ess.c revision 1.62 1 /* $NetBSD: ess.c,v 1.62 2004/08/06 15:11:48 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.62 2004/08/06 15:11:48 mycroft Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94
95 #include "joy_ess.h"
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (essdebug) printf x
99 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
100 int essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114
115
116 int ess_setup_sc __P((struct ess_softc *, int));
117
118 int ess_open __P((void *, int));
119 void ess_close __P((void *));
120 int ess_getdev __P((void *, struct audio_device *));
121 int ess_drain __P((void *));
122
123 int ess_query_encoding __P((void *, struct audio_encoding *));
124
125 int ess_set_params __P((void *, int, int, struct audio_params *,
126 struct audio_params *));
127
128 int ess_round_blocksize __P((void *, int));
129
130 int ess_audio1_trigger_output __P((void *, void *, void *, int,
131 void (*)(void *), void *, struct audio_params *));
132 int ess_audio2_trigger_output __P((void *, void *, void *, int,
133 void (*)(void *), void *, struct audio_params *));
134 int ess_audio1_trigger_input __P((void *, void *, void *, int,
135 void (*)(void *), void *, struct audio_params *));
136 int ess_audio1_halt __P((void *));
137 int ess_audio2_halt __P((void *));
138 int ess_audio1_intr __P((void *));
139 int ess_audio2_intr __P((void *));
140 void ess_audio1_poll __P((void *));
141 void ess_audio2_poll __P((void *));
142
143 int ess_speaker_ctl __P((void *, int));
144
145 int ess_getdev __P((void *, struct audio_device *));
146
147 int ess_set_port __P((void *, mixer_ctrl_t *));
148 int ess_get_port __P((void *, mixer_ctrl_t *));
149
150 void *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
151 void ess_free __P((void *, void *, struct malloc_type *));
152 size_t ess_round_buffersize __P((void *, int, size_t));
153 paddr_t ess_mappage __P((void *, void *, off_t, int));
154
155
156 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
157 int ess_1788_get_props __P((void *));
158 int ess_1888_get_props __P((void *));
159
160 void ess_speaker_on __P((struct ess_softc *));
161 void ess_speaker_off __P((struct ess_softc *));
162
163 void ess_config_irq __P((struct ess_softc *));
164 void ess_config_drq __P((struct ess_softc *));
165 void ess_setup __P((struct ess_softc *));
166 int ess_identify __P((struct ess_softc *));
167
168 int ess_reset __P((struct ess_softc *));
169 void ess_set_gain __P((struct ess_softc *, int, int));
170 int ess_set_in_port __P((struct ess_softc *, int));
171 int ess_set_in_ports __P((struct ess_softc *, int));
172 u_int ess_srtotc __P((u_int));
173 u_int ess_srtofc __P((u_int));
174 u_char ess_get_dsp_status __P((struct ess_softc *));
175 u_char ess_dsp_read_ready __P((struct ess_softc *));
176 u_char ess_dsp_write_ready __P((struct ess_softc *));
177 int ess_rdsp __P((struct ess_softc *));
178 int ess_wdsp __P((struct ess_softc *, u_char));
179 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
180 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
181 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
182 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
183 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
184 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
185 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
186 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
187 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
188
189 static char *essmodel[] = {
190 "unsupported",
191
192 "1688",
193 "1788",
194 "1868",
195 "1869",
196 "1878",
197 "1879",
198
199 "888",
200 "1887",
201 "1888",
202 };
203
204 struct audio_device ess_device = {
205 "ESS Technology",
206 "x",
207 "ess"
208 };
209
210 /*
211 * Define our interface to the higher level audio driver.
212 */
213
214 struct audio_hw_if ess_1788_hw_if = {
215 ess_open,
216 ess_close,
217 ess_drain,
218 ess_query_encoding,
219 ess_set_params,
220 ess_round_blocksize,
221 NULL,
222 NULL,
223 NULL,
224 NULL,
225 NULL,
226 ess_audio1_halt,
227 ess_audio1_halt,
228 ess_speaker_ctl,
229 ess_getdev,
230 NULL,
231 ess_set_port,
232 ess_get_port,
233 ess_query_devinfo,
234 ess_malloc,
235 ess_free,
236 ess_round_buffersize,
237 ess_mappage,
238 ess_1788_get_props,
239 ess_audio1_trigger_output,
240 ess_audio1_trigger_input,
241 NULL,
242 };
243
244 struct audio_hw_if ess_1888_hw_if = {
245 ess_open,
246 ess_close,
247 ess_drain,
248 ess_query_encoding,
249 ess_set_params,
250 ess_round_blocksize,
251 NULL,
252 NULL,
253 NULL,
254 NULL,
255 NULL,
256 ess_audio2_halt,
257 ess_audio1_halt,
258 ess_speaker_ctl,
259 ess_getdev,
260 NULL,
261 ess_set_port,
262 ess_get_port,
263 ess_query_devinfo,
264 ess_malloc,
265 ess_free,
266 ess_round_buffersize,
267 ess_mappage,
268 ess_1888_get_props,
269 ess_audio2_trigger_output,
270 ess_audio1_trigger_input,
271 NULL,
272 };
273
274 #ifdef AUDIO_DEBUG
275 void ess_printsc __P((struct ess_softc *));
276 void ess_dump_mixer __P((struct ess_softc *));
277
278 void
279 ess_printsc(sc)
280 struct ess_softc *sc;
281 {
282 int i;
283
284 printf("iobase 0x%x outport %u inport %u speaker %s\n",
285 sc->sc_iobase, sc->out_port,
286 sc->in_port, sc->spkr_state ? "on" : "off");
287
288 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
289 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
290 sc->sc_audio1.intr, sc->sc_audio1.arg);
291
292 if (!ESS_USE_AUDIO1(sc->sc_model)) {
293 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
294 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
295 sc->sc_audio2.intr, sc->sc_audio2.arg);
296 }
297
298 printf("gain:");
299 for (i = 0; i < sc->ndevs; i++)
300 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
301 printf("\n");
302 }
303
304 void
305 ess_dump_mixer(sc)
306 struct ess_softc *sc;
307 {
308 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
309 0x7C, ess_read_mix_reg(sc, 0x7C));
310 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
311 0x1A, ess_read_mix_reg(sc, 0x1A));
312 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
313 0x3E, ess_read_mix_reg(sc, 0x3E));
314 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
315 0x36, ess_read_mix_reg(sc, 0x36));
316 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
317 0x38, ess_read_mix_reg(sc, 0x38));
318 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
319 0x3A, ess_read_mix_reg(sc, 0x3A));
320 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
321 0x32, ess_read_mix_reg(sc, 0x32));
322 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
323 0x3C, ess_read_mix_reg(sc, 0x3C));
324 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
325 0x69, ess_read_mix_reg(sc, 0x69));
326 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
327 0x68, ess_read_mix_reg(sc, 0x68));
328 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
329 0x6E, ess_read_mix_reg(sc, 0x6E));
330 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
331 0x6B, ess_read_mix_reg(sc, 0x6B));
332 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
333 0x6A, ess_read_mix_reg(sc, 0x6A));
334 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
335 0x6C, ess_read_mix_reg(sc, 0x6C));
336 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
337 0xB4, ess_read_x_reg(sc, 0xB4));
338 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
339 0x14, ess_read_mix_reg(sc, 0x14));
340
341 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
342 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
343 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
344 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
345 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
346 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
347 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
348 }
349
350 #endif
351
352 /*
353 * Configure the ESS chip for the desired audio base address.
354 */
355 int
356 ess_config_addr(sc)
357 struct ess_softc *sc;
358 {
359 int iobase = sc->sc_iobase;
360 bus_space_tag_t iot = sc->sc_iot;
361
362 /*
363 * Configure using the System Control Register method. This
364 * method is used when the AMODE line is tied high, which is
365 * the case for the Shark, but not for the evaluation board.
366 */
367
368 bus_space_handle_t scr_access_ioh;
369 bus_space_handle_t scr_ioh;
370 u_short scr_value;
371
372 /*
373 * Set the SCR bit to enable audio.
374 */
375 scr_value = ESS_SCR_AUDIO_ENABLE;
376
377 /*
378 * Set the SCR bits necessary to select the specified audio
379 * base address.
380 */
381 switch(iobase) {
382 case 0x220:
383 scr_value |= ESS_SCR_AUDIO_220;
384 break;
385 case 0x230:
386 scr_value |= ESS_SCR_AUDIO_230;
387 break;
388 case 0x240:
389 scr_value |= ESS_SCR_AUDIO_240;
390 break;
391 case 0x250:
392 scr_value |= ESS_SCR_AUDIO_250;
393 break;
394 default:
395 printf("ess: configured iobase 0x%x invalid\n", iobase);
396 return (1);
397 break;
398 }
399
400 /*
401 * Get a mapping for the System Control Register (SCR) access
402 * registers and the SCR data registers.
403 */
404 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
405 0, &scr_access_ioh)) {
406 printf("ess: can't map SCR access registers\n");
407 return (1);
408 }
409 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
410 0, &scr_ioh)) {
411 printf("ess: can't map SCR registers\n");
412 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
413 return (1);
414 }
415
416 /* Unlock the SCR. */
417 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
418
419 /* Write the base address information into SCR[0]. */
420 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
421 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
422
423 /* Lock the SCR. */
424 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
425
426 /* Unmap the SCR access ports and the SCR data ports. */
427 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
428 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
429
430 return 0;
431 }
432
433
434 /*
435 * Configure the ESS chip for the desired IRQ and DMA channels.
436 * ESS ISA
437 * --------
438 * IRQA irq9
439 * IRQB irq5
440 * IRQC irq7
441 * IRQD irq10
442 * IRQE irq15
443 *
444 * DRQA drq0
445 * DRQB drq1
446 * DRQC drq3
447 * DRQD drq5
448 */
449 void
450 ess_config_irq(sc)
451 struct ess_softc *sc;
452 {
453 int v;
454
455 DPRINTFN(2,("ess_config_irq\n"));
456
457 if (sc->sc_model == ESS_1887 &&
458 sc->sc_audio1.irq == sc->sc_audio2.irq &&
459 sc->sc_audio1.irq != -1) {
460 /* Use new method, both interrupts are the same. */
461 v = ESS_IS_SELECT_IRQ; /* enable intrs */
462 switch (sc->sc_audio1.irq) {
463 case 5:
464 v |= ESS_IS_INTRB;
465 break;
466 case 7:
467 v |= ESS_IS_INTRC;
468 break;
469 case 9:
470 v |= ESS_IS_INTRA;
471 break;
472 case 10:
473 v |= ESS_IS_INTRD;
474 break;
475 case 15:
476 v |= ESS_IS_INTRE;
477 break;
478 #ifdef DIAGNOSTIC
479 default:
480 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
481 sc->sc_audio1.irq);
482 return;
483 #endif
484 }
485 /* Set the IRQ */
486 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
487 return;
488 }
489
490 if (sc->sc_model == ESS_1887) {
491 /* Tell the 1887 to use the old interrupt method. */
492 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
493 }
494
495 if (sc->sc_audio1.polled) {
496 /* Turn off Audio1 interrupts. */
497 v = 0;
498 } else {
499 /* Configure Audio 1 for the appropriate IRQ line. */
500 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
501 switch (sc->sc_audio1.irq) {
502 case 5:
503 v |= ESS_IRQ_CTRL_INTRB;
504 break;
505 case 7:
506 v |= ESS_IRQ_CTRL_INTRC;
507 break;
508 case 9:
509 v |= ESS_IRQ_CTRL_INTRA;
510 break;
511 case 10:
512 v |= ESS_IRQ_CTRL_INTRD;
513 break;
514 #ifdef DIAGNOSTIC
515 default:
516 printf("ess: configured irq %d not supported for Audio 1\n",
517 sc->sc_audio1.irq);
518 return;
519 #endif
520 }
521 }
522 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
523
524 if (ESS_USE_AUDIO1(sc->sc_model))
525 return;
526
527 if (sc->sc_audio2.polled) {
528 /* Turn off Audio2 interrupts. */
529 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
530 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
531 } else {
532 /* Audio2 is hardwired to INTRE in this mode. */
533 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
534 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
535 }
536 }
537
538
539 void
540 ess_config_drq(sc)
541 struct ess_softc *sc;
542 {
543 int v;
544
545 DPRINTFN(2,("ess_config_drq\n"));
546
547 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
548 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
549 switch (sc->sc_audio1.drq) {
550 case 0:
551 v |= ESS_DRQ_CTRL_DRQA;
552 break;
553 case 1:
554 v |= ESS_DRQ_CTRL_DRQB;
555 break;
556 case 3:
557 v |= ESS_DRQ_CTRL_DRQC;
558 break;
559 #ifdef DIAGNOSTIC
560 default:
561 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
562 sc->sc_audio1.drq);
563 return;
564 #endif
565 }
566 /* Set DRQ1 */
567 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
568
569 if (ESS_USE_AUDIO1(sc->sc_model))
570 return;
571
572 /* Configure DRQ2 */
573 v = ESS_AUDIO2_CTRL3_DRQ_PD;
574 switch (sc->sc_audio2.drq) {
575 case 0:
576 v |= ESS_AUDIO2_CTRL3_DRQA;
577 break;
578 case 1:
579 v |= ESS_AUDIO2_CTRL3_DRQB;
580 break;
581 case 3:
582 v |= ESS_AUDIO2_CTRL3_DRQC;
583 break;
584 case 5:
585 v |= ESS_AUDIO2_CTRL3_DRQD;
586 break;
587 #ifdef DIAGNOSTIC
588 default:
589 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
590 sc->sc_audio2.drq);
591 return;
592 #endif
593 }
594 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
595 /* Enable DMA 2 */
596 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
597 ESS_AUDIO2_CTRL2_DMA_ENABLE);
598 }
599
600 /*
601 * Set up registers after a reset.
602 */
603 void
604 ess_setup(sc)
605 struct ess_softc *sc;
606 {
607
608 ess_config_irq(sc);
609 ess_config_drq(sc);
610
611 DPRINTFN(2,("ess_setup: done\n"));
612 }
613
614 /*
615 * Determine the model of ESS chip we are talking to. Currently we
616 * only support ES1888, ES1887 and ES888. The method of determining
617 * the chip is based on the information on page 27 of the ES1887 data
618 * sheet.
619 *
620 * This routine sets the values of sc->sc_model and sc->sc_version.
621 */
622 int
623 ess_identify(sc)
624 struct ess_softc *sc;
625 {
626 u_char reg1;
627 u_char reg2;
628 u_char reg3;
629 u_int8_t ident[4];
630
631 sc->sc_model = ESS_UNSUPPORTED;
632 sc->sc_version = 0;
633
634 memset(ident, 0, sizeof(ident));
635
636 /*
637 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
638 * n >= 8 for an ES1887 or an ES888. Other values indicate
639 * earlier (unsupported) chips.
640 */
641 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
642
643 if ((reg1 = ess_rdsp(sc)) != 0x68) {
644 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
645 return 1;
646 }
647
648 reg2 = ess_rdsp(sc);
649 if (((reg2 & 0xf0) != 0x80) ||
650 ((reg2 & 0x0f) < 8)) {
651 printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
652 return 1;
653 }
654
655 /*
656 * Store the ID bytes as the version.
657 */
658 sc->sc_version = (reg1 << 8) + reg2;
659
660
661 /*
662 * 2. Verify we can change bit 2 in mixer register 0x64. This
663 * should be possible on all supported chips.
664 */
665 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
666 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
667
668 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
669
670 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
671 switch (sc->sc_version) {
672 case 0x688b:
673 sc->sc_model = ESS_1688;
674 break;
675 default:
676 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
677 return 1;
678 }
679
680 return 0;
681 }
682
683 /*
684 * Restore the original value of mixer register 0x64.
685 */
686 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
687
688
689 /*
690 * 3. Verify we can change the value of mixer register
691 * ESS_MREG_SAMPLE_RATE.
692 * This is possible on the 1888/1887/888, but not on the 1788.
693 * It is not necessary to restore the value of this mixer register.
694 */
695 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
696 reg2 = reg1 ^ 0xff; /* toggle all bits */
697
698 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
699
700 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
701 /* If we got this far before failing, it's a 1788. */
702 sc->sc_model = ESS_1788;
703
704 /*
705 * Identify ESS model for ES18[67]8.
706 */
707 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
708 if(ident[0] == 0x18) {
709 switch(ident[1]) {
710 case 0x68:
711 sc->sc_model = ESS_1868;
712 break;
713 case 0x78:
714 sc->sc_model = ESS_1878;
715 break;
716 }
717 }
718
719 return 0;
720 }
721
722 /*
723 * 4. Determine if we can change bit 5 in mixer register 0x64.
724 * This determines whether we have an ES1887:
725 *
726 * - can change indicates ES1887
727 * - can't change indicates ES1888 or ES888
728 */
729 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
730 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
731
732 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
733
734 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
735 sc->sc_model = ESS_1887;
736
737 /*
738 * Restore the original value of mixer register 0x64.
739 */
740 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
741
742 /*
743 * Identify ESS model for ES18[67]9.
744 */
745 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
746 if(ident[0] == 0x18) {
747 switch(ident[1]) {
748 case 0x69:
749 sc->sc_model = ESS_1869;
750 break;
751 case 0x79:
752 sc->sc_model = ESS_1879;
753 break;
754 }
755 }
756
757 return 0;
758 }
759
760 /*
761 * 5. Determine if we can change the value of mixer
762 * register 0x69 independently of mixer register
763 * 0x68. This determines which chip we have:
764 *
765 * - can modify idependently indicates ES888
766 * - register 0x69 is an alias of 0x68 indicates ES1888
767 */
768 reg1 = ess_read_mix_reg(sc, 0x68);
769 reg2 = ess_read_mix_reg(sc, 0x69);
770 reg3 = reg2 ^ 0xff; /* toggle all bits */
771
772 /*
773 * Write different values to each register.
774 */
775 ess_write_mix_reg(sc, 0x68, reg2);
776 ess_write_mix_reg(sc, 0x69, reg3);
777
778 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
779 ess_read_mix_reg(sc, 0x69) == reg3)
780 sc->sc_model = ESS_888;
781 else
782 sc->sc_model = ESS_1888;
783
784 /*
785 * Restore the original value of the registers.
786 */
787 ess_write_mix_reg(sc, 0x68, reg1);
788 ess_write_mix_reg(sc, 0x69, reg2);
789
790 return 0;
791 }
792
793
794 int
795 ess_setup_sc(sc, doinit)
796 struct ess_softc *sc;
797 int doinit;
798 {
799
800 callout_init(&sc->sc_poll1_ch);
801 callout_init(&sc->sc_poll2_ch);
802
803 /* Reset the chip. */
804 if (ess_reset(sc) != 0) {
805 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
806 return (1);
807 }
808
809 /* Identify the ESS chip, and check that it is supported. */
810 if (ess_identify(sc)) {
811 DPRINTF(("ess_setup_sc: couldn't identify\n"));
812 return (1);
813 }
814
815 return (0);
816 }
817
818 /*
819 * Probe for the ESS hardware.
820 */
821 int
822 essmatch(sc)
823 struct ess_softc *sc;
824 {
825 if (!ESS_BASE_VALID(sc->sc_iobase)) {
826 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
827 return (0);
828 }
829
830 if (ess_setup_sc(sc, 1))
831 return (0);
832
833 if (sc->sc_model == ESS_UNSUPPORTED) {
834 DPRINTF(("ess: Unsupported model\n"));
835 return (0);
836 }
837
838 /* Check that requested DMA channels are valid and different. */
839 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
840 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
841 return (0);
842 }
843 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
844 return (0);
845 if (!ESS_USE_AUDIO1(sc->sc_model)) {
846 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
847 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
848 return (0);
849 }
850 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
851 printf("ess: play and record drq both %d\n",
852 sc->sc_audio1.drq);
853 return (0);
854 }
855 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
856 return (0);
857 }
858
859 /*
860 * The 1887 has an additional IRQ mode where both channels are mapped
861 * to the same IRQ.
862 */
863 if (sc->sc_model == ESS_1887 &&
864 sc->sc_audio1.irq == sc->sc_audio2.irq &&
865 sc->sc_audio1.irq != -1 &&
866 ESS_IRQ12_VALID(sc->sc_audio1.irq))
867 goto irq_not1888;
868
869 /* Check that requested IRQ lines are valid and different. */
870 if (sc->sc_audio1.irq != -1 &&
871 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
872 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
873 return (0);
874 }
875 if (!ESS_USE_AUDIO1(sc->sc_model)) {
876 if (sc->sc_audio2.irq != -1 &&
877 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
878 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
879 return (0);
880 }
881 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
882 sc->sc_audio1.irq != -1) {
883 printf("ess: play and record irq both %d\n",
884 sc->sc_audio1.irq);
885 return (0);
886 }
887 }
888
889 irq_not1888:
890 /* XXX should we check IRQs as well? */
891
892 return (2); /* beat "sb" */
893 }
894
895
896 /*
897 * Attach hardware to driver, attach hardware driver to audio
898 * pseudo-device driver.
899 */
900 void
901 essattach(sc, enablejoy)
902 struct ess_softc *sc;
903 int enablejoy;
904 {
905 struct audio_attach_args arg;
906 struct audio_params pparams, rparams;
907 int i;
908 u_int v;
909
910 if (ess_setup_sc(sc, 0)) {
911 printf(": setup failed\n");
912 return;
913 }
914
915 printf(": ESS Technology ES%s [version 0x%04x]\n",
916 essmodel[sc->sc_model], sc->sc_version);
917
918 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
919 if (!sc->sc_audio1.polled) {
920 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
921 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
922 ess_audio1_intr, sc);
923 printf("%s: audio1 interrupting at irq %d\n",
924 sc->sc_dev.dv_xname, sc->sc_audio1.irq);
925 } else
926 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
927 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
928
929 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
930 printf("%s: can't reserve drq %d\n",
931 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
932 return;
933 }
934
935 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
936 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
937 printf("%s: can't create map for drq %d\n",
938 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
939 return;
940 }
941
942 if (!ESS_USE_AUDIO1(sc->sc_model)) {
943 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
944 if (!sc->sc_audio2.polled) {
945 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
946 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
947 ess_audio2_intr, sc);
948 printf("%s: audio2 interrupting at irq %d\n",
949 sc->sc_dev.dv_xname, sc->sc_audio2.irq);
950 } else
951 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
952 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
953 sc->sc_audio2.drq);
954
955 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
956 printf("%s: can't reserve drq %d\n",
957 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
958 return;
959 }
960
961 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
962 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
963 printf("%s: can't create map for drq %d\n",
964 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
965 return;
966 }
967 }
968
969 /*
970 * Set record and play parameters to default values defined in
971 * generic audio driver.
972 */
973 pparams = audio_default;
974 rparams = audio_default;
975 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
976
977 /* Do a hardware reset on the mixer. */
978 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
979
980 /*
981 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
982 * to playback mixer, since playback is always through Audio 2.
983 */
984 if (!ESS_USE_AUDIO1(sc->sc_model))
985 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
986 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
987
988 if (ESS_USE_AUDIO1(sc->sc_model)) {
989 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
990 sc->in_port = ESS_SOURCE_MIC;
991 sc->ndevs = ESS_1788_NDEVS;
992 } else {
993 /*
994 * Set hardware record source to use output of the record
995 * mixer. We do the selection of record source in software by
996 * setting the gain of the unused sources to zero. (See
997 * ess_set_in_ports.)
998 */
999 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1000 sc->in_mask = 1 << ESS_MIC_REC_VOL;
1001 sc->ndevs = ESS_1888_NDEVS;
1002 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1003 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1004 }
1005
1006 /*
1007 * Set gain on each mixer device to a sensible value.
1008 * Devices not normally used are turned off, and other devices
1009 * are set to 50% volume.
1010 */
1011 for (i = 0; i < sc->ndevs; i++) {
1012 switch (i) {
1013 case ESS_MIC_PLAY_VOL:
1014 case ESS_LINE_PLAY_VOL:
1015 case ESS_CD_PLAY_VOL:
1016 case ESS_AUXB_PLAY_VOL:
1017 case ESS_DAC_REC_VOL:
1018 case ESS_LINE_REC_VOL:
1019 case ESS_SYNTH_REC_VOL:
1020 case ESS_CD_REC_VOL:
1021 case ESS_AUXB_REC_VOL:
1022 v = 0;
1023 break;
1024 default:
1025 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1026 break;
1027 }
1028 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1029 ess_set_gain(sc, i, 1);
1030 }
1031
1032 ess_setup(sc);
1033
1034 /* Disable the speaker until the device is opened. */
1035 ess_speaker_off(sc);
1036 sc->spkr_state = SPKR_OFF;
1037
1038 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1039 essmodel[sc->sc_model]);
1040 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1041 sc->sc_version);
1042
1043 if (ESS_USE_AUDIO1(sc->sc_model))
1044 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1045 else
1046 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1047
1048 arg.type = AUDIODEV_TYPE_OPL;
1049 arg.hwif = 0;
1050 arg.hdl = 0;
1051 (void)config_found(&sc->sc_dev, &arg, audioprint);
1052
1053 #if NJOY_ESS > 0
1054 if (sc->sc_model == ESS_1888 && enablejoy) {
1055 unsigned char m40;
1056
1057 m40 = ess_read_mix_reg(sc, 0x40);
1058 m40 |= 2;
1059 ess_write_mix_reg(sc, 0x40, m40);
1060
1061 arg.type = AUDIODEV_TYPE_AUX;
1062 (void)config_found(&sc->sc_dev, &arg, audioprint);
1063 }
1064 #endif
1065
1066 #ifdef AUDIO_DEBUG
1067 if (essdebug > 0)
1068 ess_printsc(sc);
1069 #endif
1070 }
1071
1072 /*
1073 * Various routines to interface to higher level audio driver
1074 */
1075
1076 int
1077 ess_open(addr, flags)
1078 void *addr;
1079 int flags;
1080 {
1081 return (0);
1082 }
1083
1084 void
1085 ess_close(addr)
1086 void *addr;
1087 {
1088 struct ess_softc *sc = addr;
1089
1090 DPRINTF(("ess_close: sc=%p\n", sc));
1091
1092 ess_speaker_off(sc);
1093 sc->spkr_state = SPKR_OFF;
1094
1095 DPRINTF(("ess_close: closed\n"));
1096 }
1097
1098 /*
1099 * Wait for FIFO to drain, and analog section to settle.
1100 * XXX should check FIFO empty bit.
1101 */
1102 int
1103 ess_drain(addr)
1104 void *addr;
1105 {
1106 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1107 return (0);
1108 }
1109
1110 /* XXX should use reference count */
1111 int
1112 ess_speaker_ctl(addr, newstate)
1113 void *addr;
1114 int newstate;
1115 {
1116 struct ess_softc *sc = addr;
1117
1118 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1119 ess_speaker_on(sc);
1120 sc->spkr_state = SPKR_ON;
1121 }
1122 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1123 ess_speaker_off(sc);
1124 sc->spkr_state = SPKR_OFF;
1125 }
1126 return (0);
1127 }
1128
1129 int
1130 ess_getdev(addr, retp)
1131 void *addr;
1132 struct audio_device *retp;
1133 {
1134 *retp = ess_device;
1135 return (0);
1136 }
1137
1138 int
1139 ess_query_encoding(addr, fp)
1140 void *addr;
1141 struct audio_encoding *fp;
1142 {
1143 /*struct ess_softc *sc = addr;*/
1144
1145 switch (fp->index) {
1146 case 0:
1147 strcpy(fp->name, AudioEulinear);
1148 fp->encoding = AUDIO_ENCODING_ULINEAR;
1149 fp->precision = 8;
1150 fp->flags = 0;
1151 return (0);
1152 case 1:
1153 strcpy(fp->name, AudioEmulaw);
1154 fp->encoding = AUDIO_ENCODING_ULAW;
1155 fp->precision = 8;
1156 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1157 return (0);
1158 case 2:
1159 strcpy(fp->name, AudioEalaw);
1160 fp->encoding = AUDIO_ENCODING_ALAW;
1161 fp->precision = 8;
1162 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1163 return (0);
1164 case 3:
1165 strcpy(fp->name, AudioEslinear);
1166 fp->encoding = AUDIO_ENCODING_SLINEAR;
1167 fp->precision = 8;
1168 fp->flags = 0;
1169 return (0);
1170 case 4:
1171 strcpy(fp->name, AudioEslinear_le);
1172 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1173 fp->precision = 16;
1174 fp->flags = 0;
1175 return (0);
1176 case 5:
1177 strcpy(fp->name, AudioEulinear_le);
1178 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1179 fp->precision = 16;
1180 fp->flags = 0;
1181 return (0);
1182 case 6:
1183 strcpy(fp->name, AudioEslinear_be);
1184 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1185 fp->precision = 16;
1186 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1187 return (0);
1188 case 7:
1189 strcpy(fp->name, AudioEulinear_be);
1190 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1191 fp->precision = 16;
1192 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1193 return (0);
1194 default:
1195 return EINVAL;
1196 }
1197 return (0);
1198 }
1199
1200 int
1201 ess_set_params(addr, setmode, usemode, play, rec)
1202 void *addr;
1203 int setmode, usemode;
1204 struct audio_params *play, *rec;
1205 {
1206 struct ess_softc *sc = addr;
1207 struct audio_params *p;
1208 int mode;
1209 int rate;
1210
1211 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1212
1213 /*
1214 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1215 * full-duplex operation the sample rates must be the same for both
1216 * channels. This appears to be false; the only bit in common is the
1217 * clock source selection. However, we'll be conservative here.
1218 * - mycroft
1219 */
1220 if (play->sample_rate != rec->sample_rate &&
1221 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1222 if (setmode == AUMODE_PLAY) {
1223 rec->sample_rate = play->sample_rate;
1224 setmode |= AUMODE_RECORD;
1225 } else if (setmode == AUMODE_RECORD) {
1226 play->sample_rate = rec->sample_rate;
1227 setmode |= AUMODE_PLAY;
1228 } else
1229 return (EINVAL);
1230 }
1231
1232 for (mode = AUMODE_RECORD; mode != -1;
1233 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1234 if ((setmode & mode) == 0)
1235 continue;
1236
1237 p = mode == AUMODE_PLAY ? play : rec;
1238
1239 if (p->sample_rate < ESS_MINRATE ||
1240 p->sample_rate > ESS_MAXRATE ||
1241 (p->precision != 8 && p->precision != 16) ||
1242 (p->channels != 1 && p->channels != 2))
1243 return (EINVAL);
1244
1245 p->factor = 1;
1246 p->sw_code = 0;
1247 switch (p->encoding) {
1248 case AUDIO_ENCODING_SLINEAR_BE:
1249 case AUDIO_ENCODING_ULINEAR_BE:
1250 if (p->precision == 16)
1251 p->sw_code = swap_bytes;
1252 break;
1253 case AUDIO_ENCODING_SLINEAR_LE:
1254 case AUDIO_ENCODING_ULINEAR_LE:
1255 break;
1256 case AUDIO_ENCODING_ULAW:
1257 if (mode == AUMODE_PLAY) {
1258 p->factor = 2;
1259 p->sw_code = mulaw_to_ulinear16_le;
1260 } else
1261 p->sw_code = ulinear8_to_mulaw;
1262 break;
1263 case AUDIO_ENCODING_ALAW:
1264 if (mode == AUMODE_PLAY) {
1265 p->factor = 2;
1266 p->sw_code = alaw_to_ulinear16_le;
1267 } else
1268 p->sw_code = ulinear8_to_alaw;
1269 break;
1270 default:
1271 return (EINVAL);
1272 }
1273 }
1274
1275 if (usemode == AUMODE_RECORD)
1276 rate = rec->sample_rate;
1277 else
1278 rate = play->sample_rate;
1279
1280 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1281 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1282
1283 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1284 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1285 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1286 }
1287
1288 return (0);
1289 }
1290
1291 int
1292 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1293 void *addr;
1294 void *start, *end;
1295 int blksize;
1296 void (*intr) __P((void *));
1297 void *arg;
1298 struct audio_params *param;
1299 {
1300 struct ess_softc *sc = addr;
1301 u_int8_t reg;
1302
1303 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1304 addr, start, end, blksize, intr, arg));
1305
1306 if (sc->sc_audio1.active)
1307 panic("ess_audio1_trigger_output: already running");
1308
1309 sc->sc_audio1.active = 1;
1310 sc->sc_audio1.intr = intr;
1311 sc->sc_audio1.arg = arg;
1312 if (sc->sc_audio1.polled) {
1313 sc->sc_audio1.dmapos = 0;
1314 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1315 sc->sc_audio1.dmacount = 0;
1316 sc->sc_audio1.blksize = blksize;
1317 callout_reset(&sc->sc_poll1_ch, hz / 30,
1318 ess_audio1_poll, sc);
1319 }
1320
1321 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1322 if (param->channels == 2) {
1323 reg &= ~ESS_AUDIO_CTRL_MONO;
1324 reg |= ESS_AUDIO_CTRL_STEREO;
1325 } else {
1326 reg |= ESS_AUDIO_CTRL_MONO;
1327 reg &= ~ESS_AUDIO_CTRL_STEREO;
1328 }
1329 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1330
1331 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1332 if (param->precision * param->factor == 16)
1333 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1334 else
1335 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1336 if (param->channels == 2)
1337 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1338 else
1339 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1340 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1341 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1342 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1343 else
1344 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1345 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1346 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1347
1348 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1349 (char *)end - (char *)start, NULL,
1350 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1351
1352 /* Program transfer count registers with 2's complement of count. */
1353 blksize = -blksize;
1354 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1355 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1356
1357 /* Use 4 bytes per output DMA. */
1358 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1359
1360 /* Start auto-init DMA */
1361 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1362 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1363 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1364 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1365 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1366
1367 return (0);
1368 }
1369
1370 int
1371 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1372 void *addr;
1373 void *start, *end;
1374 int blksize;
1375 void (*intr) __P((void *));
1376 void *arg;
1377 struct audio_params *param;
1378 {
1379 struct ess_softc *sc = addr;
1380 u_int8_t reg;
1381
1382 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1383 addr, start, end, blksize, intr, arg));
1384
1385 if (sc->sc_audio2.active)
1386 panic("ess_audio2_trigger_output: already running");
1387
1388 sc->sc_audio2.active = 1;
1389 sc->sc_audio2.intr = intr;
1390 sc->sc_audio2.arg = arg;
1391 if (sc->sc_audio2.polled) {
1392 sc->sc_audio2.dmapos = 0;
1393 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1394 sc->sc_audio2.dmacount = 0;
1395 sc->sc_audio2.blksize = blksize;
1396 callout_reset(&sc->sc_poll2_ch, hz / 30,
1397 ess_audio2_poll, sc);
1398 }
1399
1400 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1401 if (param->precision * param->factor == 16)
1402 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1403 else
1404 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1405 if (param->channels == 2)
1406 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1407 else
1408 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1409 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1410 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1411 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1412 else
1413 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1414 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1415
1416 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1417 (char *)end - (char *)start, NULL,
1418 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1419
1420 if (IS16BITDRQ(sc->sc_audio2.drq))
1421 blksize >>= 1; /* use word count for 16 bit DMA */
1422 /* Program transfer count registers with 2's complement of count. */
1423 blksize = -blksize;
1424 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1425 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1426
1427 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1428 if (IS16BITDRQ(sc->sc_audio2.drq))
1429 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1430 else
1431 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1432 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1433 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1434 ESS_AUDIO2_CTRL1_AUTO_INIT;
1435 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1436
1437 return (0);
1438 }
1439
1440 int
1441 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1442 void *addr;
1443 void *start, *end;
1444 int blksize;
1445 void (*intr) __P((void *));
1446 void *arg;
1447 struct audio_params *param;
1448 {
1449 struct ess_softc *sc = addr;
1450 u_int8_t reg;
1451
1452 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1453 addr, start, end, blksize, intr, arg));
1454
1455 if (sc->sc_audio1.active)
1456 panic("ess_audio1_trigger_input: already running");
1457
1458 sc->sc_audio1.active = 1;
1459 sc->sc_audio1.intr = intr;
1460 sc->sc_audio1.arg = arg;
1461 if (sc->sc_audio1.polled) {
1462 sc->sc_audio1.dmapos = 0;
1463 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1464 sc->sc_audio1.dmacount = 0;
1465 sc->sc_audio1.blksize = blksize;
1466 callout_reset(&sc->sc_poll1_ch, hz / 30,
1467 ess_audio1_poll, sc);
1468 }
1469
1470 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1471 if (param->channels == 2) {
1472 reg &= ~ESS_AUDIO_CTRL_MONO;
1473 reg |= ESS_AUDIO_CTRL_STEREO;
1474 } else {
1475 reg |= ESS_AUDIO_CTRL_MONO;
1476 reg &= ~ESS_AUDIO_CTRL_STEREO;
1477 }
1478 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1479
1480 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1481 if (param->precision * param->factor == 16)
1482 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1483 else
1484 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1485 if (param->channels == 2)
1486 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1487 else
1488 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1489 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1490 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1491 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1492 else
1493 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1494 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1495 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1496
1497 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1498 (char *)end - (char *)start, NULL,
1499 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1500
1501 /* Program transfer count registers with 2's complement of count. */
1502 blksize = -blksize;
1503 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1504 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1505
1506 /* Use 4 bytes per input DMA. */
1507 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1508
1509 /* Start auto-init DMA */
1510 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1511 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1512 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1513 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1514 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1515
1516 return (0);
1517 }
1518
1519 int
1520 ess_audio1_halt(addr)
1521 void *addr;
1522 {
1523 struct ess_softc *sc = addr;
1524
1525 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1526
1527 if (sc->sc_audio1.active) {
1528 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1529 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1530 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1531 if (sc->sc_audio1.polled)
1532 callout_stop(&sc->sc_poll1_ch);
1533 sc->sc_audio1.active = 0;
1534 }
1535
1536 return (0);
1537 }
1538
1539 int
1540 ess_audio2_halt(addr)
1541 void *addr;
1542 {
1543 struct ess_softc *sc = addr;
1544
1545 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1546
1547 if (sc->sc_audio2.active) {
1548 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1549 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1550 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1551 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1552 if (sc->sc_audio2.polled)
1553 callout_stop(&sc->sc_poll2_ch);
1554 sc->sc_audio2.active = 0;
1555 }
1556
1557 return (0);
1558 }
1559
1560 int
1561 ess_audio1_intr(arg)
1562 void *arg;
1563 {
1564 struct ess_softc *sc = arg;
1565 u_int8_t reg;
1566
1567 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1568
1569 /* Check and clear interrupt on Audio1. */
1570 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1571 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1572 return (0);
1573 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1574
1575 sc->sc_audio1.nintr++;
1576
1577 if (sc->sc_audio1.active) {
1578 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1579 return (1);
1580 } else
1581 return (0);
1582 }
1583
1584 int
1585 ess_audio2_intr(arg)
1586 void *arg;
1587 {
1588 struct ess_softc *sc = arg;
1589 u_int8_t reg;
1590
1591 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1592
1593 /* Check and clear interrupt on Audio2. */
1594 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1595 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1596 return (0);
1597 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1598 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1599
1600 sc->sc_audio2.nintr++;
1601
1602 if (sc->sc_audio2.active) {
1603 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1604 return (1);
1605 } else
1606 return (0);
1607 }
1608
1609 void
1610 ess_audio1_poll(addr)
1611 void *addr;
1612 {
1613 struct ess_softc *sc = addr;
1614 int dmapos, dmacount;
1615
1616 if (!sc->sc_audio1.active)
1617 return;
1618
1619 sc->sc_audio1.nintr++;
1620
1621 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1622 dmacount = sc->sc_audio1.dmapos - dmapos;
1623 if (dmacount < 0)
1624 dmacount += sc->sc_audio1.buffersize;
1625 sc->sc_audio1.dmapos = dmapos;
1626 #if 1
1627 dmacount += sc->sc_audio1.dmacount;
1628 while (dmacount > sc->sc_audio1.blksize) {
1629 dmacount -= sc->sc_audio1.blksize;
1630 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1631 }
1632 sc->sc_audio1.dmacount = dmacount;
1633 #else
1634 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1635 #endif
1636
1637 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1638 }
1639
1640 void
1641 ess_audio2_poll(addr)
1642 void *addr;
1643 {
1644 struct ess_softc *sc = addr;
1645 int dmapos, dmacount;
1646
1647 if (!sc->sc_audio2.active)
1648 return;
1649
1650 sc->sc_audio2.nintr++;
1651
1652 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1653 dmacount = sc->sc_audio2.dmapos - dmapos;
1654 if (dmacount < 0)
1655 dmacount += sc->sc_audio2.buffersize;
1656 sc->sc_audio2.dmapos = dmapos;
1657 #if 1
1658 dmacount += sc->sc_audio2.dmacount;
1659 while (dmacount > sc->sc_audio2.blksize) {
1660 dmacount -= sc->sc_audio2.blksize;
1661 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1662 }
1663 sc->sc_audio2.dmacount = dmacount;
1664 #else
1665 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1666 #endif
1667
1668 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1669 }
1670
1671 int
1672 ess_round_blocksize(addr, blk)
1673 void *addr;
1674 int blk;
1675 {
1676 return (blk & -8); /* round for max DMA size */
1677 }
1678
1679 int
1680 ess_set_port(addr, cp)
1681 void *addr;
1682 mixer_ctrl_t *cp;
1683 {
1684 struct ess_softc *sc = addr;
1685 int lgain, rgain;
1686
1687 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1688 cp->dev, cp->un.value.num_channels));
1689
1690 switch (cp->dev) {
1691 /*
1692 * The following mixer ports are all stereo. If we get a
1693 * single-channel gain value passed in, then we duplicate it
1694 * to both left and right channels.
1695 */
1696 case ESS_MASTER_VOL:
1697 case ESS_DAC_PLAY_VOL:
1698 case ESS_MIC_PLAY_VOL:
1699 case ESS_LINE_PLAY_VOL:
1700 case ESS_SYNTH_PLAY_VOL:
1701 case ESS_CD_PLAY_VOL:
1702 case ESS_AUXB_PLAY_VOL:
1703 case ESS_RECORD_VOL:
1704 if (cp->type != AUDIO_MIXER_VALUE)
1705 return EINVAL;
1706
1707 switch (cp->un.value.num_channels) {
1708 case 1:
1709 lgain = rgain = ESS_4BIT_GAIN(
1710 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1711 break;
1712 case 2:
1713 lgain = ESS_4BIT_GAIN(
1714 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1715 rgain = ESS_4BIT_GAIN(
1716 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1717 break;
1718 default:
1719 return EINVAL;
1720 }
1721
1722 sc->gain[cp->dev][ESS_LEFT] = lgain;
1723 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1724 ess_set_gain(sc, cp->dev, 1);
1725 return (0);
1726
1727 /*
1728 * The PC speaker port is mono. If we get a stereo gain value
1729 * passed in, then we return EINVAL.
1730 */
1731 case ESS_PCSPEAKER_VOL:
1732 if (cp->un.value.num_channels != 1)
1733 return EINVAL;
1734
1735 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1736 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1737 ess_set_gain(sc, cp->dev, 1);
1738 return (0);
1739
1740 case ESS_RECORD_SOURCE:
1741 if (ESS_USE_AUDIO1(sc->sc_model)) {
1742 if (cp->type == AUDIO_MIXER_ENUM)
1743 return (ess_set_in_port(sc, cp->un.ord));
1744 else
1745 return (EINVAL);
1746 } else {
1747 if (cp->type == AUDIO_MIXER_SET)
1748 return (ess_set_in_ports(sc, cp->un.mask));
1749 else
1750 return (EINVAL);
1751 }
1752 return (0);
1753
1754 case ESS_RECORD_MONITOR:
1755 if (cp->type != AUDIO_MIXER_ENUM)
1756 return EINVAL;
1757
1758 if (cp->un.ord)
1759 /* Enable monitor */
1760 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1761 ESS_AUDIO_CTRL_MONITOR);
1762 else
1763 /* Disable monitor */
1764 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1765 ESS_AUDIO_CTRL_MONITOR);
1766 return (0);
1767 }
1768
1769 if (ESS_USE_AUDIO1(sc->sc_model))
1770 return (EINVAL);
1771
1772 switch (cp->dev) {
1773 case ESS_DAC_REC_VOL:
1774 case ESS_MIC_REC_VOL:
1775 case ESS_LINE_REC_VOL:
1776 case ESS_SYNTH_REC_VOL:
1777 case ESS_CD_REC_VOL:
1778 case ESS_AUXB_REC_VOL:
1779 if (cp->type != AUDIO_MIXER_VALUE)
1780 return EINVAL;
1781
1782 switch (cp->un.value.num_channels) {
1783 case 1:
1784 lgain = rgain = ESS_4BIT_GAIN(
1785 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1786 break;
1787 case 2:
1788 lgain = ESS_4BIT_GAIN(
1789 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1790 rgain = ESS_4BIT_GAIN(
1791 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1792 break;
1793 default:
1794 return EINVAL;
1795 }
1796
1797 sc->gain[cp->dev][ESS_LEFT] = lgain;
1798 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1799 ess_set_gain(sc, cp->dev, 1);
1800 return (0);
1801
1802 case ESS_MIC_PREAMP:
1803 if (cp->type != AUDIO_MIXER_ENUM)
1804 return EINVAL;
1805
1806 if (cp->un.ord)
1807 /* Enable microphone preamp */
1808 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1809 ESS_PREAMP_CTRL_ENABLE);
1810 else
1811 /* Disable microphone preamp */
1812 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1813 ESS_PREAMP_CTRL_ENABLE);
1814 return (0);
1815 }
1816
1817 return (EINVAL);
1818 }
1819
1820 int
1821 ess_get_port(addr, cp)
1822 void *addr;
1823 mixer_ctrl_t *cp;
1824 {
1825 struct ess_softc *sc = addr;
1826
1827 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1828
1829 switch (cp->dev) {
1830 case ESS_MASTER_VOL:
1831 case ESS_DAC_PLAY_VOL:
1832 case ESS_MIC_PLAY_VOL:
1833 case ESS_LINE_PLAY_VOL:
1834 case ESS_SYNTH_PLAY_VOL:
1835 case ESS_CD_PLAY_VOL:
1836 case ESS_AUXB_PLAY_VOL:
1837 case ESS_RECORD_VOL:
1838 switch (cp->un.value.num_channels) {
1839 case 1:
1840 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1841 sc->gain[cp->dev][ESS_LEFT];
1842 break;
1843 case 2:
1844 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1845 sc->gain[cp->dev][ESS_LEFT];
1846 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1847 sc->gain[cp->dev][ESS_RIGHT];
1848 break;
1849 default:
1850 return EINVAL;
1851 }
1852 return (0);
1853
1854 case ESS_PCSPEAKER_VOL:
1855 if (cp->un.value.num_channels != 1)
1856 return EINVAL;
1857
1858 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1859 sc->gain[cp->dev][ESS_LEFT];
1860 return (0);
1861
1862 case ESS_RECORD_SOURCE:
1863 if (ESS_USE_AUDIO1(sc->sc_model))
1864 cp->un.ord = sc->in_port;
1865 else
1866 cp->un.mask = sc->in_mask;
1867 return (0);
1868
1869 case ESS_RECORD_MONITOR:
1870 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1871 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1872 return (0);
1873 }
1874
1875 if (ESS_USE_AUDIO1(sc->sc_model))
1876 return (EINVAL);
1877
1878 switch (cp->dev) {
1879 case ESS_DAC_REC_VOL:
1880 case ESS_MIC_REC_VOL:
1881 case ESS_LINE_REC_VOL:
1882 case ESS_SYNTH_REC_VOL:
1883 case ESS_CD_REC_VOL:
1884 case ESS_AUXB_REC_VOL:
1885 switch (cp->un.value.num_channels) {
1886 case 1:
1887 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1888 sc->gain[cp->dev][ESS_LEFT];
1889 break;
1890 case 2:
1891 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1892 sc->gain[cp->dev][ESS_LEFT];
1893 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1894 sc->gain[cp->dev][ESS_RIGHT];
1895 break;
1896 default:
1897 return EINVAL;
1898 }
1899 return (0);
1900
1901 case ESS_MIC_PREAMP:
1902 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1903 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1904 return (0);
1905 }
1906
1907 return (EINVAL);
1908 }
1909
1910 int
1911 ess_query_devinfo(addr, dip)
1912 void *addr;
1913 mixer_devinfo_t *dip;
1914 {
1915 struct ess_softc *sc = addr;
1916
1917 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1918 sc->sc_model, dip->index));
1919
1920 /*
1921 * REVISIT: There are some slight differences between the
1922 * mixers on the different ESS chips, which can
1923 * be sorted out using the chip model rather than a
1924 * separate mixer model.
1925 * This is currently coded assuming an ES1887; we
1926 * need to work out which bits are not applicable to
1927 * the other models (1888 and 888).
1928 */
1929 switch (dip->index) {
1930 case ESS_DAC_PLAY_VOL:
1931 dip->mixer_class = ESS_INPUT_CLASS;
1932 dip->next = dip->prev = AUDIO_MIXER_LAST;
1933 strcpy(dip->label.name, AudioNdac);
1934 dip->type = AUDIO_MIXER_VALUE;
1935 dip->un.v.num_channels = 2;
1936 strcpy(dip->un.v.units.name, AudioNvolume);
1937 return (0);
1938
1939 case ESS_MIC_PLAY_VOL:
1940 dip->mixer_class = ESS_INPUT_CLASS;
1941 dip->prev = AUDIO_MIXER_LAST;
1942 if (ESS_USE_AUDIO1(sc->sc_model))
1943 dip->next = AUDIO_MIXER_LAST;
1944 else
1945 dip->next = ESS_MIC_PREAMP;
1946 strcpy(dip->label.name, AudioNmicrophone);
1947 dip->type = AUDIO_MIXER_VALUE;
1948 dip->un.v.num_channels = 2;
1949 strcpy(dip->un.v.units.name, AudioNvolume);
1950 return (0);
1951
1952 case ESS_LINE_PLAY_VOL:
1953 dip->mixer_class = ESS_INPUT_CLASS;
1954 dip->next = dip->prev = AUDIO_MIXER_LAST;
1955 strcpy(dip->label.name, AudioNline);
1956 dip->type = AUDIO_MIXER_VALUE;
1957 dip->un.v.num_channels = 2;
1958 strcpy(dip->un.v.units.name, AudioNvolume);
1959 return (0);
1960
1961 case ESS_SYNTH_PLAY_VOL:
1962 dip->mixer_class = ESS_INPUT_CLASS;
1963 dip->next = dip->prev = AUDIO_MIXER_LAST;
1964 strcpy(dip->label.name, AudioNfmsynth);
1965 dip->type = AUDIO_MIXER_VALUE;
1966 dip->un.v.num_channels = 2;
1967 strcpy(dip->un.v.units.name, AudioNvolume);
1968 return (0);
1969
1970 case ESS_CD_PLAY_VOL:
1971 dip->mixer_class = ESS_INPUT_CLASS;
1972 dip->next = dip->prev = AUDIO_MIXER_LAST;
1973 strcpy(dip->label.name, AudioNcd);
1974 dip->type = AUDIO_MIXER_VALUE;
1975 dip->un.v.num_channels = 2;
1976 strcpy(dip->un.v.units.name, AudioNvolume);
1977 return (0);
1978
1979 case ESS_AUXB_PLAY_VOL:
1980 dip->mixer_class = ESS_INPUT_CLASS;
1981 dip->next = dip->prev = AUDIO_MIXER_LAST;
1982 strcpy(dip->label.name, "auxb");
1983 dip->type = AUDIO_MIXER_VALUE;
1984 dip->un.v.num_channels = 2;
1985 strcpy(dip->un.v.units.name, AudioNvolume);
1986 return (0);
1987
1988 case ESS_INPUT_CLASS:
1989 dip->mixer_class = ESS_INPUT_CLASS;
1990 dip->next = dip->prev = AUDIO_MIXER_LAST;
1991 strcpy(dip->label.name, AudioCinputs);
1992 dip->type = AUDIO_MIXER_CLASS;
1993 return (0);
1994
1995 case ESS_MASTER_VOL:
1996 dip->mixer_class = ESS_OUTPUT_CLASS;
1997 dip->next = dip->prev = AUDIO_MIXER_LAST;
1998 strcpy(dip->label.name, AudioNmaster);
1999 dip->type = AUDIO_MIXER_VALUE;
2000 dip->un.v.num_channels = 2;
2001 strcpy(dip->un.v.units.name, AudioNvolume);
2002 return (0);
2003
2004 case ESS_PCSPEAKER_VOL:
2005 dip->mixer_class = ESS_OUTPUT_CLASS;
2006 dip->next = dip->prev = AUDIO_MIXER_LAST;
2007 strcpy(dip->label.name, "pc_speaker");
2008 dip->type = AUDIO_MIXER_VALUE;
2009 dip->un.v.num_channels = 1;
2010 strcpy(dip->un.v.units.name, AudioNvolume);
2011 return (0);
2012
2013 case ESS_OUTPUT_CLASS:
2014 dip->mixer_class = ESS_OUTPUT_CLASS;
2015 dip->next = dip->prev = AUDIO_MIXER_LAST;
2016 strcpy(dip->label.name, AudioCoutputs);
2017 dip->type = AUDIO_MIXER_CLASS;
2018 return (0);
2019
2020 case ESS_RECORD_VOL:
2021 dip->mixer_class = ESS_RECORD_CLASS;
2022 dip->next = dip->prev = AUDIO_MIXER_LAST;
2023 strcpy(dip->label.name, AudioNrecord);
2024 dip->type = AUDIO_MIXER_VALUE;
2025 dip->un.v.num_channels = 2;
2026 strcpy(dip->un.v.units.name, AudioNvolume);
2027 return (0);
2028
2029 case ESS_RECORD_SOURCE:
2030 dip->mixer_class = ESS_RECORD_CLASS;
2031 dip->next = dip->prev = AUDIO_MIXER_LAST;
2032 strcpy(dip->label.name, AudioNsource);
2033 if (ESS_USE_AUDIO1(sc->sc_model)) {
2034 /*
2035 * The 1788 doesn't use the input mixer control that
2036 * the 1888 uses, because it's a pain when you only
2037 * have one mixer.
2038 * Perhaps it could be emulated by keeping both sets of
2039 * gain values, and doing a `context switch' of the
2040 * mixer registers when shifting from playing to
2041 * recording.
2042 */
2043 dip->type = AUDIO_MIXER_ENUM;
2044 dip->un.e.num_mem = 4;
2045 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2046 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2047 strcpy(dip->un.e.member[1].label.name, AudioNline);
2048 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2049 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2050 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2051 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2052 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2053 } else {
2054 dip->type = AUDIO_MIXER_SET;
2055 dip->un.s.num_mem = 6;
2056 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2057 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2058 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2059 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2060 strcpy(dip->un.s.member[2].label.name, AudioNline);
2061 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2062 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2063 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2064 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2065 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2066 strcpy(dip->un.s.member[5].label.name, "auxb");
2067 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2068 }
2069 return (0);
2070
2071 case ESS_RECORD_CLASS:
2072 dip->mixer_class = ESS_RECORD_CLASS;
2073 dip->next = dip->prev = AUDIO_MIXER_LAST;
2074 strcpy(dip->label.name, AudioCrecord);
2075 dip->type = AUDIO_MIXER_CLASS;
2076 return (0);
2077
2078 case ESS_RECORD_MONITOR:
2079 dip->prev = dip->next = AUDIO_MIXER_LAST;
2080 strcpy(dip->label.name, AudioNmute);
2081 dip->type = AUDIO_MIXER_ENUM;
2082 dip->mixer_class = ESS_MONITOR_CLASS;
2083 dip->un.e.num_mem = 2;
2084 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2085 dip->un.e.member[0].ord = 0;
2086 strcpy(dip->un.e.member[1].label.name, AudioNon);
2087 dip->un.e.member[1].ord = 1;
2088 return (0);
2089
2090 case ESS_MONITOR_CLASS:
2091 dip->mixer_class = ESS_MONITOR_CLASS;
2092 dip->next = dip->prev = AUDIO_MIXER_LAST;
2093 strcpy(dip->label.name, AudioCmonitor);
2094 dip->type = AUDIO_MIXER_CLASS;
2095 return (0);
2096 }
2097
2098 if (ESS_USE_AUDIO1(sc->sc_model))
2099 return (ENXIO);
2100
2101 switch (dip->index) {
2102 case ESS_DAC_REC_VOL:
2103 dip->mixer_class = ESS_RECORD_CLASS;
2104 dip->next = dip->prev = AUDIO_MIXER_LAST;
2105 strcpy(dip->label.name, AudioNdac);
2106 dip->type = AUDIO_MIXER_VALUE;
2107 dip->un.v.num_channels = 2;
2108 strcpy(dip->un.v.units.name, AudioNvolume);
2109 return (0);
2110
2111 case ESS_MIC_REC_VOL:
2112 dip->mixer_class = ESS_RECORD_CLASS;
2113 dip->next = dip->prev = AUDIO_MIXER_LAST;
2114 strcpy(dip->label.name, AudioNmicrophone);
2115 dip->type = AUDIO_MIXER_VALUE;
2116 dip->un.v.num_channels = 2;
2117 strcpy(dip->un.v.units.name, AudioNvolume);
2118 return (0);
2119
2120 case ESS_LINE_REC_VOL:
2121 dip->mixer_class = ESS_RECORD_CLASS;
2122 dip->next = dip->prev = AUDIO_MIXER_LAST;
2123 strcpy(dip->label.name, AudioNline);
2124 dip->type = AUDIO_MIXER_VALUE;
2125 dip->un.v.num_channels = 2;
2126 strcpy(dip->un.v.units.name, AudioNvolume);
2127 return (0);
2128
2129 case ESS_SYNTH_REC_VOL:
2130 dip->mixer_class = ESS_RECORD_CLASS;
2131 dip->next = dip->prev = AUDIO_MIXER_LAST;
2132 strcpy(dip->label.name, AudioNfmsynth);
2133 dip->type = AUDIO_MIXER_VALUE;
2134 dip->un.v.num_channels = 2;
2135 strcpy(dip->un.v.units.name, AudioNvolume);
2136 return (0);
2137
2138 case ESS_CD_REC_VOL:
2139 dip->mixer_class = ESS_RECORD_CLASS;
2140 dip->next = dip->prev = AUDIO_MIXER_LAST;
2141 strcpy(dip->label.name, AudioNcd);
2142 dip->type = AUDIO_MIXER_VALUE;
2143 dip->un.v.num_channels = 2;
2144 strcpy(dip->un.v.units.name, AudioNvolume);
2145 return (0);
2146
2147 case ESS_AUXB_REC_VOL:
2148 dip->mixer_class = ESS_RECORD_CLASS;
2149 dip->next = dip->prev = AUDIO_MIXER_LAST;
2150 strcpy(dip->label.name, "auxb");
2151 dip->type = AUDIO_MIXER_VALUE;
2152 dip->un.v.num_channels = 2;
2153 strcpy(dip->un.v.units.name, AudioNvolume);
2154 return (0);
2155
2156 case ESS_MIC_PREAMP:
2157 dip->mixer_class = ESS_INPUT_CLASS;
2158 dip->prev = ESS_MIC_PLAY_VOL;
2159 dip->next = AUDIO_MIXER_LAST;
2160 strcpy(dip->label.name, AudioNpreamp);
2161 dip->type = AUDIO_MIXER_ENUM;
2162 dip->un.e.num_mem = 2;
2163 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2164 dip->un.e.member[0].ord = 0;
2165 strcpy(dip->un.e.member[1].label.name, AudioNon);
2166 dip->un.e.member[1].ord = 1;
2167 return (0);
2168 }
2169
2170 return (ENXIO);
2171 }
2172
2173 void *
2174 ess_malloc(addr, direction, size, pool, flags)
2175 void *addr;
2176 int direction;
2177 size_t size;
2178 struct malloc_type *pool;
2179 int flags;
2180 {
2181 struct ess_softc *sc = addr;
2182 int drq;
2183
2184 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2185 drq = sc->sc_audio2.drq;
2186 else
2187 drq = sc->sc_audio1.drq;
2188 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2189 }
2190
2191 void
2192 ess_free(addr, ptr, pool)
2193 void *addr;
2194 void *ptr;
2195 struct malloc_type *pool;
2196 {
2197 isa_free(ptr, pool);
2198 }
2199
2200 size_t
2201 ess_round_buffersize(addr, direction, size)
2202 void *addr;
2203 int direction;
2204 size_t size;
2205 {
2206 struct ess_softc *sc = addr;
2207 bus_size_t maxsize;
2208
2209 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2210 maxsize = sc->sc_audio2.maxsize;
2211 else
2212 maxsize = sc->sc_audio1.maxsize;
2213
2214 if (size > maxsize)
2215 size = maxsize;
2216 return (size);
2217 }
2218
2219 paddr_t
2220 ess_mappage(addr, mem, off, prot)
2221 void *addr;
2222 void *mem;
2223 off_t off;
2224 int prot;
2225 {
2226 return (isa_mappage(mem, off, prot));
2227 }
2228
2229 int
2230 ess_1788_get_props(addr)
2231 void *addr;
2232 {
2233
2234 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2235 }
2236
2237 int
2238 ess_1888_get_props(addr)
2239 void *addr;
2240 {
2241
2242 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2243 }
2244
2245 /* ============================================
2246 * Generic functions for ess, not used by audio h/w i/f
2247 * =============================================
2248 */
2249
2250 /*
2251 * Reset the chip.
2252 * Return non-zero if the chip isn't detected.
2253 */
2254 int
2255 ess_reset(sc)
2256 struct ess_softc *sc;
2257 {
2258 bus_space_tag_t iot = sc->sc_iot;
2259 bus_space_handle_t ioh = sc->sc_ioh;
2260
2261 sc->sc_audio1.active = 0;
2262 sc->sc_audio2.active = 0;
2263
2264 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2265 delay(10000); /* XXX shouldn't delay so long */
2266 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2267 if (ess_rdsp(sc) != ESS_MAGIC)
2268 return (1);
2269
2270 /* Enable access to the ESS extension commands. */
2271 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2272
2273 return (0);
2274 }
2275
2276 void
2277 ess_set_gain(sc, port, on)
2278 struct ess_softc *sc;
2279 int port;
2280 int on;
2281 {
2282 int gain, left, right;
2283 int mix;
2284 int src;
2285 int stereo;
2286
2287 /*
2288 * Most gain controls are found in the mixer registers and
2289 * are stereo. Any that are not, must set mix and stereo as
2290 * required.
2291 */
2292 mix = 1;
2293 stereo = 1;
2294
2295 switch (port) {
2296 case ESS_MASTER_VOL:
2297 src = ESS_MREG_VOLUME_MASTER;
2298 break;
2299 case ESS_DAC_PLAY_VOL:
2300 if (ESS_USE_AUDIO1(sc->sc_model))
2301 src = ESS_MREG_VOLUME_VOICE;
2302 else
2303 src = 0x7C;
2304 break;
2305 case ESS_MIC_PLAY_VOL:
2306 src = ESS_MREG_VOLUME_MIC;
2307 break;
2308 case ESS_LINE_PLAY_VOL:
2309 src = ESS_MREG_VOLUME_LINE;
2310 break;
2311 case ESS_SYNTH_PLAY_VOL:
2312 src = ESS_MREG_VOLUME_SYNTH;
2313 break;
2314 case ESS_CD_PLAY_VOL:
2315 src = ESS_MREG_VOLUME_CD;
2316 break;
2317 case ESS_AUXB_PLAY_VOL:
2318 src = ESS_MREG_VOLUME_AUXB;
2319 break;
2320 case ESS_PCSPEAKER_VOL:
2321 src = ESS_MREG_VOLUME_PCSPKR;
2322 stereo = 0;
2323 break;
2324 case ESS_DAC_REC_VOL:
2325 src = 0x69;
2326 break;
2327 case ESS_MIC_REC_VOL:
2328 src = 0x68;
2329 break;
2330 case ESS_LINE_REC_VOL:
2331 src = 0x6E;
2332 break;
2333 case ESS_SYNTH_REC_VOL:
2334 src = 0x6B;
2335 break;
2336 case ESS_CD_REC_VOL:
2337 src = 0x6A;
2338 break;
2339 case ESS_AUXB_REC_VOL:
2340 src = 0x6C;
2341 break;
2342 case ESS_RECORD_VOL:
2343 src = ESS_XCMD_VOLIN_CTRL;
2344 mix = 0;
2345 break;
2346 default:
2347 return;
2348 }
2349
2350 /* 1788 doesn't have a separate recording mixer */
2351 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2352 return;
2353
2354 if (on) {
2355 left = sc->gain[port][ESS_LEFT];
2356 right = sc->gain[port][ESS_RIGHT];
2357 } else {
2358 left = right = 0;
2359 }
2360
2361 if (stereo)
2362 gain = ESS_STEREO_GAIN(left, right);
2363 else
2364 gain = ESS_MONO_GAIN(left);
2365
2366 if (mix)
2367 ess_write_mix_reg(sc, src, gain);
2368 else
2369 ess_write_x_reg(sc, src, gain);
2370 }
2371
2372 /* Set the input device on devices without an input mixer. */
2373 int
2374 ess_set_in_port(sc, ord)
2375 struct ess_softc *sc;
2376 int ord;
2377 {
2378 mixer_devinfo_t di;
2379 int i;
2380
2381 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2382
2383 /*
2384 * Get the device info for the record source control,
2385 * including the list of available sources.
2386 */
2387 di.index = ESS_RECORD_SOURCE;
2388 if (ess_query_devinfo(sc, &di))
2389 return EINVAL;
2390
2391 /* See if the given ord value was anywhere in the list. */
2392 for (i = 0; i < di.un.e.num_mem; i++) {
2393 if (ord == di.un.e.member[i].ord)
2394 break;
2395 }
2396 if (i == di.un.e.num_mem)
2397 return EINVAL;
2398
2399 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2400
2401 sc->in_port = ord;
2402 return (0);
2403 }
2404
2405 /* Set the input device levels on input-mixer-enabled devices. */
2406 int
2407 ess_set_in_ports(sc, mask)
2408 struct ess_softc *sc;
2409 int mask;
2410 {
2411 mixer_devinfo_t di;
2412 int i, port;
2413
2414 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2415
2416 /*
2417 * Get the device info for the record source control,
2418 * including the list of available sources.
2419 */
2420 di.index = ESS_RECORD_SOURCE;
2421 if (ess_query_devinfo(sc, &di))
2422 return EINVAL;
2423
2424 /*
2425 * Set or disable the record volume control for each of the
2426 * possible sources.
2427 */
2428 for (i = 0; i < di.un.s.num_mem; i++) {
2429 /*
2430 * Calculate the source port number from its mask.
2431 */
2432 port = ffs(di.un.s.member[i].mask);
2433
2434 /*
2435 * Set the source gain:
2436 * to the current value if source is enabled
2437 * to zero if source is disabled
2438 */
2439 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2440 }
2441
2442 sc->in_mask = mask;
2443 return (0);
2444 }
2445
2446 void
2447 ess_speaker_on(sc)
2448 struct ess_softc *sc;
2449 {
2450 /* Unmute the DAC. */
2451 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2452 }
2453
2454 void
2455 ess_speaker_off(sc)
2456 struct ess_softc *sc;
2457 {
2458 /* Mute the DAC. */
2459 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2460 }
2461
2462 /*
2463 * Calculate the time constant for the requested sampling rate.
2464 */
2465 u_int
2466 ess_srtotc(rate)
2467 u_int rate;
2468 {
2469 u_int tc;
2470
2471 /* The following formulae are from the ESS data sheet. */
2472 if (rate <= 22050)
2473 tc = 128 - 397700L / rate;
2474 else
2475 tc = 256 - 795500L / rate;
2476
2477 return (tc);
2478 }
2479
2480
2481 /*
2482 * Calculate the filter constant for the reuqested sampling rate.
2483 */
2484 u_int
2485 ess_srtofc(rate)
2486 u_int rate;
2487 {
2488 /*
2489 * The following formula is derived from the information in
2490 * the ES1887 data sheet, based on a roll-off frequency of
2491 * 87%.
2492 */
2493 return (256 - 200279L / rate);
2494 }
2495
2496
2497 /*
2498 * Return the status of the DSP.
2499 */
2500 u_char
2501 ess_get_dsp_status(sc)
2502 struct ess_softc *sc;
2503 {
2504 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2505 }
2506
2507
2508 /*
2509 * Return the read status of the DSP: 1 -> DSP ready for reading
2510 * 0 -> DSP not ready for reading
2511 */
2512 u_char
2513 ess_dsp_read_ready(sc)
2514 struct ess_softc *sc;
2515 {
2516 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2517 }
2518
2519
2520 /*
2521 * Return the write status of the DSP: 1 -> DSP ready for writing
2522 * 0 -> DSP not ready for writing
2523 */
2524 u_char
2525 ess_dsp_write_ready(sc)
2526 struct ess_softc *sc;
2527 {
2528 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2529 }
2530
2531
2532 /*
2533 * Read a byte from the DSP.
2534 */
2535 int
2536 ess_rdsp(sc)
2537 struct ess_softc *sc;
2538 {
2539 bus_space_tag_t iot = sc->sc_iot;
2540 bus_space_handle_t ioh = sc->sc_ioh;
2541 int i;
2542
2543 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2544 if (ess_dsp_read_ready(sc)) {
2545 i = EREAD1(iot, ioh, ESS_DSP_READ);
2546 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2547 return i;
2548 } else
2549 delay(10);
2550 }
2551
2552 DPRINTF(("ess_rdsp: timed out\n"));
2553 return (-1);
2554 }
2555
2556 /*
2557 * Write a byte to the DSP.
2558 */
2559 int
2560 ess_wdsp(sc, v)
2561 struct ess_softc *sc;
2562 u_char v;
2563 {
2564 bus_space_tag_t iot = sc->sc_iot;
2565 bus_space_handle_t ioh = sc->sc_ioh;
2566 int i;
2567
2568 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2569
2570 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2571 if (ess_dsp_write_ready(sc)) {
2572 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2573 return (0);
2574 } else
2575 delay(10);
2576 }
2577
2578 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2579 return (-1);
2580 }
2581
2582 /*
2583 * Write a value to one of the ESS extended registers.
2584 */
2585 int
2586 ess_write_x_reg(sc, reg, val)
2587 struct ess_softc *sc;
2588 u_char reg;
2589 u_char val;
2590 {
2591 int error;
2592
2593 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2594 if ((error = ess_wdsp(sc, reg)) == 0)
2595 error = ess_wdsp(sc, val);
2596
2597 return error;
2598 }
2599
2600 /*
2601 * Read the value of one of the ESS extended registers.
2602 */
2603 u_char
2604 ess_read_x_reg(sc, reg)
2605 struct ess_softc *sc;
2606 u_char reg;
2607 {
2608 int error;
2609 int val;
2610
2611 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2612 error = ess_wdsp(sc, reg);
2613 if (error)
2614 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2615 /* REVISIT: what if an error is returned above? */
2616 val = ess_rdsp(sc);
2617 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2618 return val;
2619 }
2620
2621 void
2622 ess_clear_xreg_bits(sc, reg, mask)
2623 struct ess_softc *sc;
2624 u_char reg;
2625 u_char mask;
2626 {
2627 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2628 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2629 reg));
2630 }
2631
2632 void
2633 ess_set_xreg_bits(sc, reg, mask)
2634 struct ess_softc *sc;
2635 u_char reg;
2636 u_char mask;
2637 {
2638 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2639 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2640 reg));
2641 }
2642
2643
2644 /*
2645 * Write a value to one of the ESS mixer registers.
2646 */
2647 void
2648 ess_write_mix_reg(sc, reg, val)
2649 struct ess_softc *sc;
2650 u_char reg;
2651 u_char val;
2652 {
2653 bus_space_tag_t iot = sc->sc_iot;
2654 bus_space_handle_t ioh = sc->sc_ioh;
2655 int s;
2656
2657 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2658
2659 s = splaudio();
2660 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2661 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2662 splx(s);
2663 }
2664
2665 /*
2666 * Read the value of one of the ESS mixer registers.
2667 */
2668 u_char
2669 ess_read_mix_reg(sc, reg)
2670 struct ess_softc *sc;
2671 u_char reg;
2672 {
2673 bus_space_tag_t iot = sc->sc_iot;
2674 bus_space_handle_t ioh = sc->sc_ioh;
2675 int s;
2676 u_char val;
2677
2678 s = splaudio();
2679 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2680 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2681 splx(s);
2682
2683 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2684 return val;
2685 }
2686
2687 void
2688 ess_clear_mreg_bits(sc, reg, mask)
2689 struct ess_softc *sc;
2690 u_char reg;
2691 u_char mask;
2692 {
2693 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2694 }
2695
2696 void
2697 ess_set_mreg_bits(sc, reg, mask)
2698 struct ess_softc *sc;
2699 u_char reg;
2700 u_char mask;
2701 {
2702 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2703 }
2704
2705 void
2706 ess_read_multi_mix_reg(sc, reg, datap, count)
2707 struct ess_softc *sc;
2708 u_char reg;
2709 u_int8_t *datap;
2710 bus_size_t count;
2711 {
2712 bus_space_tag_t iot = sc->sc_iot;
2713 bus_space_handle_t ioh = sc->sc_ioh;
2714 int s;
2715
2716 s = splaudio();
2717 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2718 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2719 splx(s);
2720 }
2721