 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1412
1413 if (param->channels == 2) {
1414 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1415 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1416 ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1417 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1418 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1419 } else {
1420 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1421 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1422 ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1423 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1424 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1425 }
1426
1427 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1428 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1429 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1430 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1431 else
1432 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1433 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1434
1435 /* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1436 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1437 ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1438
1439 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1440 (char *)end - (char *)start, NULL,
1441 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1442
1443 if (IS16BITDRQ(sc->sc_audio1.drq))
1444 blksize >>= 1; /* use word count for 16 bit DMA */
1445 /* Program transfer count registers with 2's complement of count. */
1446 blksize = -blksize;
1447 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1448 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1449
1450 /* Use 4 bytes per input DMA. */
1451 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
1452 ESS_DEMAND_CTRL_DEMAND_4);
1453
1454 /* Start auto-init DMA */
1455 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1456 ESS_AUDIO1_CTRL2_DMA_READ |
1457 ESS_AUDIO1_CTRL2_ADC_ENABLE |
1458 ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1459 ESS_AUDIO1_CTRL2_AUTO_INIT);
1460
1461 return (0);
1462
1463 }
1464
1465 int
1466 ess_1788_halt_output(addr)
1467 void *addr;
1468 {
1469 struct ess_softc *sc = addr;
1470
1471 DPRINTF(("ess_1788_halt_output: sc=%p\n", sc));
1472
1473 if (sc->sc_audio1.active) {
1474 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1475 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1476 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1477 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1478 sc->sc_audio1.active = 0;
1479 }
1480
1481 return (0);
1482 }
1483
1484 int
1485 ess_1888_halt_output(addr)
1486 void *addr;
1487 {
1488 struct ess_softc *sc = addr;
1489
1490 DPRINTF(("ess_1888_halt_output: sc=%p\n", sc));
1491
1492 if (sc->sc_audio2.active) {
1493 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1494 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1495 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1496 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1497 sc->sc_audio2.active = 0;
1498 }
1499
1500 return (0);
1501 }
1502
1503 int
1504 ess_halt_input(addr)
1505 void *addr;
1506 {
1507 struct ess_softc *sc = addr;
1508
1509 DPRINTF(("ess_halt_input: sc=%p\n", sc));
1510
1511 if (sc->sc_audio1.active) {
1512 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1513 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1514 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1515 sc->sc_audio1.active = 0;
1516 }
1517
1518 return (0);
1519 }
1520
1521 int
1522 ess_intr_audio2(arg)
1523 void *arg;
1524 {
1525 struct ess_softc *sc = arg;
1526
1527 DPRINTFN(1,("ess_intr_audio2: intr=%p\n", sc->sc_audio2.intr));
1528
1529 /* clear interrupt on Audio channel 2 */
1530 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1531 ESS_AUDIO2_CTRL2_IRQ_LATCH);
1532
1533 sc->sc_audio2.nintr++;
1534
1535 if (sc->sc_audio2.intr != 0)
1536 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1537 else
1538 return (0);
1539
1540 return (1);
1541 }
1542
1543 int
1544 ess_intr_audio1(arg)
1545 void *arg;
1546 {
1547 struct ess_softc *sc = arg;
1548 u_char x;
1549
1550 DPRINTFN(1,("ess_intr_audio1: intr=%p\n", sc->sc_audio1.intr));
1551
1552 /* clear interrupt on Audio channel 1*/
1553 x = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1554
1555 sc->sc_audio1.nintr++;
1556
1557 if (sc->sc_audio1.intr != 0)
1558 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1559 else
1560 return (0);
1561
1562 return (1);
1563 }
1564
1565 int
1566 ess_round_blocksize(addr, blk)
1567 void *addr;
1568 int blk;
1569 {
1570 return (blk & -8); /* round for max DMA size */
1571 }
1572
1573 int
1574 ess_set_port(addr, cp)
1575 void *addr;
1576 mixer_ctrl_t *cp;
1577 {
1578 struct ess_softc *sc = addr;
1579 int lgain, rgain;
1580
1581 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1582 cp->dev, cp->un.value.num_channels));
1583
1584 switch (cp->dev) {
1585 /*
1586 * The following mixer ports are all stereo. If we get a
1587 * single-channel gain value passed in, then we duplicate it
1588 * to both left and right channels.
1589 */
1590 case ESS_MASTER_VOL:
1591 case ESS_DAC_PLAY_VOL:
1592 case ESS_MIC_PLAY_VOL:
1593 case ESS_LINE_PLAY_VOL:
1594 case ESS_SYNTH_PLAY_VOL:
1595 case ESS_CD_PLAY_VOL:
1596 case ESS_AUXB_PLAY_VOL:
1597 case ESS_RECORD_VOL:
1598 if (cp->type != AUDIO_MIXER_VALUE)
1599 return EINVAL;
1600
1601 switch (cp->un.value.num_channels) {
1602 case 1:
1603 lgain = rgain = ESS_4BIT_GAIN(
1604 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1605 break;
1606 case 2:
1607 lgain = ESS_4BIT_GAIN(
1608 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1609 rgain = ESS_4BIT_GAIN(
1610 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1611 break;
1612 default:
1613 return EINVAL;
1614 }
1615
1616 sc->gain[cp->dev][ESS_LEFT] = lgain;
1617 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1618 ess_set_gain(sc, cp->dev, 1);
1619 return (0);
1620
1621 /*
1622 * The PC speaker port is mono. If we get a stereo gain value
1623 * passed in, then we return EINVAL.
1624 */
1625 case ESS_PCSPEAKER_VOL:
1626 if (cp->un.value.num_channels != 1)
1627 return EINVAL;
1628
1629 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1630 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1631 ess_set_gain(sc, cp->dev, 1);
1632 return (0);
1633
1634 case ESS_RECORD_SOURCE:
1635 if (sc->sc_model == ESS_1788) {
1636 if (cp->type == AUDIO_MIXER_ENUM)
1637 return (ess_set_in_port(sc, cp->un.ord));
1638 else
1639 return (EINVAL);
1640 } else {
1641 if (cp->type == AUDIO_MIXER_SET)
1642 return (ess_set_in_ports(sc, cp->un.mask));
1643 else
1644 return (EINVAL);
1645 }
1646 return (0);
1647
1648 case ESS_RECORD_MONITOR:
1649 if (cp->type != AUDIO_MIXER_ENUM)
1650 return EINVAL;
1651
1652 if (cp->un.ord)
1653 /* Enable monitor */
1654 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1655 ESS_AUDIO_CTRL_MONITOR);
1656 else
1657 /* Disable monitor */
1658 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1659 ESS_AUDIO_CTRL_MONITOR);
1660 return (0);
1661 }
1662
1663 if (sc->sc_model == ESS_1788)
1664 return (EINVAL);
1665
1666 switch (cp->dev) {
1667 case ESS_DAC_REC_VOL:
1668 case ESS_MIC_REC_VOL:
1669 case ESS_LINE_REC_VOL:
1670 case ESS_SYNTH_REC_VOL:
1671 case ESS_CD_REC_VOL:
1672 case ESS_AUXB_REC_VOL:
1673 if (cp->type != AUDIO_MIXER_VALUE)
1674 return EINVAL;
1675
1676 switch (cp->un.value.num_channels) {
1677 case 1:
1678 lgain = rgain = ESS_4BIT_GAIN(
1679 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1680 break;
1681 case 2:
1682 lgain = ESS_4BIT_GAIN(
1683 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1684 rgain = ESS_4BIT_GAIN(
1685 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1686 break;
1687 default:
1688 return EINVAL;
1689 }
1690
1691 sc->gain[cp->dev][ESS_LEFT] = lgain;
1692 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1693 ess_set_gain(sc, cp->dev, 1);
1694 return (0);
1695
1696 case ESS_MIC_PREAMP:
1697 if (cp->type != AUDIO_MIXER_ENUM)
1698 return EINVAL;
1699
1700 if (cp->un.ord)
1701 /* Enable microphone preamp */
1702 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1703 ESS_PREAMP_CTRL_ENABLE);
1704 else
1705 /* Disable microphone preamp */
1706 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1707 ESS_PREAMP_CTRL_ENABLE);
1708 return (0);
1709 }
1710
1711 return (EINVAL);
1712 }
1713
1714 int
1715 ess_get_port(addr, cp)
1716 void *addr;
1717 mixer_ctrl_t *cp;
1718 {
1719 struct ess_softc *sc = addr;
1720
1721 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1722
1723 switch (cp->dev) {
1724 case ESS_MASTER_VOL:
1725 case ESS_DAC_PLAY_VOL:
1726 case ESS_MIC_PLAY_VOL:
1727 case ESS_LINE_PLAY_VOL:
1728 case ESS_SYNTH_PLAY_VOL:
1729 case ESS_CD_PLAY_VOL:
1730 case ESS_AUXB_PLAY_VOL:
1731 case ESS_RECORD_VOL:
1732 switch (cp->un.value.num_channels) {
1733 case 1:
1734 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1735 sc->gain[cp->dev][ESS_LEFT];
1736 break;
1737 case 2:
1738 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1739 sc->gain[cp->dev][ESS_LEFT];
1740 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1741 sc->gain[cp->dev][ESS_RIGHT];
1742 break;
1743 default:
1744 return EINVAL;
1745 }
1746 return (0);
1747
1748 case ESS_PCSPEAKER_VOL:
1749 if (cp->un.value.num_channels != 1)
1750 return EINVAL;
1751
1752 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1753 sc->gain[cp->dev][ESS_LEFT];
1754 return (0);
1755
1756 case ESS_RECORD_SOURCE:
1757 if (sc->sc_model == ESS_1788)
1758 cp->un.ord = sc->in_port;
1759 else
1760 cp->un.mask = sc->in_mask;
1761 return (0);
1762
1763 case ESS_RECORD_MONITOR:
1764 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1765 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1766 return (0);
1767 }
1768
1769 if (sc->sc_model == ESS_1788)
1770 return (EINVAL);
1771
1772 switch (cp->dev) {
1773 case ESS_DAC_REC_VOL:
1774 case ESS_MIC_REC_VOL:
1775 case ESS_LINE_REC_VOL:
1776 case ESS_SYNTH_REC_VOL:
1777 case ESS_CD_REC_VOL:
1778 case ESS_AUXB_REC_VOL:
1779 switch (cp->un.value.num_channels) {
1780 case 1:
1781 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1782 sc->gain[cp->dev][ESS_LEFT];
1783 break;
1784 case 2:
1785 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1786 sc->gain[cp->dev][ESS_LEFT];
1787 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1788 sc->gain[cp->dev][ESS_RIGHT];
1789 break;
1790 default:
1791 return EINVAL;
1792 }
1793 return (0);
1794
1795 case ESS_MIC_PREAMP:
1796 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1797 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1798 return (0);
1799 }
1800
1801 return (EINVAL);
1802 }
1803
1804 int
1805 ess_query_devinfo(addr, dip)
1806 void *addr;
1807 mixer_devinfo_t *dip;
1808 {
1809 struct ess_softc *sc = addr;
1810
1811 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1812 sc->sc_model, dip->index));
1813
1814 /*
1815 * REVISIT: There are some slight differences between the
1816 * mixers on the different ESS chips, which can
1817 * be sorted out using the chip model rather than a
1818 * separate mixer model.
1819 * This is currently coded assuming an ES1887; we
1820 * need to work out which bits are not applicable to
1821 * the other models (1888 and 888).
1822 */
1823 switch (dip->index) {
1824 case ESS_DAC_PLAY_VOL:
1825 dip->mixer_class = ESS_INPUT_CLASS;
1826 dip->next = dip->prev = AUDIO_MIXER_LAST;
1827 strcpy(dip->label.name, AudioNdac);
1828 dip->type = AUDIO_MIXER_VALUE;
1829 dip->un.v.num_channels = 2;
1830 strcpy(dip->un.v.units.name, AudioNvolume);
1831 return (0);
1832
1833 case ESS_MIC_PLAY_VOL:
1834 dip->mixer_class = ESS_INPUT_CLASS;
1835 dip->prev = AUDIO_MIXER_LAST;
1836 if (sc->sc_model == ESS_1788)
1837 dip->next = AUDIO_MIXER_LAST;
1838 else
1839 dip->next = ESS_MIC_PREAMP;
1840 strcpy(dip->label.name, AudioNmicrophone);
1841 dip->type = AUDIO_MIXER_VALUE;
1842 dip->un.v.num_channels = 2;
1843 strcpy(dip->un.v.units.name, AudioNvolume);
1844 return (0);
1845
1846 case ESS_LINE_PLAY_VOL:
1847 dip->mixer_class = ESS_INPUT_CLASS;
1848 dip->next = dip->prev = AUDIO_MIXER_LAST;
1849 strcpy(dip->label.name, AudioNline);
1850 dip->type = AUDIO_MIXER_VALUE;
1851 dip->un.v.num_channels = 2;
1852 strcpy(dip->un.v.units.name, AudioNvolume);
1853 return (0);
1854
1855 case ESS_SYNTH_PLAY_VOL:
1856 dip->mixer_class = ESS_INPUT_CLASS;
1857 dip->next = dip->prev = AUDIO_MIXER_LAST;
1858 strcpy(dip->label.name, AudioNfmsynth);
1859 dip->type = AUDIO_MIXER_VALUE;
1860 dip->un.v.num_channels = 2;
1861 strcpy(dip->un.v.units.name, AudioNvolume);
1862 return (0);
1863
1864 case ESS_CD_PLAY_VOL:
1865 dip->mixer_class = ESS_INPUT_CLASS;
1866 dip->next = dip->prev = AUDIO_MIXER_LAST;
1867 strcpy(dip->label.name, AudioNcd);
1868 dip->type = AUDIO_MIXER_VALUE;
1869 dip->un.v.num_channels = 2;
1870 strcpy(dip->un.v.units.name, AudioNvolume);
1871 return (0);
1872
1873 case ESS_AUXB_PLAY_VOL:
1874 dip->mixer_class = ESS_INPUT_CLASS;
1875 dip->next = dip->prev = AUDIO_MIXER_LAST;
1876 strcpy(dip->label.name, "auxb");
1877 dip->type = AUDIO_MIXER_VALUE;
1878 dip->un.v.num_channels = 2;
1879 strcpy(dip->un.v.units.name, AudioNvolume);
1880 return (0);
1881
1882 case ESS_INPUT_CLASS:
1883 dip->mixer_class = ESS_INPUT_CLASS;
1884 dip->next = dip->prev = AUDIO_MIXER_LAST;
1885 strcpy(dip->label.name, AudioCinputs);
1886 dip->type = AUDIO_MIXER_CLASS;
1887 return (0);
1888
1889 case ESS_MASTER_VOL:
1890 dip->mixer_class = ESS_OUTPUT_CLASS;
1891 dip->next = dip->prev = AUDIO_MIXER_LAST;
1892 strcpy(dip->label.name, AudioNmaster);
1893 dip->type = AUDIO_MIXER_VALUE;
1894 dip->un.v.num_channels = 2;
1895 strcpy(dip->un.v.units.name, AudioNvolume);
1896 return (0);
1897
1898 case ESS_PCSPEAKER_VOL:
1899 dip->mixer_class = ESS_OUTPUT_CLASS;
1900 dip->next = dip->prev = AUDIO_MIXER_LAST;
1901 strcpy(dip->label.name, "pc_speaker");
1902 dip->type = AUDIO_MIXER_VALUE;
1903 dip->un.v.num_channels = 1;
1904 strcpy(dip->un.v.units.name, AudioNvolume);
1905 return (0);
1906
1907 case ESS_OUTPUT_CLASS:
1908 dip->mixer_class = ESS_OUTPUT_CLASS;
1909 dip->next = dip->prev = AUDIO_MIXER_LAST;
1910 strcpy(dip->label.name, AudioCoutputs);
1911 dip->type = AUDIO_MIXER_CLASS;
1912 return (0);
1913
1914 case ESS_RECORD_VOL:
1915 dip->mixer_class = ESS_RECORD_CLASS;
1916 dip->next = dip->prev = AUDIO_MIXER_LAST;
1917 strcpy(dip->label.name, AudioNrecord);
1918 dip->type = AUDIO_MIXER_VALUE;
1919 dip->un.v.num_channels = 2;
1920 strcpy(dip->un.v.units.name, AudioNvolume);
1921 return (0);
1922
1923 case ESS_RECORD_SOURCE:
1924 dip->mixer_class = ESS_RECORD_CLASS;
1925 dip->next = dip->prev = AUDIO_MIXER_LAST;
1926 strcpy(dip->label.name, AudioNsource);
1927 if (sc->sc_model == ESS_1788) {
1928 /*
1929 * The 1788 doesn't use the input mixer control that
1930 * the 1888 uses, because it's a pain when you only
1931 * have one mixer.
1932 * Perhaps it could be emulated by keeping both sets of
1933 * gain values, and doing a `context switch' of the
1934 * mixer registers when shifting from playing to
1935 * recording.
1936 */
1937 dip->type = AUDIO_MIXER_ENUM;
1938 dip->un.e.num_mem = 4;
1939 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1940 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
1941 strcpy(dip->un.e.member[1].label.name, AudioNline);
1942 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
1943 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1944 dip->un.e.member[2].ord = ESS_SOURCE_CD;
1945 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1946 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
1947 } else {
1948 dip->type = AUDIO_MIXER_SET;
1949 dip->un.s.num_mem = 6;
1950 strcpy(dip->un.s.member[0].label.name, AudioNdac);
1951 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
1952 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
1953 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
1954 strcpy(dip->un.s.member[2].label.name, AudioNline);
1955 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
1956 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1957 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
1958 strcpy(dip->un.s.member[4].label.name, AudioNcd);
1959 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
1960 strcpy(dip->un.s.member[5].label.name, "auxb");
1961 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
1962 }
1963 return (0);
1964
1965 case ESS_RECORD_CLASS:
1966 dip->mixer_class = ESS_RECORD_CLASS;
1967 dip->next = dip->prev = AUDIO_MIXER_LAST;
1968 strcpy(dip->label.name, AudioCrecord);
1969 dip->type = AUDIO_MIXER_CLASS;
1970 return (0);
1971
1972 case ESS_RECORD_MONITOR:
1973 dip->prev = dip->next = AUDIO_MIXER_LAST;
1974 strcpy(dip->label.name, AudioNmonitor);
1975 dip->type = AUDIO_MIXER_ENUM;
1976 dip->mixer_class = ESS_MONITOR_CLASS;
1977 dip->un.e.num_mem = 2;
1978 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1979 dip->un.e.member[0].ord = 0;
1980 strcpy(dip->un.e.member[1].label.name, AudioNon);
1981 dip->un.e.member[1].ord = 1;
1982 return (0);
1983
1984 case ESS_MONITOR_CLASS:
1985 dip->mixer_class = ESS_MONITOR_CLASS;
1986 dip->next = dip->prev = AUDIO_MIXER_LAST;
1987 strcpy(dip->label.name, AudioCmonitor);
1988 dip->type = AUDIO_MIXER_CLASS;
1989 return (0);
1990 }
1991
1992 if (sc->sc_model == ESS_1788)
1993 return (ENXIO);
1994
1995 switch (dip->index) {
1996 case ESS_DAC_REC_VOL:
1997 dip->mixer_class = ESS_RECORD_CLASS;
1998 dip->next = dip->prev = AUDIO_MIXER_LAST;
1999 strcpy(dip->label.name, AudioNdac);
2000 dip->type = AUDIO_MIXER_VALUE;
2001 dip->un.v.num_channels = 2;
2002 strcpy(dip->un.v.units.name, AudioNvolume);
2003 return (0);
2004
2005 case ESS_MIC_REC_VOL:
2006 dip->mixer_class = ESS_RECORD_CLASS;
2007 dip->next = dip->prev = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioNmicrophone);
2009 dip->type = AUDIO_MIXER_VALUE;
2010 dip->un.v.num_channels = 2;
2011 strcpy(dip->un.v.units.name, AudioNvolume);
2012 return (0);
2013
2014 case ESS_LINE_REC_VOL:
2015 dip->mixer_class = ESS_RECORD_CLASS;
2016 dip->next = dip->prev = AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioNline);
2018 dip->type = AUDIO_MIXER_VALUE;
2019 dip->un.v.num_channels = 2;
2020 strcpy(dip->un.v.units.name, AudioNvolume);
2021 return (0);
2022
2023 case ESS_SYNTH_REC_VOL:
2024 dip->mixer_class = ESS_RECORD_CLASS;
2025 dip->next = dip->prev = AUDIO_MIXER_LAST;
2026 strcpy(dip->label.name, AudioNfmsynth);
2027 dip->type = AUDIO_MIXER_VALUE;
2028 dip->un.v.num_channels = 2;
2029 strcpy(dip->un.v.units.name, AudioNvolume);
2030 return (0);
2031
2032 case ESS_CD_REC_VOL:
2033 dip->mixer_class = ESS_RECORD_CLASS;
2034 dip->next = dip->prev = AUDIO_MIXER_LAST;
2035 strcpy(dip->label.name, AudioNcd);
2036 dip->type = AUDIO_MIXER_VALUE;
2037 dip->un.v.num_channels = 2;
2038 strcpy(dip->un.v.units.name, AudioNvolume);
2039 return (0);
2040
2041 case ESS_AUXB_REC_VOL:
2042 dip->mixer_class = ESS_RECORD_CLASS;
2043 dip->next = dip->prev = AUDIO_MIXER_LAST;
2044 strcpy(dip->label.name, "auxb");
2045 dip->type = AUDIO_MIXER_VALUE;
2046 dip->un.v.num_channels = 2;
2047 strcpy(dip->un.v.units.name, AudioNvolume);
2048 return (0);
2049
2050 case ESS_MIC_PREAMP:
2051 dip->mixer_class = ESS_INPUT_CLASS;
2052 dip->prev = ESS_MIC_PLAY_VOL;
2053 dip->next = AUDIO_MIXER_LAST;
2054 strcpy(dip->label.name, AudioNpreamp);
2055 dip->type = AUDIO_MIXER_ENUM;
2056 dip->un.e.num_mem = 2;
2057 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2058 dip->un.e.member[0].ord = 0;
2059 strcpy(dip->un.e.member[1].label.name, AudioNon);
2060 dip->un.e.member[1].ord = 1;
2061 return (0);
2062 }
2063
2064 return (ENXIO);
2065 }
2066
2067 void *
2068 ess_malloc(addr, direction, size, pool, flags)
2069 void *addr;
2070 int direction;
2071 size_t size;
2072 int pool, flags;
2073 {
2074 struct ess_softc *sc = addr;
2075 int drq;
2076
2077 if (direction == AUMODE_PLAY)
2078 drq = sc->sc_audio2.drq;
2079 else
2080 drq = sc->sc_audio1.drq;
2081 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2082 }
2083
2084 void
2085 ess_free(addr, ptr, pool)
2086 void *addr;
2087 void *ptr;
2088 int pool;
2089 {
2090 isa_free(ptr, pool);
2091 }
2092
2093 size_t
2094 ess_round_buffersize(addr, direction, size)
2095 void *addr;
2096 int direction;
2097 size_t size;
2098 {
2099 if (size > MAX_ISADMA)
2100 size = MAX_ISADMA;
2101 return (size);
2102 }
2103
2104 int
2105 ess_mappage(addr, mem, off, prot)
2106 void *addr;
2107 void *mem;
2108 int off;
2109 int prot;
2110 {
2111 return (isa_mappage(mem, off, prot));
2112 }
2113
2114 int
2115 ess_get_props(addr)
2116 void *addr;
2117 {
2118 struct ess_softc *sc = addr;
2119
2120 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2121 (sc->sc_model != ESS_1788 ? AUDIO_PROP_FULLDUPLEX : 0));
2122 }
2123
2124 /* ============================================
2125 * Generic functions for ess, not used by audio h/w i/f
2126 * =============================================
2127 */
2128
2129 /*
2130 * Reset the chip.
2131 * Return non-zero if the chip isn't detected.
2132 */
2133 int
2134 ess_reset(sc)
2135 struct ess_softc *sc;
2136 {
2137 bus_space_tag_t iot = sc->sc_iot;
2138 bus_space_handle_t ioh = sc->sc_ioh;
2139
2140 sc->sc_audio1.intr = 0;
2141 sc->sc_audio2.intr = 0;
2142
2143 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2144 delay(10000);
2145 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2146 if (ess_rdsp(sc) != ESS_MAGIC)
2147 return (1);
2148
2149 /* Enable access to the ESS extension commands. */
2150 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2151
2152 return (0);
2153 }
2154
2155 void
2156 ess_set_gain(sc, port, on)
2157 struct ess_softc *sc;
2158 int port;
2159 int on;
2160 {
2161 int gain, left, right;
2162 int mix;
2163 int src;
2164 int stereo;
2165
2166 /*
2167 * Most gain controls are found in the mixer registers and
2168 * are stereo. Any that are not, must set mix and stereo as
2169 * required.
2170 */
2171 mix = 1;
2172 stereo = 1;
2173
2174 switch (port) {
2175 case ESS_MASTER_VOL:
2176 src = ESS_MREG_VOLUME_MASTER;
2177 break;
2178 case ESS_DAC_PLAY_VOL:
2179 if (sc->sc_model == ESS_1788)
2180 src = ESS_MREG_VOLUME_VOICE;
2181 else
2182 src = 0x7C;
2183 break;
2184 case ESS_MIC_PLAY_VOL:
2185 src = ESS_MREG_VOLUME_MIC;
2186 break;
2187 case ESS_LINE_PLAY_VOL:
2188 src = ESS_MREG_VOLUME_LINE;
2189 break;
2190 case ESS_SYNTH_PLAY_VOL:
2191 src = ESS_MREG_VOLUME_SYNTH;
2192 break;
2193 case ESS_CD_PLAY_VOL:
2194 src = ESS_MREG_VOLUME_CD;
2195 break;
2196 case ESS_AUXB_PLAY_VOL:
2197 src = ESS_MREG_VOLUME_AUXB;
2198 break;
2199 case ESS_PCSPEAKER_VOL:
2200 src = ESS_MREG_VOLUME_PCSPKR;
2201 stereo = 0;
2202 break;
2203 case ESS_DAC_REC_VOL:
2204 src = 0x69;
2205 break;
2206 case ESS_MIC_REC_VOL:
2207 src = 0x68;
2208 break;
2209 case ESS_LINE_REC_VOL:
2210 src = 0x6E;
2211 break;
2212 case ESS_SYNTH_REC_VOL:
2213 src = 0x6B;
2214 break;
2215 case ESS_CD_REC_VOL:
2216 src = 0x6A;
2217 break;
2218 case ESS_AUXB_REC_VOL:
2219 src = 0x6C;
2220 break;
2221 case ESS_RECORD_VOL:
2222 src = ESS_XCMD_VOLIN_CTRL;
2223 mix = 0;
2224 break;
2225 default:
2226 return;
2227 }
2228
2229 /* 1788 doesn't have a separate recording mixer */
2230 if (sc->sc_model == ESS_1788 && mix && src > 0x62)
2231 return;
2232
2233 if (on) {
2234 left = sc->gain[port][ESS_LEFT];
2235 right = sc->gain[port][ESS_RIGHT];
2236 } else {
2237 left = right = 0;
2238 }
2239
2240 if (stereo)
2241 gain = ESS_STEREO_GAIN(left, right);
2242 else
2243 gain = ESS_MONO_GAIN(left);
2244
2245 if (mix)
2246 ess_write_mix_reg(sc, src, gain);
2247 else
2248 ess_write_x_reg(sc, src, gain);
2249 }
2250
2251 /* Set the input device on devices without an input mixer. */
2252 int
2253 ess_set_in_port(sc, ord)
2254 struct ess_softc *sc;
2255 int ord;
2256 {
2257 mixer_devinfo_t di;
2258 int i;
2259
2260 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2261
2262 /*
2263 * Get the device info for the record source control,
2264 * including the list of available sources.
2265 */
2266 di.index = ESS_RECORD_SOURCE;
2267 if (ess_query_devinfo(sc, &di))
2268 return EINVAL;
2269
2270 /* See if the given ord value was anywhere in the list. */
2271 for (i = 0; i < di.un.e.num_mem; i++) {
2272 if (ord == di.un.e.member[i].ord)
2273 break;
2274 }
2275 if (i == di.un.e.num_mem)
2276 return EINVAL;
2277
2278 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2279
2280 sc->in_port = ord;
2281 return (0);
2282 }
2283
2284 /* Set the input device levels on input-mixer-enabled devices. */
2285 int
2286 ess_set_in_ports(sc, mask)
2287 struct ess_softc *sc;
2288 int mask;
2289 {
2290 mixer_devinfo_t di;
2291 int i, port;
2292
2293 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2294
2295 /*
2296 * Get the device info for the record source control,
2297 * including the list of available sources.
2298 */
2299 di.index = ESS_RECORD_SOURCE;
2300 if (ess_query_devinfo(sc, &di))
2301 return EINVAL;
2302
2303 /*
2304 * Set or disable the record volume control for each of the
2305 * possible sources.
2306 */
2307 for (i = 0; i < di.un.s.num_mem; i++) {
2308 /*
2309 * Calculate the source port number from its mask.
2310 */
2311 port = ffs(di.un.s.member[i].mask);
2312
2313 /*
2314 * Set the source gain:
2315 * to the current value if source is enabled
2316 * to zero if source is disabled
2317 */
2318 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2319 }
2320
2321 sc->in_mask = mask;
2322 return (0);
2323 }
2324
2325 void
2326 ess_speaker_on(sc)
2327 struct ess_softc *sc;
2328 {
2329 /* Disable mute on left- and right-master volume. */
2330 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2331 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2332 }
2333
2334 void
2335 ess_speaker_off(sc)
2336 struct ess_softc *sc;
2337 {
2338 /* Enable mute on left- and right-master volume. */
2339 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2340 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2341 }
2342
2343 /*
2344 * Calculate the time constant for the requested sampling rate.
2345 */
2346 u_int
2347 ess_srtotc(rate)
2348 u_int rate;
2349 {
2350 u_int tc;
2351
2352 /* The following formulae are from the ESS data sheet. */
2353 if (rate <= 22050)
2354 tc = 128 - 397700L / rate;
2355 else
2356 tc = 256 - 795500L / rate;
2357
2358 return (tc);
2359 }
2360
2361
2362 /*
2363 * Calculate the filter constant for the reuqested sampling rate.
2364 */
2365 u_int
2366 ess_srtofc(rate)
2367 u_int rate;
2368 {
2369 /*
2370 * The following formula is derived from the information in
2371 * the ES1887 data sheet, based on a roll-off frequency of
2372 * 87%.
2373 */
2374 return (256 - 200279L / rate);
2375 }
2376
2377
2378 /*
2379 * Return the status of the DSP.
2380 */
2381 u_char
2382 ess_get_dsp_status(sc)
2383 struct ess_softc *sc;
2384 {
2385 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2386 }
2387
2388
2389 /*
2390 * Return the read status of the DSP: 1 -> DSP ready for reading
2391 * 0 -> DSP not ready for reading
2392 */
2393 u_char
2394 ess_dsp_read_ready(sc)
2395 struct ess_softc *sc;
2396 {
2397 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2398 }
2399
2400
2401 /*
2402 * Return the write status of the DSP: 1 -> DSP ready for writing
2403 * 0 -> DSP not ready for writing
2404 */
2405 u_char
2406 ess_dsp_write_ready(sc)
2407 struct ess_softc *sc;
2408 {
2409 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2410 }
2411
2412
2413 /*
2414 * Read a byte from the DSP.
2415 */
2416 int
2417 ess_rdsp(sc)
2418 struct ess_softc *sc;
2419 {
2420 bus_space_tag_t iot = sc->sc_iot;
2421 bus_space_handle_t ioh = sc->sc_ioh;
2422 int i;
2423
2424 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2425 if (ess_dsp_read_ready(sc)) {
2426 i = EREAD1(iot, ioh, ESS_DSP_READ);
2427 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2428 return i;
2429 } else
2430 delay(10);
2431 }
2432
2433 DPRINTF(("ess_rdsp: timed out\n"));
2434 return (-1);
2435 }
2436
2437 /*
2438 * Write a byte to the DSP.
2439 */
2440 int
2441 ess_wdsp(sc, v)
2442 struct ess_softc *sc;
2443 u_char v;
2444 {
2445 bus_space_tag_t iot = sc->sc_iot;
2446 bus_space_handle_t ioh = sc->sc_ioh;
2447 int i;
2448
2449 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2450
2451 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2452 if (ess_dsp_write_ready(sc)) {
2453 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2454 return (0);
2455 } else
2456 delay(10);
2457 }
2458
2459 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2460 return (-1);
2461 }
2462
2463 /*
2464 * Write a value to one of the ESS extended registers.
2465 */
2466 int
2467 ess_write_x_reg(sc, reg, val)
2468 struct ess_softc *sc;
2469 u_char reg;
2470 u_char val;
2471 {
2472 int error;
2473
2474 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2475 if ((error = ess_wdsp(sc, reg)) == 0)
2476 error = ess_wdsp(sc, val);
2477
2478 return error;
2479 }
2480
2481 /*
2482 * Read the value of one of the ESS extended registers.
2483 */
2484 u_char
2485 ess_read_x_reg(sc, reg)
2486 struct ess_softc *sc;
2487 u_char reg;
2488 {
2489 int error;
2490 int val;
2491
2492 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2493 error = ess_wdsp(sc, reg);
2494 if (error)
2495 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2496 /* REVISIT: what if an error is returned above? */
2497 val = ess_rdsp(sc);
2498 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2499 return val;
2500 }
2501
2502 void
2503 ess_clear_xreg_bits(sc, reg, mask)
2504 struct ess_softc *sc;
2505 u_char reg;
2506 u_char mask;
2507 {
2508 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2509 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2510 reg));
2511 }
2512
2513 void
2514 ess_set_xreg_bits(sc, reg, mask)
2515 struct ess_softc *sc;
2516 u_char reg;
2517 u_char mask;
2518 {
2519 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2520 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2521 reg));
2522 }
2523
2524
2525 /*
2526 * Write a value to one of the ESS mixer registers.
2527 */
2528 void
2529 ess_write_mix_reg(sc, reg, val)
2530 struct ess_softc *sc;
2531 u_char reg;
2532 u_char val;
2533 {
2534 bus_space_tag_t iot = sc->sc_iot;
2535 bus_space_handle_t ioh = sc->sc_ioh;
2536 int s;
2537
2538 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2539
2540 s = splaudio();
2541 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2542 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2543 splx(s);
2544 }
2545
2546 /*
2547 * Read the value of one of the ESS mixer registers.
2548 */
2549 u_char
2550 ess_read_mix_reg(sc, reg)
2551 struct ess_softc *sc;
2552 u_char reg;
2553 {
2554 bus_space_tag_t iot = sc->sc_iot;
2555 bus_space_handle_t ioh = sc->sc_ioh;
2556 int s;
2557 u_char val;
2558
2559 s = splaudio();
2560 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2561 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2562 splx(s);
2563
2564 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2565 return val;
2566 }
2567
2568 void
2569 ess_clear_mreg_bits(sc, reg, mask)
2570 struct ess_softc *sc;
2571 u_char reg;
2572 u_char mask;
2573 {
2574 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2575 }
2576
2577 void
2578 ess_set_mreg_bits(sc, reg, mask)
2579 struct ess_softc *sc;
2580 u_char reg;
2581 u_char mask;
2582 {
2583 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2584 }
2585