ess.c revision 1.57 1 /* $NetBSD: ess.c,v 1.57 2003/05/03 18:11:26 wiz Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.57 2003/05/03 18:11:26 wiz Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94
95 #ifdef AUDIO_DEBUG
96 #define DPRINTF(x) if (essdebug) printf x
97 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
98 int essdebug = 0;
99 #else
100 #define DPRINTF(x)
101 #define DPRINTFN(n,x)
102 #endif
103
104 #if 0
105 unsigned uuu;
106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
108 #else
109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
111 #endif
112
113
114 int ess_setup_sc __P((struct ess_softc *, int));
115
116 int ess_open __P((void *, int));
117 void ess_1788_close __P((void *));
118 void ess_1888_close __P((void *));
119 int ess_getdev __P((void *, struct audio_device *));
120 int ess_drain __P((void *));
121
122 int ess_query_encoding __P((void *, struct audio_encoding *));
123
124 int ess_set_params __P((void *, int, int, struct audio_params *,
125 struct audio_params *));
126
127 int ess_round_blocksize __P((void *, int));
128
129 int ess_audio1_trigger_output __P((void *, void *, void *, int,
130 void (*)(void *), void *, struct audio_params *));
131 int ess_audio2_trigger_output __P((void *, void *, void *, int,
132 void (*)(void *), void *, struct audio_params *));
133 int ess_audio1_trigger_input __P((void *, void *, void *, int,
134 void (*)(void *), void *, struct audio_params *));
135 int ess_audio1_halt __P((void *));
136 int ess_audio2_halt __P((void *));
137 int ess_audio1_intr __P((void *));
138 int ess_audio2_intr __P((void *));
139 void ess_audio1_poll __P((void *));
140 void ess_audio2_poll __P((void *));
141
142 int ess_speaker_ctl __P((void *, int));
143
144 int ess_getdev __P((void *, struct audio_device *));
145
146 int ess_set_port __P((void *, mixer_ctrl_t *));
147 int ess_get_port __P((void *, mixer_ctrl_t *));
148
149 void *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
150 void ess_free __P((void *, void *, struct malloc_type *));
151 size_t ess_round_buffersize __P((void *, int, size_t));
152 paddr_t ess_mappage __P((void *, void *, off_t, int));
153
154
155 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
156 int ess_1788_get_props __P((void *));
157 int ess_1888_get_props __P((void *));
158
159 void ess_speaker_on __P((struct ess_softc *));
160 void ess_speaker_off __P((struct ess_softc *));
161
162 void ess_config_irq __P((struct ess_softc *));
163 void ess_config_drq __P((struct ess_softc *));
164 void ess_setup __P((struct ess_softc *));
165 int ess_identify __P((struct ess_softc *));
166
167 int ess_reset __P((struct ess_softc *));
168 void ess_set_gain __P((struct ess_softc *, int, int));
169 int ess_set_in_port __P((struct ess_softc *, int));
170 int ess_set_in_ports __P((struct ess_softc *, int));
171 u_int ess_srtotc __P((u_int));
172 u_int ess_srtofc __P((u_int));
173 u_char ess_get_dsp_status __P((struct ess_softc *));
174 u_char ess_dsp_read_ready __P((struct ess_softc *));
175 u_char ess_dsp_write_ready __P((struct ess_softc *));
176 int ess_rdsp __P((struct ess_softc *));
177 int ess_wdsp __P((struct ess_softc *, u_char));
178 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
179 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
180 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
181 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
182 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
183 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
184 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
185 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
186 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
187
188 static char *essmodel[] = {
189 "unsupported",
190 "1888",
191 "1887",
192 "888",
193 "1788",
194 "1869",
195 "1879",
196 "1868",
197 "1878",
198 };
199
200 struct audio_device ess_device = {
201 "ESS Technology",
202 "x",
203 "ess"
204 };
205
206 /*
207 * Define our interface to the higher level audio driver.
208 */
209
210 struct audio_hw_if ess_1788_hw_if = {
211 ess_open,
212 ess_1788_close,
213 ess_drain,
214 ess_query_encoding,
215 ess_set_params,
216 ess_round_blocksize,
217 NULL,
218 NULL,
219 NULL,
220 NULL,
221 NULL,
222 ess_audio1_halt,
223 ess_audio1_halt,
224 ess_speaker_ctl,
225 ess_getdev,
226 NULL,
227 ess_set_port,
228 ess_get_port,
229 ess_query_devinfo,
230 ess_malloc,
231 ess_free,
232 ess_round_buffersize,
233 ess_mappage,
234 ess_1788_get_props,
235 ess_audio1_trigger_output,
236 ess_audio1_trigger_input,
237 NULL,
238 };
239
240 struct audio_hw_if ess_1888_hw_if = {
241 ess_open,
242 ess_1888_close,
243 ess_drain,
244 ess_query_encoding,
245 ess_set_params,
246 ess_round_blocksize,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 ess_audio2_halt,
253 ess_audio1_halt,
254 ess_speaker_ctl,
255 ess_getdev,
256 NULL,
257 ess_set_port,
258 ess_get_port,
259 ess_query_devinfo,
260 ess_malloc,
261 ess_free,
262 ess_round_buffersize,
263 ess_mappage,
264 ess_1888_get_props,
265 ess_audio2_trigger_output,
266 ess_audio1_trigger_input,
267 NULL,
268 };
269
270 #ifdef AUDIO_DEBUG
271 void ess_printsc __P((struct ess_softc *));
272 void ess_dump_mixer __P((struct ess_softc *));
273
274 void
275 ess_printsc(sc)
276 struct ess_softc *sc;
277 {
278 int i;
279
280 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
281 (int)sc->sc_open, sc->sc_iobase, sc->out_port,
282 sc->in_port, sc->spkr_state ? "on" : "off");
283
284 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
285 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
286 sc->sc_audio1.intr, sc->sc_audio1.arg);
287
288 if (!ESS_USE_AUDIO1(sc->sc_model)) {
289 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
290 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
291 sc->sc_audio2.intr, sc->sc_audio2.arg);
292 }
293
294 printf("gain:");
295 for (i = 0; i < sc->ndevs; i++)
296 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
297 printf("\n");
298 }
299
300 void
301 ess_dump_mixer(sc)
302 struct ess_softc *sc;
303 {
304 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
305 0x7C, ess_read_mix_reg(sc, 0x7C));
306 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
307 0x1A, ess_read_mix_reg(sc, 0x1A));
308 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
309 0x3E, ess_read_mix_reg(sc, 0x3E));
310 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
311 0x36, ess_read_mix_reg(sc, 0x36));
312 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
313 0x38, ess_read_mix_reg(sc, 0x38));
314 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
315 0x3A, ess_read_mix_reg(sc, 0x3A));
316 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
317 0x32, ess_read_mix_reg(sc, 0x32));
318 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
319 0x3C, ess_read_mix_reg(sc, 0x3C));
320 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
321 0x69, ess_read_mix_reg(sc, 0x69));
322 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
323 0x68, ess_read_mix_reg(sc, 0x68));
324 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
325 0x6E, ess_read_mix_reg(sc, 0x6E));
326 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
327 0x6B, ess_read_mix_reg(sc, 0x6B));
328 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
329 0x6A, ess_read_mix_reg(sc, 0x6A));
330 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
331 0x6C, ess_read_mix_reg(sc, 0x6C));
332 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
333 0xB4, ess_read_x_reg(sc, 0xB4));
334 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
335 0x14, ess_read_mix_reg(sc, 0x14));
336
337 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
338 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
339 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
340 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
341 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
342 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
343 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
344 }
345
346 #endif
347
348 /*
349 * Configure the ESS chip for the desired audio base address.
350 */
351 int
352 ess_config_addr(sc)
353 struct ess_softc *sc;
354 {
355 int iobase = sc->sc_iobase;
356 bus_space_tag_t iot = sc->sc_iot;
357
358 /*
359 * Configure using the System Control Register method. This
360 * method is used when the AMODE line is tied high, which is
361 * the case for the Shark, but not for the evaluation board.
362 */
363
364 bus_space_handle_t scr_access_ioh;
365 bus_space_handle_t scr_ioh;
366 u_short scr_value;
367
368 /*
369 * Set the SCR bit to enable audio.
370 */
371 scr_value = ESS_SCR_AUDIO_ENABLE;
372
373 /*
374 * Set the SCR bits necessary to select the specified audio
375 * base address.
376 */
377 switch(iobase) {
378 case 0x220:
379 scr_value |= ESS_SCR_AUDIO_220;
380 break;
381 case 0x230:
382 scr_value |= ESS_SCR_AUDIO_230;
383 break;
384 case 0x240:
385 scr_value |= ESS_SCR_AUDIO_240;
386 break;
387 case 0x250:
388 scr_value |= ESS_SCR_AUDIO_250;
389 break;
390 default:
391 printf("ess: configured iobase 0x%x invalid\n", iobase);
392 return (1);
393 break;
394 }
395
396 /*
397 * Get a mapping for the System Control Register (SCR) access
398 * registers and the SCR data registers.
399 */
400 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
401 0, &scr_access_ioh)) {
402 printf("ess: can't map SCR access registers\n");
403 return (1);
404 }
405 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
406 0, &scr_ioh)) {
407 printf("ess: can't map SCR registers\n");
408 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
409 return (1);
410 }
411
412 /* Unlock the SCR. */
413 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
414
415 /* Write the base address information into SCR[0]. */
416 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
417 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
418
419 /* Lock the SCR. */
420 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
421
422 /* Unmap the SCR access ports and the SCR data ports. */
423 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
424 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
425
426 return 0;
427 }
428
429
430 /*
431 * Configure the ESS chip for the desired IRQ and DMA channels.
432 * ESS ISA
433 * --------
434 * IRQA irq9
435 * IRQB irq5
436 * IRQC irq7
437 * IRQD irq10
438 * IRQE irq15
439 *
440 * DRQA drq0
441 * DRQB drq1
442 * DRQC drq3
443 * DRQD drq5
444 */
445 void
446 ess_config_irq(sc)
447 struct ess_softc *sc;
448 {
449 int v;
450
451 DPRINTFN(2,("ess_config_irq\n"));
452
453 if (sc->sc_model == ESS_1887 &&
454 sc->sc_audio1.irq == sc->sc_audio2.irq &&
455 sc->sc_audio1.irq != -1) {
456 /* Use new method, both interrupts are the same. */
457 v = ESS_IS_SELECT_IRQ; /* enable intrs */
458 switch (sc->sc_audio1.irq) {
459 case 5:
460 v |= ESS_IS_INTRB;
461 break;
462 case 7:
463 v |= ESS_IS_INTRC;
464 break;
465 case 9:
466 v |= ESS_IS_INTRA;
467 break;
468 case 10:
469 v |= ESS_IS_INTRD;
470 break;
471 case 15:
472 v |= ESS_IS_INTRE;
473 break;
474 #ifdef DIAGNOSTIC
475 default:
476 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
477 sc->sc_audio1.irq);
478 return;
479 #endif
480 }
481 /* Set the IRQ */
482 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
483 return;
484 }
485
486 if (sc->sc_model == ESS_1887) {
487 /* Tell the 1887 to use the old interrupt method. */
488 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
489 }
490
491 if (sc->sc_audio1.polled) {
492 /* Turn off Audio1 interrupts. */
493 v = 0;
494 } else {
495 /* Configure Audio 1 for the appropriate IRQ line. */
496 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
497 switch (sc->sc_audio1.irq) {
498 case 5:
499 v |= ESS_IRQ_CTRL_INTRB;
500 break;
501 case 7:
502 v |= ESS_IRQ_CTRL_INTRC;
503 break;
504 case 9:
505 v |= ESS_IRQ_CTRL_INTRA;
506 break;
507 case 10:
508 v |= ESS_IRQ_CTRL_INTRD;
509 break;
510 #ifdef DIAGNOSTIC
511 default:
512 printf("ess: configured irq %d not supported for Audio 1\n",
513 sc->sc_audio1.irq);
514 return;
515 #endif
516 }
517 }
518 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
519
520 if (ESS_USE_AUDIO1(sc->sc_model))
521 return;
522
523 if (sc->sc_audio2.polled) {
524 /* Turn off Audio2 interrupts. */
525 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
526 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
527 } else {
528 /* Audio2 is hardwired to INTRE in this mode. */
529 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
530 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
531 }
532 }
533
534
535 void
536 ess_config_drq(sc)
537 struct ess_softc *sc;
538 {
539 int v;
540
541 DPRINTFN(2,("ess_config_drq\n"));
542
543 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
544 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
545 switch (sc->sc_audio1.drq) {
546 case 0:
547 v |= ESS_DRQ_CTRL_DRQA;
548 break;
549 case 1:
550 v |= ESS_DRQ_CTRL_DRQB;
551 break;
552 case 3:
553 v |= ESS_DRQ_CTRL_DRQC;
554 break;
555 #ifdef DIAGNOSTIC
556 default:
557 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
558 sc->sc_audio1.drq);
559 return;
560 #endif
561 }
562 /* Set DRQ1 */
563 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
564
565 if (ESS_USE_AUDIO1(sc->sc_model))
566 return;
567
568 /* Configure DRQ2 */
569 v = ESS_AUDIO2_CTRL3_DRQ_PD;
570 switch (sc->sc_audio2.drq) {
571 case 0:
572 v |= ESS_AUDIO2_CTRL3_DRQA;
573 break;
574 case 1:
575 v |= ESS_AUDIO2_CTRL3_DRQB;
576 break;
577 case 3:
578 v |= ESS_AUDIO2_CTRL3_DRQC;
579 break;
580 case 5:
581 v |= ESS_AUDIO2_CTRL3_DRQD;
582 break;
583 #ifdef DIAGNOSTIC
584 default:
585 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
586 sc->sc_audio2.drq);
587 return;
588 #endif
589 }
590 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
591 /* Enable DMA 2 */
592 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
593 ESS_AUDIO2_CTRL2_DMA_ENABLE);
594 }
595
596 /*
597 * Set up registers after a reset.
598 */
599 void
600 ess_setup(sc)
601 struct ess_softc *sc;
602 {
603
604 ess_config_irq(sc);
605 ess_config_drq(sc);
606
607 DPRINTFN(2,("ess_setup: done\n"));
608 }
609
610 /*
611 * Determine the model of ESS chip we are talking to. Currently we
612 * only support ES1888, ES1887 and ES888. The method of determining
613 * the chip is based on the information on page 27 of the ES1887 data
614 * sheet.
615 *
616 * This routine sets the values of sc->sc_model and sc->sc_version.
617 */
618 int
619 ess_identify(sc)
620 struct ess_softc *sc;
621 {
622 u_char reg1;
623 u_char reg2;
624 u_char reg3;
625 u_int8_t ident[4];
626
627 sc->sc_model = ESS_UNSUPPORTED;
628 sc->sc_version = 0;
629
630 memset(ident, 0, sizeof(ident));
631
632 /*
633 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
634 * n >= 8 for an ES1887 or an ES888. Other values indicate
635 * earlier (unsupported) chips.
636 */
637 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
638
639 if ((reg1 = ess_rdsp(sc)) != 0x68) {
640 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
641 return 1;
642 }
643
644 reg2 = ess_rdsp(sc);
645 if (((reg2 & 0xf0) != 0x80) ||
646 ((reg2 & 0x0f) < 8)) {
647 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
648 return 1;
649 }
650
651 /*
652 * Store the ID bytes as the version.
653 */
654 sc->sc_version = (reg1 << 8) + reg2;
655
656
657 /*
658 * 2. Verify we can change bit 2 in mixer register 0x64. This
659 * should be possible on all supported chips.
660 */
661 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
662 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
663
664 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
665
666 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
667 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
668 return 1;
669 }
670
671 /*
672 * Restore the original value of mixer register 0x64.
673 */
674 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
675
676
677 /*
678 * 3. Verify we can change the value of mixer register
679 * ESS_MREG_SAMPLE_RATE.
680 * This is possible on the 1888/1887/888, but not on the 1788.
681 * It is not necessary to restore the value of this mixer register.
682 */
683 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
684 reg2 = reg1 ^ 0xff; /* toggle all bits */
685
686 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
687
688 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
689 /* If we got this far before failing, it's a 1788. */
690 sc->sc_model = ESS_1788;
691
692 /*
693 * Identify ESS model for ES18[67]8.
694 */
695 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
696 if(ident[0] == 0x18) {
697 switch(ident[1]) {
698 case 0x68:
699 sc->sc_model = ESS_1868;
700 break;
701 case 0x78:
702 sc->sc_model = ESS_1878;
703 break;
704 }
705 }
706 } else {
707 /*
708 * 4. Determine if we can change bit 5 in mixer register 0x64.
709 * This determines whether we have an ES1887:
710 *
711 * - can change indicates ES1887
712 * - can't change indicates ES1888 or ES888
713 */
714 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
715 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
716
717 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
718
719 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
720 sc->sc_model = ESS_1887;
721
722 /*
723 * Restore the original value of mixer register 0x64.
724 */
725 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
726
727 /*
728 * Identify ESS model for ES18[67]9.
729 */
730 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
731 if(ident[0] == 0x18) {
732 switch(ident[1]) {
733 case 0x69:
734 sc->sc_model = ESS_1869;
735 break;
736 case 0x79:
737 sc->sc_model = ESS_1879;
738 break;
739 }
740 }
741 } else {
742 /*
743 * 5. Determine if we can change the value of mixer
744 * register 0x69 independently of mixer register
745 * 0x68. This determines which chip we have:
746 *
747 * - can modify idependently indicates ES888
748 * - register 0x69 is an alias of 0x68 indicates ES1888
749 */
750 reg1 = ess_read_mix_reg(sc, 0x68);
751 reg2 = ess_read_mix_reg(sc, 0x69);
752 reg3 = reg2 ^ 0xff; /* toggle all bits */
753
754 /*
755 * Write different values to each register.
756 */
757 ess_write_mix_reg(sc, 0x68, reg2);
758 ess_write_mix_reg(sc, 0x69, reg3);
759
760 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
761 ess_read_mix_reg(sc, 0x69) == reg3)
762 sc->sc_model = ESS_888;
763 else
764 sc->sc_model = ESS_1888;
765
766 /*
767 * Restore the original value of the registers.
768 */
769 ess_write_mix_reg(sc, 0x68, reg1);
770 ess_write_mix_reg(sc, 0x69, reg2);
771 }
772 }
773
774 return 0;
775 }
776
777
778 int
779 ess_setup_sc(sc, doinit)
780 struct ess_softc *sc;
781 int doinit;
782 {
783
784 callout_init(&sc->sc_poll1_ch);
785 callout_init(&sc->sc_poll2_ch);
786
787 /* Reset the chip. */
788 if (ess_reset(sc) != 0) {
789 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
790 return (1);
791 }
792
793 /* Identify the ESS chip, and check that it is supported. */
794 if (ess_identify(sc)) {
795 DPRINTF(("ess_setup_sc: couldn't identify\n"));
796 return (1);
797 }
798
799 return (0);
800 }
801
802 /*
803 * Probe for the ESS hardware.
804 */
805 int
806 essmatch(sc)
807 struct ess_softc *sc;
808 {
809 if (!ESS_BASE_VALID(sc->sc_iobase)) {
810 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
811 return (0);
812 }
813
814 if (ess_setup_sc(sc, 1))
815 return (0);
816
817 if (sc->sc_model == ESS_UNSUPPORTED) {
818 DPRINTF(("ess: Unsupported model\n"));
819 return (0);
820 }
821
822 /* Check that requested DMA channels are valid and different. */
823 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
824 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
825 return (0);
826 }
827 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
828 return (0);
829 if (!ESS_USE_AUDIO1(sc->sc_model)) {
830 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
831 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
832 return (0);
833 }
834 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
835 printf("ess: play and record drq both %d\n",
836 sc->sc_audio1.drq);
837 return (0);
838 }
839 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
840 return (0);
841 }
842
843 /*
844 * The 1887 has an additional IRQ mode where both channels are mapped
845 * to the same IRQ.
846 */
847 if (sc->sc_model == ESS_1887 &&
848 sc->sc_audio1.irq == sc->sc_audio2.irq &&
849 sc->sc_audio1.irq != -1 &&
850 ESS_IRQ12_VALID(sc->sc_audio1.irq))
851 goto irq_not1888;
852
853 /* Check that requested IRQ lines are valid and different. */
854 if (sc->sc_audio1.irq != -1 &&
855 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
856 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
857 return (0);
858 }
859 if (!ESS_USE_AUDIO1(sc->sc_model)) {
860 if (sc->sc_audio2.irq != -1 &&
861 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
862 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
863 return (0);
864 }
865 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
866 sc->sc_audio1.irq != -1) {
867 printf("ess: play and record irq both %d\n",
868 sc->sc_audio1.irq);
869 return (0);
870 }
871 }
872
873 irq_not1888:
874 /* XXX should we check IRQs as well? */
875
876 return (1);
877 }
878
879
880 /*
881 * Attach hardware to driver, attach hardware driver to audio
882 * pseudo-device driver.
883 */
884 void
885 essattach(sc)
886 struct ess_softc *sc;
887 {
888 struct audio_attach_args arg;
889 struct audio_params pparams, rparams;
890 int i;
891 u_int v;
892
893 if (ess_setup_sc(sc, 0)) {
894 printf(": setup failed\n");
895 return;
896 }
897
898 printf(": ESS Technology ES%s [version 0x%04x]\n",
899 essmodel[sc->sc_model], sc->sc_version);
900
901 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
902 if (!sc->sc_audio1.polled) {
903 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
904 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
905 ess_audio1_intr, sc);
906 printf("%s: audio1 interrupting at irq %d\n",
907 sc->sc_dev.dv_xname, sc->sc_audio1.irq);
908 } else
909 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
910 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
911 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
912 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
913 printf("%s: can't create map for drq %d\n",
914 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
915 return;
916 }
917
918 if (!ESS_USE_AUDIO1(sc->sc_model)) {
919 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
920 if (!sc->sc_audio2.polled) {
921 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
922 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
923 ess_audio2_intr, sc);
924 printf("%s: audio2 interrupting at irq %d\n",
925 sc->sc_dev.dv_xname, sc->sc_audio2.irq);
926 } else
927 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
928 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
929 sc->sc_audio2.drq);
930 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
931 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
932 printf("%s: can't create map for drq %d\n",
933 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
934 return;
935 }
936 }
937
938 /*
939 * Set record and play parameters to default values defined in
940 * generic audio driver.
941 */
942 pparams = audio_default;
943 rparams = audio_default;
944 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
945
946 /* Do a hardware reset on the mixer. */
947 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
948
949 /*
950 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
951 * to playback mixer, since playback is always through Audio 2.
952 */
953 if (!ESS_USE_AUDIO1(sc->sc_model))
954 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
955 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
956
957 if (ESS_USE_AUDIO1(sc->sc_model)) {
958 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
959 sc->in_port = ESS_SOURCE_MIC;
960 sc->ndevs = ESS_1788_NDEVS;
961 } else {
962 /*
963 * Set hardware record source to use output of the record
964 * mixer. We do the selection of record source in software by
965 * setting the gain of the unused sources to zero. (See
966 * ess_set_in_ports.)
967 */
968 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
969 sc->in_mask = 1 << ESS_MIC_REC_VOL;
970 sc->ndevs = ESS_1888_NDEVS;
971 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
972 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
973 }
974
975 /*
976 * Set gain on each mixer device to a sensible value.
977 * Devices not normally used are turned off, and other devices
978 * are set to 50% volume.
979 */
980 for (i = 0; i < sc->ndevs; i++) {
981 switch (i) {
982 case ESS_MIC_PLAY_VOL:
983 case ESS_LINE_PLAY_VOL:
984 case ESS_CD_PLAY_VOL:
985 case ESS_AUXB_PLAY_VOL:
986 case ESS_DAC_REC_VOL:
987 case ESS_LINE_REC_VOL:
988 case ESS_SYNTH_REC_VOL:
989 case ESS_CD_REC_VOL:
990 case ESS_AUXB_REC_VOL:
991 v = 0;
992 break;
993 default:
994 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
995 break;
996 }
997 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
998 ess_set_gain(sc, i, 1);
999 }
1000
1001 ess_setup(sc);
1002
1003 /* Disable the speaker until the device is opened. */
1004 ess_speaker_off(sc);
1005 sc->spkr_state = SPKR_OFF;
1006
1007 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
1008 sprintf(ess_device.version, "0x%04x", sc->sc_version);
1009
1010 if (ESS_USE_AUDIO1(sc->sc_model))
1011 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1012 else
1013 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1014
1015 arg.type = AUDIODEV_TYPE_OPL;
1016 arg.hwif = 0;
1017 arg.hdl = 0;
1018 (void)config_found(&sc->sc_dev, &arg, audioprint);
1019
1020 #ifdef AUDIO_DEBUG
1021 if (essdebug > 0)
1022 ess_printsc(sc);
1023 #endif
1024 }
1025
1026 /*
1027 * Various routines to interface to higher level audio driver
1028 */
1029
1030 int
1031 ess_open(addr, flags)
1032 void *addr;
1033 int flags;
1034 {
1035 struct ess_softc *sc = addr;
1036 int i;
1037
1038 DPRINTF(("ess_open: sc=%p\n", sc));
1039
1040 if (sc->sc_open != 0 || ess_reset(sc) != 0)
1041 return ENXIO;
1042
1043 ess_setup(sc); /* because we did a reset */
1044
1045 /* Set all mixer controls again since some change at reset. */
1046 for (i = 0; i < ESS_MAX_NDEVS; i++)
1047 ess_set_gain(sc, i, 1);
1048
1049 sc->sc_open = 1;
1050
1051 DPRINTF(("ess_open: opened\n"));
1052
1053 return (0);
1054 }
1055
1056 void
1057 ess_1788_close(addr)
1058 void *addr;
1059 {
1060 struct ess_softc *sc = addr;
1061
1062 DPRINTF(("ess_1788_close: sc=%p\n", sc));
1063
1064 ess_speaker_off(sc);
1065 sc->spkr_state = SPKR_OFF;
1066
1067 ess_audio1_halt(sc);
1068
1069 sc->sc_open = 0;
1070 DPRINTF(("ess_1788_close: closed\n"));
1071 }
1072
1073 void
1074 ess_1888_close(addr)
1075 void *addr;
1076 {
1077 struct ess_softc *sc = addr;
1078
1079 DPRINTF(("ess_1888_close: sc=%p\n", sc));
1080
1081 ess_speaker_off(sc);
1082 sc->spkr_state = SPKR_OFF;
1083
1084 ess_audio1_halt(sc);
1085 ess_audio2_halt(sc);
1086
1087 sc->sc_open = 0;
1088 DPRINTF(("ess_1888_close: closed\n"));
1089 }
1090
1091 /*
1092 * Wait for FIFO to drain, and analog section to settle.
1093 * XXX should check FIFO empty bit.
1094 */
1095 int
1096 ess_drain(addr)
1097 void *addr;
1098 {
1099 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1100 return (0);
1101 }
1102
1103 /* XXX should use reference count */
1104 int
1105 ess_speaker_ctl(addr, newstate)
1106 void *addr;
1107 int newstate;
1108 {
1109 struct ess_softc *sc = addr;
1110
1111 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1112 ess_speaker_on(sc);
1113 sc->spkr_state = SPKR_ON;
1114 }
1115 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1116 ess_speaker_off(sc);
1117 sc->spkr_state = SPKR_OFF;
1118 }
1119 return (0);
1120 }
1121
1122 int
1123 ess_getdev(addr, retp)
1124 void *addr;
1125 struct audio_device *retp;
1126 {
1127 *retp = ess_device;
1128 return (0);
1129 }
1130
1131 int
1132 ess_query_encoding(addr, fp)
1133 void *addr;
1134 struct audio_encoding *fp;
1135 {
1136 /*struct ess_softc *sc = addr;*/
1137
1138 switch (fp->index) {
1139 case 0:
1140 strcpy(fp->name, AudioEulinear);
1141 fp->encoding = AUDIO_ENCODING_ULINEAR;
1142 fp->precision = 8;
1143 fp->flags = 0;
1144 return (0);
1145 case 1:
1146 strcpy(fp->name, AudioEmulaw);
1147 fp->encoding = AUDIO_ENCODING_ULAW;
1148 fp->precision = 8;
1149 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1150 return (0);
1151 case 2:
1152 strcpy(fp->name, AudioEalaw);
1153 fp->encoding = AUDIO_ENCODING_ALAW;
1154 fp->precision = 8;
1155 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1156 return (0);
1157 case 3:
1158 strcpy(fp->name, AudioEslinear);
1159 fp->encoding = AUDIO_ENCODING_SLINEAR;
1160 fp->precision = 8;
1161 fp->flags = 0;
1162 return (0);
1163 case 4:
1164 strcpy(fp->name, AudioEslinear_le);
1165 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1166 fp->precision = 16;
1167 fp->flags = 0;
1168 return (0);
1169 case 5:
1170 strcpy(fp->name, AudioEulinear_le);
1171 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1172 fp->precision = 16;
1173 fp->flags = 0;
1174 return (0);
1175 case 6:
1176 strcpy(fp->name, AudioEslinear_be);
1177 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1178 fp->precision = 16;
1179 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1180 return (0);
1181 case 7:
1182 strcpy(fp->name, AudioEulinear_be);
1183 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1184 fp->precision = 16;
1185 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1186 return (0);
1187 default:
1188 return EINVAL;
1189 }
1190 return (0);
1191 }
1192
1193 int
1194 ess_set_params(addr, setmode, usemode, play, rec)
1195 void *addr;
1196 int setmode, usemode;
1197 struct audio_params *play, *rec;
1198 {
1199 struct ess_softc *sc = addr;
1200 struct audio_params *p;
1201 int mode;
1202 int rate;
1203
1204 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1205
1206 /*
1207 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1208 * full-duplex operation the sample rates must be the same for both
1209 * channels. This appears to be false; the only bit in common is the
1210 * clock source selection. However, we'll be conservative here.
1211 * - mycroft
1212 */
1213 if (play->sample_rate != rec->sample_rate &&
1214 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1215 if (setmode == AUMODE_PLAY) {
1216 rec->sample_rate = play->sample_rate;
1217 setmode |= AUMODE_RECORD;
1218 } else if (setmode == AUMODE_RECORD) {
1219 play->sample_rate = rec->sample_rate;
1220 setmode |= AUMODE_PLAY;
1221 } else
1222 return (EINVAL);
1223 }
1224
1225 for (mode = AUMODE_RECORD; mode != -1;
1226 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1227 if ((setmode & mode) == 0)
1228 continue;
1229
1230 p = mode == AUMODE_PLAY ? play : rec;
1231
1232 if (p->sample_rate < ESS_MINRATE ||
1233 p->sample_rate > ESS_MAXRATE ||
1234 (p->precision != 8 && p->precision != 16) ||
1235 (p->channels != 1 && p->channels != 2))
1236 return (EINVAL);
1237
1238 p->factor = 1;
1239 p->sw_code = 0;
1240 switch (p->encoding) {
1241 case AUDIO_ENCODING_SLINEAR_BE:
1242 case AUDIO_ENCODING_ULINEAR_BE:
1243 if (p->precision == 16)
1244 p->sw_code = swap_bytes;
1245 break;
1246 case AUDIO_ENCODING_SLINEAR_LE:
1247 case AUDIO_ENCODING_ULINEAR_LE:
1248 break;
1249 case AUDIO_ENCODING_ULAW:
1250 if (mode == AUMODE_PLAY) {
1251 p->factor = 2;
1252 p->sw_code = mulaw_to_ulinear16_le;
1253 } else
1254 p->sw_code = ulinear8_to_mulaw;
1255 break;
1256 case AUDIO_ENCODING_ALAW:
1257 if (mode == AUMODE_PLAY) {
1258 p->factor = 2;
1259 p->sw_code = alaw_to_ulinear16_le;
1260 } else
1261 p->sw_code = ulinear8_to_alaw;
1262 break;
1263 default:
1264 return (EINVAL);
1265 }
1266 }
1267
1268 if (usemode == AUMODE_RECORD)
1269 rate = rec->sample_rate;
1270 else
1271 rate = play->sample_rate;
1272
1273 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1274 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1275
1276 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1277 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1278 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1279 }
1280
1281 return (0);
1282 }
1283
1284 int
1285 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1286 void *addr;
1287 void *start, *end;
1288 int blksize;
1289 void (*intr) __P((void *));
1290 void *arg;
1291 struct audio_params *param;
1292 {
1293 struct ess_softc *sc = addr;
1294 u_int8_t reg;
1295
1296 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1297 addr, start, end, blksize, intr, arg));
1298
1299 if (sc->sc_audio1.active)
1300 panic("ess_audio1_trigger_output: already running");
1301
1302 sc->sc_audio1.active = 1;
1303 sc->sc_audio1.intr = intr;
1304 sc->sc_audio1.arg = arg;
1305 if (sc->sc_audio1.polled) {
1306 sc->sc_audio1.dmapos = 0;
1307 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1308 sc->sc_audio1.dmacount = 0;
1309 sc->sc_audio1.blksize = blksize;
1310 callout_reset(&sc->sc_poll1_ch, hz / 30,
1311 ess_audio1_poll, sc);
1312 }
1313
1314 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1315 if (param->channels == 2) {
1316 reg &= ~ESS_AUDIO_CTRL_MONO;
1317 reg |= ESS_AUDIO_CTRL_STEREO;
1318 } else {
1319 reg |= ESS_AUDIO_CTRL_MONO;
1320 reg &= ~ESS_AUDIO_CTRL_STEREO;
1321 }
1322 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1323
1324 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1325 if (param->precision * param->factor == 16)
1326 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1327 else
1328 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1329 if (param->channels == 2)
1330 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1331 else
1332 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1333 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1334 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1335 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1336 else
1337 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1338 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1339 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1340
1341 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1342 (char *)end - (char *)start, NULL,
1343 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1344
1345 /* Program transfer count registers with 2's complement of count. */
1346 blksize = -blksize;
1347 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1348 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1349
1350 /* Use 4 bytes per output DMA. */
1351 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1352
1353 /* Start auto-init DMA */
1354 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1355 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1356 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1357 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1358 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1359
1360 return (0);
1361 }
1362
1363 int
1364 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1365 void *addr;
1366 void *start, *end;
1367 int blksize;
1368 void (*intr) __P((void *));
1369 void *arg;
1370 struct audio_params *param;
1371 {
1372 struct ess_softc *sc = addr;
1373 u_int8_t reg;
1374
1375 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1376 addr, start, end, blksize, intr, arg));
1377
1378 if (sc->sc_audio2.active)
1379 panic("ess_audio2_trigger_output: already running");
1380
1381 sc->sc_audio2.active = 1;
1382 sc->sc_audio2.intr = intr;
1383 sc->sc_audio2.arg = arg;
1384 if (sc->sc_audio2.polled) {
1385 sc->sc_audio2.dmapos = 0;
1386 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1387 sc->sc_audio2.dmacount = 0;
1388 sc->sc_audio2.blksize = blksize;
1389 callout_reset(&sc->sc_poll2_ch, hz / 30,
1390 ess_audio2_poll, sc);
1391 }
1392
1393 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1394 if (param->precision * param->factor == 16)
1395 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1396 else
1397 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1398 if (param->channels == 2)
1399 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1400 else
1401 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1402 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1403 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1404 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1405 else
1406 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1407 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1408
1409 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1410 (char *)end - (char *)start, NULL,
1411 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1412
1413 if (IS16BITDRQ(sc->sc_audio2.drq))
1414 blksize >>= 1; /* use word count for 16 bit DMA */
1415 /* Program transfer count registers with 2's complement of count. */
1416 blksize = -blksize;
1417 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1418 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1419
1420 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1421 if (IS16BITDRQ(sc->sc_audio2.drq))
1422 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1423 else
1424 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1425 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1426 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1427 ESS_AUDIO2_CTRL1_AUTO_INIT;
1428 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1429
1430 return (0);
1431 }
1432
1433 int
1434 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1435 void *addr;
1436 void *start, *end;
1437 int blksize;
1438 void (*intr) __P((void *));
1439 void *arg;
1440 struct audio_params *param;
1441 {
1442 struct ess_softc *sc = addr;
1443 u_int8_t reg;
1444
1445 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1446 addr, start, end, blksize, intr, arg));
1447
1448 if (sc->sc_audio1.active)
1449 panic("ess_audio1_trigger_input: already running");
1450
1451 sc->sc_audio1.active = 1;
1452 sc->sc_audio1.intr = intr;
1453 sc->sc_audio1.arg = arg;
1454 if (sc->sc_audio1.polled) {
1455 sc->sc_audio1.dmapos = 0;
1456 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1457 sc->sc_audio1.dmacount = 0;
1458 sc->sc_audio1.blksize = blksize;
1459 callout_reset(&sc->sc_poll1_ch, hz / 30,
1460 ess_audio1_poll, sc);
1461 }
1462
1463 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1464 if (param->channels == 2) {
1465 reg &= ~ESS_AUDIO_CTRL_MONO;
1466 reg |= ESS_AUDIO_CTRL_STEREO;
1467 } else {
1468 reg |= ESS_AUDIO_CTRL_MONO;
1469 reg &= ~ESS_AUDIO_CTRL_STEREO;
1470 }
1471 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1472
1473 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1474 if (param->precision * param->factor == 16)
1475 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1476 else
1477 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1478 if (param->channels == 2)
1479 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1480 else
1481 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1482 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1483 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1484 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1485 else
1486 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1487 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1488 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1489
1490 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1491 (char *)end - (char *)start, NULL,
1492 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1493
1494 /* Program transfer count registers with 2's complement of count. */
1495 blksize = -blksize;
1496 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1497 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1498
1499 /* Use 4 bytes per input DMA. */
1500 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1501
1502 /* Start auto-init DMA */
1503 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1504 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1505 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1506 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1507 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1508
1509 return (0);
1510 }
1511
1512 int
1513 ess_audio1_halt(addr)
1514 void *addr;
1515 {
1516 struct ess_softc *sc = addr;
1517
1518 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1519
1520 if (sc->sc_audio1.active) {
1521 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1522 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1523 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1524 if (sc->sc_audio1.polled)
1525 callout_stop(&sc->sc_poll1_ch);
1526 sc->sc_audio1.active = 0;
1527 }
1528
1529 return (0);
1530 }
1531
1532 int
1533 ess_audio2_halt(addr)
1534 void *addr;
1535 {
1536 struct ess_softc *sc = addr;
1537
1538 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1539
1540 if (sc->sc_audio2.active) {
1541 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1542 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1543 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1544 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1545 if (sc->sc_audio2.polled)
1546 callout_stop(&sc->sc_poll2_ch);
1547 sc->sc_audio2.active = 0;
1548 }
1549
1550 return (0);
1551 }
1552
1553 int
1554 ess_audio1_intr(arg)
1555 void *arg;
1556 {
1557 struct ess_softc *sc = arg;
1558 u_int8_t reg;
1559
1560 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1561
1562 /* Check and clear interrupt on Audio1. */
1563 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1564 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1565 return (0);
1566 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1567
1568 sc->sc_audio1.nintr++;
1569
1570 if (sc->sc_audio1.active) {
1571 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1572 return (1);
1573 } else
1574 return (0);
1575 }
1576
1577 int
1578 ess_audio2_intr(arg)
1579 void *arg;
1580 {
1581 struct ess_softc *sc = arg;
1582 u_int8_t reg;
1583
1584 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1585
1586 /* Check and clear interrupt on Audio2. */
1587 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1588 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1589 return (0);
1590 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1591 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1592
1593 sc->sc_audio2.nintr++;
1594
1595 if (sc->sc_audio2.active) {
1596 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1597 return (1);
1598 } else
1599 return (0);
1600 }
1601
1602 void
1603 ess_audio1_poll(addr)
1604 void *addr;
1605 {
1606 struct ess_softc *sc = addr;
1607 int dmapos, dmacount;
1608
1609 if (!sc->sc_audio1.active)
1610 return;
1611
1612 sc->sc_audio1.nintr++;
1613
1614 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1615 dmacount = sc->sc_audio1.dmapos - dmapos;
1616 if (dmacount < 0)
1617 dmacount += sc->sc_audio1.buffersize;
1618 sc->sc_audio1.dmapos = dmapos;
1619 #if 1
1620 dmacount += sc->sc_audio1.dmacount;
1621 while (dmacount > sc->sc_audio1.blksize) {
1622 dmacount -= sc->sc_audio1.blksize;
1623 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1624 }
1625 sc->sc_audio1.dmacount = dmacount;
1626 #else
1627 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1628 #endif
1629
1630 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1631 }
1632
1633 void
1634 ess_audio2_poll(addr)
1635 void *addr;
1636 {
1637 struct ess_softc *sc = addr;
1638 int dmapos, dmacount;
1639
1640 if (!sc->sc_audio2.active)
1641 return;
1642
1643 sc->sc_audio2.nintr++;
1644
1645 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1646 dmacount = sc->sc_audio2.dmapos - dmapos;
1647 if (dmacount < 0)
1648 dmacount += sc->sc_audio2.buffersize;
1649 sc->sc_audio2.dmapos = dmapos;
1650 #if 1
1651 dmacount += sc->sc_audio2.dmacount;
1652 while (dmacount > sc->sc_audio2.blksize) {
1653 dmacount -= sc->sc_audio2.blksize;
1654 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1655 }
1656 sc->sc_audio2.dmacount = dmacount;
1657 #else
1658 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1659 #endif
1660
1661 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1662 }
1663
1664 int
1665 ess_round_blocksize(addr, blk)
1666 void *addr;
1667 int blk;
1668 {
1669 return (blk & -8); /* round for max DMA size */
1670 }
1671
1672 int
1673 ess_set_port(addr, cp)
1674 void *addr;
1675 mixer_ctrl_t *cp;
1676 {
1677 struct ess_softc *sc = addr;
1678 int lgain, rgain;
1679
1680 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1681 cp->dev, cp->un.value.num_channels));
1682
1683 switch (cp->dev) {
1684 /*
1685 * The following mixer ports are all stereo. If we get a
1686 * single-channel gain value passed in, then we duplicate it
1687 * to both left and right channels.
1688 */
1689 case ESS_MASTER_VOL:
1690 case ESS_DAC_PLAY_VOL:
1691 case ESS_MIC_PLAY_VOL:
1692 case ESS_LINE_PLAY_VOL:
1693 case ESS_SYNTH_PLAY_VOL:
1694 case ESS_CD_PLAY_VOL:
1695 case ESS_AUXB_PLAY_VOL:
1696 case ESS_RECORD_VOL:
1697 if (cp->type != AUDIO_MIXER_VALUE)
1698 return EINVAL;
1699
1700 switch (cp->un.value.num_channels) {
1701 case 1:
1702 lgain = rgain = ESS_4BIT_GAIN(
1703 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1704 break;
1705 case 2:
1706 lgain = ESS_4BIT_GAIN(
1707 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1708 rgain = ESS_4BIT_GAIN(
1709 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1710 break;
1711 default:
1712 return EINVAL;
1713 }
1714
1715 sc->gain[cp->dev][ESS_LEFT] = lgain;
1716 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1717 ess_set_gain(sc, cp->dev, 1);
1718 return (0);
1719
1720 /*
1721 * The PC speaker port is mono. If we get a stereo gain value
1722 * passed in, then we return EINVAL.
1723 */
1724 case ESS_PCSPEAKER_VOL:
1725 if (cp->un.value.num_channels != 1)
1726 return EINVAL;
1727
1728 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1729 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1730 ess_set_gain(sc, cp->dev, 1);
1731 return (0);
1732
1733 case ESS_RECORD_SOURCE:
1734 if (ESS_USE_AUDIO1(sc->sc_model)) {
1735 if (cp->type == AUDIO_MIXER_ENUM)
1736 return (ess_set_in_port(sc, cp->un.ord));
1737 else
1738 return (EINVAL);
1739 } else {
1740 if (cp->type == AUDIO_MIXER_SET)
1741 return (ess_set_in_ports(sc, cp->un.mask));
1742 else
1743 return (EINVAL);
1744 }
1745 return (0);
1746
1747 case ESS_RECORD_MONITOR:
1748 if (cp->type != AUDIO_MIXER_ENUM)
1749 return EINVAL;
1750
1751 if (cp->un.ord)
1752 /* Enable monitor */
1753 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1754 ESS_AUDIO_CTRL_MONITOR);
1755 else
1756 /* Disable monitor */
1757 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1758 ESS_AUDIO_CTRL_MONITOR);
1759 return (0);
1760 }
1761
1762 if (ESS_USE_AUDIO1(sc->sc_model))
1763 return (EINVAL);
1764
1765 switch (cp->dev) {
1766 case ESS_DAC_REC_VOL:
1767 case ESS_MIC_REC_VOL:
1768 case ESS_LINE_REC_VOL:
1769 case ESS_SYNTH_REC_VOL:
1770 case ESS_CD_REC_VOL:
1771 case ESS_AUXB_REC_VOL:
1772 if (cp->type != AUDIO_MIXER_VALUE)
1773 return EINVAL;
1774
1775 switch (cp->un.value.num_channels) {
1776 case 1:
1777 lgain = rgain = ESS_4BIT_GAIN(
1778 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1779 break;
1780 case 2:
1781 lgain = ESS_4BIT_GAIN(
1782 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1783 rgain = ESS_4BIT_GAIN(
1784 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1785 break;
1786 default:
1787 return EINVAL;
1788 }
1789
1790 sc->gain[cp->dev][ESS_LEFT] = lgain;
1791 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1792 ess_set_gain(sc, cp->dev, 1);
1793 return (0);
1794
1795 case ESS_MIC_PREAMP:
1796 if (cp->type != AUDIO_MIXER_ENUM)
1797 return EINVAL;
1798
1799 if (cp->un.ord)
1800 /* Enable microphone preamp */
1801 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1802 ESS_PREAMP_CTRL_ENABLE);
1803 else
1804 /* Disable microphone preamp */
1805 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1806 ESS_PREAMP_CTRL_ENABLE);
1807 return (0);
1808 }
1809
1810 return (EINVAL);
1811 }
1812
1813 int
1814 ess_get_port(addr, cp)
1815 void *addr;
1816 mixer_ctrl_t *cp;
1817 {
1818 struct ess_softc *sc = addr;
1819
1820 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1821
1822 switch (cp->dev) {
1823 case ESS_MASTER_VOL:
1824 case ESS_DAC_PLAY_VOL:
1825 case ESS_MIC_PLAY_VOL:
1826 case ESS_LINE_PLAY_VOL:
1827 case ESS_SYNTH_PLAY_VOL:
1828 case ESS_CD_PLAY_VOL:
1829 case ESS_AUXB_PLAY_VOL:
1830 case ESS_RECORD_VOL:
1831 switch (cp->un.value.num_channels) {
1832 case 1:
1833 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1834 sc->gain[cp->dev][ESS_LEFT];
1835 break;
1836 case 2:
1837 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1838 sc->gain[cp->dev][ESS_LEFT];
1839 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1840 sc->gain[cp->dev][ESS_RIGHT];
1841 break;
1842 default:
1843 return EINVAL;
1844 }
1845 return (0);
1846
1847 case ESS_PCSPEAKER_VOL:
1848 if (cp->un.value.num_channels != 1)
1849 return EINVAL;
1850
1851 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1852 sc->gain[cp->dev][ESS_LEFT];
1853 return (0);
1854
1855 case ESS_RECORD_SOURCE:
1856 if (ESS_USE_AUDIO1(sc->sc_model))
1857 cp->un.ord = sc->in_port;
1858 else
1859 cp->un.mask = sc->in_mask;
1860 return (0);
1861
1862 case ESS_RECORD_MONITOR:
1863 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1864 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1865 return (0);
1866 }
1867
1868 if (ESS_USE_AUDIO1(sc->sc_model))
1869 return (EINVAL);
1870
1871 switch (cp->dev) {
1872 case ESS_DAC_REC_VOL:
1873 case ESS_MIC_REC_VOL:
1874 case ESS_LINE_REC_VOL:
1875 case ESS_SYNTH_REC_VOL:
1876 case ESS_CD_REC_VOL:
1877 case ESS_AUXB_REC_VOL:
1878 switch (cp->un.value.num_channels) {
1879 case 1:
1880 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1881 sc->gain[cp->dev][ESS_LEFT];
1882 break;
1883 case 2:
1884 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1885 sc->gain[cp->dev][ESS_LEFT];
1886 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1887 sc->gain[cp->dev][ESS_RIGHT];
1888 break;
1889 default:
1890 return EINVAL;
1891 }
1892 return (0);
1893
1894 case ESS_MIC_PREAMP:
1895 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1896 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1897 return (0);
1898 }
1899
1900 return (EINVAL);
1901 }
1902
1903 int
1904 ess_query_devinfo(addr, dip)
1905 void *addr;
1906 mixer_devinfo_t *dip;
1907 {
1908 struct ess_softc *sc = addr;
1909
1910 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1911 sc->sc_model, dip->index));
1912
1913 /*
1914 * REVISIT: There are some slight differences between the
1915 * mixers on the different ESS chips, which can
1916 * be sorted out using the chip model rather than a
1917 * separate mixer model.
1918 * This is currently coded assuming an ES1887; we
1919 * need to work out which bits are not applicable to
1920 * the other models (1888 and 888).
1921 */
1922 switch (dip->index) {
1923 case ESS_DAC_PLAY_VOL:
1924 dip->mixer_class = ESS_INPUT_CLASS;
1925 dip->next = dip->prev = AUDIO_MIXER_LAST;
1926 strcpy(dip->label.name, AudioNdac);
1927 dip->type = AUDIO_MIXER_VALUE;
1928 dip->un.v.num_channels = 2;
1929 strcpy(dip->un.v.units.name, AudioNvolume);
1930 return (0);
1931
1932 case ESS_MIC_PLAY_VOL:
1933 dip->mixer_class = ESS_INPUT_CLASS;
1934 dip->prev = AUDIO_MIXER_LAST;
1935 if (ESS_USE_AUDIO1(sc->sc_model))
1936 dip->next = AUDIO_MIXER_LAST;
1937 else
1938 dip->next = ESS_MIC_PREAMP;
1939 strcpy(dip->label.name, AudioNmicrophone);
1940 dip->type = AUDIO_MIXER_VALUE;
1941 dip->un.v.num_channels = 2;
1942 strcpy(dip->un.v.units.name, AudioNvolume);
1943 return (0);
1944
1945 case ESS_LINE_PLAY_VOL:
1946 dip->mixer_class = ESS_INPUT_CLASS;
1947 dip->next = dip->prev = AUDIO_MIXER_LAST;
1948 strcpy(dip->label.name, AudioNline);
1949 dip->type = AUDIO_MIXER_VALUE;
1950 dip->un.v.num_channels = 2;
1951 strcpy(dip->un.v.units.name, AudioNvolume);
1952 return (0);
1953
1954 case ESS_SYNTH_PLAY_VOL:
1955 dip->mixer_class = ESS_INPUT_CLASS;
1956 dip->next = dip->prev = AUDIO_MIXER_LAST;
1957 strcpy(dip->label.name, AudioNfmsynth);
1958 dip->type = AUDIO_MIXER_VALUE;
1959 dip->un.v.num_channels = 2;
1960 strcpy(dip->un.v.units.name, AudioNvolume);
1961 return (0);
1962
1963 case ESS_CD_PLAY_VOL:
1964 dip->mixer_class = ESS_INPUT_CLASS;
1965 dip->next = dip->prev = AUDIO_MIXER_LAST;
1966 strcpy(dip->label.name, AudioNcd);
1967 dip->type = AUDIO_MIXER_VALUE;
1968 dip->un.v.num_channels = 2;
1969 strcpy(dip->un.v.units.name, AudioNvolume);
1970 return (0);
1971
1972 case ESS_AUXB_PLAY_VOL:
1973 dip->mixer_class = ESS_INPUT_CLASS;
1974 dip->next = dip->prev = AUDIO_MIXER_LAST;
1975 strcpy(dip->label.name, "auxb");
1976 dip->type = AUDIO_MIXER_VALUE;
1977 dip->un.v.num_channels = 2;
1978 strcpy(dip->un.v.units.name, AudioNvolume);
1979 return (0);
1980
1981 case ESS_INPUT_CLASS:
1982 dip->mixer_class = ESS_INPUT_CLASS;
1983 dip->next = dip->prev = AUDIO_MIXER_LAST;
1984 strcpy(dip->label.name, AudioCinputs);
1985 dip->type = AUDIO_MIXER_CLASS;
1986 return (0);
1987
1988 case ESS_MASTER_VOL:
1989 dip->mixer_class = ESS_OUTPUT_CLASS;
1990 dip->next = dip->prev = AUDIO_MIXER_LAST;
1991 strcpy(dip->label.name, AudioNmaster);
1992 dip->type = AUDIO_MIXER_VALUE;
1993 dip->un.v.num_channels = 2;
1994 strcpy(dip->un.v.units.name, AudioNvolume);
1995 return (0);
1996
1997 case ESS_PCSPEAKER_VOL:
1998 dip->mixer_class = ESS_OUTPUT_CLASS;
1999 dip->next = dip->prev = AUDIO_MIXER_LAST;
2000 strcpy(dip->label.name, "pc_speaker");
2001 dip->type = AUDIO_MIXER_VALUE;
2002 dip->un.v.num_channels = 1;
2003 strcpy(dip->un.v.units.name, AudioNvolume);
2004 return (0);
2005
2006 case ESS_OUTPUT_CLASS:
2007 dip->mixer_class = ESS_OUTPUT_CLASS;
2008 dip->next = dip->prev = AUDIO_MIXER_LAST;
2009 strcpy(dip->label.name, AudioCoutputs);
2010 dip->type = AUDIO_MIXER_CLASS;
2011 return (0);
2012
2013 case ESS_RECORD_VOL:
2014 dip->mixer_class = ESS_RECORD_CLASS;
2015 dip->next = dip->prev = AUDIO_MIXER_LAST;
2016 strcpy(dip->label.name, AudioNrecord);
2017 dip->type = AUDIO_MIXER_VALUE;
2018 dip->un.v.num_channels = 2;
2019 strcpy(dip->un.v.units.name, AudioNvolume);
2020 return (0);
2021
2022 case ESS_RECORD_SOURCE:
2023 dip->mixer_class = ESS_RECORD_CLASS;
2024 dip->next = dip->prev = AUDIO_MIXER_LAST;
2025 strcpy(dip->label.name, AudioNsource);
2026 if (ESS_USE_AUDIO1(sc->sc_model)) {
2027 /*
2028 * The 1788 doesn't use the input mixer control that
2029 * the 1888 uses, because it's a pain when you only
2030 * have one mixer.
2031 * Perhaps it could be emulated by keeping both sets of
2032 * gain values, and doing a `context switch' of the
2033 * mixer registers when shifting from playing to
2034 * recording.
2035 */
2036 dip->type = AUDIO_MIXER_ENUM;
2037 dip->un.e.num_mem = 4;
2038 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2039 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2040 strcpy(dip->un.e.member[1].label.name, AudioNline);
2041 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2042 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2043 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2044 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2045 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2046 } else {
2047 dip->type = AUDIO_MIXER_SET;
2048 dip->un.s.num_mem = 6;
2049 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2050 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2051 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2052 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2053 strcpy(dip->un.s.member[2].label.name, AudioNline);
2054 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2055 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2056 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2057 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2058 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2059 strcpy(dip->un.s.member[5].label.name, "auxb");
2060 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2061 }
2062 return (0);
2063
2064 case ESS_RECORD_CLASS:
2065 dip->mixer_class = ESS_RECORD_CLASS;
2066 dip->next = dip->prev = AUDIO_MIXER_LAST;
2067 strcpy(dip->label.name, AudioCrecord);
2068 dip->type = AUDIO_MIXER_CLASS;
2069 return (0);
2070
2071 case ESS_RECORD_MONITOR:
2072 dip->prev = dip->next = AUDIO_MIXER_LAST;
2073 strcpy(dip->label.name, AudioNmute);
2074 dip->type = AUDIO_MIXER_ENUM;
2075 dip->mixer_class = ESS_MONITOR_CLASS;
2076 dip->un.e.num_mem = 2;
2077 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2078 dip->un.e.member[0].ord = 0;
2079 strcpy(dip->un.e.member[1].label.name, AudioNon);
2080 dip->un.e.member[1].ord = 1;
2081 return (0);
2082
2083 case ESS_MONITOR_CLASS:
2084 dip->mixer_class = ESS_MONITOR_CLASS;
2085 dip->next = dip->prev = AUDIO_MIXER_LAST;
2086 strcpy(dip->label.name, AudioCmonitor);
2087 dip->type = AUDIO_MIXER_CLASS;
2088 return (0);
2089 }
2090
2091 if (ESS_USE_AUDIO1(sc->sc_model))
2092 return (ENXIO);
2093
2094 switch (dip->index) {
2095 case ESS_DAC_REC_VOL:
2096 dip->mixer_class = ESS_RECORD_CLASS;
2097 dip->next = dip->prev = AUDIO_MIXER_LAST;
2098 strcpy(dip->label.name, AudioNdac);
2099 dip->type = AUDIO_MIXER_VALUE;
2100 dip->un.v.num_channels = 2;
2101 strcpy(dip->un.v.units.name, AudioNvolume);
2102 return (0);
2103
2104 case ESS_MIC_REC_VOL:
2105 dip->mixer_class = ESS_RECORD_CLASS;
2106 dip->next = dip->prev = AUDIO_MIXER_LAST;
2107 strcpy(dip->label.name, AudioNmicrophone);
2108 dip->type = AUDIO_MIXER_VALUE;
2109 dip->un.v.num_channels = 2;
2110 strcpy(dip->un.v.units.name, AudioNvolume);
2111 return (0);
2112
2113 case ESS_LINE_REC_VOL:
2114 dip->mixer_class = ESS_RECORD_CLASS;
2115 dip->next = dip->prev = AUDIO_MIXER_LAST;
2116 strcpy(dip->label.name, AudioNline);
2117 dip->type = AUDIO_MIXER_VALUE;
2118 dip->un.v.num_channels = 2;
2119 strcpy(dip->un.v.units.name, AudioNvolume);
2120 return (0);
2121
2122 case ESS_SYNTH_REC_VOL:
2123 dip->mixer_class = ESS_RECORD_CLASS;
2124 dip->next = dip->prev = AUDIO_MIXER_LAST;
2125 strcpy(dip->label.name, AudioNfmsynth);
2126 dip->type = AUDIO_MIXER_VALUE;
2127 dip->un.v.num_channels = 2;
2128 strcpy(dip->un.v.units.name, AudioNvolume);
2129 return (0);
2130
2131 case ESS_CD_REC_VOL:
2132 dip->mixer_class = ESS_RECORD_CLASS;
2133 dip->next = dip->prev = AUDIO_MIXER_LAST;
2134 strcpy(dip->label.name, AudioNcd);
2135 dip->type = AUDIO_MIXER_VALUE;
2136 dip->un.v.num_channels = 2;
2137 strcpy(dip->un.v.units.name, AudioNvolume);
2138 return (0);
2139
2140 case ESS_AUXB_REC_VOL:
2141 dip->mixer_class = ESS_RECORD_CLASS;
2142 dip->next = dip->prev = AUDIO_MIXER_LAST;
2143 strcpy(dip->label.name, "auxb");
2144 dip->type = AUDIO_MIXER_VALUE;
2145 dip->un.v.num_channels = 2;
2146 strcpy(dip->un.v.units.name, AudioNvolume);
2147 return (0);
2148
2149 case ESS_MIC_PREAMP:
2150 dip->mixer_class = ESS_INPUT_CLASS;
2151 dip->prev = ESS_MIC_PLAY_VOL;
2152 dip->next = AUDIO_MIXER_LAST;
2153 strcpy(dip->label.name, AudioNpreamp);
2154 dip->type = AUDIO_MIXER_ENUM;
2155 dip->un.e.num_mem = 2;
2156 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2157 dip->un.e.member[0].ord = 0;
2158 strcpy(dip->un.e.member[1].label.name, AudioNon);
2159 dip->un.e.member[1].ord = 1;
2160 return (0);
2161 }
2162
2163 return (ENXIO);
2164 }
2165
2166 void *
2167 ess_malloc(addr, direction, size, pool, flags)
2168 void *addr;
2169 int direction;
2170 size_t size;
2171 struct malloc_type *pool;
2172 int flags;
2173 {
2174 struct ess_softc *sc = addr;
2175 int drq;
2176
2177 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2178 drq = sc->sc_audio2.drq;
2179 else
2180 drq = sc->sc_audio1.drq;
2181 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2182 }
2183
2184 void
2185 ess_free(addr, ptr, pool)
2186 void *addr;
2187 void *ptr;
2188 struct malloc_type *pool;
2189 {
2190 isa_free(ptr, pool);
2191 }
2192
2193 size_t
2194 ess_round_buffersize(addr, direction, size)
2195 void *addr;
2196 int direction;
2197 size_t size;
2198 {
2199 struct ess_softc *sc = addr;
2200 bus_size_t maxsize;
2201
2202 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2203 maxsize = sc->sc_audio2.maxsize;
2204 else
2205 maxsize = sc->sc_audio1.maxsize;
2206
2207 if (size > maxsize)
2208 size = maxsize;
2209 return (size);
2210 }
2211
2212 paddr_t
2213 ess_mappage(addr, mem, off, prot)
2214 void *addr;
2215 void *mem;
2216 off_t off;
2217 int prot;
2218 {
2219 return (isa_mappage(mem, off, prot));
2220 }
2221
2222 int
2223 ess_1788_get_props(addr)
2224 void *addr;
2225 {
2226
2227 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2228 }
2229
2230 int
2231 ess_1888_get_props(addr)
2232 void *addr;
2233 {
2234
2235 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2236 }
2237
2238 /* ============================================
2239 * Generic functions for ess, not used by audio h/w i/f
2240 * =============================================
2241 */
2242
2243 /*
2244 * Reset the chip.
2245 * Return non-zero if the chip isn't detected.
2246 */
2247 int
2248 ess_reset(sc)
2249 struct ess_softc *sc;
2250 {
2251 bus_space_tag_t iot = sc->sc_iot;
2252 bus_space_handle_t ioh = sc->sc_ioh;
2253
2254 sc->sc_audio1.active = 0;
2255 sc->sc_audio2.active = 0;
2256
2257 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2258 delay(10000); /* XXX shouldn't delay so long */
2259 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2260 if (ess_rdsp(sc) != ESS_MAGIC)
2261 return (1);
2262
2263 /* Enable access to the ESS extension commands. */
2264 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2265
2266 return (0);
2267 }
2268
2269 void
2270 ess_set_gain(sc, port, on)
2271 struct ess_softc *sc;
2272 int port;
2273 int on;
2274 {
2275 int gain, left, right;
2276 int mix;
2277 int src;
2278 int stereo;
2279
2280 /*
2281 * Most gain controls are found in the mixer registers and
2282 * are stereo. Any that are not, must set mix and stereo as
2283 * required.
2284 */
2285 mix = 1;
2286 stereo = 1;
2287
2288 switch (port) {
2289 case ESS_MASTER_VOL:
2290 src = ESS_MREG_VOLUME_MASTER;
2291 break;
2292 case ESS_DAC_PLAY_VOL:
2293 if (ESS_USE_AUDIO1(sc->sc_model))
2294 src = ESS_MREG_VOLUME_VOICE;
2295 else
2296 src = 0x7C;
2297 break;
2298 case ESS_MIC_PLAY_VOL:
2299 src = ESS_MREG_VOLUME_MIC;
2300 break;
2301 case ESS_LINE_PLAY_VOL:
2302 src = ESS_MREG_VOLUME_LINE;
2303 break;
2304 case ESS_SYNTH_PLAY_VOL:
2305 src = ESS_MREG_VOLUME_SYNTH;
2306 break;
2307 case ESS_CD_PLAY_VOL:
2308 src = ESS_MREG_VOLUME_CD;
2309 break;
2310 case ESS_AUXB_PLAY_VOL:
2311 src = ESS_MREG_VOLUME_AUXB;
2312 break;
2313 case ESS_PCSPEAKER_VOL:
2314 src = ESS_MREG_VOLUME_PCSPKR;
2315 stereo = 0;
2316 break;
2317 case ESS_DAC_REC_VOL:
2318 src = 0x69;
2319 break;
2320 case ESS_MIC_REC_VOL:
2321 src = 0x68;
2322 break;
2323 case ESS_LINE_REC_VOL:
2324 src = 0x6E;
2325 break;
2326 case ESS_SYNTH_REC_VOL:
2327 src = 0x6B;
2328 break;
2329 case ESS_CD_REC_VOL:
2330 src = 0x6A;
2331 break;
2332 case ESS_AUXB_REC_VOL:
2333 src = 0x6C;
2334 break;
2335 case ESS_RECORD_VOL:
2336 src = ESS_XCMD_VOLIN_CTRL;
2337 mix = 0;
2338 break;
2339 default:
2340 return;
2341 }
2342
2343 /* 1788 doesn't have a separate recording mixer */
2344 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2345 return;
2346
2347 if (on) {
2348 left = sc->gain[port][ESS_LEFT];
2349 right = sc->gain[port][ESS_RIGHT];
2350 } else {
2351 left = right = 0;
2352 }
2353
2354 if (stereo)
2355 gain = ESS_STEREO_GAIN(left, right);
2356 else
2357 gain = ESS_MONO_GAIN(left);
2358
2359 if (mix)
2360 ess_write_mix_reg(sc, src, gain);
2361 else
2362 ess_write_x_reg(sc, src, gain);
2363 }
2364
2365 /* Set the input device on devices without an input mixer. */
2366 int
2367 ess_set_in_port(sc, ord)
2368 struct ess_softc *sc;
2369 int ord;
2370 {
2371 mixer_devinfo_t di;
2372 int i;
2373
2374 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2375
2376 /*
2377 * Get the device info for the record source control,
2378 * including the list of available sources.
2379 */
2380 di.index = ESS_RECORD_SOURCE;
2381 if (ess_query_devinfo(sc, &di))
2382 return EINVAL;
2383
2384 /* See if the given ord value was anywhere in the list. */
2385 for (i = 0; i < di.un.e.num_mem; i++) {
2386 if (ord == di.un.e.member[i].ord)
2387 break;
2388 }
2389 if (i == di.un.e.num_mem)
2390 return EINVAL;
2391
2392 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2393
2394 sc->in_port = ord;
2395 return (0);
2396 }
2397
2398 /* Set the input device levels on input-mixer-enabled devices. */
2399 int
2400 ess_set_in_ports(sc, mask)
2401 struct ess_softc *sc;
2402 int mask;
2403 {
2404 mixer_devinfo_t di;
2405 int i, port;
2406
2407 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2408
2409 /*
2410 * Get the device info for the record source control,
2411 * including the list of available sources.
2412 */
2413 di.index = ESS_RECORD_SOURCE;
2414 if (ess_query_devinfo(sc, &di))
2415 return EINVAL;
2416
2417 /*
2418 * Set or disable the record volume control for each of the
2419 * possible sources.
2420 */
2421 for (i = 0; i < di.un.s.num_mem; i++) {
2422 /*
2423 * Calculate the source port number from its mask.
2424 */
2425 port = ffs(di.un.s.member[i].mask);
2426
2427 /*
2428 * Set the source gain:
2429 * to the current value if source is enabled
2430 * to zero if source is disabled
2431 */
2432 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2433 }
2434
2435 sc->in_mask = mask;
2436 return (0);
2437 }
2438
2439 void
2440 ess_speaker_on(sc)
2441 struct ess_softc *sc;
2442 {
2443 /* Unmute the DAC. */
2444 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2445 }
2446
2447 void
2448 ess_speaker_off(sc)
2449 struct ess_softc *sc;
2450 {
2451 /* Mute the DAC. */
2452 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2453 }
2454
2455 /*
2456 * Calculate the time constant for the requested sampling rate.
2457 */
2458 u_int
2459 ess_srtotc(rate)
2460 u_int rate;
2461 {
2462 u_int tc;
2463
2464 /* The following formulae are from the ESS data sheet. */
2465 if (rate <= 22050)
2466 tc = 128 - 397700L / rate;
2467 else
2468 tc = 256 - 795500L / rate;
2469
2470 return (tc);
2471 }
2472
2473
2474 /*
2475 * Calculate the filter constant for the reuqested sampling rate.
2476 */
2477 u_int
2478 ess_srtofc(rate)
2479 u_int rate;
2480 {
2481 /*
2482 * The following formula is derived from the information in
2483 * the ES1887 data sheet, based on a roll-off frequency of
2484 * 87%.
2485 */
2486 return (256 - 200279L / rate);
2487 }
2488
2489
2490 /*
2491 * Return the status of the DSP.
2492 */
2493 u_char
2494 ess_get_dsp_status(sc)
2495 struct ess_softc *sc;
2496 {
2497 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2498 }
2499
2500
2501 /*
2502 * Return the read status of the DSP: 1 -> DSP ready for reading
2503 * 0 -> DSP not ready for reading
2504 */
2505 u_char
2506 ess_dsp_read_ready(sc)
2507 struct ess_softc *sc;
2508 {
2509 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2510 }
2511
2512
2513 /*
2514 * Return the write status of the DSP: 1 -> DSP ready for writing
2515 * 0 -> DSP not ready for writing
2516 */
2517 u_char
2518 ess_dsp_write_ready(sc)
2519 struct ess_softc *sc;
2520 {
2521 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2522 }
2523
2524
2525 /*
2526 * Read a byte from the DSP.
2527 */
2528 int
2529 ess_rdsp(sc)
2530 struct ess_softc *sc;
2531 {
2532 bus_space_tag_t iot = sc->sc_iot;
2533 bus_space_handle_t ioh = sc->sc_ioh;
2534 int i;
2535
2536 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2537 if (ess_dsp_read_ready(sc)) {
2538 i = EREAD1(iot, ioh, ESS_DSP_READ);
2539 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2540 return i;
2541 } else
2542 delay(10);
2543 }
2544
2545 DPRINTF(("ess_rdsp: timed out\n"));
2546 return (-1);
2547 }
2548
2549 /*
2550 * Write a byte to the DSP.
2551 */
2552 int
2553 ess_wdsp(sc, v)
2554 struct ess_softc *sc;
2555 u_char v;
2556 {
2557 bus_space_tag_t iot = sc->sc_iot;
2558 bus_space_handle_t ioh = sc->sc_ioh;
2559 int i;
2560
2561 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2562
2563 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2564 if (ess_dsp_write_ready(sc)) {
2565 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2566 return (0);
2567 } else
2568 delay(10);
2569 }
2570
2571 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2572 return (-1);
2573 }
2574
2575 /*
2576 * Write a value to one of the ESS extended registers.
2577 */
2578 int
2579 ess_write_x_reg(sc, reg, val)
2580 struct ess_softc *sc;
2581 u_char reg;
2582 u_char val;
2583 {
2584 int error;
2585
2586 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2587 if ((error = ess_wdsp(sc, reg)) == 0)
2588 error = ess_wdsp(sc, val);
2589
2590 return error;
2591 }
2592
2593 /*
2594 * Read the value of one of the ESS extended registers.
2595 */
2596 u_char
2597 ess_read_x_reg(sc, reg)
2598 struct ess_softc *sc;
2599 u_char reg;
2600 {
2601 int error;
2602 int val;
2603
2604 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2605 error = ess_wdsp(sc, reg);
2606 if (error)
2607 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2608 /* REVISIT: what if an error is returned above? */
2609 val = ess_rdsp(sc);
2610 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2611 return val;
2612 }
2613
2614 void
2615 ess_clear_xreg_bits(sc, reg, mask)
2616 struct ess_softc *sc;
2617 u_char reg;
2618 u_char mask;
2619 {
2620 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2621 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2622 reg));
2623 }
2624
2625 void
2626 ess_set_xreg_bits(sc, reg, mask)
2627 struct ess_softc *sc;
2628 u_char reg;
2629 u_char mask;
2630 {
2631 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2632 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2633 reg));
2634 }
2635
2636
2637 /*
2638 * Write a value to one of the ESS mixer registers.
2639 */
2640 void
2641 ess_write_mix_reg(sc, reg, val)
2642 struct ess_softc *sc;
2643 u_char reg;
2644 u_char val;
2645 {
2646 bus_space_tag_t iot = sc->sc_iot;
2647 bus_space_handle_t ioh = sc->sc_ioh;
2648 int s;
2649
2650 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2651
2652 s = splaudio();
2653 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2654 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2655 splx(s);
2656 }
2657
2658 /*
2659 * Read the value of one of the ESS mixer registers.
2660 */
2661 u_char
2662 ess_read_mix_reg(sc, reg)
2663 struct ess_softc *sc;
2664 u_char reg;
2665 {
2666 bus_space_tag_t iot = sc->sc_iot;
2667 bus_space_handle_t ioh = sc->sc_ioh;
2668 int s;
2669 u_char val;
2670
2671 s = splaudio();
2672 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2673 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2674 splx(s);
2675
2676 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2677 return val;
2678 }
2679
2680 void
2681 ess_clear_mreg_bits(sc, reg, mask)
2682 struct ess_softc *sc;
2683 u_char reg;
2684 u_char mask;
2685 {
2686 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2687 }
2688
2689 void
2690 ess_set_mreg_bits(sc, reg, mask)
2691 struct ess_softc *sc;
2692 u_char reg;
2693 u_char mask;
2694 {
2695 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2696 }
2697
2698 void
2699 ess_read_multi_mix_reg(sc, reg, datap, count)
2700 struct ess_softc *sc;
2701 u_char reg;
2702 u_int8_t *datap;
2703 bus_size_t count;
2704 {
2705 bus_space_tag_t iot = sc->sc_iot;
2706 bus_space_handle_t ioh = sc->sc_ioh;
2707 int s;
2708
2709 s = splaudio();
2710 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2711 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2712 splx(s);
2713 }
2714