ess.c revision 1.42 1 /* $NetBSD: ess.c,v 1.42 1999/03/18 04:31:36 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/errno.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <sys/device.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76
77 #include <machine/cpu.h>
78 #include <machine/intr.h>
79 #include <machine/bus.h>
80
81 #include <sys/audioio.h>
82 #include <dev/audio_if.h>
83 #include <dev/auconv.h>
84 #include <dev/mulaw.h>
85
86 #include <dev/isa/isavar.h>
87 #include <dev/isa/isadmavar.h>
88
89 #include <dev/isa/essvar.h>
90 #include <dev/isa/essreg.h>
91
92 #ifdef AUDIO_DEBUG
93 #define DPRINTF(x) if (essdebug) printf x
94 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
95 int essdebug = 0;
96 #else
97 #define DPRINTF(x)
98 #define DPRINTFN(n,x)
99 #endif
100
101 #if 0
102 unsigned uuu;
103 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
104 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
105 #else
106 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
107 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
108 #endif
109
110
111 int ess_setup_sc __P((struct ess_softc *, int));
112
113 int ess_open __P((void *, int));
114 void ess_1788_close __P((void *));
115 void ess_1888_close __P((void *));
116 int ess_getdev __P((void *, struct audio_device *));
117 int ess_drain __P((void *));
118
119 int ess_query_encoding __P((void *, struct audio_encoding *));
120
121 int ess_set_params __P((void *, int, int, struct audio_params *,
122 struct audio_params *));
123
124 int ess_round_blocksize __P((void *, int));
125
126 int ess_audio1_trigger_output __P((void *, void *, void *, int,
127 void (*)(void *), void *, struct audio_params *));
128 int ess_audio2_trigger_output __P((void *, void *, void *, int,
129 void (*)(void *), void *, struct audio_params *));
130 int ess_audio1_trigger_input __P((void *, void *, void *, int,
131 void (*)(void *), void *, struct audio_params *));
132 int ess_audio1_halt __P((void *));
133 int ess_audio2_halt __P((void *));
134 int ess_audio1_intr __P((void *));
135 int ess_audio2_intr __P((void *));
136 void ess_audio1_poll __P((void *));
137 void ess_audio2_poll __P((void *));
138
139 int ess_speaker_ctl __P((void *, int));
140
141 int ess_getdev __P((void *, struct audio_device *));
142
143 int ess_set_port __P((void *, mixer_ctrl_t *));
144 int ess_get_port __P((void *, mixer_ctrl_t *));
145
146 void *ess_malloc __P((void *, int, size_t, int, int));
147 void ess_free __P((void *, void *, int));
148 size_t ess_round_buffersize __P((void *, int, size_t));
149 int ess_mappage __P((void *, void *, int, int));
150
151
152 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
153 int ess_1788_get_props __P((void *));
154 int ess_1888_get_props __P((void *));
155
156 void ess_speaker_on __P((struct ess_softc *));
157 void ess_speaker_off __P((struct ess_softc *));
158
159 int ess_config_addr __P((struct ess_softc *));
160 void ess_config_irq __P((struct ess_softc *));
161 void ess_config_drq __P((struct ess_softc *));
162 void ess_setup __P((struct ess_softc *));
163 int ess_identify __P((struct ess_softc *));
164
165 int ess_reset __P((struct ess_softc *));
166 void ess_set_gain __P((struct ess_softc *, int, int));
167 int ess_set_in_port __P((struct ess_softc *, int));
168 int ess_set_in_ports __P((struct ess_softc *, int));
169 u_int ess_srtotc __P((u_int));
170 u_int ess_srtofc __P((u_int));
171 u_char ess_get_dsp_status __P((struct ess_softc *));
172 u_char ess_dsp_read_ready __P((struct ess_softc *));
173 u_char ess_dsp_write_ready __P((struct ess_softc *sc));
174 int ess_rdsp __P((struct ess_softc *));
175 int ess_wdsp __P((struct ess_softc *, u_char));
176 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
177 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
178 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
179 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
180 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
181 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
182 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
183 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
184
185 static char *essmodel[] = {
186 "unsupported",
187 "1888",
188 "1887",
189 "888",
190 "1788"
191 };
192
193 struct audio_device ess_device = {
194 "ESS Technology",
195 "x",
196 "ess"
197 };
198
199 /*
200 * Define our interface to the higher level audio driver.
201 */
202
203 struct audio_hw_if ess_1788_hw_if = {
204 ess_open,
205 ess_1788_close,
206 ess_drain,
207 ess_query_encoding,
208 ess_set_params,
209 ess_round_blocksize,
210 NULL,
211 NULL,
212 NULL,
213 NULL,
214 NULL,
215 ess_audio1_halt,
216 ess_audio1_halt,
217 ess_speaker_ctl,
218 ess_getdev,
219 NULL,
220 ess_set_port,
221 ess_get_port,
222 ess_query_devinfo,
223 ess_malloc,
224 ess_free,
225 ess_round_buffersize,
226 ess_mappage,
227 ess_1788_get_props,
228 ess_audio1_trigger_output,
229 ess_audio1_trigger_input,
230 };
231
232 struct audio_hw_if ess_1888_hw_if = {
233 ess_open,
234 ess_1888_close,
235 ess_drain,
236 ess_query_encoding,
237 ess_set_params,
238 ess_round_blocksize,
239 NULL,
240 NULL,
241 NULL,
242 NULL,
243 NULL,
244 ess_audio2_halt,
245 ess_audio1_halt,
246 ess_speaker_ctl,
247 ess_getdev,
248 NULL,
249 ess_set_port,
250 ess_get_port,
251 ess_query_devinfo,
252 ess_malloc,
253 ess_free,
254 ess_round_buffersize,
255 ess_mappage,
256 ess_1888_get_props,
257 ess_audio2_trigger_output,
258 ess_audio1_trigger_input,
259 };
260
261 #ifdef AUDIO_DEBUG
262 void ess_printsc __P((struct ess_softc *));
263 void ess_dump_mixer __P((struct ess_softc *));
264
265 void
266 ess_printsc(sc)
267 struct ess_softc *sc;
268 {
269 int i;
270
271 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
272 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
273 sc->in_port, sc->spkr_state ? "on" : "off");
274
275 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n",
276 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
277 sc->sc_audio1.intr, sc->sc_audio1.arg);
278
279 if (sc->sc_model != ESS_1788) {
280 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n",
281 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
282 sc->sc_audio2.intr, sc->sc_audio2.arg);
283 }
284
285 printf("gain:");
286 for (i = 0; i < sc->ndevs; i++)
287 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
288 printf("\n");
289 }
290
291 void
292 ess_dump_mixer(sc)
293 struct ess_softc *sc;
294 {
295 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
296 0x7C, ess_read_mix_reg(sc, 0x7C));
297 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
298 0x1A, ess_read_mix_reg(sc, 0x1A));
299 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
300 0x3E, ess_read_mix_reg(sc, 0x3E));
301 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
302 0x36, ess_read_mix_reg(sc, 0x36));
303 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
304 0x38, ess_read_mix_reg(sc, 0x38));
305 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
306 0x3A, ess_read_mix_reg(sc, 0x3A));
307 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
308 0x32, ess_read_mix_reg(sc, 0x32));
309 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
310 0x3C, ess_read_mix_reg(sc, 0x3C));
311 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
312 0x69, ess_read_mix_reg(sc, 0x69));
313 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
314 0x68, ess_read_mix_reg(sc, 0x68));
315 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
316 0x6E, ess_read_mix_reg(sc, 0x6E));
317 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
318 0x6B, ess_read_mix_reg(sc, 0x6B));
319 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
320 0x6A, ess_read_mix_reg(sc, 0x6A));
321 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
322 0x6C, ess_read_mix_reg(sc, 0x6C));
323 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
324 0xB4, ess_read_x_reg(sc, 0xB4));
325 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
326 0x14, ess_read_mix_reg(sc, 0x14));
327
328 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
329 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
330 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
331 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
332 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
333 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
334 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
335 }
336
337 #endif
338
339 /*
340 * Configure the ESS chip for the desired audio base address.
341 */
342 int
343 ess_config_addr(sc)
344 struct ess_softc *sc;
345 {
346 int iobase = sc->sc_iobase;
347 bus_space_tag_t iot = sc->sc_iot;
348
349 /*
350 * Configure using the System Control Register method. This
351 * method is used when the AMODE line is tied high, which is
352 * the case for the Shark, but not for the evaluation board.
353 */
354
355 bus_space_handle_t scr_access_ioh;
356 bus_space_handle_t scr_ioh;
357 u_short scr_value;
358
359 /*
360 * Set the SCR bit to enable audio.
361 */
362 scr_value = ESS_SCR_AUDIO_ENABLE;
363
364 /*
365 * Set the SCR bits necessary to select the specified audio
366 * base address.
367 */
368 switch(iobase) {
369 case 0x220:
370 scr_value |= ESS_SCR_AUDIO_220;
371 break;
372 case 0x230:
373 scr_value |= ESS_SCR_AUDIO_230;
374 break;
375 case 0x240:
376 scr_value |= ESS_SCR_AUDIO_240;
377 break;
378 case 0x250:
379 scr_value |= ESS_SCR_AUDIO_250;
380 break;
381 default:
382 printf("ess: configured iobase 0x%x invalid\n", iobase);
383 return (1);
384 break;
385 }
386
387 /*
388 * Get a mapping for the System Control Register (SCR) access
389 * registers and the SCR data registers.
390 */
391 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
392 0, &scr_access_ioh)) {
393 printf("ess: can't map SCR access registers\n");
394 return (1);
395 }
396 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
397 0, &scr_ioh)) {
398 printf("ess: can't map SCR registers\n");
399 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
400 return (1);
401 }
402
403 /* Unlock the SCR. */
404 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
405
406 /* Write the base address information into SCR[0]. */
407 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
408 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
409
410 /* Lock the SCR. */
411 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
412
413 /* Unmap the SCR access ports and the SCR data ports. */
414 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
415 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
416
417 return 0;
418 }
419
420
421 /*
422 * Configure the ESS chip for the desired IRQ and DMA channels.
423 * ESS ISA
424 * --------
425 * IRQA irq9
426 * IRQB irq5
427 * IRQC irq7
428 * IRQD irq10
429 * IRQE irq15
430 *
431 * DRQA drq0
432 * DRQB drq1
433 * DRQC drq3
434 * DRQD drq5
435 */
436 void
437 ess_config_irq(sc)
438 struct ess_softc *sc;
439 {
440 int v;
441
442 DPRINTFN(2,("ess_config_irq\n"));
443
444 if (sc->sc_model == ESS_1887 &&
445 sc->sc_audio1.irq == sc->sc_audio2.irq &&
446 sc->sc_audio1.irq != -1) {
447 /* Use new method, both interrupts are the same. */
448 v = ESS_IS_SELECT_IRQ; /* enable intrs */
449 switch (sc->sc_audio1.irq) {
450 case 5:
451 v |= ESS_IS_INTRB;
452 break;
453 case 7:
454 v |= ESS_IS_INTRC;
455 break;
456 case 9:
457 v |= ESS_IS_INTRA;
458 break;
459 case 10:
460 v |= ESS_IS_INTRD;
461 break;
462 case 15:
463 v |= ESS_IS_INTRE;
464 break;
465 #ifdef DIAGNOSTIC
466 default:
467 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
468 sc->sc_audio1.irq);
469 return;
470 #endif
471 }
472 /* Set the IRQ */
473 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
474 return;
475 }
476
477 if (sc->sc_model == ESS_1887) {
478 /* Tell the 1887 to use the old interrupt method. */
479 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
480 }
481
482 if (sc->sc_audio1.polled) {
483 /* Turn off Audio1 interrupts. */
484 v = 0;
485 } else {
486 /* Configure Audio 1 for the appropriate IRQ line. */
487 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
488 switch (sc->sc_audio1.irq) {
489 case 5:
490 v |= ESS_IRQ_CTRL_INTRB;
491 break;
492 case 7:
493 v |= ESS_IRQ_CTRL_INTRC;
494 break;
495 case 9:
496 v |= ESS_IRQ_CTRL_INTRA;
497 break;
498 case 10:
499 v |= ESS_IRQ_CTRL_INTRD;
500 break;
501 #ifdef DIAGNOSTIC
502 default:
503 printf("ess: configured irq %d not supported for Audio 1\n",
504 sc->sc_audio1.irq);
505 return;
506 #endif
507 }
508 }
509 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
510
511 if (sc->sc_model == ESS_1788)
512 return;
513
514 if (sc->sc_audio2.polled) {
515 /* Turn off Audio2 interrupts. */
516 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
517 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
518 } else {
519 /* Audio2 is hardwired to INTRE in this mode. */
520 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
521 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
522 }
523 }
524
525
526 void
527 ess_config_drq(sc)
528 struct ess_softc *sc;
529 {
530 int v;
531
532 DPRINTFN(2,("ess_config_drq\n"));
533
534 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
535 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
536 switch (sc->sc_audio1.drq) {
537 case 0:
538 v |= ESS_DRQ_CTRL_DRQA;
539 break;
540 case 1:
541 v |= ESS_DRQ_CTRL_DRQB;
542 break;
543 case 3:
544 v |= ESS_DRQ_CTRL_DRQC;
545 break;
546 #ifdef DIAGNOSTIC
547 default:
548 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
549 sc->sc_audio1.drq);
550 return;
551 #endif
552 }
553 /* Set DRQ1 */
554 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
555
556 if (sc->sc_model == ESS_1788)
557 return;
558
559 /* Configure DRQ2 */
560 v = ESS_AUDIO2_CTRL3_DRQ_PD;
561 switch (sc->sc_audio2.drq) {
562 case 0:
563 v |= ESS_AUDIO2_CTRL3_DRQA;
564 break;
565 case 1:
566 v |= ESS_AUDIO2_CTRL3_DRQB;
567 break;
568 case 3:
569 v |= ESS_AUDIO2_CTRL3_DRQC;
570 break;
571 case 5:
572 v |= ESS_AUDIO2_CTRL3_DRQD;
573 break;
574 #ifdef DIAGNOSTIC
575 default:
576 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
577 sc->sc_audio2.drq);
578 return;
579 #endif
580 }
581 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
582 /* Enable DMA 2 */
583 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
584 ESS_AUDIO2_CTRL2_DMA_ENABLE);
585 }
586
587 /*
588 * Set up registers after a reset.
589 */
590 void
591 ess_setup(sc)
592 struct ess_softc *sc;
593 {
594
595 ess_config_irq(sc);
596 ess_config_drq(sc);
597
598 DPRINTFN(2,("ess_setup: done\n"));
599 }
600
601 /*
602 * Determine the model of ESS chip we are talking to. Currently we
603 * only support ES1888, ES1887 and ES888. The method of determining
604 * the chip is based on the information on page 27 of the ES1887 data
605 * sheet.
606 *
607 * This routine sets the values of sc->sc_model and sc->sc_version.
608 */
609 int
610 ess_identify(sc)
611 struct ess_softc *sc;
612 {
613 u_char reg1;
614 u_char reg2;
615 u_char reg3;
616
617 sc->sc_model = ESS_UNSUPPORTED;
618 sc->sc_version = 0;
619
620
621 /*
622 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
623 * n >= 8 for an ES1887 or an ES888. Other values indicate
624 * earlier (unsupported) chips.
625 */
626 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
627
628 if ((reg1 = ess_rdsp(sc)) != 0x68) {
629 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
630 return 1;
631 }
632
633 reg2 = ess_rdsp(sc);
634 if (((reg2 & 0xf0) != 0x80) ||
635 ((reg2 & 0x0f) < 8)) {
636 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
637 return 1;
638 }
639
640 /*
641 * Store the ID bytes as the version.
642 */
643 sc->sc_version = (reg1 << 8) + reg2;
644
645
646 /*
647 * 2. Verify we can change bit 2 in mixer register 0x64. This
648 * should be possible on all supported chips.
649 */
650 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
651 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
652
653 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
654
655 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
656 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
657 return 1;
658 }
659
660 /*
661 * Restore the original value of mixer register 0x64.
662 */
663 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
664
665
666 /*
667 * 3. Verify we can change the value of mixer register
668 * ESS_MREG_SAMPLE_RATE.
669 * This is possible on the 1888/1887/888, but not on the 1788.
670 * It is not necessary to restore the value of this mixer register.
671 */
672 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
673 reg2 = reg1 ^ 0xff; /* toggle all bits */
674
675 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
676
677 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
678 /* If we got this far before failing, it's a 1788. */
679 sc->sc_model = ESS_1788;
680 } else {
681 /*
682 * 4. Determine if we can change bit 5 in mixer register 0x64.
683 * This determines whether we have an ES1887:
684 *
685 * - can change indicates ES1887
686 * - can't change indicates ES1888 or ES888
687 */
688 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
689 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
690
691 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
692
693 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
694 sc->sc_model = ESS_1887;
695
696 /*
697 * Restore the original value of mixer register 0x64.
698 */
699 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
700 } else {
701 /*
702 * 5. Determine if we can change the value of mixer
703 * register 0x69 independently of mixer register
704 * 0x68. This determines which chip we have:
705 *
706 * - can modify idependently indicates ES888
707 * - register 0x69 is an alias of 0x68 indicates ES1888
708 */
709 reg1 = ess_read_mix_reg(sc, 0x68);
710 reg2 = ess_read_mix_reg(sc, 0x69);
711 reg3 = reg2 ^ 0xff; /* toggle all bits */
712
713 /*
714 * Write different values to each register.
715 */
716 ess_write_mix_reg(sc, 0x68, reg2);
717 ess_write_mix_reg(sc, 0x69, reg3);
718
719 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
720 ess_read_mix_reg(sc, 0x69) == reg3)
721 sc->sc_model = ESS_888;
722 else
723 sc->sc_model = ESS_1888;
724
725 /*
726 * Restore the original value of the registers.
727 */
728 ess_write_mix_reg(sc, 0x68, reg1);
729 ess_write_mix_reg(sc, 0x69, reg2);
730 }
731 }
732
733 return 0;
734 }
735
736
737 int
738 ess_setup_sc(sc, doinit)
739 struct ess_softc *sc;
740 int doinit;
741 {
742 /* Reset the chip. */
743 if (ess_reset(sc) != 0) {
744 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
745 return (1);
746 }
747
748 /* Identify the ESS chip, and check that it is supported. */
749 if (ess_identify(sc)) {
750 DPRINTF(("ess_setup_sc: couldn't identify\n"));
751 return (1);
752 }
753
754 return (0);
755 }
756
757 /*
758 * Probe for the ESS hardware.
759 */
760 int
761 essmatch(sc)
762 struct ess_softc *sc;
763 {
764 if (!ESS_BASE_VALID(sc->sc_iobase)) {
765 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
766 return (0);
767 }
768
769 /* Configure the ESS chip for the desired audio base address. */
770 if (ess_config_addr(sc))
771 return (0);
772
773 if (ess_setup_sc(sc, 1))
774 return (0);
775
776 if (sc->sc_model == ESS_UNSUPPORTED) {
777 DPRINTF(("ess: Unsupported model\n"));
778 return (0);
779 }
780
781 /* Check that requested DMA channels are valid and different. */
782 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
783 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
784 return (0);
785 }
786 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
787 return (0);
788 if (sc->sc_model != ESS_1788) {
789 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq, sc->sc_model)) {
790 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
791 return (0);
792 }
793 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
794 printf("ess: play and record drq both %d\n",
795 sc->sc_audio1.drq);
796 return (0);
797 }
798 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
799 return (0);
800 }
801
802 /*
803 * The 1887 has an additional IRQ mode where both channels are mapped
804 * to the same IRQ.
805 */
806 if (sc->sc_model == ESS_1887 &&
807 sc->sc_audio1.irq == sc->sc_audio2.irq &&
808 sc->sc_audio1.irq != -1 &&
809 ESS_IRQ12_VALID(sc->sc_audio1.irq))
810 goto irq_not1888;
811
812 /* Check that requested IRQ lines are valid and different. */
813 if (sc->sc_audio1.irq != -1 &&
814 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
815 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
816 return (0);
817 }
818 if (sc->sc_model != ESS_1788) {
819 if (sc->sc_audio2.irq != -1 &&
820 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
821 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
822 return (0);
823 }
824 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
825 sc->sc_audio1.irq != -1) {
826 printf("ess: play and record irq both %d\n",
827 sc->sc_audio1.irq);
828 return (0);
829 }
830 }
831
832 irq_not1888:
833 /* XXX should we check IRQs as well? */
834
835 return (1);
836 }
837
838
839 /*
840 * Attach hardware to driver, attach hardware driver to audio
841 * pseudo-device driver.
842 */
843 void
844 essattach(sc)
845 struct ess_softc *sc;
846 {
847 struct audio_attach_args arg;
848 struct audio_params pparams, rparams;
849 int i;
850 u_int v;
851
852 if (ess_setup_sc(sc, 0)) {
853 printf(": setup failed\n");
854 return;
855 }
856
857 printf(": ESS Technology ES%s [version 0x%04x]\n",
858 essmodel[sc->sc_model], sc->sc_version);
859
860 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
861 if (!sc->sc_audio1.polled) {
862 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
863 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
864 ess_audio1_intr, sc);
865 printf("%s: audio1 interrupting at irq %d\n",
866 sc->sc_dev.dv_xname, sc->sc_audio1.irq);
867 } else
868 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
869 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
870 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
871 printf("%s: can't create map for drq %d\n",
872 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
873 return;
874 }
875
876 if (sc->sc_model != ESS_1788) {
877 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
878 if (!sc->sc_audio2.polled) {
879 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
880 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
881 ess_audio2_intr, sc);
882 printf("%s: audio2 interrupting at irq %d\n",
883 sc->sc_dev.dv_xname, sc->sc_audio2.irq);
884 } else
885 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
886 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
887 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
888 printf("%s: can't create map for drq %d\n",
889 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
890 return;
891 }
892 }
893
894 /*
895 * Set record and play parameters to default values defined in
896 * generic audio driver.
897 */
898 pparams = audio_default;
899 rparams = audio_default;
900 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
901
902 /* Do a hardware reset on the mixer. */
903 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
904
905 /*
906 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
907 * to playback mixer, since playback is always through Audio 2.
908 */
909 if (sc->sc_model != ESS_1788)
910 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
911 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
912
913 if (sc->sc_model == ESS_1788) {
914 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
915 sc->in_port = ESS_SOURCE_MIC;
916 sc->ndevs = ESS_1788_NDEVS;
917 } else {
918 /*
919 * Set hardware record source to use output of the record
920 * mixer. We do the selection of record source in software by
921 * setting the gain of the unused sources to zero. (See
922 * ess_set_in_ports.)
923 */
924 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
925 sc->in_mask = 1 << ESS_MIC_REC_VOL;
926 sc->ndevs = ESS_1888_NDEVS;
927 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
928 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
929 }
930
931 /*
932 * Set gain on each mixer device to a sensible value.
933 * Devices not normally used are turned off, and other devices
934 * are set to 50% volume.
935 */
936 for (i = 0; i < sc->ndevs; i++) {
937 switch (i) {
938 case ESS_MIC_PLAY_VOL:
939 case ESS_LINE_PLAY_VOL:
940 case ESS_CD_PLAY_VOL:
941 case ESS_AUXB_PLAY_VOL:
942 case ESS_DAC_REC_VOL:
943 case ESS_LINE_REC_VOL:
944 case ESS_SYNTH_REC_VOL:
945 case ESS_CD_REC_VOL:
946 case ESS_AUXB_REC_VOL:
947 v = 0;
948 break;
949 default:
950 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
951 break;
952 }
953 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
954 ess_set_gain(sc, i, 1);
955 }
956
957 ess_setup(sc);
958
959 /* Disable the speaker until the device is opened. */
960 ess_speaker_off(sc);
961 sc->spkr_state = SPKR_OFF;
962
963 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
964 sprintf(ess_device.version, "0x%04x", sc->sc_version);
965
966 if (sc->sc_model == ESS_1788)
967 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
968 else
969 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
970
971 arg.type = AUDIODEV_TYPE_OPL;
972 arg.hwif = 0;
973 arg.hdl = 0;
974 (void)config_found(&sc->sc_dev, &arg, audioprint);
975
976 #ifdef AUDIO_DEBUG
977 if (essdebug > 0)
978 ess_printsc(sc);
979 #endif
980 }
981
982 /*
983 * Various routines to interface to higher level audio driver
984 */
985
986 int
987 ess_open(addr, flags)
988 void *addr;
989 int flags;
990 {
991 struct ess_softc *sc = addr;
992
993 DPRINTF(("ess_open: sc=%p\n", sc));
994
995 if (sc->sc_open != 0 || ess_reset(sc) != 0)
996 return ENXIO;
997
998 ess_setup(sc); /* because we did a reset */
999
1000 sc->sc_open = 1;
1001
1002 DPRINTF(("ess_open: opened\n"));
1003
1004 return (0);
1005 }
1006
1007 void
1008 ess_1788_close(addr)
1009 void *addr;
1010 {
1011 struct ess_softc *sc = addr;
1012
1013 DPRINTF(("ess_1788_close: sc=%p\n", sc));
1014
1015 ess_speaker_off(sc);
1016 sc->spkr_state = SPKR_OFF;
1017
1018 ess_audio1_halt(sc);
1019
1020 sc->sc_open = 0;
1021 DPRINTF(("ess_1788_close: closed\n"));
1022 }
1023
1024 void
1025 ess_1888_close(addr)
1026 void *addr;
1027 {
1028 struct ess_softc *sc = addr;
1029
1030 DPRINTF(("ess_1888_close: sc=%p\n", sc));
1031
1032 ess_speaker_off(sc);
1033 sc->spkr_state = SPKR_OFF;
1034
1035 ess_audio1_halt(sc);
1036 ess_audio2_halt(sc);
1037
1038 sc->sc_open = 0;
1039 DPRINTF(("ess_1888_close: closed\n"));
1040 }
1041
1042 /*
1043 * Wait for FIFO to drain, and analog section to settle.
1044 * XXX should check FIFO empty bit.
1045 */
1046 int
1047 ess_drain(addr)
1048 void *addr;
1049 {
1050 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1051 return (0);
1052 }
1053
1054 /* XXX should use reference count */
1055 int
1056 ess_speaker_ctl(addr, newstate)
1057 void *addr;
1058 int newstate;
1059 {
1060 struct ess_softc *sc = addr;
1061
1062 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1063 ess_speaker_on(sc);
1064 sc->spkr_state = SPKR_ON;
1065 }
1066 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1067 ess_speaker_off(sc);
1068 sc->spkr_state = SPKR_OFF;
1069 }
1070 return (0);
1071 }
1072
1073 int
1074 ess_getdev(addr, retp)
1075 void *addr;
1076 struct audio_device *retp;
1077 {
1078 *retp = ess_device;
1079 return (0);
1080 }
1081
1082 int
1083 ess_query_encoding(addr, fp)
1084 void *addr;
1085 struct audio_encoding *fp;
1086 {
1087 /*struct ess_softc *sc = addr;*/
1088
1089 switch (fp->index) {
1090 case 0:
1091 strcpy(fp->name, AudioEulinear);
1092 fp->encoding = AUDIO_ENCODING_ULINEAR;
1093 fp->precision = 8;
1094 fp->flags = 0;
1095 return (0);
1096 case 1:
1097 strcpy(fp->name, AudioEmulaw);
1098 fp->encoding = AUDIO_ENCODING_ULAW;
1099 fp->precision = 8;
1100 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1101 return (0);
1102 case 2:
1103 strcpy(fp->name, AudioEalaw);
1104 fp->encoding = AUDIO_ENCODING_ALAW;
1105 fp->precision = 8;
1106 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1107 return (0);
1108 case 3:
1109 strcpy(fp->name, AudioEslinear);
1110 fp->encoding = AUDIO_ENCODING_SLINEAR;
1111 fp->precision = 8;
1112 fp->flags = 0;
1113 return (0);
1114 case 4:
1115 strcpy(fp->name, AudioEslinear_le);
1116 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1117 fp->precision = 16;
1118 fp->flags = 0;
1119 return (0);
1120 case 5:
1121 strcpy(fp->name, AudioEulinear_le);
1122 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1123 fp->precision = 16;
1124 fp->flags = 0;
1125 return (0);
1126 case 6:
1127 strcpy(fp->name, AudioEslinear_be);
1128 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1129 fp->precision = 16;
1130 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1131 return (0);
1132 case 7:
1133 strcpy(fp->name, AudioEulinear_be);
1134 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1135 fp->precision = 16;
1136 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1137 return (0);
1138 default:
1139 return EINVAL;
1140 }
1141 return (0);
1142 }
1143
1144 int
1145 ess_set_params(addr, setmode, usemode, play, rec)
1146 void *addr;
1147 int setmode, usemode;
1148 struct audio_params *play, *rec;
1149 {
1150 struct ess_softc *sc = addr;
1151 struct audio_params *p;
1152 int mode;
1153 int rate;
1154
1155 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1156
1157 /*
1158 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1159 * full-duplex operation the sample rates must be the same for both
1160 * channels. This appears to be false; the only bit in common is the
1161 * clock source selection. However, we'll be conservative here.
1162 * - mycroft
1163 */
1164 if (play->sample_rate != rec->sample_rate &&
1165 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1166 if (setmode == AUMODE_PLAY) {
1167 rec->sample_rate = play->sample_rate;
1168 setmode |= AUMODE_RECORD;
1169 } else if (setmode == AUMODE_RECORD) {
1170 play->sample_rate = rec->sample_rate;
1171 setmode |= AUMODE_PLAY;
1172 } else
1173 return (EINVAL);
1174 }
1175
1176 for (mode = AUMODE_RECORD; mode != -1;
1177 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1178 if ((setmode & mode) == 0)
1179 continue;
1180
1181 p = mode == AUMODE_PLAY ? play : rec;
1182
1183 if (p->sample_rate < ESS_MINRATE ||
1184 p->sample_rate > ESS_MAXRATE ||
1185 (p->precision != 8 && p->precision != 16) ||
1186 (p->channels != 1 && p->channels != 2))
1187 return (EINVAL);
1188
1189 p->factor = 1;
1190 p->sw_code = 0;
1191 switch (p->encoding) {
1192 case AUDIO_ENCODING_SLINEAR_BE:
1193 case AUDIO_ENCODING_ULINEAR_BE:
1194 if (p->precision == 16)
1195 p->sw_code = swap_bytes;
1196 break;
1197 case AUDIO_ENCODING_SLINEAR_LE:
1198 case AUDIO_ENCODING_ULINEAR_LE:
1199 break;
1200 case AUDIO_ENCODING_ULAW:
1201 if (mode == AUMODE_PLAY) {
1202 p->factor = 2;
1203 p->sw_code = mulaw_to_ulinear16;
1204 } else
1205 p->sw_code = ulinear8_to_mulaw;
1206 break;
1207 case AUDIO_ENCODING_ALAW:
1208 if (mode == AUMODE_PLAY) {
1209 p->factor = 2;
1210 p->sw_code = alaw_to_ulinear16;
1211 } else
1212 p->sw_code = ulinear8_to_alaw;
1213 break;
1214 default:
1215 return (EINVAL);
1216 }
1217 }
1218
1219 if (usemode == AUMODE_RECORD)
1220 rate = rec->sample_rate;
1221 else
1222 rate = play->sample_rate;
1223
1224 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1225 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1226
1227 if (sc->sc_model != ESS_1788) {
1228 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1229 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1230 }
1231
1232 return (0);
1233 }
1234
1235 int
1236 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1237 void *addr;
1238 void *start, *end;
1239 int blksize;
1240 void (*intr) __P((void *));
1241 void *arg;
1242 struct audio_params *param;
1243 {
1244 struct ess_softc *sc = addr;
1245 u_int8_t reg;
1246
1247 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1248 addr, start, end, blksize, intr, arg));
1249
1250 if (sc->sc_audio1.active)
1251 panic("ess_audio1_trigger_output: already running");
1252
1253 sc->sc_audio1.active = 1;
1254 sc->sc_audio1.intr = intr;
1255 sc->sc_audio1.arg = arg;
1256 if (sc->sc_audio1.polled) {
1257 sc->sc_audio1.dmacount = 0;
1258 sc->sc_audio1.dmapos = sc->sc_audio1.buffersize =
1259 (char *)end - (char *)start;
1260 sc->sc_audio1.blksize = blksize;
1261 timeout(ess_audio1_poll, sc, hz/30);
1262 }
1263
1264 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1265 if (param->channels == 2) {
1266 reg &= ~ESS_AUDIO_CTRL_MONO;
1267 reg |= ESS_AUDIO_CTRL_STEREO;
1268 } else {
1269 reg |= ESS_AUDIO_CTRL_MONO;
1270 reg &= ~ESS_AUDIO_CTRL_STEREO;
1271 }
1272 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1273
1274 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1275 if (param->precision * param->factor == 16)
1276 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1277 else
1278 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1279 if (param->channels == 2)
1280 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1281 else
1282 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1283 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1284 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1285 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1286 else
1287 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1288 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1289 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1290
1291 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1292 (char *)end - (char *)start, NULL,
1293 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1294
1295 /* Program transfer count registers with 2's complement of count. */
1296 blksize = -blksize;
1297 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1298 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1299
1300 /* Use 4 bytes per output DMA. */
1301 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1302
1303 /* Start auto-init DMA */
1304 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1305 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1306 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1307 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1308 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1309
1310 return (0);
1311 }
1312
1313 int
1314 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1315 void *addr;
1316 void *start, *end;
1317 int blksize;
1318 void (*intr) __P((void *));
1319 void *arg;
1320 struct audio_params *param;
1321 {
1322 struct ess_softc *sc = addr;
1323 u_int8_t reg;
1324
1325 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1326 addr, start, end, blksize, intr, arg));
1327
1328 if (sc->sc_audio2.active)
1329 panic("ess_audio2_trigger_output: already running");
1330
1331 sc->sc_audio2.active = 1;
1332 sc->sc_audio2.intr = intr;
1333 sc->sc_audio2.arg = arg;
1334 if (sc->sc_audio2.polled) {
1335 sc->sc_audio2.dmacount = 0;
1336 sc->sc_audio2.dmapos = sc->sc_audio2.buffersize =
1337 (char *)end - (char *)start;
1338 sc->sc_audio2.blksize = blksize;
1339 timeout(ess_audio2_poll, sc, hz/30);
1340 }
1341
1342 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1343 if (param->precision * param->factor == 16)
1344 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1345 else
1346 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1347 if (param->channels == 2)
1348 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1349 else
1350 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1351 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1352 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1353 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1354 else
1355 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1356 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1357
1358 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1359 (char *)end - (char *)start, NULL,
1360 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1361
1362 if (IS16BITDRQ(sc->sc_audio2.drq))
1363 blksize >>= 1; /* use word count for 16 bit DMA */
1364 /* Program transfer count registers with 2's complement of count. */
1365 blksize = -blksize;
1366 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1367 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1368
1369 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1370 if (IS16BITDRQ(sc->sc_audio2.drq))
1371 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1372 else
1373 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1374 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1375 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1376 ESS_AUDIO2_CTRL1_AUTO_INIT;
1377 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1378
1379 return (0);
1380 }
1381
1382 int
1383 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1384 void *addr;
1385 void *start, *end;
1386 int blksize;
1387 void (*intr) __P((void *));
1388 void *arg;
1389 struct audio_params *param;
1390 {
1391 struct ess_softc *sc = addr;
1392 u_int8_t reg;
1393
1394 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1395 addr, start, end, blksize, intr, arg));
1396
1397 if (sc->sc_audio1.active)
1398 panic("ess_audio1_trigger_input: already running");
1399
1400 sc->sc_audio1.active = 1;
1401 sc->sc_audio1.intr = intr;
1402 sc->sc_audio1.arg = arg;
1403 if (sc->sc_audio1.polled) {
1404 sc->sc_audio1.dmacount = 0;
1405 sc->sc_audio1.dmapos = sc->sc_audio1.buffersize =
1406 (char *)end - (char *)start;
1407 sc->sc_audio1.blksize = blksize;
1408 timeout(ess_audio1_poll, sc, hz/30);
1409 }
1410
1411 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1412 if (param->channels == 2) {
1413 reg &= ~ESS_AUDIO_CTRL_MONO;
1414 reg |= ESS_AUDIO_CTRL_STEREO;
1415 } else {
1416 reg |= ESS_AUDIO_CTRL_MONO;
1417 reg &= ~ESS_AUDIO_CTRL_STEREO;
1418 }
1419 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1420
1421 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1422 if (param->precision * param->factor == 16)
1423 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1424 else
1425 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1426 if (param->channels == 2)
1427 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1428 else
1429 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1430 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1431 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1432 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1433 else
1434 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1435 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1436 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1437
1438 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1439 (char *)end - (char *)start, NULL,
1440 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1441
1442 /* Program transfer count registers with 2's complement of count. */
1443 blksize = -blksize;
1444 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1445 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1446
1447 /* Use 4 bytes per input DMA. */
1448 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1449
1450 /* Start auto-init DMA */
1451 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1452 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1453 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1454 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1455 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1456
1457 return (0);
1458 }
1459
1460 int
1461 ess_audio1_halt(addr)
1462 void *addr;
1463 {
1464 struct ess_softc *sc = addr;
1465
1466 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1467
1468 if (sc->sc_audio1.active) {
1469 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1470 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1471 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1472 if (sc->sc_audio1.polled)
1473 untimeout(ess_audio1_poll, sc);
1474 sc->sc_audio1.active = 0;
1475 }
1476
1477 return (0);
1478 }
1479
1480 int
1481 ess_audio2_halt(addr)
1482 void *addr;
1483 {
1484 struct ess_softc *sc = addr;
1485
1486 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1487
1488 if (sc->sc_audio2.active) {
1489 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1490 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1491 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1492 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1493 if (sc->sc_audio2.polled)
1494 untimeout(ess_audio2_poll, sc);
1495 sc->sc_audio2.active = 0;
1496 }
1497
1498 return (0);
1499 }
1500
1501 int
1502 ess_audio1_intr(arg)
1503 void *arg;
1504 {
1505 struct ess_softc *sc = arg;
1506 u_int8_t reg;
1507
1508 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1509
1510 /* Check and clear interrupt on Audio1. */
1511 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1512 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1513 return (0);
1514 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1515
1516 sc->sc_audio1.nintr++;
1517
1518 if (sc->sc_audio1.active) {
1519 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1520 return (1);
1521 } else
1522 return (0);
1523 }
1524
1525 int
1526 ess_audio2_intr(arg)
1527 void *arg;
1528 {
1529 struct ess_softc *sc = arg;
1530 u_int8_t reg;
1531
1532 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1533
1534 /* Check and clear interrupt on Audio2. */
1535 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1536 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1537 return (0);
1538 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1539 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1540
1541 sc->sc_audio2.nintr++;
1542
1543 if (sc->sc_audio2.active) {
1544 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1545 return (1);
1546 } else
1547 return (0);
1548 }
1549
1550 void
1551 ess_audio1_poll(addr)
1552 void *addr;
1553 {
1554 struct ess_softc *sc = addr;
1555 int dmapos, dmacount;
1556
1557 if (!sc->sc_audio1.active)
1558 return;
1559
1560 sc->sc_audio1.nintr++;
1561
1562 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1563 dmacount = sc->sc_audio1.dmacount + sc->sc_audio1.dmapos - dmapos;
1564 if (dmapos > sc->sc_audio1.dmapos)
1565 dmacount += sc->sc_audio1.buffersize;
1566 while (dmacount > sc->sc_audio1.blksize) {
1567 dmacount -= sc->sc_audio1.blksize;
1568 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1569 }
1570 sc->sc_audio1.dmapos = dmapos;
1571 sc->sc_audio1.dmacount = dmacount;
1572
1573 timeout(ess_audio1_poll, sc, hz/30);
1574 }
1575
1576 void
1577 ess_audio2_poll(addr)
1578 void *addr;
1579 {
1580 struct ess_softc *sc = addr;
1581 int dmapos, dmacount;
1582
1583 if (!sc->sc_audio2.active)
1584 return;
1585
1586 sc->sc_audio2.nintr++;
1587
1588 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1589 dmacount = sc->sc_audio2.dmacount + sc->sc_audio2.dmapos - dmapos;
1590 if (dmapos > sc->sc_audio2.dmapos)
1591 dmacount += sc->sc_audio2.buffersize;
1592 while (dmacount > sc->sc_audio2.blksize) {
1593 dmacount -= sc->sc_audio2.blksize;
1594 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1595 }
1596 sc->sc_audio2.dmapos = dmapos;
1597 sc->sc_audio2.dmacount = dmacount;
1598
1599 timeout(ess_audio2_poll, sc, hz/30);
1600 }
1601
1602 int
1603 ess_round_blocksize(addr, blk)
1604 void *addr;
1605 int blk;
1606 {
1607 return (blk & -8); /* round for max DMA size */
1608 }
1609
1610 int
1611 ess_set_port(addr, cp)
1612 void *addr;
1613 mixer_ctrl_t *cp;
1614 {
1615 struct ess_softc *sc = addr;
1616 int lgain, rgain;
1617
1618 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1619 cp->dev, cp->un.value.num_channels));
1620
1621 switch (cp->dev) {
1622 /*
1623 * The following mixer ports are all stereo. If we get a
1624 * single-channel gain value passed in, then we duplicate it
1625 * to both left and right channels.
1626 */
1627 case ESS_MASTER_VOL:
1628 case ESS_DAC_PLAY_VOL:
1629 case ESS_MIC_PLAY_VOL:
1630 case ESS_LINE_PLAY_VOL:
1631 case ESS_SYNTH_PLAY_VOL:
1632 case ESS_CD_PLAY_VOL:
1633 case ESS_AUXB_PLAY_VOL:
1634 case ESS_RECORD_VOL:
1635 if (cp->type != AUDIO_MIXER_VALUE)
1636 return EINVAL;
1637
1638 switch (cp->un.value.num_channels) {
1639 case 1:
1640 lgain = rgain = ESS_4BIT_GAIN(
1641 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1642 break;
1643 case 2:
1644 lgain = ESS_4BIT_GAIN(
1645 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1646 rgain = ESS_4BIT_GAIN(
1647 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1648 break;
1649 default:
1650 return EINVAL;
1651 }
1652
1653 sc->gain[cp->dev][ESS_LEFT] = lgain;
1654 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1655 ess_set_gain(sc, cp->dev, 1);
1656 return (0);
1657
1658 /*
1659 * The PC speaker port is mono. If we get a stereo gain value
1660 * passed in, then we return EINVAL.
1661 */
1662 case ESS_PCSPEAKER_VOL:
1663 if (cp->un.value.num_channels != 1)
1664 return EINVAL;
1665
1666 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1667 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1668 ess_set_gain(sc, cp->dev, 1);
1669 return (0);
1670
1671 case ESS_RECORD_SOURCE:
1672 if (sc->sc_model == ESS_1788) {
1673 if (cp->type == AUDIO_MIXER_ENUM)
1674 return (ess_set_in_port(sc, cp->un.ord));
1675 else
1676 return (EINVAL);
1677 } else {
1678 if (cp->type == AUDIO_MIXER_SET)
1679 return (ess_set_in_ports(sc, cp->un.mask));
1680 else
1681 return (EINVAL);
1682 }
1683 return (0);
1684
1685 case ESS_RECORD_MONITOR:
1686 if (cp->type != AUDIO_MIXER_ENUM)
1687 return EINVAL;
1688
1689 if (cp->un.ord)
1690 /* Enable monitor */
1691 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1692 ESS_AUDIO_CTRL_MONITOR);
1693 else
1694 /* Disable monitor */
1695 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1696 ESS_AUDIO_CTRL_MONITOR);
1697 return (0);
1698 }
1699
1700 if (sc->sc_model == ESS_1788)
1701 return (EINVAL);
1702
1703 switch (cp->dev) {
1704 case ESS_DAC_REC_VOL:
1705 case ESS_MIC_REC_VOL:
1706 case ESS_LINE_REC_VOL:
1707 case ESS_SYNTH_REC_VOL:
1708 case ESS_CD_REC_VOL:
1709 case ESS_AUXB_REC_VOL:
1710 if (cp->type != AUDIO_MIXER_VALUE)
1711 return EINVAL;
1712
1713 switch (cp->un.value.num_channels) {
1714 case 1:
1715 lgain = rgain = ESS_4BIT_GAIN(
1716 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1717 break;
1718 case 2:
1719 lgain = ESS_4BIT_GAIN(
1720 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1721 rgain = ESS_4BIT_GAIN(
1722 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1723 break;
1724 default:
1725 return EINVAL;
1726 }
1727
1728 sc->gain[cp->dev][ESS_LEFT] = lgain;
1729 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1730 ess_set_gain(sc, cp->dev, 1);
1731 return (0);
1732
1733 case ESS_MIC_PREAMP:
1734 if (cp->type != AUDIO_MIXER_ENUM)
1735 return EINVAL;
1736
1737 if (cp->un.ord)
1738 /* Enable microphone preamp */
1739 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1740 ESS_PREAMP_CTRL_ENABLE);
1741 else
1742 /* Disable microphone preamp */
1743 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1744 ESS_PREAMP_CTRL_ENABLE);
1745 return (0);
1746 }
1747
1748 return (EINVAL);
1749 }
1750
1751 int
1752 ess_get_port(addr, cp)
1753 void *addr;
1754 mixer_ctrl_t *cp;
1755 {
1756 struct ess_softc *sc = addr;
1757
1758 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1759
1760 switch (cp->dev) {
1761 case ESS_MASTER_VOL:
1762 case ESS_DAC_PLAY_VOL:
1763 case ESS_MIC_PLAY_VOL:
1764 case ESS_LINE_PLAY_VOL:
1765 case ESS_SYNTH_PLAY_VOL:
1766 case ESS_CD_PLAY_VOL:
1767 case ESS_AUXB_PLAY_VOL:
1768 case ESS_RECORD_VOL:
1769 switch (cp->un.value.num_channels) {
1770 case 1:
1771 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1772 sc->gain[cp->dev][ESS_LEFT];
1773 break;
1774 case 2:
1775 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1776 sc->gain[cp->dev][ESS_LEFT];
1777 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1778 sc->gain[cp->dev][ESS_RIGHT];
1779 break;
1780 default:
1781 return EINVAL;
1782 }
1783 return (0);
1784
1785 case ESS_PCSPEAKER_VOL:
1786 if (cp->un.value.num_channels != 1)
1787 return EINVAL;
1788
1789 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1790 sc->gain[cp->dev][ESS_LEFT];
1791 return (0);
1792
1793 case ESS_RECORD_SOURCE:
1794 if (sc->sc_model == ESS_1788)
1795 cp->un.ord = sc->in_port;
1796 else
1797 cp->un.mask = sc->in_mask;
1798 return (0);
1799
1800 case ESS_RECORD_MONITOR:
1801 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1802 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1803 return (0);
1804 }
1805
1806 if (sc->sc_model == ESS_1788)
1807 return (EINVAL);
1808
1809 switch (cp->dev) {
1810 case ESS_DAC_REC_VOL:
1811 case ESS_MIC_REC_VOL:
1812 case ESS_LINE_REC_VOL:
1813 case ESS_SYNTH_REC_VOL:
1814 case ESS_CD_REC_VOL:
1815 case ESS_AUXB_REC_VOL:
1816 switch (cp->un.value.num_channels) {
1817 case 1:
1818 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1819 sc->gain[cp->dev][ESS_LEFT];
1820 break;
1821 case 2:
1822 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1823 sc->gain[cp->dev][ESS_LEFT];
1824 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1825 sc->gain[cp->dev][ESS_RIGHT];
1826 break;
1827 default:
1828 return EINVAL;
1829 }
1830 return (0);
1831
1832 case ESS_MIC_PREAMP:
1833 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1834 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1835 return (0);
1836 }
1837
1838 return (EINVAL);
1839 }
1840
1841 int
1842 ess_query_devinfo(addr, dip)
1843 void *addr;
1844 mixer_devinfo_t *dip;
1845 {
1846 struct ess_softc *sc = addr;
1847
1848 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1849 sc->sc_model, dip->index));
1850
1851 /*
1852 * REVISIT: There are some slight differences between the
1853 * mixers on the different ESS chips, which can
1854 * be sorted out using the chip model rather than a
1855 * separate mixer model.
1856 * This is currently coded assuming an ES1887; we
1857 * need to work out which bits are not applicable to
1858 * the other models (1888 and 888).
1859 */
1860 switch (dip->index) {
1861 case ESS_DAC_PLAY_VOL:
1862 dip->mixer_class = ESS_INPUT_CLASS;
1863 dip->next = dip->prev = AUDIO_MIXER_LAST;
1864 strcpy(dip->label.name, AudioNdac);
1865 dip->type = AUDIO_MIXER_VALUE;
1866 dip->un.v.num_channels = 2;
1867 strcpy(dip->un.v.units.name, AudioNvolume);
1868 return (0);
1869
1870 case ESS_MIC_PLAY_VOL:
1871 dip->mixer_class = ESS_INPUT_CLASS;
1872 dip->prev = AUDIO_MIXER_LAST;
1873 if (sc->sc_model == ESS_1788)
1874 dip->next = AUDIO_MIXER_LAST;
1875 else
1876 dip->next = ESS_MIC_PREAMP;
1877 strcpy(dip->label.name, AudioNmicrophone);
1878 dip->type = AUDIO_MIXER_VALUE;
1879 dip->un.v.num_channels = 2;
1880 strcpy(dip->un.v.units.name, AudioNvolume);
1881 return (0);
1882
1883 case ESS_LINE_PLAY_VOL:
1884 dip->mixer_class = ESS_INPUT_CLASS;
1885 dip->next = dip->prev = AUDIO_MIXER_LAST;
1886 strcpy(dip->label.name, AudioNline);
1887 dip->type = AUDIO_MIXER_VALUE;
1888 dip->un.v.num_channels = 2;
1889 strcpy(dip->un.v.units.name, AudioNvolume);
1890 return (0);
1891
1892 case ESS_SYNTH_PLAY_VOL:
1893 dip->mixer_class = ESS_INPUT_CLASS;
1894 dip->next = dip->prev = AUDIO_MIXER_LAST;
1895 strcpy(dip->label.name, AudioNfmsynth);
1896 dip->type = AUDIO_MIXER_VALUE;
1897 dip->un.v.num_channels = 2;
1898 strcpy(dip->un.v.units.name, AudioNvolume);
1899 return (0);
1900
1901 case ESS_CD_PLAY_VOL:
1902 dip->mixer_class = ESS_INPUT_CLASS;
1903 dip->next = dip->prev = AUDIO_MIXER_LAST;
1904 strcpy(dip->label.name, AudioNcd);
1905 dip->type = AUDIO_MIXER_VALUE;
1906 dip->un.v.num_channels = 2;
1907 strcpy(dip->un.v.units.name, AudioNvolume);
1908 return (0);
1909
1910 case ESS_AUXB_PLAY_VOL:
1911 dip->mixer_class = ESS_INPUT_CLASS;
1912 dip->next = dip->prev = AUDIO_MIXER_LAST;
1913 strcpy(dip->label.name, "auxb");
1914 dip->type = AUDIO_MIXER_VALUE;
1915 dip->un.v.num_channels = 2;
1916 strcpy(dip->un.v.units.name, AudioNvolume);
1917 return (0);
1918
1919 case ESS_INPUT_CLASS:
1920 dip->mixer_class = ESS_INPUT_CLASS;
1921 dip->next = dip->prev = AUDIO_MIXER_LAST;
1922 strcpy(dip->label.name, AudioCinputs);
1923 dip->type = AUDIO_MIXER_CLASS;
1924 return (0);
1925
1926 case ESS_MASTER_VOL:
1927 dip->mixer_class = ESS_OUTPUT_CLASS;
1928 dip->next = dip->prev = AUDIO_MIXER_LAST;
1929 strcpy(dip->label.name, AudioNmaster);
1930 dip->type = AUDIO_MIXER_VALUE;
1931 dip->un.v.num_channels = 2;
1932 strcpy(dip->un.v.units.name, AudioNvolume);
1933 return (0);
1934
1935 case ESS_PCSPEAKER_VOL:
1936 dip->mixer_class = ESS_OUTPUT_CLASS;
1937 dip->next = dip->prev = AUDIO_MIXER_LAST;
1938 strcpy(dip->label.name, "pc_speaker");
1939 dip->type = AUDIO_MIXER_VALUE;
1940 dip->un.v.num_channels = 1;
1941 strcpy(dip->un.v.units.name, AudioNvolume);
1942 return (0);
1943
1944 case ESS_OUTPUT_CLASS:
1945 dip->mixer_class = ESS_OUTPUT_CLASS;
1946 dip->next = dip->prev = AUDIO_MIXER_LAST;
1947 strcpy(dip->label.name, AudioCoutputs);
1948 dip->type = AUDIO_MIXER_CLASS;
1949 return (0);
1950
1951 case ESS_RECORD_VOL:
1952 dip->mixer_class = ESS_RECORD_CLASS;
1953 dip->next = dip->prev = AUDIO_MIXER_LAST;
1954 strcpy(dip->label.name, AudioNrecord);
1955 dip->type = AUDIO_MIXER_VALUE;
1956 dip->un.v.num_channels = 2;
1957 strcpy(dip->un.v.units.name, AudioNvolume);
1958 return (0);
1959
1960 case ESS_RECORD_SOURCE:
1961 dip->mixer_class = ESS_RECORD_CLASS;
1962 dip->next = dip->prev = AUDIO_MIXER_LAST;
1963 strcpy(dip->label.name, AudioNsource);
1964 if (sc->sc_model == ESS_1788) {
1965 /*
1966 * The 1788 doesn't use the input mixer control that
1967 * the 1888 uses, because it's a pain when you only
1968 * have one mixer.
1969 * Perhaps it could be emulated by keeping both sets of
1970 * gain values, and doing a `context switch' of the
1971 * mixer registers when shifting from playing to
1972 * recording.
1973 */
1974 dip->type = AUDIO_MIXER_ENUM;
1975 dip->un.e.num_mem = 4;
1976 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1977 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
1978 strcpy(dip->un.e.member[1].label.name, AudioNline);
1979 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
1980 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1981 dip->un.e.member[2].ord = ESS_SOURCE_CD;
1982 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1983 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
1984 } else {
1985 dip->type = AUDIO_MIXER_SET;
1986 dip->un.s.num_mem = 6;
1987 strcpy(dip->un.s.member[0].label.name, AudioNdac);
1988 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
1989 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
1990 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
1991 strcpy(dip->un.s.member[2].label.name, AudioNline);
1992 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
1993 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1994 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
1995 strcpy(dip->un.s.member[4].label.name, AudioNcd);
1996 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
1997 strcpy(dip->un.s.member[5].label.name, "auxb");
1998 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
1999 }
2000 return (0);
2001
2002 case ESS_RECORD_CLASS:
2003 dip->mixer_class = ESS_RECORD_CLASS;
2004 dip->next = dip->prev = AUDIO_MIXER_LAST;
2005 strcpy(dip->label.name, AudioCrecord);
2006 dip->type = AUDIO_MIXER_CLASS;
2007 return (0);
2008
2009 case ESS_RECORD_MONITOR:
2010 dip->prev = dip->next = AUDIO_MIXER_LAST;
2011 strcpy(dip->label.name, AudioNmonitor);
2012 dip->type = AUDIO_MIXER_ENUM;
2013 dip->mixer_class = ESS_MONITOR_CLASS;
2014 dip->un.e.num_mem = 2;
2015 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2016 dip->un.e.member[0].ord = 0;
2017 strcpy(dip->un.e.member[1].label.name, AudioNon);
2018 dip->un.e.member[1].ord = 1;
2019 return (0);
2020
2021 case ESS_MONITOR_CLASS:
2022 dip->mixer_class = ESS_MONITOR_CLASS;
2023 dip->next = dip->prev = AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioCmonitor);
2025 dip->type = AUDIO_MIXER_CLASS;
2026 return (0);
2027 }
2028
2029 if (sc->sc_model == ESS_1788)
2030 return (ENXIO);
2031
2032 switch (dip->index) {
2033 case ESS_DAC_REC_VOL:
2034 dip->mixer_class = ESS_RECORD_CLASS;
2035 dip->next = dip->prev = AUDIO_MIXER_LAST;
2036 strcpy(dip->label.name, AudioNdac);
2037 dip->type = AUDIO_MIXER_VALUE;
2038 dip->un.v.num_channels = 2;
2039 strcpy(dip->un.v.units.name, AudioNvolume);
2040 return (0);
2041
2042 case ESS_MIC_REC_VOL:
2043 dip->mixer_class = ESS_RECORD_CLASS;
2044 dip->next = dip->prev = AUDIO_MIXER_LAST;
2045 strcpy(dip->label.name, AudioNmicrophone);
2046 dip->type = AUDIO_MIXER_VALUE;
2047 dip->un.v.num_channels = 2;
2048 strcpy(dip->un.v.units.name, AudioNvolume);
2049 return (0);
2050
2051 case ESS_LINE_REC_VOL:
2052 dip->mixer_class = ESS_RECORD_CLASS;
2053 dip->next = dip->prev = AUDIO_MIXER_LAST;
2054 strcpy(dip->label.name, AudioNline);
2055 dip->type = AUDIO_MIXER_VALUE;
2056 dip->un.v.num_channels = 2;
2057 strcpy(dip->un.v.units.name, AudioNvolume);
2058 return (0);
2059
2060 case ESS_SYNTH_REC_VOL:
2061 dip->mixer_class = ESS_RECORD_CLASS;
2062 dip->next = dip->prev = AUDIO_MIXER_LAST;
2063 strcpy(dip->label.name, AudioNfmsynth);
2064 dip->type = AUDIO_MIXER_VALUE;
2065 dip->un.v.num_channels = 2;
2066 strcpy(dip->un.v.units.name, AudioNvolume);
2067 return (0);
2068
2069 case ESS_CD_REC_VOL:
2070 dip->mixer_class = ESS_RECORD_CLASS;
2071 dip->next = dip->prev = AUDIO_MIXER_LAST;
2072 strcpy(dip->label.name, AudioNcd);
2073 dip->type = AUDIO_MIXER_VALUE;
2074 dip->un.v.num_channels = 2;
2075 strcpy(dip->un.v.units.name, AudioNvolume);
2076 return (0);
2077
2078 case ESS_AUXB_REC_VOL:
2079 dip->mixer_class = ESS_RECORD_CLASS;
2080 dip->next = dip->prev = AUDIO_MIXER_LAST;
2081 strcpy(dip->label.name, "auxb");
2082 dip->type = AUDIO_MIXER_VALUE;
2083 dip->un.v.num_channels = 2;
2084 strcpy(dip->un.v.units.name, AudioNvolume);
2085 return (0);
2086
2087 case ESS_MIC_PREAMP:
2088 dip->mixer_class = ESS_INPUT_CLASS;
2089 dip->prev = ESS_MIC_PLAY_VOL;
2090 dip->next = AUDIO_MIXER_LAST;
2091 strcpy(dip->label.name, AudioNpreamp);
2092 dip->type = AUDIO_MIXER_ENUM;
2093 dip->un.e.num_mem = 2;
2094 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2095 dip->un.e.member[0].ord = 0;
2096 strcpy(dip->un.e.member[1].label.name, AudioNon);
2097 dip->un.e.member[1].ord = 1;
2098 return (0);
2099 }
2100
2101 return (ENXIO);
2102 }
2103
2104 void *
2105 ess_malloc(addr, direction, size, pool, flags)
2106 void *addr;
2107 int direction;
2108 size_t size;
2109 int pool, flags;
2110 {
2111 struct ess_softc *sc = addr;
2112 int drq;
2113
2114 if (sc->sc_model != ESS_1788 && direction == AUMODE_PLAY)
2115 drq = sc->sc_audio2.drq;
2116 else
2117 drq = sc->sc_audio1.drq;
2118 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2119 }
2120
2121 void
2122 ess_free(addr, ptr, pool)
2123 void *addr;
2124 void *ptr;
2125 int pool;
2126 {
2127 isa_free(ptr, pool);
2128 }
2129
2130 size_t
2131 ess_round_buffersize(addr, direction, size)
2132 void *addr;
2133 int direction;
2134 size_t size;
2135 {
2136 if (size > MAX_ISADMA)
2137 size = MAX_ISADMA;
2138 return (size);
2139 }
2140
2141 int
2142 ess_mappage(addr, mem, off, prot)
2143 void *addr;
2144 void *mem;
2145 int off;
2146 int prot;
2147 {
2148 return (isa_mappage(mem, off, prot));
2149 }
2150
2151 int
2152 ess_1788_get_props(addr)
2153 void *addr;
2154 {
2155
2156 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2157 }
2158
2159 int
2160 ess_1888_get_props(addr)
2161 void *addr;
2162 {
2163
2164 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2165 }
2166
2167 /* ============================================
2168 * Generic functions for ess, not used by audio h/w i/f
2169 * =============================================
2170 */
2171
2172 /*
2173 * Reset the chip.
2174 * Return non-zero if the chip isn't detected.
2175 */
2176 int
2177 ess_reset(sc)
2178 struct ess_softc *sc;
2179 {
2180 bus_space_tag_t iot = sc->sc_iot;
2181 bus_space_handle_t ioh = sc->sc_ioh;
2182
2183 sc->sc_audio1.active = 0;
2184 sc->sc_audio2.active = 0;
2185
2186 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2187 delay(10000);
2188 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2189 if (ess_rdsp(sc) != ESS_MAGIC)
2190 return (1);
2191
2192 /* Enable access to the ESS extension commands. */
2193 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2194
2195 return (0);
2196 }
2197
2198 void
2199 ess_set_gain(sc, port, on)
2200 struct ess_softc *sc;
2201 int port;
2202 int on;
2203 {
2204 int gain, left, right;
2205 int mix;
2206 int src;
2207 int stereo;
2208
2209 /*
2210 * Most gain controls are found in the mixer registers and
2211 * are stereo. Any that are not, must set mix and stereo as
2212 * required.
2213 */
2214 mix = 1;
2215 stereo = 1;
2216
2217 switch (port) {
2218 case ESS_MASTER_VOL:
2219 src = ESS_MREG_VOLUME_MASTER;
2220 break;
2221 case ESS_DAC_PLAY_VOL:
2222 if (sc->sc_model == ESS_1788)
2223 src = ESS_MREG_VOLUME_VOICE;
2224 else
2225 src = 0x7C;
2226 break;
2227 case ESS_MIC_PLAY_VOL:
2228 src = ESS_MREG_VOLUME_MIC;
2229 break;
2230 case ESS_LINE_PLAY_VOL:
2231 src = ESS_MREG_VOLUME_LINE;
2232 break;
2233 case ESS_SYNTH_PLAY_VOL:
2234 src = ESS_MREG_VOLUME_SYNTH;
2235 break;
2236 case ESS_CD_PLAY_VOL:
2237 src = ESS_MREG_VOLUME_CD;
2238 break;
2239 case ESS_AUXB_PLAY_VOL:
2240 src = ESS_MREG_VOLUME_AUXB;
2241 break;
2242 case ESS_PCSPEAKER_VOL:
2243 src = ESS_MREG_VOLUME_PCSPKR;
2244 stereo = 0;
2245 break;
2246 case ESS_DAC_REC_VOL:
2247 src = 0x69;
2248 break;
2249 case ESS_MIC_REC_VOL:
2250 src = 0x68;
2251 break;
2252 case ESS_LINE_REC_VOL:
2253 src = 0x6E;
2254 break;
2255 case ESS_SYNTH_REC_VOL:
2256 src = 0x6B;
2257 break;
2258 case ESS_CD_REC_VOL:
2259 src = 0x6A;
2260 break;
2261 case ESS_AUXB_REC_VOL:
2262 src = 0x6C;
2263 break;
2264 case ESS_RECORD_VOL:
2265 src = ESS_XCMD_VOLIN_CTRL;
2266 mix = 0;
2267 break;
2268 default:
2269 return;
2270 }
2271
2272 /* 1788 doesn't have a separate recording mixer */
2273 if (sc->sc_model == ESS_1788 && mix && src > 0x62)
2274 return;
2275
2276 if (on) {
2277 left = sc->gain[port][ESS_LEFT];
2278 right = sc->gain[port][ESS_RIGHT];
2279 } else {
2280 left = right = 0;
2281 }
2282
2283 if (stereo)
2284 gain = ESS_STEREO_GAIN(left, right);
2285 else
2286 gain = ESS_MONO_GAIN(left);
2287
2288 if (mix)
2289 ess_write_mix_reg(sc, src, gain);
2290 else
2291 ess_write_x_reg(sc, src, gain);
2292 }
2293
2294 /* Set the input device on devices without an input mixer. */
2295 int
2296 ess_set_in_port(sc, ord)
2297 struct ess_softc *sc;
2298 int ord;
2299 {
2300 mixer_devinfo_t di;
2301 int i;
2302
2303 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2304
2305 /*
2306 * Get the device info for the record source control,
2307 * including the list of available sources.
2308 */
2309 di.index = ESS_RECORD_SOURCE;
2310 if (ess_query_devinfo(sc, &di))
2311 return EINVAL;
2312
2313 /* See if the given ord value was anywhere in the list. */
2314 for (i = 0; i < di.un.e.num_mem; i++) {
2315 if (ord == di.un.e.member[i].ord)
2316 break;
2317 }
2318 if (i == di.un.e.num_mem)
2319 return EINVAL;
2320
2321 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2322
2323 sc->in_port = ord;
2324 return (0);
2325 }
2326
2327 /* Set the input device levels on input-mixer-enabled devices. */
2328 int
2329 ess_set_in_ports(sc, mask)
2330 struct ess_softc *sc;
2331 int mask;
2332 {
2333 mixer_devinfo_t di;
2334 int i, port;
2335
2336 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2337
2338 /*
2339 * Get the device info for the record source control,
2340 * including the list of available sources.
2341 */
2342 di.index = ESS_RECORD_SOURCE;
2343 if (ess_query_devinfo(sc, &di))
2344 return EINVAL;
2345
2346 /*
2347 * Set or disable the record volume control for each of the
2348 * possible sources.
2349 */
2350 for (i = 0; i < di.un.s.num_mem; i++) {
2351 /*
2352 * Calculate the source port number from its mask.
2353 */
2354 port = ffs(di.un.s.member[i].mask);
2355
2356 /*
2357 * Set the source gain:
2358 * to the current value if source is enabled
2359 * to zero if source is disabled
2360 */
2361 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2362 }
2363
2364 sc->in_mask = mask;
2365 return (0);
2366 }
2367
2368 void
2369 ess_speaker_on(sc)
2370 struct ess_softc *sc;
2371 {
2372 /* Disable mute on left- and right-master volume. */
2373 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2374 ess_clear_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2375 }
2376
2377 void
2378 ess_speaker_off(sc)
2379 struct ess_softc *sc;
2380 {
2381 /* Enable mute on left- and right-master volume. */
2382 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_LEFT, ESS_VOLUME_MUTE);
2383 ess_set_mreg_bits(sc, ESS_MREG_VOLUME_RIGHT, ESS_VOLUME_MUTE);
2384 }
2385
2386 /*
2387 * Calculate the time constant for the requested sampling rate.
2388 */
2389 u_int
2390 ess_srtotc(rate)
2391 u_int rate;
2392 {
2393 u_int tc;
2394
2395 /* The following formulae are from the ESS data sheet. */
2396 if (rate <= 22050)
2397 tc = 128 - 397700L / rate;
2398 else
2399 tc = 256 - 795500L / rate;
2400
2401 return (tc);
2402 }
2403
2404
2405 /*
2406 * Calculate the filter constant for the reuqested sampling rate.
2407 */
2408 u_int
2409 ess_srtofc(rate)
2410 u_int rate;
2411 {
2412 /*
2413 * The following formula is derived from the information in
2414 * the ES1887 data sheet, based on a roll-off frequency of
2415 * 87%.
2416 */
2417 return (256 - 200279L / rate);
2418 }
2419
2420
2421 /*
2422 * Return the status of the DSP.
2423 */
2424 u_char
2425 ess_get_dsp_status(sc)
2426 struct ess_softc *sc;
2427 {
2428 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2429 }
2430
2431
2432 /*
2433 * Return the read status of the DSP: 1 -> DSP ready for reading
2434 * 0 -> DSP not ready for reading
2435 */
2436 u_char
2437 ess_dsp_read_ready(sc)
2438 struct ess_softc *sc;
2439 {
2440 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2441 }
2442
2443
2444 /*
2445 * Return the write status of the DSP: 1 -> DSP ready for writing
2446 * 0 -> DSP not ready for writing
2447 */
2448 u_char
2449 ess_dsp_write_ready(sc)
2450 struct ess_softc *sc;
2451 {
2452 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2453 }
2454
2455
2456 /*
2457 * Read a byte from the DSP.
2458 */
2459 int
2460 ess_rdsp(sc)
2461 struct ess_softc *sc;
2462 {
2463 bus_space_tag_t iot = sc->sc_iot;
2464 bus_space_handle_t ioh = sc->sc_ioh;
2465 int i;
2466
2467 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2468 if (ess_dsp_read_ready(sc)) {
2469 i = EREAD1(iot, ioh, ESS_DSP_READ);
2470 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2471 return i;
2472 } else
2473 delay(10);
2474 }
2475
2476 DPRINTF(("ess_rdsp: timed out\n"));
2477 return (-1);
2478 }
2479
2480 /*
2481 * Write a byte to the DSP.
2482 */
2483 int
2484 ess_wdsp(sc, v)
2485 struct ess_softc *sc;
2486 u_char v;
2487 {
2488 bus_space_tag_t iot = sc->sc_iot;
2489 bus_space_handle_t ioh = sc->sc_ioh;
2490 int i;
2491
2492 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2493
2494 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2495 if (ess_dsp_write_ready(sc)) {
2496 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2497 return (0);
2498 } else
2499 delay(10);
2500 }
2501
2502 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2503 return (-1);
2504 }
2505
2506 /*
2507 * Write a value to one of the ESS extended registers.
2508 */
2509 int
2510 ess_write_x_reg(sc, reg, val)
2511 struct ess_softc *sc;
2512 u_char reg;
2513 u_char val;
2514 {
2515 int error;
2516
2517 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2518 if ((error = ess_wdsp(sc, reg)) == 0)
2519 error = ess_wdsp(sc, val);
2520
2521 return error;
2522 }
2523
2524 /*
2525 * Read the value of one of the ESS extended registers.
2526 */
2527 u_char
2528 ess_read_x_reg(sc, reg)
2529 struct ess_softc *sc;
2530 u_char reg;
2531 {
2532 int error;
2533 int val;
2534
2535 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2536 error = ess_wdsp(sc, reg);
2537 if (error)
2538 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2539 /* REVISIT: what if an error is returned above? */
2540 val = ess_rdsp(sc);
2541 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2542 return val;
2543 }
2544
2545 void
2546 ess_clear_xreg_bits(sc, reg, mask)
2547 struct ess_softc *sc;
2548 u_char reg;
2549 u_char mask;
2550 {
2551 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2552 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2553 reg));
2554 }
2555
2556 void
2557 ess_set_xreg_bits(sc, reg, mask)
2558 struct ess_softc *sc;
2559 u_char reg;
2560 u_char mask;
2561 {
2562 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2563 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2564 reg));
2565 }
2566
2567
2568 /*
2569 * Write a value to one of the ESS mixer registers.
2570 */
2571 void
2572 ess_write_mix_reg(sc, reg, val)
2573 struct ess_softc *sc;
2574 u_char reg;
2575 u_char val;
2576 {
2577 bus_space_tag_t iot = sc->sc_iot;
2578 bus_space_handle_t ioh = sc->sc_ioh;
2579 int s;
2580
2581 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2582
2583 s = splaudio();
2584 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2585 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2586 splx(s);
2587 }
2588
2589 /*
2590 * Read the value of one of the ESS mixer registers.
2591 */
2592 u_char
2593 ess_read_mix_reg(sc, reg)
2594 struct ess_softc *sc;
2595 u_char reg;
2596 {
2597 bus_space_tag_t iot = sc->sc_iot;
2598 bus_space_handle_t ioh = sc->sc_ioh;
2599 int s;
2600 u_char val;
2601
2602 s = splaudio();
2603 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2604 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2605 splx(s);
2606
2607 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2608 return val;
2609 }
2610
2611 void
2612 ess_clear_mreg_bits(sc, reg, mask)
2613 struct ess_softc *sc;
2614 u_char reg;
2615 u_char mask;
2616 {
2617 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2618 }
2619
2620 void
2621 ess_set_mreg_bits(sc, reg, mask)
2622 struct ess_softc *sc;
2623 u_char reg;
2624 u_char mask;
2625 {
2626 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2627 }
2628