ess.c revision 1.46.2.2 1 /* $NetBSD: ess.c,v 1.46.2.2 2001/01/18 09:23:22 bouyer Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/errno.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <sys/device.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76
77 #include <machine/cpu.h>
78 #include <machine/intr.h>
79 #include <machine/bus.h>
80
81 #include <sys/audioio.h>
82 #include <dev/audio_if.h>
83 #include <dev/auconv.h>
84 #include <dev/mulaw.h>
85
86 #include <dev/isa/isavar.h>
87 #include <dev/isa/isadmavar.h>
88
89 #include <dev/isa/essvar.h>
90 #include <dev/isa/essreg.h>
91
92 #ifdef AUDIO_DEBUG
93 #define DPRINTF(x) if (essdebug) printf x
94 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
95 int essdebug = 0;
96 #else
97 #define DPRINTF(x)
98 #define DPRINTFN(n,x)
99 #endif
100
101 #if 0
102 unsigned uuu;
103 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
104 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
105 #else
106 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
107 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
108 #endif
109
110
111 int ess_setup_sc __P((struct ess_softc *, int));
112
113 int ess_open __P((void *, int));
114 void ess_1788_close __P((void *));
115 void ess_1888_close __P((void *));
116 int ess_getdev __P((void *, struct audio_device *));
117 int ess_drain __P((void *));
118
119 int ess_query_encoding __P((void *, struct audio_encoding *));
120
121 int ess_set_params __P((void *, int, int, struct audio_params *,
122 struct audio_params *));
123
124 int ess_round_blocksize __P((void *, int));
125
126 int ess_audio1_trigger_output __P((void *, void *, void *, int,
127 void (*)(void *), void *, struct audio_params *));
128 int ess_audio2_trigger_output __P((void *, void *, void *, int,
129 void (*)(void *), void *, struct audio_params *));
130 int ess_audio1_trigger_input __P((void *, void *, void *, int,
131 void (*)(void *), void *, struct audio_params *));
132 int ess_audio1_halt __P((void *));
133 int ess_audio2_halt __P((void *));
134 int ess_audio1_intr __P((void *));
135 int ess_audio2_intr __P((void *));
136 void ess_audio1_poll __P((void *));
137 void ess_audio2_poll __P((void *));
138
139 int ess_speaker_ctl __P((void *, int));
140
141 int ess_getdev __P((void *, struct audio_device *));
142
143 int ess_set_port __P((void *, mixer_ctrl_t *));
144 int ess_get_port __P((void *, mixer_ctrl_t *));
145
146 void *ess_malloc __P((void *, int, size_t, int, int));
147 void ess_free __P((void *, void *, int));
148 size_t ess_round_buffersize __P((void *, int, size_t));
149 paddr_t ess_mappage __P((void *, void *, off_t, int));
150
151
152 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
153 int ess_1788_get_props __P((void *));
154 int ess_1888_get_props __P((void *));
155
156 void ess_speaker_on __P((struct ess_softc *));
157 void ess_speaker_off __P((struct ess_softc *));
158
159 void ess_config_irq __P((struct ess_softc *));
160 void ess_config_drq __P((struct ess_softc *));
161 void ess_setup __P((struct ess_softc *));
162 int ess_identify __P((struct ess_softc *));
163
164 int ess_reset __P((struct ess_softc *));
165 void ess_set_gain __P((struct ess_softc *, int, int));
166 int ess_set_in_port __P((struct ess_softc *, int));
167 int ess_set_in_ports __P((struct ess_softc *, int));
168 u_int ess_srtotc __P((u_int));
169 u_int ess_srtofc __P((u_int));
170 u_char ess_get_dsp_status __P((struct ess_softc *));
171 u_char ess_dsp_read_ready __P((struct ess_softc *));
172 u_char ess_dsp_write_ready __P((struct ess_softc *));
173 int ess_rdsp __P((struct ess_softc *));
174 int ess_wdsp __P((struct ess_softc *, u_char));
175 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
176 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
177 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
178 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
179 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
180 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
181 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
182 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
183 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
184
185 static char *essmodel[] = {
186 "unsupported",
187 "1888",
188 "1887",
189 "888",
190 "1788",
191 "1869",
192 "1879",
193 "1868",
194 "1878",
195 };
196
197 struct audio_device ess_device = {
198 "ESS Technology",
199 "x",
200 "ess"
201 };
202
203 /*
204 * Define our interface to the higher level audio driver.
205 */
206
207 struct audio_hw_if ess_1788_hw_if = {
208 ess_open,
209 ess_1788_close,
210 ess_drain,
211 ess_query_encoding,
212 ess_set_params,
213 ess_round_blocksize,
214 NULL,
215 NULL,
216 NULL,
217 NULL,
218 NULL,
219 ess_audio1_halt,
220 ess_audio1_halt,
221 ess_speaker_ctl,
222 ess_getdev,
223 NULL,
224 ess_set_port,
225 ess_get_port,
226 ess_query_devinfo,
227 ess_malloc,
228 ess_free,
229 ess_round_buffersize,
230 ess_mappage,
231 ess_1788_get_props,
232 ess_audio1_trigger_output,
233 ess_audio1_trigger_input,
234 };
235
236 struct audio_hw_if ess_1888_hw_if = {
237 ess_open,
238 ess_1888_close,
239 ess_drain,
240 ess_query_encoding,
241 ess_set_params,
242 ess_round_blocksize,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 ess_audio2_halt,
249 ess_audio1_halt,
250 ess_speaker_ctl,
251 ess_getdev,
252 NULL,
253 ess_set_port,
254 ess_get_port,
255 ess_query_devinfo,
256 ess_malloc,
257 ess_free,
258 ess_round_buffersize,
259 ess_mappage,
260 ess_1888_get_props,
261 ess_audio2_trigger_output,
262 ess_audio1_trigger_input,
263 };
264
265 #ifdef AUDIO_DEBUG
266 void ess_printsc __P((struct ess_softc *));
267 void ess_dump_mixer __P((struct ess_softc *));
268
269 void
270 ess_printsc(sc)
271 struct ess_softc *sc;
272 {
273 int i;
274
275 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
276 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
277 sc->in_port, sc->spkr_state ? "on" : "off");
278
279 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n",
280 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
281 sc->sc_audio1.intr, sc->sc_audio1.arg);
282
283 if (!ESS_USE_AUDIO1(sc->sc_model)) {
284 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n",
285 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
286 sc->sc_audio2.intr, sc->sc_audio2.arg);
287 }
288
289 printf("gain:");
290 for (i = 0; i < sc->ndevs; i++)
291 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
292 printf("\n");
293 }
294
295 void
296 ess_dump_mixer(sc)
297 struct ess_softc *sc;
298 {
299 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
300 0x7C, ess_read_mix_reg(sc, 0x7C));
301 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
302 0x1A, ess_read_mix_reg(sc, 0x1A));
303 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
304 0x3E, ess_read_mix_reg(sc, 0x3E));
305 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
306 0x36, ess_read_mix_reg(sc, 0x36));
307 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
308 0x38, ess_read_mix_reg(sc, 0x38));
309 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
310 0x3A, ess_read_mix_reg(sc, 0x3A));
311 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
312 0x32, ess_read_mix_reg(sc, 0x32));
313 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
314 0x3C, ess_read_mix_reg(sc, 0x3C));
315 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
316 0x69, ess_read_mix_reg(sc, 0x69));
317 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
318 0x68, ess_read_mix_reg(sc, 0x68));
319 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
320 0x6E, ess_read_mix_reg(sc, 0x6E));
321 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
322 0x6B, ess_read_mix_reg(sc, 0x6B));
323 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
324 0x6A, ess_read_mix_reg(sc, 0x6A));
325 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
326 0x6C, ess_read_mix_reg(sc, 0x6C));
327 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
328 0xB4, ess_read_x_reg(sc, 0xB4));
329 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
330 0x14, ess_read_mix_reg(sc, 0x14));
331
332 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
333 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
334 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
335 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
336 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
337 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
338 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
339 }
340
341 #endif
342
343 /*
344 * Configure the ESS chip for the desired audio base address.
345 */
346 int
347 ess_config_addr(sc)
348 struct ess_softc *sc;
349 {
350 int iobase = sc->sc_iobase;
351 bus_space_tag_t iot = sc->sc_iot;
352
353 /*
354 * Configure using the System Control Register method. This
355 * method is used when the AMODE line is tied high, which is
356 * the case for the Shark, but not for the evaluation board.
357 */
358
359 bus_space_handle_t scr_access_ioh;
360 bus_space_handle_t scr_ioh;
361 u_short scr_value;
362
363 /*
364 * Set the SCR bit to enable audio.
365 */
366 scr_value = ESS_SCR_AUDIO_ENABLE;
367
368 /*
369 * Set the SCR bits necessary to select the specified audio
370 * base address.
371 */
372 switch(iobase) {
373 case 0x220:
374 scr_value |= ESS_SCR_AUDIO_220;
375 break;
376 case 0x230:
377 scr_value |= ESS_SCR_AUDIO_230;
378 break;
379 case 0x240:
380 scr_value |= ESS_SCR_AUDIO_240;
381 break;
382 case 0x250:
383 scr_value |= ESS_SCR_AUDIO_250;
384 break;
385 default:
386 printf("ess: configured iobase 0x%x invalid\n", iobase);
387 return (1);
388 break;
389 }
390
391 /*
392 * Get a mapping for the System Control Register (SCR) access
393 * registers and the SCR data registers.
394 */
395 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
396 0, &scr_access_ioh)) {
397 printf("ess: can't map SCR access registers\n");
398 return (1);
399 }
400 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
401 0, &scr_ioh)) {
402 printf("ess: can't map SCR registers\n");
403 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
404 return (1);
405 }
406
407 /* Unlock the SCR. */
408 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
409
410 /* Write the base address information into SCR[0]. */
411 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
412 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
413
414 /* Lock the SCR. */
415 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
416
417 /* Unmap the SCR access ports and the SCR data ports. */
418 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
419 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
420
421 return 0;
422 }
423
424
425 /*
426 * Configure the ESS chip for the desired IRQ and DMA channels.
427 * ESS ISA
428 * --------
429 * IRQA irq9
430 * IRQB irq5
431 * IRQC irq7
432 * IRQD irq10
433 * IRQE irq15
434 *
435 * DRQA drq0
436 * DRQB drq1
437 * DRQC drq3
438 * DRQD drq5
439 */
440 void
441 ess_config_irq(sc)
442 struct ess_softc *sc;
443 {
444 int v;
445
446 DPRINTFN(2,("ess_config_irq\n"));
447
448 if (sc->sc_model == ESS_1887 &&
449 sc->sc_audio1.irq == sc->sc_audio2.irq &&
450 sc->sc_audio1.irq != -1) {
451 /* Use new method, both interrupts are the same. */
452 v = ESS_IS_SELECT_IRQ; /* enable intrs */
453 switch (sc->sc_audio1.irq) {
454 case 5:
455 v |= ESS_IS_INTRB;
456 break;
457 case 7:
458 v |= ESS_IS_INTRC;
459 break;
460 case 9:
461 v |= ESS_IS_INTRA;
462 break;
463 case 10:
464 v |= ESS_IS_INTRD;
465 break;
466 case 15:
467 v |= ESS_IS_INTRE;
468 break;
469 #ifdef DIAGNOSTIC
470 default:
471 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
472 sc->sc_audio1.irq);
473 return;
474 #endif
475 }
476 /* Set the IRQ */
477 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
478 return;
479 }
480
481 if (sc->sc_model == ESS_1887) {
482 /* Tell the 1887 to use the old interrupt method. */
483 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
484 }
485
486 if (sc->sc_audio1.polled) {
487 /* Turn off Audio1 interrupts. */
488 v = 0;
489 } else {
490 /* Configure Audio 1 for the appropriate IRQ line. */
491 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
492 switch (sc->sc_audio1.irq) {
493 case 5:
494 v |= ESS_IRQ_CTRL_INTRB;
495 break;
496 case 7:
497 v |= ESS_IRQ_CTRL_INTRC;
498 break;
499 case 9:
500 v |= ESS_IRQ_CTRL_INTRA;
501 break;
502 case 10:
503 v |= ESS_IRQ_CTRL_INTRD;
504 break;
505 #ifdef DIAGNOSTIC
506 default:
507 printf("ess: configured irq %d not supported for Audio 1\n",
508 sc->sc_audio1.irq);
509 return;
510 #endif
511 }
512 }
513 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
514
515 if (ESS_USE_AUDIO1(sc->sc_model))
516 return;
517
518 if (sc->sc_audio2.polled) {
519 /* Turn off Audio2 interrupts. */
520 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
521 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
522 } else {
523 /* Audio2 is hardwired to INTRE in this mode. */
524 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
525 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
526 }
527 }
528
529
530 void
531 ess_config_drq(sc)
532 struct ess_softc *sc;
533 {
534 int v;
535
536 DPRINTFN(2,("ess_config_drq\n"));
537
538 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
539 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
540 switch (sc->sc_audio1.drq) {
541 case 0:
542 v |= ESS_DRQ_CTRL_DRQA;
543 break;
544 case 1:
545 v |= ESS_DRQ_CTRL_DRQB;
546 break;
547 case 3:
548 v |= ESS_DRQ_CTRL_DRQC;
549 break;
550 #ifdef DIAGNOSTIC
551 default:
552 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
553 sc->sc_audio1.drq);
554 return;
555 #endif
556 }
557 /* Set DRQ1 */
558 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
559
560 if (ESS_USE_AUDIO1(sc->sc_model))
561 return;
562
563 /* Configure DRQ2 */
564 v = ESS_AUDIO2_CTRL3_DRQ_PD;
565 switch (sc->sc_audio2.drq) {
566 case 0:
567 v |= ESS_AUDIO2_CTRL3_DRQA;
568 break;
569 case 1:
570 v |= ESS_AUDIO2_CTRL3_DRQB;
571 break;
572 case 3:
573 v |= ESS_AUDIO2_CTRL3_DRQC;
574 break;
575 case 5:
576 v |= ESS_AUDIO2_CTRL3_DRQD;
577 break;
578 #ifdef DIAGNOSTIC
579 default:
580 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
581 sc->sc_audio2.drq);
582 return;
583 #endif
584 }
585 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
586 /* Enable DMA 2 */
587 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
588 ESS_AUDIO2_CTRL2_DMA_ENABLE);
589 }
590
591 /*
592 * Set up registers after a reset.
593 */
594 void
595 ess_setup(sc)
596 struct ess_softc *sc;
597 {
598
599 ess_config_irq(sc);
600 ess_config_drq(sc);
601
602 DPRINTFN(2,("ess_setup: done\n"));
603 }
604
605 /*
606 * Determine the model of ESS chip we are talking to. Currently we
607 * only support ES1888, ES1887 and ES888. The method of determining
608 * the chip is based on the information on page 27 of the ES1887 data
609 * sheet.
610 *
611 * This routine sets the values of sc->sc_model and sc->sc_version.
612 */
613 int
614 ess_identify(sc)
615 struct ess_softc *sc;
616 {
617 u_char reg1;
618 u_char reg2;
619 u_char reg3;
620 u_int8_t ident[4];
621
622 sc->sc_model = ESS_UNSUPPORTED;
623 sc->sc_version = 0;
624
625 memset(ident, 0, sizeof(ident));
626
627 /*
628 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
629 * n >= 8 for an ES1887 or an ES888. Other values indicate
630 * earlier (unsupported) chips.
631 */
632 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
633
634 if ((reg1 = ess_rdsp(sc)) != 0x68) {
635 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
636 return 1;
637 }
638
639 reg2 = ess_rdsp(sc);
640 if (((reg2 & 0xf0) != 0x80) ||
641 ((reg2 & 0x0f) < 8)) {
642 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
643 return 1;
644 }
645
646 /*
647 * Store the ID bytes as the version.
648 */
649 sc->sc_version = (reg1 << 8) + reg2;
650
651
652 /*
653 * 2. Verify we can change bit 2 in mixer register 0x64. This
654 * should be possible on all supported chips.
655 */
656 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
657 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
658
659 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
660
661 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
662 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
663 return 1;
664 }
665
666 /*
667 * Restore the original value of mixer register 0x64.
668 */
669 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
670
671
672 /*
673 * 3. Verify we can change the value of mixer register
674 * ESS_MREG_SAMPLE_RATE.
675 * This is possible on the 1888/1887/888, but not on the 1788.
676 * It is not necessary to restore the value of this mixer register.
677 */
678 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
679 reg2 = reg1 ^ 0xff; /* toggle all bits */
680
681 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
682
683 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
684 /* If we got this far before failing, it's a 1788. */
685 sc->sc_model = ESS_1788;
686
687 /*
688 * Identify ESS model for ES18[67]8.
689 */
690 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
691 if(ident[0] == 0x18) {
692 switch(ident[1]) {
693 case 0x68:
694 sc->sc_model = ESS_1868;
695 break;
696 case 0x78:
697 sc->sc_model = ESS_1878;
698 break;
699 }
700 }
701 } else {
702 /*
703 * 4. Determine if we can change bit 5 in mixer register 0x64.
704 * This determines whether we have an ES1887:
705 *
706 * - can change indicates ES1887
707 * - can't change indicates ES1888 or ES888
708 */
709 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
710 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
711
712 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
713
714 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
715 sc->sc_model = ESS_1887;
716
717 /*
718 * Restore the original value of mixer register 0x64.
719 */
720 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
721
722 /*
723 * Identify ESS model for ES18[67]9.
724 */
725 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
726 if(ident[0] == 0x18) {
727 switch(ident[1]) {
728 case 0x69:
729 sc->sc_model = ESS_1869;
730 break;
731 case 0x79:
732 sc->sc_model = ESS_1879;
733 break;
734 }
735 }
736 } else {
737 /*
738 * 5. Determine if we can change the value of mixer
739 * register 0x69 independently of mixer register
740 * 0x68. This determines which chip we have:
741 *
742 * - can modify idependently indicates ES888
743 * - register 0x69 is an alias of 0x68 indicates ES1888
744 */
745 reg1 = ess_read_mix_reg(sc, 0x68);
746 reg2 = ess_read_mix_reg(sc, 0x69);
747 reg3 = reg2 ^ 0xff; /* toggle all bits */
748
749 /*
750 * Write different values to each register.
751 */
752 ess_write_mix_reg(sc, 0x68, reg2);
753 ess_write_mix_reg(sc, 0x69, reg3);
754
755 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
756 ess_read_mix_reg(sc, 0x69) == reg3)
757 sc->sc_model = ESS_888;
758 else
759 sc->sc_model = ESS_1888;
760
761 /*
762 * Restore the original value of the registers.
763 */
764 ess_write_mix_reg(sc, 0x68, reg1);
765 ess_write_mix_reg(sc, 0x69, reg2);
766 }
767 }
768
769 return 0;
770 }
771
772
773 int
774 ess_setup_sc(sc, doinit)
775 struct ess_softc *sc;
776 int doinit;
777 {
778
779 callout_init(&sc->sc_poll1_ch);
780 callout_init(&sc->sc_poll2_ch);
781
782 /* Reset the chip. */
783 if (ess_reset(sc) != 0) {
784 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
785 return (1);
786 }
787
788 /* Identify the ESS chip, and check that it is supported. */
789 if (ess_identify(sc)) {
790 DPRINTF(("ess_setup_sc: couldn't identify\n"));
791 return (1);
792 }
793
794 return (0);
795 }
796
797 /*
798 * Probe for the ESS hardware.
799 */
800 int
801 essmatch(sc)
802 struct ess_softc *sc;
803 {
804 if (!ESS_BASE_VALID(sc->sc_iobase)) {
805 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
806 return (0);
807 }
808
809 if (ess_setup_sc(sc, 1))
810 return (0);
811
812 if (sc->sc_model == ESS_UNSUPPORTED) {
813 DPRINTF(("ess: Unsupported model\n"));
814 return (0);
815 }
816
817 /* Check that requested DMA channels are valid and different. */
818 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
819 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
820 return (0);
821 }
822 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
823 return (0);
824 if (!ESS_USE_AUDIO1(sc->sc_model)) {
825 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
826 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
827 return (0);
828 }
829 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
830 printf("ess: play and record drq both %d\n",
831 sc->sc_audio1.drq);
832 return (0);
833 }
834 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
835 return (0);
836 }
837
838 /*
839 * The 1887 has an additional IRQ mode where both channels are mapped
840 * to the same IRQ.
841 */
842 if (sc->sc_model == ESS_1887 &&
843 sc->sc_audio1.irq == sc->sc_audio2.irq &&
844 sc->sc_audio1.irq != -1 &&
845 ESS_IRQ12_VALID(sc->sc_audio1.irq))
846 goto irq_not1888;
847
848 /* Check that requested IRQ lines are valid and different. */
849 if (sc->sc_audio1.irq != -1 &&
850 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
851 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
852 return (0);
853 }
854 if (!ESS_USE_AUDIO1(sc->sc_model)) {
855 if (sc->sc_audio2.irq != -1 &&
856 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
857 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
858 return (0);
859 }
860 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
861 sc->sc_audio1.irq != -1) {
862 printf("ess: play and record irq both %d\n",
863 sc->sc_audio1.irq);
864 return (0);
865 }
866 }
867
868 irq_not1888:
869 /* XXX should we check IRQs as well? */
870
871 return (1);
872 }
873
874
875 /*
876 * Attach hardware to driver, attach hardware driver to audio
877 * pseudo-device driver.
878 */
879 void
880 essattach(sc)
881 struct ess_softc *sc;
882 {
883 struct audio_attach_args arg;
884 struct audio_params pparams, rparams;
885 int i;
886 u_int v;
887
888 if (ess_setup_sc(sc, 0)) {
889 printf(": setup failed\n");
890 return;
891 }
892
893 printf(": ESS Technology ES%s [version 0x%04x]\n",
894 essmodel[sc->sc_model], sc->sc_version);
895
896 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
897 if (!sc->sc_audio1.polled) {
898 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
899 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
900 ess_audio1_intr, sc);
901 printf("%s: audio1 interrupting at irq %d\n",
902 sc->sc_dev.dv_xname, sc->sc_audio1.irq);
903 } else
904 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
905 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
906 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
907 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
908 printf("%s: can't create map for drq %d\n",
909 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
910 return;
911 }
912
913 if (!ESS_USE_AUDIO1(sc->sc_model)) {
914 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
915 if (!sc->sc_audio2.polled) {
916 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
917 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
918 ess_audio2_intr, sc);
919 printf("%s: audio2 interrupting at irq %d\n",
920 sc->sc_dev.dv_xname, sc->sc_audio2.irq);
921 } else
922 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
923 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
924 sc->sc_audio2.drq);
925 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
926 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
927 printf("%s: can't create map for drq %d\n",
928 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
929 return;
930 }
931 }
932
933 /*
934 * Set record and play parameters to default values defined in
935 * generic audio driver.
936 */
937 pparams = audio_default;
938 rparams = audio_default;
939 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
940
941 /* Do a hardware reset on the mixer. */
942 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
943
944 /*
945 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
946 * to playback mixer, since playback is always through Audio 2.
947 */
948 if (!ESS_USE_AUDIO1(sc->sc_model))
949 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
950 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
951
952 if (ESS_USE_AUDIO1(sc->sc_model)) {
953 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
954 sc->in_port = ESS_SOURCE_MIC;
955 sc->ndevs = ESS_1788_NDEVS;
956 } else {
957 /*
958 * Set hardware record source to use output of the record
959 * mixer. We do the selection of record source in software by
960 * setting the gain of the unused sources to zero. (See
961 * ess_set_in_ports.)
962 */
963 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
964 sc->in_mask = 1 << ESS_MIC_REC_VOL;
965 sc->ndevs = ESS_1888_NDEVS;
966 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
967 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
968 }
969
970 /*
971 * Set gain on each mixer device to a sensible value.
972 * Devices not normally used are turned off, and other devices
973 * are set to 50% volume.
974 */
975 for (i = 0; i < sc->ndevs; i++) {
976 switch (i) {
977 case ESS_MIC_PLAY_VOL:
978 case ESS_LINE_PLAY_VOL:
979 case ESS_CD_PLAY_VOL:
980 case ESS_AUXB_PLAY_VOL:
981 case ESS_DAC_REC_VOL:
982 case ESS_LINE_REC_VOL:
983 case ESS_SYNTH_REC_VOL:
984 case ESS_CD_REC_VOL:
985 case ESS_AUXB_REC_VOL:
986 v = 0;
987 break;
988 default:
989 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
990 break;
991 }
992 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
993 ess_set_gain(sc, i, 1);
994 }
995
996 ess_setup(sc);
997
998 /* Disable the speaker until the device is opened. */
999 ess_speaker_off(sc);
1000 sc->spkr_state = SPKR_OFF;
1001
1002 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
1003 sprintf(ess_device.version, "0x%04x", sc->sc_version);
1004
1005 if (ESS_USE_AUDIO1(sc->sc_model))
1006 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1007 else
1008 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1009
1010 arg.type = AUDIODEV_TYPE_OPL;
1011 arg.hwif = 0;
1012 arg.hdl = 0;
1013 (void)config_found(&sc->sc_dev, &arg, audioprint);
1014
1015 #ifdef AUDIO_DEBUG
1016 if (essdebug > 0)
1017 ess_printsc(sc);
1018 #endif
1019 }
1020
1021 /*
1022 * Various routines to interface to higher level audio driver
1023 */
1024
1025 int
1026 ess_open(addr, flags)
1027 void *addr;
1028 int flags;
1029 {
1030 struct ess_softc *sc = addr;
1031 int i;
1032
1033 DPRINTF(("ess_open: sc=%p\n", sc));
1034
1035 if (sc->sc_open != 0 || ess_reset(sc) != 0)
1036 return ENXIO;
1037
1038 ess_setup(sc); /* because we did a reset */
1039
1040 /* Set all mixer controls again since some change at reset. */
1041 for (i = 0; i < ESS_MAX_NDEVS; i++)
1042 ess_set_gain(sc, i, 1);
1043
1044 sc->sc_open = 1;
1045
1046 DPRINTF(("ess_open: opened\n"));
1047
1048 return (0);
1049 }
1050
1051 void
1052 ess_1788_close(addr)
1053 void *addr;
1054 {
1055 struct ess_softc *sc = addr;
1056
1057 DPRINTF(("ess_1788_close: sc=%p\n", sc));
1058
1059 ess_speaker_off(sc);
1060 sc->spkr_state = SPKR_OFF;
1061
1062 ess_audio1_halt(sc);
1063
1064 sc->sc_open = 0;
1065 DPRINTF(("ess_1788_close: closed\n"));
1066 }
1067
1068 void
1069 ess_1888_close(addr)
1070 void *addr;
1071 {
1072 struct ess_softc *sc = addr;
1073
1074 DPRINTF(("ess_1888_close: sc=%p\n", sc));
1075
1076 ess_speaker_off(sc);
1077 sc->spkr_state = SPKR_OFF;
1078
1079 ess_audio1_halt(sc);
1080 ess_audio2_halt(sc);
1081
1082 sc->sc_open = 0;
1083 DPRINTF(("ess_1888_close: closed\n"));
1084 }
1085
1086 /*
1087 * Wait for FIFO to drain, and analog section to settle.
1088 * XXX should check FIFO empty bit.
1089 */
1090 int
1091 ess_drain(addr)
1092 void *addr;
1093 {
1094 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1095 return (0);
1096 }
1097
1098 /* XXX should use reference count */
1099 int
1100 ess_speaker_ctl(addr, newstate)
1101 void *addr;
1102 int newstate;
1103 {
1104 struct ess_softc *sc = addr;
1105
1106 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1107 ess_speaker_on(sc);
1108 sc->spkr_state = SPKR_ON;
1109 }
1110 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1111 ess_speaker_off(sc);
1112 sc->spkr_state = SPKR_OFF;
1113 }
1114 return (0);
1115 }
1116
1117 int
1118 ess_getdev(addr, retp)
1119 void *addr;
1120 struct audio_device *retp;
1121 {
1122 *retp = ess_device;
1123 return (0);
1124 }
1125
1126 int
1127 ess_query_encoding(addr, fp)
1128 void *addr;
1129 struct audio_encoding *fp;
1130 {
1131 /*struct ess_softc *sc = addr;*/
1132
1133 switch (fp->index) {
1134 case 0:
1135 strcpy(fp->name, AudioEulinear);
1136 fp->encoding = AUDIO_ENCODING_ULINEAR;
1137 fp->precision = 8;
1138 fp->flags = 0;
1139 return (0);
1140 case 1:
1141 strcpy(fp->name, AudioEmulaw);
1142 fp->encoding = AUDIO_ENCODING_ULAW;
1143 fp->precision = 8;
1144 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1145 return (0);
1146 case 2:
1147 strcpy(fp->name, AudioEalaw);
1148 fp->encoding = AUDIO_ENCODING_ALAW;
1149 fp->precision = 8;
1150 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1151 return (0);
1152 case 3:
1153 strcpy(fp->name, AudioEslinear);
1154 fp->encoding = AUDIO_ENCODING_SLINEAR;
1155 fp->precision = 8;
1156 fp->flags = 0;
1157 return (0);
1158 case 4:
1159 strcpy(fp->name, AudioEslinear_le);
1160 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1161 fp->precision = 16;
1162 fp->flags = 0;
1163 return (0);
1164 case 5:
1165 strcpy(fp->name, AudioEulinear_le);
1166 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1167 fp->precision = 16;
1168 fp->flags = 0;
1169 return (0);
1170 case 6:
1171 strcpy(fp->name, AudioEslinear_be);
1172 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1173 fp->precision = 16;
1174 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1175 return (0);
1176 case 7:
1177 strcpy(fp->name, AudioEulinear_be);
1178 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1179 fp->precision = 16;
1180 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1181 return (0);
1182 default:
1183 return EINVAL;
1184 }
1185 return (0);
1186 }
1187
1188 int
1189 ess_set_params(addr, setmode, usemode, play, rec)
1190 void *addr;
1191 int setmode, usemode;
1192 struct audio_params *play, *rec;
1193 {
1194 struct ess_softc *sc = addr;
1195 struct audio_params *p;
1196 int mode;
1197 int rate;
1198
1199 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1200
1201 /*
1202 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1203 * full-duplex operation the sample rates must be the same for both
1204 * channels. This appears to be false; the only bit in common is the
1205 * clock source selection. However, we'll be conservative here.
1206 * - mycroft
1207 */
1208 if (play->sample_rate != rec->sample_rate &&
1209 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1210 if (setmode == AUMODE_PLAY) {
1211 rec->sample_rate = play->sample_rate;
1212 setmode |= AUMODE_RECORD;
1213 } else if (setmode == AUMODE_RECORD) {
1214 play->sample_rate = rec->sample_rate;
1215 setmode |= AUMODE_PLAY;
1216 } else
1217 return (EINVAL);
1218 }
1219
1220 for (mode = AUMODE_RECORD; mode != -1;
1221 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1222 if ((setmode & mode) == 0)
1223 continue;
1224
1225 p = mode == AUMODE_PLAY ? play : rec;
1226
1227 if (p->sample_rate < ESS_MINRATE ||
1228 p->sample_rate > ESS_MAXRATE ||
1229 (p->precision != 8 && p->precision != 16) ||
1230 (p->channels != 1 && p->channels != 2))
1231 return (EINVAL);
1232
1233 p->factor = 1;
1234 p->sw_code = 0;
1235 switch (p->encoding) {
1236 case AUDIO_ENCODING_SLINEAR_BE:
1237 case AUDIO_ENCODING_ULINEAR_BE:
1238 if (p->precision == 16)
1239 p->sw_code = swap_bytes;
1240 break;
1241 case AUDIO_ENCODING_SLINEAR_LE:
1242 case AUDIO_ENCODING_ULINEAR_LE:
1243 break;
1244 case AUDIO_ENCODING_ULAW:
1245 if (mode == AUMODE_PLAY) {
1246 p->factor = 2;
1247 p->sw_code = mulaw_to_ulinear16_le;
1248 } else
1249 p->sw_code = ulinear8_to_mulaw;
1250 break;
1251 case AUDIO_ENCODING_ALAW:
1252 if (mode == AUMODE_PLAY) {
1253 p->factor = 2;
1254 p->sw_code = alaw_to_ulinear16_le;
1255 } else
1256 p->sw_code = ulinear8_to_alaw;
1257 break;
1258 default:
1259 return (EINVAL);
1260 }
1261 }
1262
1263 if (usemode == AUMODE_RECORD)
1264 rate = rec->sample_rate;
1265 else
1266 rate = play->sample_rate;
1267
1268 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1269 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1270
1271 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1272 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1273 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1274 }
1275
1276 return (0);
1277 }
1278
1279 int
1280 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1281 void *addr;
1282 void *start, *end;
1283 int blksize;
1284 void (*intr) __P((void *));
1285 void *arg;
1286 struct audio_params *param;
1287 {
1288 struct ess_softc *sc = addr;
1289 u_int8_t reg;
1290
1291 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1292 addr, start, end, blksize, intr, arg));
1293
1294 if (sc->sc_audio1.active)
1295 panic("ess_audio1_trigger_output: already running");
1296
1297 sc->sc_audio1.active = 1;
1298 sc->sc_audio1.intr = intr;
1299 sc->sc_audio1.arg = arg;
1300 if (sc->sc_audio1.polled) {
1301 sc->sc_audio1.dmapos = 0;
1302 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1303 sc->sc_audio1.dmacount = 0;
1304 sc->sc_audio1.blksize = blksize;
1305 callout_reset(&sc->sc_poll1_ch, hz / 30,
1306 ess_audio1_poll, sc);
1307 }
1308
1309 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1310 if (param->channels == 2) {
1311 reg &= ~ESS_AUDIO_CTRL_MONO;
1312 reg |= ESS_AUDIO_CTRL_STEREO;
1313 } else {
1314 reg |= ESS_AUDIO_CTRL_MONO;
1315 reg &= ~ESS_AUDIO_CTRL_STEREO;
1316 }
1317 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1318
1319 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1320 if (param->precision * param->factor == 16)
1321 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1322 else
1323 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1324 if (param->channels == 2)
1325 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1326 else
1327 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1328 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1329 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1330 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1331 else
1332 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1333 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1334 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1335
1336 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1337 (char *)end - (char *)start, NULL,
1338 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1339
1340 /* Program transfer count registers with 2's complement of count. */
1341 blksize = -blksize;
1342 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1343 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1344
1345 /* Use 4 bytes per output DMA. */
1346 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1347
1348 /* Start auto-init DMA */
1349 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1350 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1351 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1352 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1353 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1354
1355 return (0);
1356 }
1357
1358 int
1359 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1360 void *addr;
1361 void *start, *end;
1362 int blksize;
1363 void (*intr) __P((void *));
1364 void *arg;
1365 struct audio_params *param;
1366 {
1367 struct ess_softc *sc = addr;
1368 u_int8_t reg;
1369
1370 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1371 addr, start, end, blksize, intr, arg));
1372
1373 if (sc->sc_audio2.active)
1374 panic("ess_audio2_trigger_output: already running");
1375
1376 sc->sc_audio2.active = 1;
1377 sc->sc_audio2.intr = intr;
1378 sc->sc_audio2.arg = arg;
1379 if (sc->sc_audio2.polled) {
1380 sc->sc_audio2.dmapos = 0;
1381 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1382 sc->sc_audio2.dmacount = 0;
1383 sc->sc_audio2.blksize = blksize;
1384 callout_reset(&sc->sc_poll2_ch, hz / 30,
1385 ess_audio2_poll, sc);
1386 }
1387
1388 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1389 if (param->precision * param->factor == 16)
1390 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1391 else
1392 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1393 if (param->channels == 2)
1394 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1395 else
1396 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1397 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1398 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1399 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1400 else
1401 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1402 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1403
1404 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1405 (char *)end - (char *)start, NULL,
1406 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1407
1408 if (IS16BITDRQ(sc->sc_audio2.drq))
1409 blksize >>= 1; /* use word count for 16 bit DMA */
1410 /* Program transfer count registers with 2's complement of count. */
1411 blksize = -blksize;
1412 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1413 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1414
1415 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1416 if (IS16BITDRQ(sc->sc_audio2.drq))
1417 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1418 else
1419 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1420 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1421 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1422 ESS_AUDIO2_CTRL1_AUTO_INIT;
1423 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1424
1425 return (0);
1426 }
1427
1428 int
1429 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1430 void *addr;
1431 void *start, *end;
1432 int blksize;
1433 void (*intr) __P((void *));
1434 void *arg;
1435 struct audio_params *param;
1436 {
1437 struct ess_softc *sc = addr;
1438 u_int8_t reg;
1439
1440 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1441 addr, start, end, blksize, intr, arg));
1442
1443 if (sc->sc_audio1.active)
1444 panic("ess_audio1_trigger_input: already running");
1445
1446 sc->sc_audio1.active = 1;
1447 sc->sc_audio1.intr = intr;
1448 sc->sc_audio1.arg = arg;
1449 if (sc->sc_audio1.polled) {
1450 sc->sc_audio1.dmapos = 0;
1451 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1452 sc->sc_audio1.dmacount = 0;
1453 sc->sc_audio1.blksize = blksize;
1454 callout_reset(&sc->sc_poll1_ch, hz / 30,
1455 ess_audio1_poll, sc);
1456 }
1457
1458 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1459 if (param->channels == 2) {
1460 reg &= ~ESS_AUDIO_CTRL_MONO;
1461 reg |= ESS_AUDIO_CTRL_STEREO;
1462 } else {
1463 reg |= ESS_AUDIO_CTRL_MONO;
1464 reg &= ~ESS_AUDIO_CTRL_STEREO;
1465 }
1466 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1467
1468 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1469 if (param->precision * param->factor == 16)
1470 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1471 else
1472 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1473 if (param->channels == 2)
1474 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1475 else
1476 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1477 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1478 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1479 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1480 else
1481 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1482 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1483 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1484
1485 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1486 (char *)end - (char *)start, NULL,
1487 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1488
1489 /* Program transfer count registers with 2's complement of count. */
1490 blksize = -blksize;
1491 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1492 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1493
1494 /* Use 4 bytes per input DMA. */
1495 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1496
1497 /* Start auto-init DMA */
1498 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1499 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1500 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1501 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1502 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1503
1504 return (0);
1505 }
1506
1507 int
1508 ess_audio1_halt(addr)
1509 void *addr;
1510 {
1511 struct ess_softc *sc = addr;
1512
1513 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1514
1515 if (sc->sc_audio1.active) {
1516 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1517 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1518 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1519 if (sc->sc_audio1.polled)
1520 callout_stop(&sc->sc_poll1_ch);
1521 sc->sc_audio1.active = 0;
1522 }
1523
1524 return (0);
1525 }
1526
1527 int
1528 ess_audio2_halt(addr)
1529 void *addr;
1530 {
1531 struct ess_softc *sc = addr;
1532
1533 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1534
1535 if (sc->sc_audio2.active) {
1536 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1537 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1538 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1539 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1540 if (sc->sc_audio2.polled)
1541 callout_stop(&sc->sc_poll2_ch);
1542 sc->sc_audio2.active = 0;
1543 }
1544
1545 return (0);
1546 }
1547
1548 int
1549 ess_audio1_intr(arg)
1550 void *arg;
1551 {
1552 struct ess_softc *sc = arg;
1553 u_int8_t reg;
1554
1555 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1556
1557 /* Check and clear interrupt on Audio1. */
1558 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1559 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1560 return (0);
1561 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1562
1563 sc->sc_audio1.nintr++;
1564
1565 if (sc->sc_audio1.active) {
1566 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1567 return (1);
1568 } else
1569 return (0);
1570 }
1571
1572 int
1573 ess_audio2_intr(arg)
1574 void *arg;
1575 {
1576 struct ess_softc *sc = arg;
1577 u_int8_t reg;
1578
1579 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1580
1581 /* Check and clear interrupt on Audio2. */
1582 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1583 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1584 return (0);
1585 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1586 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1587
1588 sc->sc_audio2.nintr++;
1589
1590 if (sc->sc_audio2.active) {
1591 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1592 return (1);
1593 } else
1594 return (0);
1595 }
1596
1597 void
1598 ess_audio1_poll(addr)
1599 void *addr;
1600 {
1601 struct ess_softc *sc = addr;
1602 int dmapos, dmacount;
1603
1604 if (!sc->sc_audio1.active)
1605 return;
1606
1607 sc->sc_audio1.nintr++;
1608
1609 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1610 dmacount = sc->sc_audio1.dmapos - dmapos;
1611 if (dmacount < 0)
1612 dmacount += sc->sc_audio1.buffersize;
1613 sc->sc_audio1.dmapos = dmapos;
1614 #if 1
1615 dmacount += sc->sc_audio1.dmacount;
1616 while (dmacount > sc->sc_audio1.blksize) {
1617 dmacount -= sc->sc_audio1.blksize;
1618 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1619 }
1620 sc->sc_audio1.dmacount = dmacount;
1621 #else
1622 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1623 #endif
1624
1625 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1626 }
1627
1628 void
1629 ess_audio2_poll(addr)
1630 void *addr;
1631 {
1632 struct ess_softc *sc = addr;
1633 int dmapos, dmacount;
1634
1635 if (!sc->sc_audio2.active)
1636 return;
1637
1638 sc->sc_audio2.nintr++;
1639
1640 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1641 dmacount = sc->sc_audio2.dmapos - dmapos;
1642 if (dmacount < 0)
1643 dmacount += sc->sc_audio2.buffersize;
1644 sc->sc_audio2.dmapos = dmapos;
1645 #if 1
1646 dmacount += sc->sc_audio2.dmacount;
1647 while (dmacount > sc->sc_audio2.blksize) {
1648 dmacount -= sc->sc_audio2.blksize;
1649 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1650 }
1651 sc->sc_audio2.dmacount = dmacount;
1652 #else
1653 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1654 #endif
1655
1656 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1657 }
1658
1659 int
1660 ess_round_blocksize(addr, blk)
1661 void *addr;
1662 int blk;
1663 {
1664 return (blk & -8); /* round for max DMA size */
1665 }
1666
1667 int
1668 ess_set_port(addr, cp)
1669 void *addr;
1670 mixer_ctrl_t *cp;
1671 {
1672 struct ess_softc *sc = addr;
1673 int lgain, rgain;
1674
1675 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1676 cp->dev, cp->un.value.num_channels));
1677
1678 switch (cp->dev) {
1679 /*
1680 * The following mixer ports are all stereo. If we get a
1681 * single-channel gain value passed in, then we duplicate it
1682 * to both left and right channels.
1683 */
1684 case ESS_MASTER_VOL:
1685 case ESS_DAC_PLAY_VOL:
1686 case ESS_MIC_PLAY_VOL:
1687 case ESS_LINE_PLAY_VOL:
1688 case ESS_SYNTH_PLAY_VOL:
1689 case ESS_CD_PLAY_VOL:
1690 case ESS_AUXB_PLAY_VOL:
1691 case ESS_RECORD_VOL:
1692 if (cp->type != AUDIO_MIXER_VALUE)
1693 return EINVAL;
1694
1695 switch (cp->un.value.num_channels) {
1696 case 1:
1697 lgain = rgain = ESS_4BIT_GAIN(
1698 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1699 break;
1700 case 2:
1701 lgain = ESS_4BIT_GAIN(
1702 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1703 rgain = ESS_4BIT_GAIN(
1704 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1705 break;
1706 default:
1707 return EINVAL;
1708 }
1709
1710 sc->gain[cp->dev][ESS_LEFT] = lgain;
1711 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1712 ess_set_gain(sc, cp->dev, 1);
1713 return (0);
1714
1715 /*
1716 * The PC speaker port is mono. If we get a stereo gain value
1717 * passed in, then we return EINVAL.
1718 */
1719 case ESS_PCSPEAKER_VOL:
1720 if (cp->un.value.num_channels != 1)
1721 return EINVAL;
1722
1723 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1724 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1725 ess_set_gain(sc, cp->dev, 1);
1726 return (0);
1727
1728 case ESS_RECORD_SOURCE:
1729 if (ESS_USE_AUDIO1(sc->sc_model)) {
1730 if (cp->type == AUDIO_MIXER_ENUM)
1731 return (ess_set_in_port(sc, cp->un.ord));
1732 else
1733 return (EINVAL);
1734 } else {
1735 if (cp->type == AUDIO_MIXER_SET)
1736 return (ess_set_in_ports(sc, cp->un.mask));
1737 else
1738 return (EINVAL);
1739 }
1740 return (0);
1741
1742 case ESS_RECORD_MONITOR:
1743 if (cp->type != AUDIO_MIXER_ENUM)
1744 return EINVAL;
1745
1746 if (cp->un.ord)
1747 /* Enable monitor */
1748 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1749 ESS_AUDIO_CTRL_MONITOR);
1750 else
1751 /* Disable monitor */
1752 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1753 ESS_AUDIO_CTRL_MONITOR);
1754 return (0);
1755 }
1756
1757 if (ESS_USE_AUDIO1(sc->sc_model))
1758 return (EINVAL);
1759
1760 switch (cp->dev) {
1761 case ESS_DAC_REC_VOL:
1762 case ESS_MIC_REC_VOL:
1763 case ESS_LINE_REC_VOL:
1764 case ESS_SYNTH_REC_VOL:
1765 case ESS_CD_REC_VOL:
1766 case ESS_AUXB_REC_VOL:
1767 if (cp->type != AUDIO_MIXER_VALUE)
1768 return EINVAL;
1769
1770 switch (cp->un.value.num_channels) {
1771 case 1:
1772 lgain = rgain = ESS_4BIT_GAIN(
1773 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1774 break;
1775 case 2:
1776 lgain = ESS_4BIT_GAIN(
1777 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1778 rgain = ESS_4BIT_GAIN(
1779 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1780 break;
1781 default:
1782 return EINVAL;
1783 }
1784
1785 sc->gain[cp->dev][ESS_LEFT] = lgain;
1786 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1787 ess_set_gain(sc, cp->dev, 1);
1788 return (0);
1789
1790 case ESS_MIC_PREAMP:
1791 if (cp->type != AUDIO_MIXER_ENUM)
1792 return EINVAL;
1793
1794 if (cp->un.ord)
1795 /* Enable microphone preamp */
1796 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1797 ESS_PREAMP_CTRL_ENABLE);
1798 else
1799 /* Disable microphone preamp */
1800 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1801 ESS_PREAMP_CTRL_ENABLE);
1802 return (0);
1803 }
1804
1805 return (EINVAL);
1806 }
1807
1808 int
1809 ess_get_port(addr, cp)
1810 void *addr;
1811 mixer_ctrl_t *cp;
1812 {
1813 struct ess_softc *sc = addr;
1814
1815 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1816
1817 switch (cp->dev) {
1818 case ESS_MASTER_VOL:
1819 case ESS_DAC_PLAY_VOL:
1820 case ESS_MIC_PLAY_VOL:
1821 case ESS_LINE_PLAY_VOL:
1822 case ESS_SYNTH_PLAY_VOL:
1823 case ESS_CD_PLAY_VOL:
1824 case ESS_AUXB_PLAY_VOL:
1825 case ESS_RECORD_VOL:
1826 switch (cp->un.value.num_channels) {
1827 case 1:
1828 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1829 sc->gain[cp->dev][ESS_LEFT];
1830 break;
1831 case 2:
1832 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1833 sc->gain[cp->dev][ESS_LEFT];
1834 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1835 sc->gain[cp->dev][ESS_RIGHT];
1836 break;
1837 default:
1838 return EINVAL;
1839 }
1840 return (0);
1841
1842 case ESS_PCSPEAKER_VOL:
1843 if (cp->un.value.num_channels != 1)
1844 return EINVAL;
1845
1846 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1847 sc->gain[cp->dev][ESS_LEFT];
1848 return (0);
1849
1850 case ESS_RECORD_SOURCE:
1851 if (ESS_USE_AUDIO1(sc->sc_model))
1852 cp->un.ord = sc->in_port;
1853 else
1854 cp->un.mask = sc->in_mask;
1855 return (0);
1856
1857 case ESS_RECORD_MONITOR:
1858 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1859 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1860 return (0);
1861 }
1862
1863 if (ESS_USE_AUDIO1(sc->sc_model))
1864 return (EINVAL);
1865
1866 switch (cp->dev) {
1867 case ESS_DAC_REC_VOL:
1868 case ESS_MIC_REC_VOL:
1869 case ESS_LINE_REC_VOL:
1870 case ESS_SYNTH_REC_VOL:
1871 case ESS_CD_REC_VOL:
1872 case ESS_AUXB_REC_VOL:
1873 switch (cp->un.value.num_channels) {
1874 case 1:
1875 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1876 sc->gain[cp->dev][ESS_LEFT];
1877 break;
1878 case 2:
1879 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1880 sc->gain[cp->dev][ESS_LEFT];
1881 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1882 sc->gain[cp->dev][ESS_RIGHT];
1883 break;
1884 default:
1885 return EINVAL;
1886 }
1887 return (0);
1888
1889 case ESS_MIC_PREAMP:
1890 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1891 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1892 return (0);
1893 }
1894
1895 return (EINVAL);
1896 }
1897
1898 int
1899 ess_query_devinfo(addr, dip)
1900 void *addr;
1901 mixer_devinfo_t *dip;
1902 {
1903 struct ess_softc *sc = addr;
1904
1905 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1906 sc->sc_model, dip->index));
1907
1908 /*
1909 * REVISIT: There are some slight differences between the
1910 * mixers on the different ESS chips, which can
1911 * be sorted out using the chip model rather than a
1912 * separate mixer model.
1913 * This is currently coded assuming an ES1887; we
1914 * need to work out which bits are not applicable to
1915 * the other models (1888 and 888).
1916 */
1917 switch (dip->index) {
1918 case ESS_DAC_PLAY_VOL:
1919 dip->mixer_class = ESS_INPUT_CLASS;
1920 dip->next = dip->prev = AUDIO_MIXER_LAST;
1921 strcpy(dip->label.name, AudioNdac);
1922 dip->type = AUDIO_MIXER_VALUE;
1923 dip->un.v.num_channels = 2;
1924 strcpy(dip->un.v.units.name, AudioNvolume);
1925 return (0);
1926
1927 case ESS_MIC_PLAY_VOL:
1928 dip->mixer_class = ESS_INPUT_CLASS;
1929 dip->prev = AUDIO_MIXER_LAST;
1930 if (ESS_USE_AUDIO1(sc->sc_model))
1931 dip->next = AUDIO_MIXER_LAST;
1932 else
1933 dip->next = ESS_MIC_PREAMP;
1934 strcpy(dip->label.name, AudioNmicrophone);
1935 dip->type = AUDIO_MIXER_VALUE;
1936 dip->un.v.num_channels = 2;
1937 strcpy(dip->un.v.units.name, AudioNvolume);
1938 return (0);
1939
1940 case ESS_LINE_PLAY_VOL:
1941 dip->mixer_class = ESS_INPUT_CLASS;
1942 dip->next = dip->prev = AUDIO_MIXER_LAST;
1943 strcpy(dip->label.name, AudioNline);
1944 dip->type = AUDIO_MIXER_VALUE;
1945 dip->un.v.num_channels = 2;
1946 strcpy(dip->un.v.units.name, AudioNvolume);
1947 return (0);
1948
1949 case ESS_SYNTH_PLAY_VOL:
1950 dip->mixer_class = ESS_INPUT_CLASS;
1951 dip->next = dip->prev = AUDIO_MIXER_LAST;
1952 strcpy(dip->label.name, AudioNfmsynth);
1953 dip->type = AUDIO_MIXER_VALUE;
1954 dip->un.v.num_channels = 2;
1955 strcpy(dip->un.v.units.name, AudioNvolume);
1956 return (0);
1957
1958 case ESS_CD_PLAY_VOL:
1959 dip->mixer_class = ESS_INPUT_CLASS;
1960 dip->next = dip->prev = AUDIO_MIXER_LAST;
1961 strcpy(dip->label.name, AudioNcd);
1962 dip->type = AUDIO_MIXER_VALUE;
1963 dip->un.v.num_channels = 2;
1964 strcpy(dip->un.v.units.name, AudioNvolume);
1965 return (0);
1966
1967 case ESS_AUXB_PLAY_VOL:
1968 dip->mixer_class = ESS_INPUT_CLASS;
1969 dip->next = dip->prev = AUDIO_MIXER_LAST;
1970 strcpy(dip->label.name, "auxb");
1971 dip->type = AUDIO_MIXER_VALUE;
1972 dip->un.v.num_channels = 2;
1973 strcpy(dip->un.v.units.name, AudioNvolume);
1974 return (0);
1975
1976 case ESS_INPUT_CLASS:
1977 dip->mixer_class = ESS_INPUT_CLASS;
1978 dip->next = dip->prev = AUDIO_MIXER_LAST;
1979 strcpy(dip->label.name, AudioCinputs);
1980 dip->type = AUDIO_MIXER_CLASS;
1981 return (0);
1982
1983 case ESS_MASTER_VOL:
1984 dip->mixer_class = ESS_OUTPUT_CLASS;
1985 dip->next = dip->prev = AUDIO_MIXER_LAST;
1986 strcpy(dip->label.name, AudioNmaster);
1987 dip->type = AUDIO_MIXER_VALUE;
1988 dip->un.v.num_channels = 2;
1989 strcpy(dip->un.v.units.name, AudioNvolume);
1990 return (0);
1991
1992 case ESS_PCSPEAKER_VOL:
1993 dip->mixer_class = ESS_OUTPUT_CLASS;
1994 dip->next = dip->prev = AUDIO_MIXER_LAST;
1995 strcpy(dip->label.name, "pc_speaker");
1996 dip->type = AUDIO_MIXER_VALUE;
1997 dip->un.v.num_channels = 1;
1998 strcpy(dip->un.v.units.name, AudioNvolume);
1999 return (0);
2000
2001 case ESS_OUTPUT_CLASS:
2002 dip->mixer_class = ESS_OUTPUT_CLASS;
2003 dip->next = dip->prev = AUDIO_MIXER_LAST;
2004 strcpy(dip->label.name, AudioCoutputs);
2005 dip->type = AUDIO_MIXER_CLASS;
2006 return (0);
2007
2008 case ESS_RECORD_VOL:
2009 dip->mixer_class = ESS_RECORD_CLASS;
2010 dip->next = dip->prev = AUDIO_MIXER_LAST;
2011 strcpy(dip->label.name, AudioNrecord);
2012 dip->type = AUDIO_MIXER_VALUE;
2013 dip->un.v.num_channels = 2;
2014 strcpy(dip->un.v.units.name, AudioNvolume);
2015 return (0);
2016
2017 case ESS_RECORD_SOURCE:
2018 dip->mixer_class = ESS_RECORD_CLASS;
2019 dip->next = dip->prev = AUDIO_MIXER_LAST;
2020 strcpy(dip->label.name, AudioNsource);
2021 if (ESS_USE_AUDIO1(sc->sc_model)) {
2022 /*
2023 * The 1788 doesn't use the input mixer control that
2024 * the 1888 uses, because it's a pain when you only
2025 * have one mixer.
2026 * Perhaps it could be emulated by keeping both sets of
2027 * gain values, and doing a `context switch' of the
2028 * mixer registers when shifting from playing to
2029 * recording.
2030 */
2031 dip->type = AUDIO_MIXER_ENUM;
2032 dip->un.e.num_mem = 4;
2033 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2034 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2035 strcpy(dip->un.e.member[1].label.name, AudioNline);
2036 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2037 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2038 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2039 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2040 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2041 } else {
2042 dip->type = AUDIO_MIXER_SET;
2043 dip->un.s.num_mem = 6;
2044 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2045 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2046 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2047 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2048 strcpy(dip->un.s.member[2].label.name, AudioNline);
2049 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2050 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2051 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2052 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2053 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2054 strcpy(dip->un.s.member[5].label.name, "auxb");
2055 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2056 }
2057 return (0);
2058
2059 case ESS_RECORD_CLASS:
2060 dip->mixer_class = ESS_RECORD_CLASS;
2061 dip->next = dip->prev = AUDIO_MIXER_LAST;
2062 strcpy(dip->label.name, AudioCrecord);
2063 dip->type = AUDIO_MIXER_CLASS;
2064 return (0);
2065
2066 case ESS_RECORD_MONITOR:
2067 dip->prev = dip->next = AUDIO_MIXER_LAST;
2068 strcpy(dip->label.name, AudioNmute);
2069 dip->type = AUDIO_MIXER_ENUM;
2070 dip->mixer_class = ESS_MONITOR_CLASS;
2071 dip->un.e.num_mem = 2;
2072 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2073 dip->un.e.member[0].ord = 0;
2074 strcpy(dip->un.e.member[1].label.name, AudioNon);
2075 dip->un.e.member[1].ord = 1;
2076 return (0);
2077
2078 case ESS_MONITOR_CLASS:
2079 dip->mixer_class = ESS_MONITOR_CLASS;
2080 dip->next = dip->prev = AUDIO_MIXER_LAST;
2081 strcpy(dip->label.name, AudioCmonitor);
2082 dip->type = AUDIO_MIXER_CLASS;
2083 return (0);
2084 }
2085
2086 if (ESS_USE_AUDIO1(sc->sc_model))
2087 return (ENXIO);
2088
2089 switch (dip->index) {
2090 case ESS_DAC_REC_VOL:
2091 dip->mixer_class = ESS_RECORD_CLASS;
2092 dip->next = dip->prev = AUDIO_MIXER_LAST;
2093 strcpy(dip->label.name, AudioNdac);
2094 dip->type = AUDIO_MIXER_VALUE;
2095 dip->un.v.num_channels = 2;
2096 strcpy(dip->un.v.units.name, AudioNvolume);
2097 return (0);
2098
2099 case ESS_MIC_REC_VOL:
2100 dip->mixer_class = ESS_RECORD_CLASS;
2101 dip->next = dip->prev = AUDIO_MIXER_LAST;
2102 strcpy(dip->label.name, AudioNmicrophone);
2103 dip->type = AUDIO_MIXER_VALUE;
2104 dip->un.v.num_channels = 2;
2105 strcpy(dip->un.v.units.name, AudioNvolume);
2106 return (0);
2107
2108 case ESS_LINE_REC_VOL:
2109 dip->mixer_class = ESS_RECORD_CLASS;
2110 dip->next = dip->prev = AUDIO_MIXER_LAST;
2111 strcpy(dip->label.name, AudioNline);
2112 dip->type = AUDIO_MIXER_VALUE;
2113 dip->un.v.num_channels = 2;
2114 strcpy(dip->un.v.units.name, AudioNvolume);
2115 return (0);
2116
2117 case ESS_SYNTH_REC_VOL:
2118 dip->mixer_class = ESS_RECORD_CLASS;
2119 dip->next = dip->prev = AUDIO_MIXER_LAST;
2120 strcpy(dip->label.name, AudioNfmsynth);
2121 dip->type = AUDIO_MIXER_VALUE;
2122 dip->un.v.num_channels = 2;
2123 strcpy(dip->un.v.units.name, AudioNvolume);
2124 return (0);
2125
2126 case ESS_CD_REC_VOL:
2127 dip->mixer_class = ESS_RECORD_CLASS;
2128 dip->next = dip->prev = AUDIO_MIXER_LAST;
2129 strcpy(dip->label.name, AudioNcd);
2130 dip->type = AUDIO_MIXER_VALUE;
2131 dip->un.v.num_channels = 2;
2132 strcpy(dip->un.v.units.name, AudioNvolume);
2133 return (0);
2134
2135 case ESS_AUXB_REC_VOL:
2136 dip->mixer_class = ESS_RECORD_CLASS;
2137 dip->next = dip->prev = AUDIO_MIXER_LAST;
2138 strcpy(dip->label.name, "auxb");
2139 dip->type = AUDIO_MIXER_VALUE;
2140 dip->un.v.num_channels = 2;
2141 strcpy(dip->un.v.units.name, AudioNvolume);
2142 return (0);
2143
2144 case ESS_MIC_PREAMP:
2145 dip->mixer_class = ESS_INPUT_CLASS;
2146 dip->prev = ESS_MIC_PLAY_VOL;
2147 dip->next = AUDIO_MIXER_LAST;
2148 strcpy(dip->label.name, AudioNpreamp);
2149 dip->type = AUDIO_MIXER_ENUM;
2150 dip->un.e.num_mem = 2;
2151 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2152 dip->un.e.member[0].ord = 0;
2153 strcpy(dip->un.e.member[1].label.name, AudioNon);
2154 dip->un.e.member[1].ord = 1;
2155 return (0);
2156 }
2157
2158 return (ENXIO);
2159 }
2160
2161 void *
2162 ess_malloc(addr, direction, size, pool, flags)
2163 void *addr;
2164 int direction;
2165 size_t size;
2166 int pool, flags;
2167 {
2168 struct ess_softc *sc = addr;
2169 int drq;
2170
2171 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2172 drq = sc->sc_audio2.drq;
2173 else
2174 drq = sc->sc_audio1.drq;
2175 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2176 }
2177
2178 void
2179 ess_free(addr, ptr, pool)
2180 void *addr;
2181 void *ptr;
2182 int pool;
2183 {
2184 isa_free(ptr, pool);
2185 }
2186
2187 size_t
2188 ess_round_buffersize(addr, direction, size)
2189 void *addr;
2190 int direction;
2191 size_t size;
2192 {
2193 struct ess_softc *sc = addr;
2194 bus_size_t maxsize;
2195
2196 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2197 maxsize = sc->sc_audio2.maxsize;
2198 else
2199 maxsize = sc->sc_audio1.maxsize;
2200
2201 if (size > maxsize)
2202 size = maxsize;
2203 return (size);
2204 }
2205
2206 paddr_t
2207 ess_mappage(addr, mem, off, prot)
2208 void *addr;
2209 void *mem;
2210 off_t off;
2211 int prot;
2212 {
2213 return (isa_mappage(mem, off, prot));
2214 }
2215
2216 int
2217 ess_1788_get_props(addr)
2218 void *addr;
2219 {
2220
2221 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2222 }
2223
2224 int
2225 ess_1888_get_props(addr)
2226 void *addr;
2227 {
2228
2229 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2230 }
2231
2232 /* ============================================
2233 * Generic functions for ess, not used by audio h/w i/f
2234 * =============================================
2235 */
2236
2237 /*
2238 * Reset the chip.
2239 * Return non-zero if the chip isn't detected.
2240 */
2241 int
2242 ess_reset(sc)
2243 struct ess_softc *sc;
2244 {
2245 bus_space_tag_t iot = sc->sc_iot;
2246 bus_space_handle_t ioh = sc->sc_ioh;
2247
2248 sc->sc_audio1.active = 0;
2249 sc->sc_audio2.active = 0;
2250
2251 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2252 delay(10000); /* XXX shouldn't delay so long */
2253 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2254 if (ess_rdsp(sc) != ESS_MAGIC)
2255 return (1);
2256
2257 /* Enable access to the ESS extension commands. */
2258 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2259
2260 return (0);
2261 }
2262
2263 void
2264 ess_set_gain(sc, port, on)
2265 struct ess_softc *sc;
2266 int port;
2267 int on;
2268 {
2269 int gain, left, right;
2270 int mix;
2271 int src;
2272 int stereo;
2273
2274 /*
2275 * Most gain controls are found in the mixer registers and
2276 * are stereo. Any that are not, must set mix and stereo as
2277 * required.
2278 */
2279 mix = 1;
2280 stereo = 1;
2281
2282 switch (port) {
2283 case ESS_MASTER_VOL:
2284 src = ESS_MREG_VOLUME_MASTER;
2285 break;
2286 case ESS_DAC_PLAY_VOL:
2287 if (ESS_USE_AUDIO1(sc->sc_model))
2288 src = ESS_MREG_VOLUME_VOICE;
2289 else
2290 src = 0x7C;
2291 break;
2292 case ESS_MIC_PLAY_VOL:
2293 src = ESS_MREG_VOLUME_MIC;
2294 break;
2295 case ESS_LINE_PLAY_VOL:
2296 src = ESS_MREG_VOLUME_LINE;
2297 break;
2298 case ESS_SYNTH_PLAY_VOL:
2299 src = ESS_MREG_VOLUME_SYNTH;
2300 break;
2301 case ESS_CD_PLAY_VOL:
2302 src = ESS_MREG_VOLUME_CD;
2303 break;
2304 case ESS_AUXB_PLAY_VOL:
2305 src = ESS_MREG_VOLUME_AUXB;
2306 break;
2307 case ESS_PCSPEAKER_VOL:
2308 src = ESS_MREG_VOLUME_PCSPKR;
2309 stereo = 0;
2310 break;
2311 case ESS_DAC_REC_VOL:
2312 src = 0x69;
2313 break;
2314 case ESS_MIC_REC_VOL:
2315 src = 0x68;
2316 break;
2317 case ESS_LINE_REC_VOL:
2318 src = 0x6E;
2319 break;
2320 case ESS_SYNTH_REC_VOL:
2321 src = 0x6B;
2322 break;
2323 case ESS_CD_REC_VOL:
2324 src = 0x6A;
2325 break;
2326 case ESS_AUXB_REC_VOL:
2327 src = 0x6C;
2328 break;
2329 case ESS_RECORD_VOL:
2330 src = ESS_XCMD_VOLIN_CTRL;
2331 mix = 0;
2332 break;
2333 default:
2334 return;
2335 }
2336
2337 /* 1788 doesn't have a separate recording mixer */
2338 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2339 return;
2340
2341 if (on) {
2342 left = sc->gain[port][ESS_LEFT];
2343 right = sc->gain[port][ESS_RIGHT];
2344 } else {
2345 left = right = 0;
2346 }
2347
2348 if (stereo)
2349 gain = ESS_STEREO_GAIN(left, right);
2350 else
2351 gain = ESS_MONO_GAIN(left);
2352
2353 if (mix)
2354 ess_write_mix_reg(sc, src, gain);
2355 else
2356 ess_write_x_reg(sc, src, gain);
2357 }
2358
2359 /* Set the input device on devices without an input mixer. */
2360 int
2361 ess_set_in_port(sc, ord)
2362 struct ess_softc *sc;
2363 int ord;
2364 {
2365 mixer_devinfo_t di;
2366 int i;
2367
2368 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2369
2370 /*
2371 * Get the device info for the record source control,
2372 * including the list of available sources.
2373 */
2374 di.index = ESS_RECORD_SOURCE;
2375 if (ess_query_devinfo(sc, &di))
2376 return EINVAL;
2377
2378 /* See if the given ord value was anywhere in the list. */
2379 for (i = 0; i < di.un.e.num_mem; i++) {
2380 if (ord == di.un.e.member[i].ord)
2381 break;
2382 }
2383 if (i == di.un.e.num_mem)
2384 return EINVAL;
2385
2386 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2387
2388 sc->in_port = ord;
2389 return (0);
2390 }
2391
2392 /* Set the input device levels on input-mixer-enabled devices. */
2393 int
2394 ess_set_in_ports(sc, mask)
2395 struct ess_softc *sc;
2396 int mask;
2397 {
2398 mixer_devinfo_t di;
2399 int i, port;
2400
2401 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2402
2403 /*
2404 * Get the device info for the record source control,
2405 * including the list of available sources.
2406 */
2407 di.index = ESS_RECORD_SOURCE;
2408 if (ess_query_devinfo(sc, &di))
2409 return EINVAL;
2410
2411 /*
2412 * Set or disable the record volume control for each of the
2413 * possible sources.
2414 */
2415 for (i = 0; i < di.un.s.num_mem; i++) {
2416 /*
2417 * Calculate the source port number from its mask.
2418 */
2419 port = ffs(di.un.s.member[i].mask);
2420
2421 /*
2422 * Set the source gain:
2423 * to the current value if source is enabled
2424 * to zero if source is disabled
2425 */
2426 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2427 }
2428
2429 sc->in_mask = mask;
2430 return (0);
2431 }
2432
2433 void
2434 ess_speaker_on(sc)
2435 struct ess_softc *sc;
2436 {
2437 /* Unmute the DAC. */
2438 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2439 }
2440
2441 void
2442 ess_speaker_off(sc)
2443 struct ess_softc *sc;
2444 {
2445 /* Mute the DAC. */
2446 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2447 }
2448
2449 /*
2450 * Calculate the time constant for the requested sampling rate.
2451 */
2452 u_int
2453 ess_srtotc(rate)
2454 u_int rate;
2455 {
2456 u_int tc;
2457
2458 /* The following formulae are from the ESS data sheet. */
2459 if (rate <= 22050)
2460 tc = 128 - 397700L / rate;
2461 else
2462 tc = 256 - 795500L / rate;
2463
2464 return (tc);
2465 }
2466
2467
2468 /*
2469 * Calculate the filter constant for the reuqested sampling rate.
2470 */
2471 u_int
2472 ess_srtofc(rate)
2473 u_int rate;
2474 {
2475 /*
2476 * The following formula is derived from the information in
2477 * the ES1887 data sheet, based on a roll-off frequency of
2478 * 87%.
2479 */
2480 return (256 - 200279L / rate);
2481 }
2482
2483
2484 /*
2485 * Return the status of the DSP.
2486 */
2487 u_char
2488 ess_get_dsp_status(sc)
2489 struct ess_softc *sc;
2490 {
2491 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2492 }
2493
2494
2495 /*
2496 * Return the read status of the DSP: 1 -> DSP ready for reading
2497 * 0 -> DSP not ready for reading
2498 */
2499 u_char
2500 ess_dsp_read_ready(sc)
2501 struct ess_softc *sc;
2502 {
2503 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2504 }
2505
2506
2507 /*
2508 * Return the write status of the DSP: 1 -> DSP ready for writing
2509 * 0 -> DSP not ready for writing
2510 */
2511 u_char
2512 ess_dsp_write_ready(sc)
2513 struct ess_softc *sc;
2514 {
2515 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2516 }
2517
2518
2519 /*
2520 * Read a byte from the DSP.
2521 */
2522 int
2523 ess_rdsp(sc)
2524 struct ess_softc *sc;
2525 {
2526 bus_space_tag_t iot = sc->sc_iot;
2527 bus_space_handle_t ioh = sc->sc_ioh;
2528 int i;
2529
2530 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2531 if (ess_dsp_read_ready(sc)) {
2532 i = EREAD1(iot, ioh, ESS_DSP_READ);
2533 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2534 return i;
2535 } else
2536 delay(10);
2537 }
2538
2539 DPRINTF(("ess_rdsp: timed out\n"));
2540 return (-1);
2541 }
2542
2543 /*
2544 * Write a byte to the DSP.
2545 */
2546 int
2547 ess_wdsp(sc, v)
2548 struct ess_softc *sc;
2549 u_char v;
2550 {
2551 bus_space_tag_t iot = sc->sc_iot;
2552 bus_space_handle_t ioh = sc->sc_ioh;
2553 int i;
2554
2555 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2556
2557 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2558 if (ess_dsp_write_ready(sc)) {
2559 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2560 return (0);
2561 } else
2562 delay(10);
2563 }
2564
2565 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2566 return (-1);
2567 }
2568
2569 /*
2570 * Write a value to one of the ESS extended registers.
2571 */
2572 int
2573 ess_write_x_reg(sc, reg, val)
2574 struct ess_softc *sc;
2575 u_char reg;
2576 u_char val;
2577 {
2578 int error;
2579
2580 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2581 if ((error = ess_wdsp(sc, reg)) == 0)
2582 error = ess_wdsp(sc, val);
2583
2584 return error;
2585 }
2586
2587 /*
2588 * Read the value of one of the ESS extended registers.
2589 */
2590 u_char
2591 ess_read_x_reg(sc, reg)
2592 struct ess_softc *sc;
2593 u_char reg;
2594 {
2595 int error;
2596 int val;
2597
2598 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2599 error = ess_wdsp(sc, reg);
2600 if (error)
2601 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2602 /* REVISIT: what if an error is returned above? */
2603 val = ess_rdsp(sc);
2604 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2605 return val;
2606 }
2607
2608 void
2609 ess_clear_xreg_bits(sc, reg, mask)
2610 struct ess_softc *sc;
2611 u_char reg;
2612 u_char mask;
2613 {
2614 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2615 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2616 reg));
2617 }
2618
2619 void
2620 ess_set_xreg_bits(sc, reg, mask)
2621 struct ess_softc *sc;
2622 u_char reg;
2623 u_char mask;
2624 {
2625 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2626 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2627 reg));
2628 }
2629
2630
2631 /*
2632 * Write a value to one of the ESS mixer registers.
2633 */
2634 void
2635 ess_write_mix_reg(sc, reg, val)
2636 struct ess_softc *sc;
2637 u_char reg;
2638 u_char val;
2639 {
2640 bus_space_tag_t iot = sc->sc_iot;
2641 bus_space_handle_t ioh = sc->sc_ioh;
2642 int s;
2643
2644 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2645
2646 s = splaudio();
2647 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2648 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2649 splx(s);
2650 }
2651
2652 /*
2653 * Read the value of one of the ESS mixer registers.
2654 */
2655 u_char
2656 ess_read_mix_reg(sc, reg)
2657 struct ess_softc *sc;
2658 u_char reg;
2659 {
2660 bus_space_tag_t iot = sc->sc_iot;
2661 bus_space_handle_t ioh = sc->sc_ioh;
2662 int s;
2663 u_char val;
2664
2665 s = splaudio();
2666 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2667 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2668 splx(s);
2669
2670 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2671 return val;
2672 }
2673
2674 void
2675 ess_clear_mreg_bits(sc, reg, mask)
2676 struct ess_softc *sc;
2677 u_char reg;
2678 u_char mask;
2679 {
2680 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2681 }
2682
2683 void
2684 ess_set_mreg_bits(sc, reg, mask)
2685 struct ess_softc *sc;
2686 u_char reg;
2687 u_char mask;
2688 {
2689 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2690 }
2691
2692 void
2693 ess_read_multi_mix_reg(sc, reg, datap, count)
2694 struct ess_softc *sc;
2695 u_char reg;
2696 u_int8_t *datap;
2697 bus_size_t count;
2698 {
2699 bus_space_tag_t iot = sc->sc_iot;
2700 bus_space_handle_t ioh = sc->sc_ioh;
2701 int s;
2702
2703 s = splaudio();
2704 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2705 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2706 splx(s);
2707 }
2708