ess.c revision 1.36 1 /* $NetBSD: ess.c,v 1.36 1999/03/16 13:32:25 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/errno.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <sys/device.h>
74 #include <sys/proc.h>
75
76 #include <machine/cpu.h>
77 #include <machine/intr.h>
78 #include <machine/bus.h>
79
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82 #include <dev/auconv.h>
83 #include <dev/mulaw.h>
84
85 #include <dev/isa/isavar.h>
86 #include <dev/isa/isadmavar.h>
87
88 #include <dev/isa/essvar.h>
89 #include <dev/isa/essreg.h>
90
91 #ifdef AUDIO_DEBUG
92 #define DPRINTF(x) if (essdebug) printf x
93 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
94 int essdebug = 0;
95 #else
96 #define DPRINTF(x)
97 #define DPRINTFN(n,x)
98 #endif
99
100 #if 0
101 unsigned uuu;
102 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
103 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
104 #else
105 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
106 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
107 #endif
108
109
110 int ess_setup_sc __P((struct ess_softc *, int));
111
112 int ess_open __P((void *, int));
113 void ess_1788_close __P((void *));
114 void ess_1888_close __P((void *));
115 int ess_getdev __P((void *, struct audio_device *));
116 int ess_drain __P((void *));
117
118 int ess_query_encoding __P((void *, struct audio_encoding *));
119
120 int ess_set_params __P((void *, int, int, struct audio_params *,
121 struct audio_params *));
122
123 int ess_round_blocksize __P((void *, int));
124
125 int ess_audio1_trigger_output __P((void *, void *, void *, int,
126 void (*)(void *), void *, struct audio_params *));
127 int ess_audio2_trigger_output __P((void *, void *, void *, int,
128 void (*)(void *), void *, struct audio_params *));
129 int ess_audio1_trigger_input __P((void *, void *, void *, int,
130 void (*)(void *), void *, struct audio_params *));
131 int ess_audio1_halt_output __P((void *));
132 int ess_audio2_halt_output __P((void *));
133 int ess_audio1_halt_input __P((void *));
134
135 int ess_audio1_intr __P((void *));
136 int ess_audio2_intr __P((void *));
137
138 int ess_speaker_ctl __P((void *, int));
139
140 int ess_getdev __P((void *, struct audio_device *));
141
142 int ess_set_port __P((void *, mixer_ctrl_t *));
143 int ess_get_port __P((void *, mixer_ctrl_t *));
144
145 void *ess_malloc __P((void *, int, size_t, int, int));
146 void ess_free __P((void *, void *, int));
147 size_t ess_round_buffersize __P((void *, int, size_t));
148 int ess_mappage __P((void *, void *, int, int));
149
150
151 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
152 int ess_1788_get_props __P((void *));
153 int ess_1888_get_props __P((void *));
154
155 void ess_speaker_on __P((struct ess_softc *));
156 void ess_speaker_off __P((struct ess_softc *));
157
158 int ess_config_addr __P((struct ess_softc *));
159 void ess_config_irq __P((struct ess_softc *));
160 void ess_config_drq __P((struct ess_softc *));
161 void ess_setup __P((struct ess_softc *));
162 int ess_identify __P((struct ess_softc *));
163
164 int ess_reset __P((struct ess_softc *));
165 void ess_set_gain __P((struct ess_softc *, int, int));
166 int ess_set_in_port __P((struct ess_softc *, int));
167 int ess_set_in_ports __P((struct ess_softc *, int));
168 u_int ess_srtotc __P((u_int));
169 u_int ess_srtofc __P((u_int));
170 u_char ess_get_dsp_status __P((struct ess_softc *));
171 u_char ess_dsp_read_ready __P((struct ess_softc *));
172 u_char ess_dsp_write_ready __P((struct ess_softc *sc));
173 int ess_rdsp __P((struct ess_softc *));
174 int ess_wdsp __P((struct ess_softc *, u_char));
175 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
176 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
177 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
178 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
179 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
180 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
181 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
182 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
183
184 static char *essmodel[] = {
185 "unsupported",
186 "1888",
187 "1887",
188 "888",
189 "1788"
190 };
191
192 struct audio_device ess_device = {
193 "ESS Technology",
194 "x",
195 "ess"
196 };
197
198 /*
199 * Define our interface to the higher level audio driver.
200 */
201
202 struct audio_hw_if ess_1788_hw_if = {
203 ess_open,
204 ess_1788_close,
205 ess_drain,
206 ess_query_encoding,
207 ess_set_params,
208 ess_round_blocksize,
209 NULL,
210 NULL,
211 NULL,
212 NULL,
213 NULL,
214 ess_audio1_halt_output,
215 ess_audio1_halt_input,
216 ess_speaker_ctl,
217 ess_getdev,
218 NULL,
219 ess_set_port,
220 ess_get_port,
221 ess_query_devinfo,
222 ess_malloc,
223 ess_free,
224 ess_round_buffersize,
225 ess_mappage,
226 ess_1788_get_props,
227 ess_audio1_trigger_output,
228 ess_audio1_trigger_input,
229 };
230
231 struct audio_hw_if ess_1888_hw_if = {
232 ess_open,
233 ess_1888_close,
234 ess_drain,
235 ess_query_encoding,
236 ess_set_params,
237 ess_round_blocksize,
238 NULL,
239 NULL,
240 NULL,
241 NULL,
242 NULL,
243 ess_audio2_halt_output,
244 ess_audio1_halt_input,
245 ess_speaker_ctl,
246 ess_getdev,
247 NULL,
248 ess_set_port,
249 ess_get_port,
250 ess_query_devinfo,
251 ess_malloc,
252 ess_free,
253 ess_round_buffersize,
254 ess_mappage,
255 ess_1888_get_props,
256 ess_audio2_trigger_output,
257 ess_audio1_trigger_input,
258 };
259
260 #ifdef AUDIO_DEBUG
261 void ess_printsc __P((struct ess_softc *));
262 void ess_dump_mixer __P((struct ess_softc *));
263
264 void
265 ess_printsc(sc)
266 struct ess_softc *sc;
267 {
268 int i;
269
270 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
271 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
272 sc->in_port, sc->spkr_state ? "on" : "off");
273
274 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n",
275 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
276 sc->sc_audio1.intr, sc->sc_audio1.arg);
277
278 if (sc->sc_model != ESS_1788) {
279 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n",
280 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
281 sc->sc_audio2.intr, sc->sc_audio2.arg);
282 }
283
284 printf("gain:");
285 for (i = 0; i < sc->ndevs; i++)
286 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
287 printf("\n");
288 }
289
290 void
291 ess_dump_mixer(sc)
292 struct ess_softc *sc;
293 {
294 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
295 0x7C, ess_read_mix_reg(sc, 0x7C));
296 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
297 0x1A, ess_read_mix_reg(sc, 0x1A));
298 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
299 0x3E, ess_read_mix_reg(sc, 0x3E));
300 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
301 0x36, ess_read_mix_reg(sc, 0x36));
302 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
303 0x38, ess_read_mix_reg(sc, 0x38));
304 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
305 0x3A, ess_read_mix_reg(sc, 0x3A));
306 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
307 0x32, ess_read_mix_reg(sc, 0x32));
308 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
309 0x3C, ess_read_mix_reg(sc, 0x3C));
310 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
311 0x69, ess_read_mix_reg(sc, 0x69));
312 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
313 0x68, ess_read_mix_reg(sc, 0x68));
314 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
315 0x6E, ess_read_mix_reg(sc, 0x6E));
316 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
317 0x6B, ess_read_mix_reg(sc, 0x6B));
318 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
319 0x6A, ess_read_mix_reg(sc, 0x6A));
320 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
321 0x6C, ess_read_mix_reg(sc, 0x6C));
322 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
323 0xB4, ess_read_x_reg(sc, 0xB4));
324 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
325 0x14, ess_read_mix_reg(sc, 0x14));
326
327 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
328 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
329 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
330 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
331 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
332 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
333 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
334 }
335
336 #endif
337
338 /*
339 * Configure the ESS chip for the desired audio base address.
340 */
341 int
342 ess_config_addr(sc)
343 struct ess_softc *sc;
344 {
345 int iobase = sc->sc_iobase;
346 bus_space_tag_t iot = sc->sc_iot;
347
348 /*
349 * Configure using the System Control Register method. This
350 * method is used when the AMODE line is tied high, which is
351 * the case for the Shark, but not for the evaluation board.
352 */
353
354 bus_space_handle_t scr_access_ioh;
355 bus_space_handle_t scr_ioh;
356 u_short scr_value;
357
358 /*
359 * Set the SCR bit to enable audio.
360 */
361 scr_value = ESS_SCR_AUDIO_ENABLE;
362
363 /*
364 * Set the SCR bits necessary to select the specified audio
365 * base address.
366 */
367 switch(iobase) {
368 case 0x220:
369 scr_value |= ESS_SCR_AUDIO_220;
370 break;
371 case 0x230:
372 scr_value |= ESS_SCR_AUDIO_230;
373 break;
374 case 0x240:
375 scr_value |= ESS_SCR_AUDIO_240;
376 break;
377 case 0x250:
378 scr_value |= ESS_SCR_AUDIO_250;
379 break;
380 default:
381 printf("ess: configured iobase 0x%x invalid\n", iobase);
382 return (1);
383 break;
384 }
385
386 /*
387 * Get a mapping for the System Control Register (SCR) access
388 * registers and the SCR data registers.
389 */
390 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
391 0, &scr_access_ioh)) {
392 printf("ess: can't map SCR access registers\n");
393 return (1);
394 }
395 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
396 0, &scr_ioh)) {
397 printf("ess: can't map SCR registers\n");
398 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
399 return (1);
400 }
401
402 /* Unlock the SCR. */
403 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
404
405 /* Write the base address information into SCR[0]. */
406 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
407 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
408
409 /* Lock the SCR. */
410 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
411
412 /* Unmap the SCR access ports and the SCR data ports. */
413 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
414 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
415
416 return 0;
417 }
418
419
420 /*
421 * Configure the ESS chip for the desired IRQ and DMA channels.
422 * ESS ISA
423 * --------
424 * IRQA irq9
425 * IRQB irq5
426 * IRQC irq7
427 * IRQD irq10
428 * IRQE irq15
429 *
430 * DRQA drq0
431 * DRQB drq1
432 * DRQC drq3
433 * DRQD drq5
434 */
435 void
436 ess_config_irq(sc)
437 struct ess_softc *sc;
438 {
439 int v;
440
441 DPRINTFN(2,("ess_config_irq\n"));
442
443 if (sc->sc_model == ESS_1887 &&
444 sc->sc_audio1.irq == sc->sc_audio2.irq) {
445 /* Use new method, both interrupts are the same. */
446 v = ESS_IS_SELECT_IRQ; /* enable intrs */
447 switch (sc->sc_audio2.irq) {
448 case 5:
449 v |= ESS_IS_INTRB;
450 break;
451 case 7:
452 v |= ESS_IS_INTRC;
453 break;
454 case 9:
455 v |= ESS_IS_INTRA;
456 break;
457 case 10:
458 v |= ESS_IS_INTRD;
459 break;
460 case 15:
461 v |= ESS_IS_INTRE;
462 break;
463 #ifdef DIAGNOSTIC
464 default:
465 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
466 sc->sc_audio1.irq);
467 return;
468 #endif
469 }
470 /* Set the IRQ */
471 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
472 return;
473 }
474
475 /* Configure Audio 1 (record) for the appropriate IRQ line. */
476 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
477 switch (sc->sc_audio1.irq) {
478 case 5:
479 v |= ESS_IRQ_CTRL_INTRB;
480 break;
481 case 7:
482 v |= ESS_IRQ_CTRL_INTRC;
483 break;
484 case 9:
485 v |= ESS_IRQ_CTRL_INTRA;
486 break;
487 case 10:
488 v |= ESS_IRQ_CTRL_INTRD;
489 break;
490 #ifdef DIAGNOSTIC
491 default:
492 printf("ess: configured irq %d not supported for Audio 1\n",
493 sc->sc_audio1.irq);
494 return;
495 #endif
496 }
497 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
498
499 if (sc->sc_model == ESS_1788)
500 return;
501
502 /* irq2 is hardwired to 15 in this mode */
503 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
504 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
505 /* Use old method. */
506 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
507 }
508
509
510 void
511 ess_config_drq(sc)
512 struct ess_softc *sc;
513 {
514 int v;
515
516 DPRINTFN(2,("ess_config_drq\n"));
517
518 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
519 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
520 switch (sc->sc_audio1.drq) {
521 case 0:
522 v |= ESS_DRQ_CTRL_DRQA;
523 break;
524 case 1:
525 v |= ESS_DRQ_CTRL_DRQB;
526 break;
527 case 3:
528 v |= ESS_DRQ_CTRL_DRQC;
529 break;
530 #ifdef DIAGNOSTIC
531 default:
532 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
533 sc->sc_audio1.drq);
534 return;
535 #endif
536 }
537 /* Set DRQ1 */
538 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
539
540 if (sc->sc_model == ESS_1788)
541 return;
542
543 /* Configure DRQ2 */
544 v = ESS_AUDIO2_CTRL3_DRQ_PD;
545 switch (sc->sc_audio2.drq) {
546 case 0:
547 v |= ESS_AUDIO2_CTRL3_DRQA;
548 break;
549 case 1:
550 v |= ESS_AUDIO2_CTRL3_DRQB;
551 break;
552 case 3:
553 v |= ESS_AUDIO2_CTRL3_DRQC;
554 break;
555 case 5:
556 v |= ESS_AUDIO2_CTRL3_DRQC;
557 break;
558 #ifdef DIAGNOSTIC
559 default:
560 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
561 sc->sc_audio2.drq);
562 return;
563 #endif
564 }
565 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
566 /* Enable DMA 2 */
567 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
568 ESS_AUDIO2_CTRL2_DMA_ENABLE);
569 }
570
571 /*
572 * Set up registers after a reset.
573 */
574 void
575 ess_setup(sc)
576 struct ess_softc *sc;
577 {
578
579 ess_config_irq(sc);
580 ess_config_drq(sc);
581
582 DPRINTFN(2,("ess_setup: done\n"));
583 }
584
585 /*
586 * Determine the model of ESS chip we are talking to. Currently we
587 * only support ES1888, ES1887 and ES888. The method of determining
588 * the chip is based on the information on page 27 of the ES1887 data
589 * sheet.
590 *
591 * This routine sets the values of sc->sc_model and sc->sc_version.
592 */
593 int
594 ess_identify(sc)
595 struct ess_softc *sc;
596 {
597 u_char reg1;
598 u_char reg2;
599 u_char reg3;
600
601 sc->sc_model = ESS_UNSUPPORTED;
602 sc->sc_version = 0;
603
604
605 /*
606 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
607 * n >= 8 for an ES1887 or an ES888. Other values indicate
608 * earlier (unsupported) chips.
609 */
610 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
611
612 if ((reg1 = ess_rdsp(sc)) != 0x68) {
613 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
614 return 1;
615 }
616
617 reg2 = ess_rdsp(sc);
618 if (((reg2 & 0xf0) != 0x80) ||
619 ((reg2 & 0x0f) < 8)) {
620 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
621 return 1;
622 }
623
624 /*
625 * Store the ID bytes as the version.
626 */
627 sc->sc_version = (reg1 << 8) + reg2;
628
629
630 /*
631 * 2. Verify we can change bit 2 in mixer register 0x64. This
632 * should be possible on all supported chips.
633 */
634 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
635 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
636
637 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
638
639 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
640 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
641 return 1;
642 }
643
644 /*
645 * Restore the original value of mixer register 0x64.
646 */
647 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
648
649
650 /*
651 * 3. Verify we can change the value of mixer register
652 * ESS_MREG_SAMPLE_RATE.
653 * This is possible on the 1888/1887/888, but not on the 1788.
654 * It is not necessary to restore the value of this mixer register.
655 */
656 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
657 reg2 = reg1 ^ 0xff; /* toggle all bits */
658
659 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
660
661 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
662 /* If we got this far before failing, it's a 1788. */
663 sc->sc_model = ESS_1788;
664 } else {
665 /*
666 * 4. Determine if we can change bit 5 in mixer register 0x64.
667 * This determines whether we have an ES1887:
668 *
669 * - can change indicates ES1887
670 * - can't change indicates ES1888 or ES888
671 */
672 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
673 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
674
675 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
676
677 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
678 sc->sc_model = ESS_1887;
679
680 /*
681 * Restore the original value of mixer register 0x64.
682 */
683 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
684 } else {
685 /*
686 * 5. Determine if we can change the value of mixer
687 * register 0x69 independently of mixer register
688 * 0x68. This determines which chip we have:
689 *
690 * - can modify idependently indicates ES888
691 * - register 0x69 is an alias of 0x68 indicates ES1888
692 */
693 reg1 = ess_read_mix_reg(sc, 0x68);
694 reg2 = ess_read_mix_reg(sc, 0x69);
695 reg3 = reg2 ^ 0xff; /* toggle all bits */
696
697 /*
698 * Write different values to each register.
699 */
700 ess_write_mix_reg(sc, 0x68, reg2);
701 ess_write_mix_reg(sc, 0x69, reg3);
702
703 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
704 ess_read_mix_reg(sc, 0x69) == reg3)
705 sc->sc_model = ESS_888;
706 else
707 sc->sc_model = ESS_1888;
708
709 /*
710 * Restore the original value of the registers.
711 */
712 ess_write_mix_reg(sc, 0x68, reg1);
713 ess_write_mix_reg(sc, 0x69, reg2);
714 }
715 }
716
717 return 0;
718 }
719
720
721 int
722 ess_setup_sc(sc, doinit)
723 struct ess_softc *sc;
724 int doinit;
725 {
726 /* Reset the chip. */
727 if (ess_reset(sc) != 0) {
728 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
729 return (1);
730 }
731
732 /* Identify the ESS chip, and check that it is supported. */
733 if (ess_identify(sc)) {
734 DPRINTF(("ess_setup_sc: couldn't identify\n"));
735 return (1);
736 }
737
738 return (0);
739 }
740
741 /*
742 * Probe for the ESS hardware.
743 */
744 int
745 essmatch(sc)
746 struct ess_softc *sc;
747 {
748 if (!ESS_BASE_VALID(sc->sc_iobase)) {
749 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
750 return (0);
751 }
752
753 /* Configure the ESS chip for the desired audio base address. */
754 if (ess_config_addr(sc))
755 return (0);
756
757 if (ess_setup_sc(sc, 1))
758 return (0);
759
760 if (sc->sc_model == ESS_UNSUPPORTED) {
761 DPRINTF(("ess: Unsupported model\n"));
762 return (0);
763 }
764
765 /* Check that requested DMA channels are valid and different. */
766 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
767 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
768 return (0);
769 }
770 if (sc->sc_model != ESS_1788) {
771 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq, sc->sc_model)) {
772 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
773 return (0);
774 }
775 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
776 printf("ess: play and record drq both %d\n",
777 sc->sc_audio1.drq);
778 return (0);
779 }
780 }
781
782 /*
783 * The 1887 has an additional IRQ mode where both channels are mapped
784 * to the same IRQ.
785 */
786 if (sc->sc_model == ESS_1887 &&
787 sc->sc_audio1.irq == sc->sc_audio2.irq &&
788 ESS_IRQ12_VALID(sc->sc_audio1.irq))
789 goto irq_not1888;
790
791 /* Check that requested IRQ lines are valid and different. */
792 if (!ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
793 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
794 return (0);
795 }
796 if (sc->sc_model != ESS_1788) {
797 if (!ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
798 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
799 return (0);
800 }
801 if (sc->sc_audio1.irq == sc->sc_audio2.irq) {
802 printf("ess: play and record irq both %d\n",
803 sc->sc_audio1.irq);
804 return (0);
805 }
806 }
807
808 irq_not1888:
809 /* Check that the DRQs are free. */
810 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq) ||
811 !isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
812 return (0);
813
814 /* XXX should we check IRQs as well? */
815
816 return (1);
817 }
818
819
820 /*
821 * Attach hardware to driver, attach hardware driver to audio
822 * pseudo-device driver.
823 */
824 void
825 essattach(sc)
826 struct ess_softc *sc;
827 {
828 struct audio_attach_args arg;
829 struct audio_params pparams, rparams;
830 int i;
831 u_int v;
832
833 if (ess_setup_sc(sc, 0)) {
834 printf("%s: setup failed\n", sc->sc_dev.dv_xname);
835 return;
836 }
837
838 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
839 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
840 ess_audio1_intr, sc);
841 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
842 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
843 printf("%s: can't create map for drq %d\n",
844 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
845 return;
846 }
847
848 if (sc->sc_model != ESS_1788) {
849 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
850 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
851 ess_audio2_intr, sc);
852 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
853 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
854 printf("%s: can't create map for drq %d\n",
855 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
856 return;
857 }
858 }
859
860 printf(" ESS Technology ES%s [version 0x%04x]\n",
861 essmodel[sc->sc_model], sc->sc_version);
862
863 /*
864 * Set record and play parameters to default values defined in
865 * generic audio driver.
866 */
867 pparams = audio_default;
868 rparams = audio_default;
869 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
870
871 /* Do a hardware reset on the mixer. */
872 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
873
874 /*
875 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
876 * to playback mixer, since playback is always through Audio 2.
877 */
878 if (sc->sc_model != ESS_1788)
879 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
880 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
881
882 if (sc->sc_model == ESS_1788) {
883 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
884 sc->in_port = ESS_SOURCE_MIC;
885 sc->ndevs = ESS_1788_NDEVS;
886 } else {
887 /*
888 * Set hardware record source to use output of the record
889 * mixer. We do the selection of record source in software by
890 * setting the gain of the unused sources to zero. (See
891 * ess_set_in_ports.)
892 */
893 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
894 sc->in_mask = 1 << ESS_MIC_REC_VOL;
895 sc->ndevs = ESS_1888_NDEVS;
896 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
897 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
898 }
899
900 /*
901 * Set gain on each mixer device to a sensible value.
902 * Devices not normally used are turned off, and other devices
903 * are set to 50% volume.
904 */
905 for (i = 0; i < sc->ndevs; i++) {
906 switch (i) {
907 case ESS_MIC_PLAY_VOL:
908 case ESS_LINE_PLAY_VOL:
909 case ESS_CD_PLAY_VOL:
910 case ESS_AUXB_PLAY_VOL:
911 case ESS_DAC_REC_VOL:
912 case ESS_LINE_REC_VOL:
913 case ESS_SYNTH_REC_VOL:
914 case ESS_CD_REC_VOL:
915 case ESS_AUXB_REC_VOL:
916 v = 0;
917 break;
918 default:
919 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
920 break;
921 }
922 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
923 ess_set_gain(sc, i, 1);
924 }
925
926 ess_setup(sc);
927
928 /* Disable the speaker until the device is opened. */
929 ess_speaker_off(sc);
930 sc->spkr_state = SPKR_OFF;
931
932 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
933 sprintf(ess_device.version, "0x%04x", sc->sc_version);
934
935 if (sc->sc_model == ESS_1788)
936 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
937 else
938 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
939
940 arg.type = AUDIODEV_TYPE_OPL;
941 arg.hwif = 0;
942 arg.hdl = 0;
943 (void)config_found(&sc->sc_dev, &arg, audioprint);
944
945 #ifdef AUDIO_DEBUG
946 if (essdebug > 0)
947 ess_printsc(sc);
948 #endif
949 }
950
951 /*
952 * Various routines to interface to higher level audio driver
953 */
954
955 int
956 ess_open(addr, flags)
957 void *addr;
958 int flags;
959 {
960 struct ess_softc *sc = addr;
961
962 DPRINTF(("ess_open: sc=%p\n", sc));
963
964 if (sc->sc_open != 0 || ess_reset(sc) != 0)
965 return ENXIO;
966
967 ess_setup(sc); /* because we did a reset */
968
969 sc->sc_open = 1;
970
971 DPRINTF(("ess_open: opened\n"));
972
973 return (0);
974 }
975
976 void
977 ess_1788_close(addr)
978 void *addr;
979 {
980 struct ess_softc *sc = addr;
981
982 DPRINTF(("ess_1788_close: sc=%p\n", sc));
983
984 ess_speaker_off(sc);
985 sc->spkr_state = SPKR_OFF;
986
987 ess_audio1_halt_output(sc);
988 ess_audio1_halt_input(sc);
989
990 sc->sc_audio1.intr = 0;
991 sc->sc_open = 0;
992
993 DPRINTF(("ess_1788_close: closed\n"));
994 }
995
996 void
997 ess_1888_close(addr)
998 void *addr;
999 {
1000 struct ess_softc *sc = addr;
1001
1002 DPRINTF(("ess_1888_close: sc=%p\n", sc));
1003
1004 ess_speaker_off(sc);
1005 sc->spkr_state = SPKR_OFF;
1006
1007 ess_audio2_halt_output(sc);
1008 ess_audio1_halt_input(sc);
1009
1010 sc->sc_audio1.intr = 0;
1011 sc->sc_audio2.intr = 0;
1012 sc->sc_open = 0;
1013
1014 DPRINTF(("ess_1888_close: closed\n"));
1015 }
1016
1017 /*
1018 * Wait for FIFO to drain, and analog section to settle.
1019 * XXX should check FIFO empty bit.
1020 */
1021 int
1022 ess_drain(addr)
1023 void *addr;
1024 {
1025 extern int hz; /* XXX */
1026
1027 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1028 return (0);
1029 }
1030
1031 /* XXX should use reference count */
1032 int
1033 ess_speaker_ctl(addr, newstate)
1034 void *addr;
1035 int newstate;
1036 {
1037 struct ess_softc *sc = addr;
1038
1039 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1040 ess_speaker_on(sc);
1041 sc->spkr_state = SPKR_ON;
1042 }
1043 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1044 ess_speaker_off(sc);
1045 sc->spkr_state = SPKR_OFF;
1046 }
1047 return (0);
1048 }
1049
1050 int
1051 ess_getdev(addr, retp)
1052 void *addr;
1053 struct audio_device *retp;
1054 {
1055 *retp = ess_device;
1056 return (0);
1057 }
1058
1059 int
1060 ess_query_encoding(addr, fp)
1061 void *addr;
1062 struct audio_encoding *fp;
1063 {
1064 /*struct ess_softc *sc = addr;*/
1065
1066 switch (fp->index) {
1067 case 0:
1068 strcpy(fp->name, AudioEulinear);
1069 fp->encoding = AUDIO_ENCODING_ULINEAR;
1070 fp->precision = 8;
1071 fp->flags = 0;
1072 return (0);
1073 case 1:
1074 strcpy(fp->name, AudioEmulaw);
1075 fp->encoding = AUDIO_ENCODING_ULAW;
1076 fp->precision = 8;
1077 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1078 return (0);
1079 case 2:
1080 strcpy(fp->name, AudioEalaw);
1081 fp->encoding = AUDIO_ENCODING_ALAW;
1082 fp->precision = 8;
1083 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1084 return (0);
1085 case 3:
1086 strcpy(fp->name, AudioEslinear);
1087 fp->encoding = AUDIO_ENCODING_SLINEAR;
1088 fp->precision = 8;
1089 fp->flags = 0;
1090 return (0);
1091 case 4:
1092 strcpy(fp->name, AudioEslinear_le);
1093 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1094 fp->precision = 16;
1095 fp->flags = 0;
1096 return (0);
1097 case 5:
1098 strcpy(fp->name, AudioEulinear_le);
1099 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1100 fp->precision = 16;
1101 fp->flags = 0;
1102 return (0);
1103 case 6:
1104 strcpy(fp->name, AudioEslinear_be);
1105 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1106 fp->precision = 16;
1107 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1108 return (0);
1109 case 7:
1110 strcpy(fp->name, AudioEulinear_be);
1111 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1112 fp->precision = 16;
1113 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1114 return (0);
1115 default:
1116 return EINVAL;
1117 }
1118 return (0);
1119 }
1120
1121 int
1122 ess_set_params(addr, setmode, usemode, play, rec)
1123 void *addr;
1124 int setmode, usemode;
1125 struct audio_params *play, *rec;
1126 {
1127 struct ess_softc *sc = addr;
1128 struct audio_params *p;
1129 int mode;
1130 int rate;
1131
1132 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1133
1134 /*
1135 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1136 * full-duplex operation the sample rates must be the same for both
1137 * channels. This appears to be false; the only bit in common is the
1138 * clock source selection. However, we'll be conservative here.
1139 * - mycroft
1140 */
1141 if (play->sample_rate != rec->sample_rate &&
1142 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1143 if (setmode == AUMODE_PLAY) {
1144 rec->sample_rate = play->sample_rate;
1145 setmode |= AUMODE_RECORD;
1146 } else if (setmode == AUMODE_RECORD) {
1147 play->sample_rate = rec->sample_rate;
1148 setmode |= AUMODE_PLAY;
1149 } else
1150 return (EINVAL);
1151 }
1152
1153 for (mode = AUMODE_RECORD; mode != -1;
1154 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1155 if ((setmode & mode) == 0)
1156 continue;
1157
1158 p = mode == AUMODE_PLAY ? play : rec;
1159
1160 if (p->sample_rate < ESS_MINRATE ||
1161 p->sample_rate > ESS_MAXRATE ||
1162 (p->precision != 8 && p->precision != 16) ||
1163 (p->channels != 1 && p->channels != 2))
1164 return (EINVAL);
1165
1166 p->factor = 1;
1167 p->sw_code = 0;
1168 switch (p->encoding) {
1169 case AUDIO_ENCODING_SLINEAR_BE:
1170 case AUDIO_ENCODING_ULINEAR_BE:
1171 if (p->precision == 16)
1172 p->sw_code = swap_bytes;
1173 break;
1174 case AUDIO_ENCODING_SLINEAR_LE:
1175 case AUDIO_ENCODING_ULINEAR_LE:
1176 break;
1177 case AUDIO_ENCODING_ULAW:
1178 if (mode == AUMODE_PLAY) {
1179 p->factor = 2;
1180 p->sw_code = mulaw_to_ulinear16;
1181 } else
1182 p->sw_code = ulinear8_to_mulaw;
1183 break;
1184 case AUDIO_ENCODING_ALAW:
1185 if (mode == AUMODE_PLAY) {
1186 p->factor = 2;
1187 p->sw_code = alaw_to_ulinear16;
1188 } else
1189 p->sw_code = ulinear8_to_alaw;
1190 break;
1191 default:
1192 return (EINVAL);
1193 }
1194 }
1195
1196 if (usemode == AUMODE_RECORD)
1197 rate = rec->sample_rate;
1198 else
1199 rate = play->sample_rate;
1200
1201 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1202 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1203
1204 if (sc->sc_model != ESS_1788) {
1205 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1206 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1207 }
1208
1209 return (0);
1210 }
1211
1212 int
1213 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1214 void *addr;
1215 void *start, *end;
1216 int blksize;
1217 void (*intr) __P((void *));
1218 void *arg;
1219 struct audio_params *param;
1220 {
1221 struct ess_softc *sc = addr;
1222
1223 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1224 addr, start, end, blksize, intr, arg));
1225
1226 #ifdef DIAGNOSTIC
1227 if (param->channels == 2 && (blksize & 1)) {
1228 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1229 return EIO;
1230 }
1231 if (sc->sc_audio1.active)
1232 panic("ess_audio1_trigger_output: already running");
1233 #endif
1234 sc->sc_audio1.active = 1;
1235
1236 sc->sc_audio1.intr = intr;
1237 sc->sc_audio1.arg = arg;
1238
1239 if (param->precision * param->factor == 16)
1240 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1241 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1242 else
1243 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1244 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1245
1246 if (param->channels == 2) {
1247 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1248 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1249 ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1250 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1251 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1252 } else {
1253 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1254 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1255 ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1256 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1257 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1258 }
1259
1260 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1261 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1262 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1263 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1264 else
1265 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1266 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1267
1268 /* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1269 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1270 ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1271
1272 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1273 (char *)end - (char *)start, NULL,
1274 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1275
1276 if (IS16BITDRQ(sc->sc_audio1.drq))
1277 blksize >>= 1; /* use word count for 16 bit DMA */
1278 /* Program transfer count registers with 2's complement of count. */
1279 blksize = -blksize;
1280 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1281 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1282
1283 /* Use 4 bytes per input DMA. */
1284 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
1285 ESS_DEMAND_CTRL_DEMAND_4);
1286
1287 /* Start auto-init DMA */
1288 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1289 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1290 ESS_AUDIO1_CTRL2_DMA_READ |
1291 ESS_AUDIO1_CTRL2_ADC_ENABLE);
1292 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1293 ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1294 ESS_AUDIO1_CTRL2_AUTO_INIT);
1295
1296 return (0);
1297
1298 }
1299
1300 int
1301 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1302 void *addr;
1303 void *start, *end;
1304 int blksize;
1305 void (*intr) __P((void *));
1306 void *arg;
1307 struct audio_params *param;
1308 {
1309 struct ess_softc *sc = addr;
1310
1311 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1312 addr, start, end, blksize, intr, arg));
1313
1314 #ifdef DIAGNOSTIC
1315 if (param->channels == 2 && (blksize & 1)) {
1316 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1317 return EIO;
1318 }
1319 if (sc->sc_audio2.active)
1320 panic("ess_audio2_trigger_output: already running");
1321 #endif
1322 sc->sc_audio2.active = 1;
1323
1324 sc->sc_audio2.intr = intr;
1325 sc->sc_audio2.arg = arg;
1326
1327 if (param->precision * param->factor == 16)
1328 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1329 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1330 else
1331 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1332 ESS_AUDIO2_CTRL2_FIFO_SIZE);
1333
1334 if (param->channels == 2)
1335 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1336 ESS_AUDIO2_CTRL2_CHANNELS);
1337 else
1338 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1339 ESS_AUDIO2_CTRL2_CHANNELS);
1340
1341 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1342 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1343 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1344 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1345 else
1346 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1347 ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1348
1349 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1350 (char *)end - (char *)start, NULL,
1351 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1352
1353 if (IS16BITDRQ(sc->sc_audio2.drq))
1354 blksize >>= 1; /* use word count for 16 bit DMA */
1355 /* Program transfer count registers with 2's complement of count. */
1356 blksize = -blksize;
1357 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1358 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1359
1360 if (IS16BITDRQ(sc->sc_audio2.drq))
1361 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1362 ESS_AUDIO2_CTRL1_XFER_SIZE);
1363 else
1364 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1365 ESS_AUDIO2_CTRL1_XFER_SIZE);
1366
1367 /* Use 8 bytes per output DMA. */
1368 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1369 ESS_AUDIO2_CTRL1_DEMAND_8);
1370
1371 /* Start auto-init DMA */
1372 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1373 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1374 ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1375 ESS_AUDIO2_CTRL1_AUTO_INIT);
1376
1377 return (0);
1378
1379 }
1380
1381 int
1382 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1383 void *addr;
1384 void *start, *end;
1385 int blksize;
1386 void (*intr) __P((void *));
1387 void *arg;
1388 struct audio_params *param;
1389 {
1390 struct ess_softc *sc = addr;
1391
1392 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1393 addr, start, end, blksize, intr, arg));
1394
1395 #ifdef DIAGNOSTIC
1396 if (param->channels == 2 && (blksize & 1)) {
1397 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1398 return EIO;
1399 }
1400 if (sc->sc_audio1.active)
1401 panic("ess_audio1_trigger_input: already running");
1402 #endif
1403 sc->sc_audio1.active = 1;
1404
1405 sc->sc_audio1.intr = intr;
1406 sc->sc_audio1.arg = arg;
1407
1408 if (param->precision * param->factor == 16)
1409 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1410 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1411 else
1412 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1413 ESS_AUDIO1_CTRL1_FIFO_SIZE);
1414
1415 if (param->channels == 2) {
1416 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1417 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1418 ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1419 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1420 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1421 } else {
1422 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1423 (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1424 ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1425 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1426 ESS_AUDIO1_CTRL1_FIFO_STEREO);
1427 }
1428
1429 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1430 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1431 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1432 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1433 else
1434 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1435 ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1436
1437 /* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1438 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1439 ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1440
1441 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1442 (char *)end - (char *)start, NULL,
1443 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1444
1445 if (IS16BITDRQ(sc->sc_audio1.drq))
1446 blksize >>= 1; /* use word count for 16 bit DMA */
1447 /* Program transfer count registers with 2's complement of count. */
1448 blksize = -blksize;
1449 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1450 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1451
1452 /* Use 4 bytes per input DMA. */
1453 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
1454 ESS_DEMAND_CTRL_DEMAND_4);
1455
1456 /* Start auto-init DMA */
1457 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1458 ESS_AUDIO1_CTRL2_DMA_READ |
1459 ESS_AUDIO1_CTRL2_ADC_ENABLE |
1460 ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1461 ESS_AUDIO1_CTRL2_AUTO_INIT);
1462
1463 return (0);
1464
1465 }
1466
1467 int
1468 ess_audio1_halt_output(addr)
1469 void *addr;
1470 {
1471 struct ess_softc *sc = addr;
1472
1473 DPRINTF(("ess_audio1_halt_output: sc=%p\n", sc));
1474
1475 if (sc->sc_audio1.active) {
1476 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1477 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1478 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1479 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1480 sc->sc_audio1.active = 0;
1481 }
1482
1483 return (0);
1484 }
1485
1486 int
1487 ess_audio2_halt_output(addr)
1488 void *addr;
1489 {
1490 struct ess_softc *sc = addr;
1491
1492 DPRINTF(("ess_audio2_halt_output: sc=%p\n", sc));
1493
1494 if (sc->sc_audio2.active) {
1495 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1496 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1497 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1498 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1499 sc->sc_audio2.active = 0;
1500 }
1501
1502 return (0);
1503 }
1504
1505 int
1506 ess_audio1_halt_input(addr)
1507 void *addr;
1508 {
1509 struct ess_softc *sc = addr;
1510
1511 DPRINTF(("ess_audio1_halt_input: sc=%p\n", sc));
1512
1513 if (sc->sc_audio1.active) {
1514 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1515 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1516 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1517 sc->sc_audio1.active = 0;
1518 }
1519
1520 return (0);
1521 }
1522
1523 int
1524 ess_audio1_intr(arg)
1525 void *arg;
1526 {
1527 struct ess_softc *sc = arg;
1528 u_char x;
1529
1530 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1531
1532 /* clear interrupt on Audio channel 1*/
1533 x = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1534
1535 sc->sc_audio1.nintr++;
1536
1537 if (sc->sc_audio1.intr != 0)
1538 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1539 else
1540 return (0);
1541
1542 return (1);
1543 }
1544
1545 int
1546 ess_audio2_intr(arg)
1547 void *arg;
1548 {
1549 struct ess_softc *sc = arg;
1550
1551 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1552
1553 /* clear interrupt on Audio channel 2 */
1554 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1555 ESS_AUDIO2_CTRL2_IRQ_LATCH);
1556
1557 sc->sc_audio2.nintr++;
1558
1559 if (sc->sc_audio2.intr != 0)
1560 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1561 else
1562 return (0);
1563
1564 return (1);
1565 }
1566
1567 int
1568 ess_round_blocksize(addr, blk)
1569 void *addr;
1570 int blk;
1571 {
1572 return (blk & -8); /* round for max DMA size */
1573 }
1574
1575 int
1576 ess_set_port(addr, cp)
1577 void *addr;
1578 mixer_ctrl_t *cp;
1579 {
1580 struct ess_softc *sc = addr;
1581 int lgain, rgain;
1582
1583 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1584 cp->dev, cp->un.value.num_channels));
1585
1586 switch (cp->dev) {
1587 /*
1588 * The following mixer ports are all stereo. If we get a
1589 * single-channel gain value passed in, then we duplicate it
1590 * to both left and right channels.
1591 */
1592 case ESS_MASTER_VOL:
1593 case ESS_DAC_PLAY_VOL:
1594 case ESS_MIC_PLAY_VOL:
1595 case ESS_LINE_PLAY_VOL:
1596 case ESS_SYNTH_PLAY_VOL:
1597 case ESS_CD_PLAY_VOL:
1598 case ESS_AUXB_PLAY_VOL:
1599 case ESS_RECORD_VOL:
1600 if (cp->type != AUDIO_MIXER_VALUE)
1601 return EINVAL;
1602
1603 switch (cp->un.value.num_channels) {
1604 case 1:
1605 lgain = rgain = ESS_4BIT_GAIN(
1606 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1607 break;
1608 case 2:
1609 lgain = ESS_4BIT_GAIN(
1610 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1611 rgain = ESS_4BIT_GAIN(
1612 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1613 break;
1614 default:
1615 return EINVAL;
1616 }
1617
1618 sc->gain[cp->dev][ESS_LEFT] = lgain;
1619 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1620 ess_set_gain(sc, cp->dev, 1);
1621 return (0);
1622
1623 /*
1624 * The PC speaker port is mono. If we get a stereo gain value
1625 * passed in, then we return EINVAL.
1626 */
1627 case ESS_PCSPEAKER_VOL:
1628 if (cp->un.value.num_channels != 1)
1629 return EINVAL;
1630
1631 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1632 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1633 ess_set_gain(sc, cp->dev, 1);
1634 return (0);
1635
1636 case ESS_RECORD_SOURCE:
1637 if (sc->sc_model == ESS_1788) {
1638 if (cp->type == AUDIO_MIXER_ENUM)
1639 return (ess_set_in_port(sc, cp->un.ord));
1640 else
1641 return (EINVAL);
1642 } else {
1643 if (cp->type == AUDIO_MIXER_SET)
1644 return (ess_set_in_ports(sc, cp->un.mask));
1645 else
1646 return (EINVAL);
1647 }
1648 return (0);
1649
1650 case ESS_RECORD_MONITOR:
1651 if (cp->type != AUDIO_MIXER_ENUM)
1652 return EINVAL;
1653
1654 if (cp->un.ord)
1655 /* Enable monitor */
1656 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1657 ESS_AUDIO_CTRL_MONITOR);
1658 else
1659 /* Disable monitor */
1660 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1661 ESS_AUDIO_CTRL_MONITOR);
1662 return (0);
1663 }
1664
1665 if (sc->sc_model == ESS_1788)
1666 return (EINVAL);
1667
1668 switch (cp->dev) {
1669 case ESS_DAC_REC_VOL:
1670 case ESS_MIC_REC_VOL:
1671 case ESS_LINE_REC_VOL:
1672 case ESS_SYNTH_REC_VOL:
1673 case ESS_CD_REC_VOL:
1674 case ESS_AUXB_REC_VOL:
1675 if (cp->type != AUDIO_MIXER_VALUE)
1676 return EINVAL;
1677
1678 switch (cp->un.value.num_channels) {
1679 case 1:
1680 lgain = rgain = ESS_4BIT_GAIN(
1681 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1682 break;
1683 case 2:
1684 lgain = ESS_4BIT_GAIN(
1685 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1686 rgain = ESS_4BIT_GAIN(
1687 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1688 break;
1689 default:
1690 return EINVAL;
1691 }
1692
1693 sc->gain[cp->dev][ESS_LEFT] = lgain;
1694 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1695 ess_set_gain(sc, cp->dev, 1);
1696 return (0);
1697
1698 case ESS_MIC_PREAMP:
1699 if (cp->type != AUDIO_MIXER_ENUM)
1700 return EINVAL;
1701
1702 if (cp->un.ord)
1703 /* Enable microphone preamp */
1704 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1705 ESS_PREAMP_CTRL_ENABLE);
1706 else
1707 /* Disable microphone preamp */
1708 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1709 ESS_PREAMP_CTRL_ENABLE);
1710 return (0);
1711 }
1712
1713 return (EINVAL);
1714 }
1715
1716 int
1717 ess_get_port(addr, cp)
1718 void *addr;
1719 mixer_ctrl_t *cp;
1720 {
1721 struct ess_softc *sc = addr;
1722
1723 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1724
1725 switch (cp->dev) {
1726 case ESS_MASTER_VOL:
1727 case ESS_DAC_PLAY_VOL:
1728 case ESS_MIC_PLAY_VOL:
1729 case ESS_LINE_PLAY_VOL:
1730 case ESS_SYNTH_PLAY_VOL:
1731 case ESS_CD_PLAY_VOL:
1732 case ESS_AUXB_PLAY_VOL:
1733 case ESS_RECORD_VOL:
1734 switch (cp->un.value.num_channels) {
1735 case 1:
1736 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1737 sc->gain[cp->dev][ESS_LEFT];
1738 break;
1739 case 2:
1740 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1741 sc->gain[cp->dev][ESS_LEFT];
1742 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1743 sc->gain[cp->dev][ESS_RIGHT];
1744 break;
1745 default:
1746 return EINVAL;
1747 }
1748 return (0);
1749
1750 case ESS_PCSPEAKER_VOL:
1751 if (cp->un.value.num_channels != 1)
1752 return EINVAL;
1753
1754 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1755 sc->gain[cp->dev][ESS_LEFT];
1756 return (0);
1757
1758 case ESS_RECORD_SOURCE:
1759 if (sc->sc_model == ESS_1788)
1760 cp->un.ord = sc->in_port;
1761 else
1762 cp->un.mask = sc->in_mask;
1763 return (0);
1764
1765 case ESS_RECORD_MONITOR:
1766 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1767 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1768 return (0);
1769 }
1770
1771 if (sc->sc_model == ESS_1788)
1772 return (EINVAL);
1773
1774 switch (cp->dev) {
1775 case ESS_DAC_REC_VOL:
1776 case ESS_MIC_REC_VOL:
1777 case ESS_LINE_REC_VOL:
1778 case ESS_SYNTH_REC_VOL:
1779 case ESS_CD_REC_VOL:
1780 case ESS_AUXB_REC_VOL:
1781 switch (cp->un.value.num_channels) {
1782 case 1:
1783 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1784 sc->gain[cp->dev][ESS_LEFT];
1785 break;
1786 case 2:
1787 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1788 sc->gain[cp->dev][ESS_LEFT];
1789 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1790 sc->gain[cp->dev][ESS_RIGHT];
1791 break;
1792 default:
1793 return EINVAL;
1794 }
1795 return (0);
1796
1797 case ESS_MIC_PREAMP:
1798 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1799 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1800 return (0);
1801 }
1802
1803 return (EINVAL);
1804 }
1805
1806 int
1807 ess_query_devinfo(addr, dip)
1808 void *addr;
1809 mixer_devinfo_t *dip;
1810 {
1811 struct ess_softc *sc = addr;
1812
1813 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1814 sc->sc_model, dip->index));
1815
1816 /*
1817 * REVISIT: There are some slight differences between the
1818 * mixers on the different ESS chips, which can
1819 * be sorted out using the chip model rather than a
1820 * separate mixer model.
1821 * This is currently coded assuming an ES1887; we
1822 * need to work out which bits are not applicable to
1823 * the other models (1888 and 888).
1824 */
1825 switch (dip->index) {
1826 case ESS_DAC_PLAY_VOL:
1827 dip->mixer_class = ESS_INPUT_CLASS;
1828 dip->next = dip->prev = AUDIO_MIXER_LAST;
1829 strcpy(dip->label.name, AudioNdac);
1830 dip->type = AUDIO_MIXER_VALUE;
1831 dip->un.v.num_channels = 2;
1832 strcpy(dip->un.v.units.name, AudioNvolume);
1833 return (0);
1834
1835 case ESS_MIC_PLAY_VOL:
1836 dip->mixer_class = ESS_INPUT_CLASS;
1837 dip->prev = AUDIO_MIXER_LAST;
1838 if (sc->sc_model == ESS_1788)
1839 dip->next = AUDIO_MIXER_LAST;
1840 else
1841 dip->next = ESS_MIC_PREAMP;
1842 strcpy(dip->label.name, AudioNmicrophone);
1843 dip->type = AUDIO_MIXER_VALUE;
1844 dip->un.v.num_channels = 2;
1845 strcpy(dip->un.v.units.name, AudioNvolume);
1846 return (0);
1847
1848 case ESS_LINE_PLAY_VOL:
1849 dip->mixer_class = ESS_INPUT_CLASS;
1850 dip->next = dip->prev = AUDIO_MIXER_LAST;
1851 strcpy(dip->label.name, AudioNline);
1852 dip->type = AUDIO_MIXER_VALUE;
1853 dip->un.v.num_channels = 2;
1854 strcpy(dip->un.v.units.name, AudioNvolume);
1855 return (0);
1856
1857 case ESS_SYNTH_PLAY_VOL:
1858 dip->mixer_class = ESS_INPUT_CLASS;
1859 dip->next = dip->prev = AUDIO_MIXER_LAST;
1860 strcpy(dip->label.name, AudioNfmsynth);
1861 dip->type = AUDIO_MIXER_VALUE;
1862 dip->un.v.num_channels = 2;
1863 strcpy(dip->un.v.units.name, AudioNvolume);
1864 return (0);
1865
1866 case ESS_CD_PLAY_VOL:
1867 dip->mixer_class = ESS_INPUT_CLASS;
1868 dip->next = dip->prev = AUDIO_MIXER_LAST;
1869 strcpy(dip->label.name, AudioNcd);
1870 dip->type = AUDIO_MIXER_VALUE;
1871 dip->un.v.num_channels = 2;
1872 strcpy(dip->un.v.units.name, AudioNvolume);
1873 return (0);
1874
1875 case ESS_AUXB_PLAY_VOL:
1876 dip->mixer_class = ESS_INPUT_CLASS;
1877 dip->next = dip->prev = AUDIO_MIXER_LAST;
1878 strcpy(dip->label.name, "auxb");
1879 dip->type = AUDIO_MIXER_VALUE;
1880 dip->un.v.num_channels = 2;
1881 strcpy(dip->un.v.units.name, AudioNvolume);
1882 return (0);
1883
1884 case ESS_INPUT_CLASS:
1885 dip->mixer_class = ESS_INPUT_CLASS;
1886 dip->next = dip->prev = AUDIO_MIXER_LAST;
1887 strcpy(dip->label.name, AudioCinputs);
1888 dip->type = AUDIO_MIXER_CLASS;
1889 return (0);
1890
1891 case ESS_MASTER_VOL:
1892 dip->mixer_class = ESS_OUTPUT_CLASS;
1893 dip->next = dip->prev = AUDIO_MIXER_LAST;
1894 strcpy(dip->label.name, AudioNmaster);
1895 dip->type = AUDIO_MIXER_VALUE;
1896 dip->un.v.num_channels = 2;
1897 strcpy(dip->un.v.units.name, AudioNvolume);
1898 return (0);
1899
1900 case ESS_PCSPEAKER_VOL:
1901 dip->mixer_class = ESS_OUTPUT_CLASS;
1902 dip->next = dip->prev = AUDIO_MIXER_LAST;
1903 strcpy(dip->label.name, "pc_speaker");
1904 dip->type = AUDIO_MIXER_VALUE;
1905 dip->un.v.num_channels = 1;
1906 strcpy(dip->un.v.units.name, AudioNvolume);
1907 return (0);
1908
1909 case ESS_OUTPUT_CLASS:
1910 dip->mixer_class = ESS_OUTPUT_CLASS;
1911 dip->next = dip->prev = AUDIO_MIXER_LAST;
1912 strcpy(dip->label.name, AudioCoutputs);
1913 dip->type = AUDIO_MIXER_CLASS;
1914 return (0);
1915
1916 case ESS_RECORD_VOL:
1917 dip->mixer_class = ESS_RECORD_CLASS;
1918 dip->next = dip->prev = AUDIO_MIXER_LAST;
1919 strcpy(dip->label.name, AudioNrecord);
1920 dip->type = AUDIO_MIXER_VALUE;
1921 dip->un.v.num_channels = 2;
1922 strcpy(dip->un.v.units.name, AudioNvolume);
1923 return (0);
1924
1925 case ESS_RECORD_SOURCE:
1926 dip->mixer_class = ESS_RECORD_CLASS;
1927 dip->next = dip->prev = AUDIO_MIXER_LAST;
1928 strcpy(dip->label.name, AudioNsource);
1929 if (sc->sc_model == ESS_1788) {
1930 /*
1931 * The 1788 doesn't use the input mixer control that
1932 * the 1888 uses, because it's a pain when you only
1933 * have one mixer.
1934 * Perhaps it could be emulated by keeping both sets of
1935 * gain values, and doing a `context switch' of the
1936 * mixer registers when shifting from playing to
1937 * recording.
1938 */
1939 dip->type = AUDIO_MIXER_ENUM;
1940 dip->un.e.num_mem = 4;
1941 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1942 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
1943 strcpy(dip->un.e.member[1].label.name, AudioNline);
1944 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
1945 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1946 dip->un.e.member[2].ord = ESS_SOURCE_CD;
1947 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1948 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
1949 } else {
1950 dip->type = AUDIO_MIXER_SET;
1951 dip->un.s.num_mem = 6;
1952 strcpy(dip->un.s.member[0].label.name, AudioNdac);
1953 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
1954 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
1955 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
1956 strcpy(dip->un.s.member[2].label.name, AudioNline);
1957 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
1958 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1959 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
1960 strcpy(dip->un.s.member[4].label.name, AudioNcd);
1961 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
1962 strcpy(dip->un.s.member[5].label.name, "auxb");
1963 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
1964 }
1965 return (0);
1966
1967 case ESS_RECORD_CLASS:
1968 dip->mixer_class = ESS_RECORD_CLASS;
1969 dip->next = dip->prev = AUDIO_MIXER_LAST;
1970 strcpy(dip->label.name, AudioCrecord);
1971 dip->type = AUDIO_MIXER_CLASS;
1972 return (0);
1973
1974 case ESS_RECORD_MONITOR:
1975 dip->prev = dip->next = AUDIO_MIXER_LAST;
1976 strcpy(dip->label.name, AudioNmonitor);
1977 dip->type = AUDIO_MIXER_ENUM;
1978 dip->mixer_class = ESS_MONITOR_CLASS;
1979 dip->un.e.num_mem = 2;
1980 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1981 dip->un.e.member[0].ord = 0;
1982 strcpy(dip->un.e.member[1].label.name, AudioNon);
1983 dip->un.e.member[1].ord = 1;
1984 return (0);
1985
1986 case ESS_MONITOR_CLASS:
1987 dip->mixer_class = ESS_MONITOR_CLASS;
1988 dip->next = dip->prev = AUDIO_MIXER_LAST;
1989 strcpy(dip->label.name, AudioCmonitor);
1990 dip->type = AUDIO_MIXER_CLASS;
1991 return (0);
1992 }
1993
1994 if (sc->sc_model == ESS_1788)
1995 return (ENXIO);
1996
1997 switch (dip->index) {
1998 case ESS_DAC_REC_VOL:
1999 dip->mixer_class = ESS_RECORD_CLASS;
2000 dip->next = dip->prev = AUDIO_MIXER_LAST;
2001 strcpy(dip->label.name, AudioNdac);
2002 dip->type = AUDIO_MIXER_VALUE;
2003 dip->un.v.num_channels = 2;
2004 strcpy(dip->un.v.units.name, AudioNvolume);
2005 return (0);
2006
2007 case ESS_MIC_REC_VOL:
2008 dip->mixer_class = ESS_RECORD_CLASS;
2009 dip->next = dip->prev = AUDIO_MIXER_LAST;
2010 strcpy(dip->label.name, AudioNmicrophone);
2011 dip->type = AUDIO_MIXER_VALUE;
2012 dip->un.v.num_channels = 2;
2013 strcpy(dip->un.v.units.name, AudioNvolume);
2014 return (0);
2015
2016 case ESS_LINE_REC_VOL:
2017 dip->mixer_class = ESS_RECORD_CLASS;
2018 dip->next = dip->prev = AUDIO_MIXER_LAST;
2019 strcpy(dip->label.name, AudioNline);
2020 dip->type = AUDIO_MIXER_VALUE;
2021 dip->un.v.num_channels = 2;
2022 strcpy(dip->un.v.units.name, AudioNvolume);
2023 return (0);
2024
2025 case ESS_SYNTH_REC_VOL:
2026 dip->mixer_class = ESS_RECORD_CLASS;
2027 dip->next = dip->prev = AUDIO_MIXER_LAST;
2028 strcpy(dip->label.name, AudioNfmsynth);
2029 dip->type = AUDIO_MIXER_VALUE;
2030 dip->un.v.num_channels = 2;
2031 strcpy(dip->un.v.units.name, AudioNvolume);
2032 return (0);
2033
2034 case ESS_CD_REC_VOL:
2035 dip->mixer_class = ESS_RECORD_CLASS;
2036 dip->next = dip->prev = AUDIO_MIXER_LAST;
2037 strcpy(dip->label.name, AudioNcd);
2038 dip->type = AUDIO_MIXER_VALUE;
2039 dip->un.v.num_channels = 2;
2040 strcpy(dip->un.v.units.name, AudioNvolume);
2041 return (0);
2042
2043 case ESS_AUXB_REC_VOL:
2044 dip->mixer_class = ESS_RECORD_CLASS;
2045 dip->next = dip->prev = AUDIO_MIXER_LAST;
2046 strcpy(dip->label.name, "auxb");
2047 dip->type = AUDIO_MIXER_VALUE;
2048 dip->un.v.num_channels = 2;
2049 strcpy(dip->un.v.units.name, AudioNvolume);
2050 return (0);
2051
2052 case ESS_MIC_PREAMP:
2053 dip->mixer_class = ESS_INPUT_CLASS;
2054 dip->prev = ESS_MIC_PLAY_VOL;
2055 dip->next = AUDIO_MIXER_LAST;
2056 strcpy(dip->label.name, AudioNpreamp);
2057 dip->type = AUDIO_MIXER_ENUM;
2058 dip->un.e.num_mem = 2;
2059 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2060 dip->un.e.member[0].ord = 0;
2061 strcpy(dip->un.e.member[1].label.name, AudioNon);
2062 dip->un.e.member[1].ord = 1;
2063 return (0);
2064 }
2065
2066 return (ENXIO);
2067 }
2068
2069 void *
2070 ess_malloc(addr, direction, size, pool, flags)
2071 void *addr;
2072 int direction;
2073 size_t size;
2074 int pool, flags;
2075 {
2076 struct ess_softc *sc = addr;
2077 int drq;
2078
2079 if (direction == AUMODE_PLAY)
2080 drq = sc->sc_audio2.drq;
2081 else
2082 drq = sc->sc_audio1.drq;
2083 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2084 }
2085
2086 void
2087 ess_free(addr, ptr, pool)
2088 void *addr;
2089 void *ptr;
2090 int pool;
2091 {
2092 isa_free(ptr, pool);
2093 }
2094
2095 size_t
2096 ess_round_buffersize(addr, direction, size)
2097 void *addr;
2098 int direction;
2099 size_t size;
2100 {
2101 if (size > MAX_ISADMA)
2102 size = MAX_ISADMA;
2103 return (size);
2104 }
2105
2106 int
2107 ess_mappage(addr, mem, off, prot)
2108 void *addr;
2109 void *mem;
2110 int off;
2111 int prot;
2112 {
2113 return (isa_mappage(mem, off, prot));
2114 }
2115
2116 int
2117 ess_1788_get_props(addr)
2118 void *addr;
2119 {
2120
2121 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2122 }
2123
2124 int
2125 ess_1888_get_props(addr)
2126 void *addr;
2127 {
2128
2129 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2130 }
2131
2132 /* ============================================
2133 * Generic functions for ess, not used by audio h/w i/f
2134 * =============================================
2135 */
2136
2137 /*
2138 * Reset the chip.
2139 * Return non-zero if the chip isn't detected.
2140 */
2141 int
2142 ess_reset(sc)
2143 struct ess_softc *sc;
2144 {
2145 bus_space_tag_t iot = sc->sc_iot;
2146 bus_space_handle_t ioh = sc->sc_ioh;
2147
2148 sc->sc_audio1.intr = 0;
2149 sc->sc_audio2.intr = 0;
2150
2151 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2152 delay(10000);
2153 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2154 if (ess_rdsp(sc) != ESS_MAGIC)
2155 return (1);
2156
2157 /* Enable access to the ESS extension commands. */
2158 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2159
2160 return (0);
2161 }
2162
2163 void
2164 ess_set_gain(sc, port, on)
2165 struct ess_softc *sc;
2166 int port;
2167 int on;
2168 {
2169 int gain, left, right;
2170 int mix;
2171 int src;
2172 int stereo;
2173
2174 /*
2175 * Most gain controls are found in the mixer registers and
2176 * are stereo. Any that are not, must set mix and stereo as
2177 * required.
2178 */
2179 mix = 1;
2180 stereo = 1;
2181
2182 switch (port) {
2183 case ESS_MASTER_VOL:
2184 src = ESS_MREG_VOLUME_MASTER;
2185 break;
2186 case ESS_DAC_PLAY_VOL:
2187 if (sc->sc_model == ESS_1788)
2188 src = ESS_MREG_VOLUME_VOICE;
2189 else
2190 src = 0x7C;
2191 break;
2192 case ESS_MIC_PLAY_VOL:
2193 src = ESS_MREG_VOLUME_MIC;
2194 break;
2195 case ESS_LINE_PLAY_VOL:
2196 src = ESS_MREG_VOLUME_LINE;
2197 break;
2198 case ESS_SYNTH_PLAY_VOL:
2199 src = ESS_MREG_VOLUME_SYNTH;
2200 break;
2201 case ESS_CD_PLAY_VOL:
2202 src = ESS_MREG_VOLUME_CD;
2203 break;
2204 case ESS_AUXB_PLAY_VOL:
2205 src = ESS_MREG_VOLUME_AUXB;
2206 break;
2207 case ESS_PCSPEAKER_VOL:
2208 src = ESS_MREG_VOLUME_PCSPKR;
2209 stereo = 0;
2210 break;
2211 case ESS_DAC_REC_VOL:
2212 src = 0x69;
2213 break;
2214 case ESS_MIC_REC_VOL:
2215 src = 0x68;
2216 break;
2217 case ESS_LINE_REC_VOL:
2218 src = 0x6E;
2219 break;
2220 case ESS_SYNTH_REC_VOL:
2221 src = 0x6B;
2222 break;
2223 case ESS_CD_REC_VOL:
2224 src = 0x6A;
2225 break;
2226 case ESS_AUXB_REC_VOL:
2227 src = 0x6C;
2228 break;
2229 case ESS_RECORD_VOL:
2230 src = ESS_XCMD_VOLIN_CTRL;
2231 mix = 0;
2232 break;
2233 default:
2234 return;
2235 }
2236
2237 /* 1788 doesn't have a separate recording mixer */
2238 if (sc->sc_model == ESS_1788 && mix && src > 0x62)
2239 return;
2240
2241 if (on) {
2242 left = sc->gain[port][ESS_LEFT];
2243 right = sc->gain[port][ESS_RIGHT];
2244 } else {
2245 left = right = 0;
2246 }
2247
2248 if (stereo)
2249 gain = ESS_STEREO_GAIN(left, right);
2250 else
2251 gain = ESS_MONO_GAIN(left);
2252
2253 if (mix)
2254 ess_write_mix_reg(sc, src, gain);
2255 else
2256 ess_write_x_reg(sc, src, gain);
2257 }
2258
2259 /* Set the input device on devices without an input mixer. */
2260 int
2261 ess_set_in_port(sc, ord)
2262 struct ess_softc *sc;
2263 int ord;
2264 {
2265 mixer_devinfo_t di;
2266 int i;
2267
2268 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2269
2270 /*
2271 * Get the device info for the record source control,
2272 * including the list of available sources.
2273 */
2274 di.index = ESS_RECORD_SOURCE;
2275 if (ess_query_devinfo(sc, &di))
2276 return EINVAL;
2277
2278 /* See if the given ord value was anywhere in the list. */
2279 for (i = 0; i < di.un.e.num_mem; i++) {
2280 if (ord == di.un.e.member[i].ord)
2281 break;
2282 }
2283 if (i == di.un.e.num_mem)
2284 return EINVAL;
2285
2286 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2287
2288 sc->in_port = ord;
2289 return (0);
2290 }
2291
2292 /* Set the input device levels on input-mixer-enabled devices. */
2293 int
2294 ess_set_in_ports(sc, mask)
2295 struct ess_softc *sc;
2296 int mask;
2297 {
2298 mixer_devinfo_t di;
2299 int i, port;
2300
2301 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2302
2303 /*
2304 * Get the device info for the record source control,
2305 * including the list of available sources.
2306 */
2307 di.index = ESS_RECORD_SOURCE;
2308 if (ess_query_devinfo(sc, &di))
2309 return EINVAL;
2310
2311 /*
2312 * Set or disable the record volume control for each of the
2313 * possible sources.
2314 */
2315 for (i = 0; i < di.un.s.num_mem; i++) {
2316 /*
2317 * Calculate the source port number from its mask.
2318 */
2319 port = ffs(di.un.s.member[i].mask);
2320
2321 /*
2322 * Set the source gain:
2323 * to the current value if source is enabled
2324 * to zero if source is disabled
2325 */
2326 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2327 }
2328
2329 sc->in_mask = mask;
2330 return (0);
2331 }
2332
2333 void
2334 ess_speaker_on(sc)
2335 struct ess_softc *sc;
2336 {
2337 /* Disable mute on left- and right-master volume. */
2338 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2339 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2340 }
2341
2342 void
2343 ess_speaker_off(sc)
2344 struct ess_softc *sc;
2345 {
2346 /* Enable mute on left- and right-master volume. */
2347 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2348 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2349 }
2350
2351 /*
2352 * Calculate the time constant for the requested sampling rate.
2353 */
2354 u_int
2355 ess_srtotc(rate)
2356 u_int rate;
2357 {
2358 u_int tc;
2359
2360 /* The following formulae are from the ESS data sheet. */
2361 if (rate <= 22050)
2362 tc = 128 - 397700L / rate;
2363 else
2364 tc = 256 - 795500L / rate;
2365
2366 return (tc);
2367 }
2368
2369
2370 /*
2371 * Calculate the filter constant for the reuqested sampling rate.
2372 */
2373 u_int
2374 ess_srtofc(rate)
2375 u_int rate;
2376 {
2377 /*
2378 * The following formula is derived from the information in
2379 * the ES1887 data sheet, based on a roll-off frequency of
2380 * 87%.
2381 */
2382 return (256 - 200279L / rate);
2383 }
2384
2385
2386 /*
2387 * Return the status of the DSP.
2388 */
2389 u_char
2390 ess_get_dsp_status(sc)
2391 struct ess_softc *sc;
2392 {
2393 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2394 }
2395
2396
2397 /*
2398 * Return the read status of the DSP: 1 -> DSP ready for reading
2399 * 0 -> DSP not ready for reading
2400 */
2401 u_char
2402 ess_dsp_read_ready(sc)
2403 struct ess_softc *sc;
2404 {
2405 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2406 }
2407
2408
2409 /*
2410 * Return the write status of the DSP: 1 -> DSP ready for writing
2411 * 0 -> DSP not ready for writing
2412 */
2413 u_char
2414 ess_dsp_write_ready(sc)
2415 struct ess_softc *sc;
2416 {
2417 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2418 }
2419
2420
2421 /*
2422 * Read a byte from the DSP.
2423 */
2424 int
2425 ess_rdsp(sc)
2426 struct ess_softc *sc;
2427 {
2428 bus_space_tag_t iot = sc->sc_iot;
2429 bus_space_handle_t ioh = sc->sc_ioh;
2430 int i;
2431
2432 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2433 if (ess_dsp_read_ready(sc)) {
2434 i = EREAD1(iot, ioh, ESS_DSP_READ);
2435 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2436 return i;
2437 } else
2438 delay(10);
2439 }
2440
2441 DPRINTF(("ess_rdsp: timed out\n"));
2442 return (-1);
2443 }
2444
2445 /*
2446 * Write a byte to the DSP.
2447 */
2448 int
2449 ess_wdsp(sc, v)
2450 struct ess_softc *sc;
2451 u_char v;
2452 {
2453 bus_space_tag_t iot = sc->sc_iot;
2454 bus_space_handle_t ioh = sc->sc_ioh;
2455 int i;
2456
2457 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2458
2459 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2460 if (ess_dsp_write_ready(sc)) {
2461 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2462 return (0);
2463 } else
2464 delay(10);
2465 }
2466
2467 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2468 return (-1);
2469 }
2470
2471 /*
2472 * Write a value to one of the ESS extended registers.
2473 */
2474 int
2475 ess_write_x_reg(sc, reg, val)
2476 struct ess_softc *sc;
2477 u_char reg;
2478 u_char val;
2479 {
2480 int error;
2481
2482 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2483 if ((error = ess_wdsp(sc, reg)) == 0)
2484 error = ess_wdsp(sc, val);
2485
2486 return error;
2487 }
2488
2489 /*
2490 * Read the value of one of the ESS extended registers.
2491 */
2492 u_char
2493 ess_read_x_reg(sc, reg)
2494 struct ess_softc *sc;
2495 u_char reg;
2496 {
2497 int error;
2498 int val;
2499
2500 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2501 error = ess_wdsp(sc, reg);
2502 if (error)
2503 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2504 /* REVISIT: what if an error is returned above? */
2505 val = ess_rdsp(sc);
2506 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2507 return val;
2508 }
2509
2510 void
2511 ess_clear_xreg_bits(sc, reg, mask)
2512 struct ess_softc *sc;
2513 u_char reg;
2514 u_char mask;
2515 {
2516 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2517 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2518 reg));
2519 }
2520
2521 void
2522 ess_set_xreg_bits(sc, reg, mask)
2523 struct ess_softc *sc;
2524 u_char reg;
2525 u_char mask;
2526 {
2527 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2528 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2529 reg));
2530 }
2531
2532
2533 /*
2534 * Write a value to one of the ESS mixer registers.
2535 */
2536 void
2537 ess_write_mix_reg(sc, reg, val)
2538 struct ess_softc *sc;
2539 u_char reg;
2540 u_char val;
2541 {
2542 bus_space_tag_t iot = sc->sc_iot;
2543 bus_space_handle_t ioh = sc->sc_ioh;
2544 int s;
2545
2546 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2547
2548 s = splaudio();
2549 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2550 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2551 splx(s);
2552 }
2553
2554 /*
2555 * Read the value of one of the ESS mixer registers.
2556 */
2557 u_char
2558 ess_read_mix_reg(sc, reg)
2559 struct ess_softc *sc;
2560 u_char reg;
2561 {
2562 bus_space_tag_t iot = sc->sc_iot;
2563 bus_space_handle_t ioh = sc->sc_ioh;
2564 int s;
2565 u_char val;
2566
2567 s = splaudio();
2568 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2569 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2570 splx(s);
2571
2572 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2573 return val;
2574 }
2575
2576 void
2577 ess_clear_mreg_bits(sc, reg, mask)
2578 struct ess_softc *sc;
2579 u_char reg;
2580 u_char mask;
2581 {
2582 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2583 }
2584
2585 void
2586 ess_set_mreg_bits(sc, reg, mask)
2587 struct ess_softc *sc;
2588 u_char reg;
2589 u_char mask;
2590 {
2591 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2592 }
2593