ess.c revision 1.63 1 /* $NetBSD: ess.c,v 1.63 2004/08/07 19:32:56 mycroft Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.63 2004/08/07 19:32:56 mycroft Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94
95 #include "joy_ess.h"
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (essdebug) printf x
99 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
100 int essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114
115
116 int ess_setup_sc __P((struct ess_softc *, int));
117
118 int ess_open __P((void *, int));
119 void ess_close __P((void *));
120 int ess_getdev __P((void *, struct audio_device *));
121 int ess_drain __P((void *));
122
123 int ess_query_encoding __P((void *, struct audio_encoding *));
124
125 int ess_set_params __P((void *, int, int, struct audio_params *,
126 struct audio_params *));
127
128 int ess_round_blocksize __P((void *, int));
129
130 int ess_audio1_trigger_output __P((void *, void *, void *, int,
131 void (*)(void *), void *, struct audio_params *));
132 int ess_audio2_trigger_output __P((void *, void *, void *, int,
133 void (*)(void *), void *, struct audio_params *));
134 int ess_audio1_trigger_input __P((void *, void *, void *, int,
135 void (*)(void *), void *, struct audio_params *));
136 int ess_audio1_halt __P((void *));
137 int ess_audio2_halt __P((void *));
138 int ess_audio1_intr __P((void *));
139 int ess_audio2_intr __P((void *));
140 void ess_audio1_poll __P((void *));
141 void ess_audio2_poll __P((void *));
142
143 int ess_speaker_ctl __P((void *, int));
144
145 int ess_getdev __P((void *, struct audio_device *));
146
147 int ess_set_port __P((void *, mixer_ctrl_t *));
148 int ess_get_port __P((void *, mixer_ctrl_t *));
149
150 void *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
151 void ess_free __P((void *, void *, struct malloc_type *));
152 size_t ess_round_buffersize __P((void *, int, size_t));
153 paddr_t ess_mappage __P((void *, void *, off_t, int));
154
155
156 int ess_query_devinfo __P((void *, mixer_devinfo_t *));
157 int ess_1788_get_props __P((void *));
158 int ess_1888_get_props __P((void *));
159
160 void ess_speaker_on __P((struct ess_softc *));
161 void ess_speaker_off __P((struct ess_softc *));
162
163 void ess_config_irq __P((struct ess_softc *));
164 void ess_config_drq __P((struct ess_softc *));
165 void ess_setup __P((struct ess_softc *));
166 int ess_identify __P((struct ess_softc *));
167
168 int ess_reset __P((struct ess_softc *));
169 void ess_set_gain __P((struct ess_softc *, int, int));
170 int ess_set_in_port __P((struct ess_softc *, int));
171 int ess_set_in_ports __P((struct ess_softc *, int));
172 u_int ess_srtotc __P((u_int));
173 u_int ess_srtofc __P((u_int));
174 u_char ess_get_dsp_status __P((struct ess_softc *));
175 u_char ess_dsp_read_ready __P((struct ess_softc *));
176 u_char ess_dsp_write_ready __P((struct ess_softc *));
177 int ess_rdsp __P((struct ess_softc *));
178 int ess_wdsp __P((struct ess_softc *, u_char));
179 u_char ess_read_x_reg __P((struct ess_softc *, u_char));
180 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
181 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
182 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
183 u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
184 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
185 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
186 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
187 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
188
189 static char *essmodel[] = {
190 "unsupported",
191
192 "688",
193 "1688",
194 "1788",
195 "1868",
196 "1869",
197 "1878",
198 "1879",
199
200 "888",
201 "1887",
202 "1888",
203 };
204
205 struct audio_device ess_device = {
206 "ESS Technology",
207 "x",
208 "ess"
209 };
210
211 /*
212 * Define our interface to the higher level audio driver.
213 */
214
215 struct audio_hw_if ess_1788_hw_if = {
216 ess_open,
217 ess_close,
218 ess_drain,
219 ess_query_encoding,
220 ess_set_params,
221 ess_round_blocksize,
222 NULL,
223 NULL,
224 NULL,
225 NULL,
226 NULL,
227 ess_audio1_halt,
228 ess_audio1_halt,
229 ess_speaker_ctl,
230 ess_getdev,
231 NULL,
232 ess_set_port,
233 ess_get_port,
234 ess_query_devinfo,
235 ess_malloc,
236 ess_free,
237 ess_round_buffersize,
238 ess_mappage,
239 ess_1788_get_props,
240 ess_audio1_trigger_output,
241 ess_audio1_trigger_input,
242 NULL,
243 };
244
245 struct audio_hw_if ess_1888_hw_if = {
246 ess_open,
247 ess_close,
248 ess_drain,
249 ess_query_encoding,
250 ess_set_params,
251 ess_round_blocksize,
252 NULL,
253 NULL,
254 NULL,
255 NULL,
256 NULL,
257 ess_audio2_halt,
258 ess_audio1_halt,
259 ess_speaker_ctl,
260 ess_getdev,
261 NULL,
262 ess_set_port,
263 ess_get_port,
264 ess_query_devinfo,
265 ess_malloc,
266 ess_free,
267 ess_round_buffersize,
268 ess_mappage,
269 ess_1888_get_props,
270 ess_audio2_trigger_output,
271 ess_audio1_trigger_input,
272 NULL,
273 };
274
275 #ifdef AUDIO_DEBUG
276 void ess_printsc __P((struct ess_softc *));
277 void ess_dump_mixer __P((struct ess_softc *));
278
279 void
280 ess_printsc(sc)
281 struct ess_softc *sc;
282 {
283 int i;
284
285 printf("iobase 0x%x outport %u inport %u speaker %s\n",
286 sc->sc_iobase, sc->out_port,
287 sc->in_port, sc->spkr_state ? "on" : "off");
288
289 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
290 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
291 sc->sc_audio1.intr, sc->sc_audio1.arg);
292
293 if (!ESS_USE_AUDIO1(sc->sc_model)) {
294 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
295 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
296 sc->sc_audio2.intr, sc->sc_audio2.arg);
297 }
298
299 printf("gain:");
300 for (i = 0; i < sc->ndevs; i++)
301 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
302 printf("\n");
303 }
304
305 void
306 ess_dump_mixer(sc)
307 struct ess_softc *sc;
308 {
309 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
310 0x7C, ess_read_mix_reg(sc, 0x7C));
311 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
312 0x1A, ess_read_mix_reg(sc, 0x1A));
313 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
314 0x3E, ess_read_mix_reg(sc, 0x3E));
315 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
316 0x36, ess_read_mix_reg(sc, 0x36));
317 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
318 0x38, ess_read_mix_reg(sc, 0x38));
319 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
320 0x3A, ess_read_mix_reg(sc, 0x3A));
321 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
322 0x32, ess_read_mix_reg(sc, 0x32));
323 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
324 0x3C, ess_read_mix_reg(sc, 0x3C));
325 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
326 0x69, ess_read_mix_reg(sc, 0x69));
327 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
328 0x68, ess_read_mix_reg(sc, 0x68));
329 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
330 0x6E, ess_read_mix_reg(sc, 0x6E));
331 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
332 0x6B, ess_read_mix_reg(sc, 0x6B));
333 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
334 0x6A, ess_read_mix_reg(sc, 0x6A));
335 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
336 0x6C, ess_read_mix_reg(sc, 0x6C));
337 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
338 0xB4, ess_read_x_reg(sc, 0xB4));
339 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
340 0x14, ess_read_mix_reg(sc, 0x14));
341
342 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
343 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
344 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
345 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
346 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
347 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
348 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
349 }
350
351 #endif
352
353 /*
354 * Configure the ESS chip for the desired audio base address.
355 */
356 int
357 ess_config_addr(sc)
358 struct ess_softc *sc;
359 {
360 int iobase = sc->sc_iobase;
361 bus_space_tag_t iot = sc->sc_iot;
362
363 /*
364 * Configure using the System Control Register method. This
365 * method is used when the AMODE line is tied high, which is
366 * the case for the Shark, but not for the evaluation board.
367 */
368
369 bus_space_handle_t scr_access_ioh;
370 bus_space_handle_t scr_ioh;
371 u_short scr_value;
372
373 /*
374 * Set the SCR bit to enable audio.
375 */
376 scr_value = ESS_SCR_AUDIO_ENABLE;
377
378 /*
379 * Set the SCR bits necessary to select the specified audio
380 * base address.
381 */
382 switch(iobase) {
383 case 0x220:
384 scr_value |= ESS_SCR_AUDIO_220;
385 break;
386 case 0x230:
387 scr_value |= ESS_SCR_AUDIO_230;
388 break;
389 case 0x240:
390 scr_value |= ESS_SCR_AUDIO_240;
391 break;
392 case 0x250:
393 scr_value |= ESS_SCR_AUDIO_250;
394 break;
395 default:
396 printf("ess: configured iobase 0x%x invalid\n", iobase);
397 return (1);
398 break;
399 }
400
401 /*
402 * Get a mapping for the System Control Register (SCR) access
403 * registers and the SCR data registers.
404 */
405 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
406 0, &scr_access_ioh)) {
407 printf("ess: can't map SCR access registers\n");
408 return (1);
409 }
410 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
411 0, &scr_ioh)) {
412 printf("ess: can't map SCR registers\n");
413 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
414 return (1);
415 }
416
417 /* Unlock the SCR. */
418 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
419
420 /* Write the base address information into SCR[0]. */
421 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
422 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
423
424 /* Lock the SCR. */
425 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
426
427 /* Unmap the SCR access ports and the SCR data ports. */
428 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
429 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
430
431 return 0;
432 }
433
434
435 /*
436 * Configure the ESS chip for the desired IRQ and DMA channels.
437 * ESS ISA
438 * --------
439 * IRQA irq9
440 * IRQB irq5
441 * IRQC irq7
442 * IRQD irq10
443 * IRQE irq15
444 *
445 * DRQA drq0
446 * DRQB drq1
447 * DRQC drq3
448 * DRQD drq5
449 */
450 void
451 ess_config_irq(sc)
452 struct ess_softc *sc;
453 {
454 int v;
455
456 DPRINTFN(2,("ess_config_irq\n"));
457
458 if (sc->sc_model == ESS_1887 &&
459 sc->sc_audio1.irq == sc->sc_audio2.irq &&
460 sc->sc_audio1.irq != -1) {
461 /* Use new method, both interrupts are the same. */
462 v = ESS_IS_SELECT_IRQ; /* enable intrs */
463 switch (sc->sc_audio1.irq) {
464 case 5:
465 v |= ESS_IS_INTRB;
466 break;
467 case 7:
468 v |= ESS_IS_INTRC;
469 break;
470 case 9:
471 v |= ESS_IS_INTRA;
472 break;
473 case 10:
474 v |= ESS_IS_INTRD;
475 break;
476 case 15:
477 v |= ESS_IS_INTRE;
478 break;
479 #ifdef DIAGNOSTIC
480 default:
481 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
482 sc->sc_audio1.irq);
483 return;
484 #endif
485 }
486 /* Set the IRQ */
487 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
488 return;
489 }
490
491 if (sc->sc_model == ESS_1887) {
492 /* Tell the 1887 to use the old interrupt method. */
493 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
494 }
495
496 if (sc->sc_audio1.polled) {
497 /* Turn off Audio1 interrupts. */
498 v = 0;
499 } else {
500 /* Configure Audio 1 for the appropriate IRQ line. */
501 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
502 switch (sc->sc_audio1.irq) {
503 case 5:
504 v |= ESS_IRQ_CTRL_INTRB;
505 break;
506 case 7:
507 v |= ESS_IRQ_CTRL_INTRC;
508 break;
509 case 9:
510 v |= ESS_IRQ_CTRL_INTRA;
511 break;
512 case 10:
513 v |= ESS_IRQ_CTRL_INTRD;
514 break;
515 #ifdef DIAGNOSTIC
516 default:
517 printf("ess: configured irq %d not supported for Audio 1\n",
518 sc->sc_audio1.irq);
519 return;
520 #endif
521 }
522 }
523 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
524
525 if (ESS_USE_AUDIO1(sc->sc_model))
526 return;
527
528 if (sc->sc_audio2.polled) {
529 /* Turn off Audio2 interrupts. */
530 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
531 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
532 } else {
533 /* Audio2 is hardwired to INTRE in this mode. */
534 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
535 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
536 }
537 }
538
539
540 void
541 ess_config_drq(sc)
542 struct ess_softc *sc;
543 {
544 int v;
545
546 DPRINTFN(2,("ess_config_drq\n"));
547
548 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
549 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
550 switch (sc->sc_audio1.drq) {
551 case 0:
552 v |= ESS_DRQ_CTRL_DRQA;
553 break;
554 case 1:
555 v |= ESS_DRQ_CTRL_DRQB;
556 break;
557 case 3:
558 v |= ESS_DRQ_CTRL_DRQC;
559 break;
560 #ifdef DIAGNOSTIC
561 default:
562 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
563 sc->sc_audio1.drq);
564 return;
565 #endif
566 }
567 /* Set DRQ1 */
568 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
569
570 if (ESS_USE_AUDIO1(sc->sc_model))
571 return;
572
573 /* Configure DRQ2 */
574 v = ESS_AUDIO2_CTRL3_DRQ_PD;
575 switch (sc->sc_audio2.drq) {
576 case 0:
577 v |= ESS_AUDIO2_CTRL3_DRQA;
578 break;
579 case 1:
580 v |= ESS_AUDIO2_CTRL3_DRQB;
581 break;
582 case 3:
583 v |= ESS_AUDIO2_CTRL3_DRQC;
584 break;
585 case 5:
586 v |= ESS_AUDIO2_CTRL3_DRQD;
587 break;
588 #ifdef DIAGNOSTIC
589 default:
590 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
591 sc->sc_audio2.drq);
592 return;
593 #endif
594 }
595 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
596 /* Enable DMA 2 */
597 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
598 ESS_AUDIO2_CTRL2_DMA_ENABLE);
599 }
600
601 /*
602 * Set up registers after a reset.
603 */
604 void
605 ess_setup(sc)
606 struct ess_softc *sc;
607 {
608
609 ess_config_irq(sc);
610 ess_config_drq(sc);
611
612 DPRINTFN(2,("ess_setup: done\n"));
613 }
614
615 /*
616 * Determine the model of ESS chip we are talking to. Currently we
617 * only support ES1888, ES1887 and ES888. The method of determining
618 * the chip is based on the information on page 27 of the ES1887 data
619 * sheet.
620 *
621 * This routine sets the values of sc->sc_model and sc->sc_version.
622 */
623 int
624 ess_identify(sc)
625 struct ess_softc *sc;
626 {
627 u_char reg1;
628 u_char reg2;
629 u_char reg3;
630 u_int8_t ident[4];
631
632 sc->sc_model = ESS_UNSUPPORTED;
633 sc->sc_version = 0;
634
635 memset(ident, 0, sizeof(ident));
636
637 /*
638 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
639 * n >= 8 for an ES1887 or an ES888. Other values indicate
640 * earlier (unsupported) chips.
641 */
642 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
643
644 if ((reg1 = ess_rdsp(sc)) != 0x68) {
645 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
646 return 1;
647 }
648
649 reg2 = ess_rdsp(sc);
650 if (((reg2 & 0xf0) != 0x80) ||
651 ((reg2 & 0x0f) < 8)) {
652 sc->sc_model = ESS_688;
653 return 0;
654 }
655
656 /*
657 * Store the ID bytes as the version.
658 */
659 sc->sc_version = (reg1 << 8) + reg2;
660
661
662 /*
663 * 2. Verify we can change bit 2 in mixer register 0x64. This
664 * should be possible on all supported chips.
665 */
666 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
667 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
668
669 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
670
671 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
672 switch (sc->sc_version) {
673 case 0x688b:
674 sc->sc_model = ESS_1688;
675 break;
676 default:
677 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
678 return 1;
679 }
680
681 return 0;
682 }
683
684 /*
685 * Restore the original value of mixer register 0x64.
686 */
687 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
688
689
690 /*
691 * 3. Verify we can change the value of mixer register
692 * ESS_MREG_SAMPLE_RATE.
693 * This is possible on the 1888/1887/888, but not on the 1788.
694 * It is not necessary to restore the value of this mixer register.
695 */
696 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
697 reg2 = reg1 ^ 0xff; /* toggle all bits */
698
699 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
700
701 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
702 /* If we got this far before failing, it's a 1788. */
703 sc->sc_model = ESS_1788;
704
705 /*
706 * Identify ESS model for ES18[67]8.
707 */
708 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
709 if(ident[0] == 0x18) {
710 switch(ident[1]) {
711 case 0x68:
712 sc->sc_model = ESS_1868;
713 break;
714 case 0x78:
715 sc->sc_model = ESS_1878;
716 break;
717 }
718 }
719
720 return 0;
721 }
722
723 /*
724 * 4. Determine if we can change bit 5 in mixer register 0x64.
725 * This determines whether we have an ES1887:
726 *
727 * - can change indicates ES1887
728 * - can't change indicates ES1888 or ES888
729 */
730 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
731 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
732
733 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
734
735 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
736 sc->sc_model = ESS_1887;
737
738 /*
739 * Restore the original value of mixer register 0x64.
740 */
741 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
742
743 /*
744 * Identify ESS model for ES18[67]9.
745 */
746 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
747 if(ident[0] == 0x18) {
748 switch(ident[1]) {
749 case 0x69:
750 sc->sc_model = ESS_1869;
751 break;
752 case 0x79:
753 sc->sc_model = ESS_1879;
754 break;
755 }
756 }
757
758 return 0;
759 }
760
761 /*
762 * 5. Determine if we can change the value of mixer
763 * register 0x69 independently of mixer register
764 * 0x68. This determines which chip we have:
765 *
766 * - can modify idependently indicates ES888
767 * - register 0x69 is an alias of 0x68 indicates ES1888
768 */
769 reg1 = ess_read_mix_reg(sc, 0x68);
770 reg2 = ess_read_mix_reg(sc, 0x69);
771 reg3 = reg2 ^ 0xff; /* toggle all bits */
772
773 /*
774 * Write different values to each register.
775 */
776 ess_write_mix_reg(sc, 0x68, reg2);
777 ess_write_mix_reg(sc, 0x69, reg3);
778
779 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
780 ess_read_mix_reg(sc, 0x69) == reg3)
781 sc->sc_model = ESS_888;
782 else
783 sc->sc_model = ESS_1888;
784
785 /*
786 * Restore the original value of the registers.
787 */
788 ess_write_mix_reg(sc, 0x68, reg1);
789 ess_write_mix_reg(sc, 0x69, reg2);
790
791 return 0;
792 }
793
794
795 int
796 ess_setup_sc(sc, doinit)
797 struct ess_softc *sc;
798 int doinit;
799 {
800
801 callout_init(&sc->sc_poll1_ch);
802 callout_init(&sc->sc_poll2_ch);
803
804 /* Reset the chip. */
805 if (ess_reset(sc) != 0) {
806 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
807 return (1);
808 }
809
810 /* Identify the ESS chip, and check that it is supported. */
811 if (ess_identify(sc)) {
812 DPRINTF(("ess_setup_sc: couldn't identify\n"));
813 return (1);
814 }
815
816 return (0);
817 }
818
819 /*
820 * Probe for the ESS hardware.
821 */
822 int
823 essmatch(sc)
824 struct ess_softc *sc;
825 {
826 if (!ESS_BASE_VALID(sc->sc_iobase)) {
827 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
828 return (0);
829 }
830
831 if (ess_setup_sc(sc, 1))
832 return (0);
833
834 if (sc->sc_model == ESS_UNSUPPORTED) {
835 DPRINTF(("ess: Unsupported model\n"));
836 return (0);
837 }
838
839 /* Check that requested DMA channels are valid and different. */
840 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
841 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
842 return (0);
843 }
844 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
845 return (0);
846 if (!ESS_USE_AUDIO1(sc->sc_model)) {
847 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
848 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
849 return (0);
850 }
851 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
852 printf("ess: play and record drq both %d\n",
853 sc->sc_audio1.drq);
854 return (0);
855 }
856 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
857 return (0);
858 }
859
860 /*
861 * The 1887 has an additional IRQ mode where both channels are mapped
862 * to the same IRQ.
863 */
864 if (sc->sc_model == ESS_1887 &&
865 sc->sc_audio1.irq == sc->sc_audio2.irq &&
866 sc->sc_audio1.irq != -1 &&
867 ESS_IRQ12_VALID(sc->sc_audio1.irq))
868 goto irq_not1888;
869
870 /* Check that requested IRQ lines are valid and different. */
871 if (sc->sc_audio1.irq != -1 &&
872 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
873 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
874 return (0);
875 }
876 if (!ESS_USE_AUDIO1(sc->sc_model)) {
877 if (sc->sc_audio2.irq != -1 &&
878 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
879 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
880 return (0);
881 }
882 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
883 sc->sc_audio1.irq != -1) {
884 printf("ess: play and record irq both %d\n",
885 sc->sc_audio1.irq);
886 return (0);
887 }
888 }
889
890 irq_not1888:
891 /* XXX should we check IRQs as well? */
892
893 return (2); /* beat "sb" */
894 }
895
896
897 /*
898 * Attach hardware to driver, attach hardware driver to audio
899 * pseudo-device driver.
900 */
901 void
902 essattach(sc, enablejoy)
903 struct ess_softc *sc;
904 int enablejoy;
905 {
906 struct audio_attach_args arg;
907 struct audio_params pparams, rparams;
908 int i;
909 u_int v;
910
911 if (ess_setup_sc(sc, 0)) {
912 printf(": setup failed\n");
913 return;
914 }
915
916 printf(": ESS Technology ES%s [version 0x%04x]\n",
917 essmodel[sc->sc_model], sc->sc_version);
918
919 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
920 if (!sc->sc_audio1.polled) {
921 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
922 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
923 ess_audio1_intr, sc);
924 printf("%s: audio1 interrupting at irq %d\n",
925 sc->sc_dev.dv_xname, sc->sc_audio1.irq);
926 } else
927 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
928 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
929
930 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
931 printf("%s: can't reserve drq %d\n",
932 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
933 return;
934 }
935
936 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
937 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
938 printf("%s: can't create map for drq %d\n",
939 sc->sc_dev.dv_xname, sc->sc_audio1.drq);
940 return;
941 }
942
943 if (!ESS_USE_AUDIO1(sc->sc_model)) {
944 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
945 if (!sc->sc_audio2.polled) {
946 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
947 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
948 ess_audio2_intr, sc);
949 printf("%s: audio2 interrupting at irq %d\n",
950 sc->sc_dev.dv_xname, sc->sc_audio2.irq);
951 } else
952 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
953 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
954 sc->sc_audio2.drq);
955
956 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
957 printf("%s: can't reserve drq %d\n",
958 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
959 return;
960 }
961
962 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
963 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
964 printf("%s: can't create map for drq %d\n",
965 sc->sc_dev.dv_xname, sc->sc_audio2.drq);
966 return;
967 }
968 }
969
970 /*
971 * Set record and play parameters to default values defined in
972 * generic audio driver.
973 */
974 pparams = audio_default;
975 rparams = audio_default;
976 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
977
978 /* Do a hardware reset on the mixer. */
979 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
980
981 /*
982 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
983 * to playback mixer, since playback is always through Audio 2.
984 */
985 if (!ESS_USE_AUDIO1(sc->sc_model))
986 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
987 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
988
989 if (ESS_USE_AUDIO1(sc->sc_model)) {
990 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
991 sc->in_port = ESS_SOURCE_MIC;
992 sc->ndevs = ESS_1788_NDEVS;
993 } else {
994 /*
995 * Set hardware record source to use output of the record
996 * mixer. We do the selection of record source in software by
997 * setting the gain of the unused sources to zero. (See
998 * ess_set_in_ports.)
999 */
1000 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1001 sc->in_mask = 1 << ESS_MIC_REC_VOL;
1002 sc->ndevs = ESS_1888_NDEVS;
1003 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1004 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1005 }
1006
1007 /*
1008 * Set gain on each mixer device to a sensible value.
1009 * Devices not normally used are turned off, and other devices
1010 * are set to 50% volume.
1011 */
1012 for (i = 0; i < sc->ndevs; i++) {
1013 switch (i) {
1014 case ESS_MIC_PLAY_VOL:
1015 case ESS_LINE_PLAY_VOL:
1016 case ESS_CD_PLAY_VOL:
1017 case ESS_AUXB_PLAY_VOL:
1018 case ESS_DAC_REC_VOL:
1019 case ESS_LINE_REC_VOL:
1020 case ESS_SYNTH_REC_VOL:
1021 case ESS_CD_REC_VOL:
1022 case ESS_AUXB_REC_VOL:
1023 v = 0;
1024 break;
1025 default:
1026 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1027 break;
1028 }
1029 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1030 ess_set_gain(sc, i, 1);
1031 }
1032
1033 ess_setup(sc);
1034
1035 /* Disable the speaker until the device is opened. */
1036 ess_speaker_off(sc);
1037 sc->spkr_state = SPKR_OFF;
1038
1039 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1040 essmodel[sc->sc_model]);
1041 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1042 sc->sc_version);
1043
1044 if (ESS_USE_AUDIO1(sc->sc_model))
1045 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1046 else
1047 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1048
1049 arg.type = AUDIODEV_TYPE_OPL;
1050 arg.hwif = 0;
1051 arg.hdl = 0;
1052 (void)config_found(&sc->sc_dev, &arg, audioprint);
1053
1054 #if NJOY_ESS > 0
1055 if (sc->sc_model == ESS_1888 && enablejoy) {
1056 unsigned char m40;
1057
1058 m40 = ess_read_mix_reg(sc, 0x40);
1059 m40 |= 2;
1060 ess_write_mix_reg(sc, 0x40, m40);
1061
1062 arg.type = AUDIODEV_TYPE_AUX;
1063 (void)config_found(&sc->sc_dev, &arg, audioprint);
1064 }
1065 #endif
1066
1067 #ifdef AUDIO_DEBUG
1068 if (essdebug > 0)
1069 ess_printsc(sc);
1070 #endif
1071 }
1072
1073 /*
1074 * Various routines to interface to higher level audio driver
1075 */
1076
1077 int
1078 ess_open(addr, flags)
1079 void *addr;
1080 int flags;
1081 {
1082 return (0);
1083 }
1084
1085 void
1086 ess_close(addr)
1087 void *addr;
1088 {
1089 struct ess_softc *sc = addr;
1090
1091 DPRINTF(("ess_close: sc=%p\n", sc));
1092
1093 ess_speaker_off(sc);
1094 sc->spkr_state = SPKR_OFF;
1095
1096 DPRINTF(("ess_close: closed\n"));
1097 }
1098
1099 /*
1100 * Wait for FIFO to drain, and analog section to settle.
1101 * XXX should check FIFO empty bit.
1102 */
1103 int
1104 ess_drain(addr)
1105 void *addr;
1106 {
1107 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1108 return (0);
1109 }
1110
1111 /* XXX should use reference count */
1112 int
1113 ess_speaker_ctl(addr, newstate)
1114 void *addr;
1115 int newstate;
1116 {
1117 struct ess_softc *sc = addr;
1118
1119 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1120 ess_speaker_on(sc);
1121 sc->spkr_state = SPKR_ON;
1122 }
1123 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1124 ess_speaker_off(sc);
1125 sc->spkr_state = SPKR_OFF;
1126 }
1127 return (0);
1128 }
1129
1130 int
1131 ess_getdev(addr, retp)
1132 void *addr;
1133 struct audio_device *retp;
1134 {
1135 *retp = ess_device;
1136 return (0);
1137 }
1138
1139 int
1140 ess_query_encoding(addr, fp)
1141 void *addr;
1142 struct audio_encoding *fp;
1143 {
1144 /*struct ess_softc *sc = addr;*/
1145
1146 switch (fp->index) {
1147 case 0:
1148 strcpy(fp->name, AudioEulinear);
1149 fp->encoding = AUDIO_ENCODING_ULINEAR;
1150 fp->precision = 8;
1151 fp->flags = 0;
1152 return (0);
1153 case 1:
1154 strcpy(fp->name, AudioEmulaw);
1155 fp->encoding = AUDIO_ENCODING_ULAW;
1156 fp->precision = 8;
1157 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1158 return (0);
1159 case 2:
1160 strcpy(fp->name, AudioEalaw);
1161 fp->encoding = AUDIO_ENCODING_ALAW;
1162 fp->precision = 8;
1163 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1164 return (0);
1165 case 3:
1166 strcpy(fp->name, AudioEslinear);
1167 fp->encoding = AUDIO_ENCODING_SLINEAR;
1168 fp->precision = 8;
1169 fp->flags = 0;
1170 return (0);
1171 case 4:
1172 strcpy(fp->name, AudioEslinear_le);
1173 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1174 fp->precision = 16;
1175 fp->flags = 0;
1176 return (0);
1177 case 5:
1178 strcpy(fp->name, AudioEulinear_le);
1179 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1180 fp->precision = 16;
1181 fp->flags = 0;
1182 return (0);
1183 case 6:
1184 strcpy(fp->name, AudioEslinear_be);
1185 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1186 fp->precision = 16;
1187 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1188 return (0);
1189 case 7:
1190 strcpy(fp->name, AudioEulinear_be);
1191 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1192 fp->precision = 16;
1193 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1194 return (0);
1195 default:
1196 return EINVAL;
1197 }
1198 return (0);
1199 }
1200
1201 int
1202 ess_set_params(addr, setmode, usemode, play, rec)
1203 void *addr;
1204 int setmode, usemode;
1205 struct audio_params *play, *rec;
1206 {
1207 struct ess_softc *sc = addr;
1208 struct audio_params *p;
1209 int mode;
1210 int rate;
1211
1212 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1213
1214 /*
1215 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1216 * full-duplex operation the sample rates must be the same for both
1217 * channels. This appears to be false; the only bit in common is the
1218 * clock source selection. However, we'll be conservative here.
1219 * - mycroft
1220 */
1221 if (play->sample_rate != rec->sample_rate &&
1222 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1223 if (setmode == AUMODE_PLAY) {
1224 rec->sample_rate = play->sample_rate;
1225 setmode |= AUMODE_RECORD;
1226 } else if (setmode == AUMODE_RECORD) {
1227 play->sample_rate = rec->sample_rate;
1228 setmode |= AUMODE_PLAY;
1229 } else
1230 return (EINVAL);
1231 }
1232
1233 for (mode = AUMODE_RECORD; mode != -1;
1234 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1235 if ((setmode & mode) == 0)
1236 continue;
1237
1238 p = mode == AUMODE_PLAY ? play : rec;
1239
1240 if (p->sample_rate < ESS_MINRATE ||
1241 p->sample_rate > ESS_MAXRATE ||
1242 (p->precision != 8 && p->precision != 16) ||
1243 (p->channels != 1 && p->channels != 2))
1244 return (EINVAL);
1245
1246 p->factor = 1;
1247 p->sw_code = 0;
1248 switch (p->encoding) {
1249 case AUDIO_ENCODING_SLINEAR_BE:
1250 case AUDIO_ENCODING_ULINEAR_BE:
1251 if (p->precision == 16)
1252 p->sw_code = swap_bytes;
1253 break;
1254 case AUDIO_ENCODING_SLINEAR_LE:
1255 case AUDIO_ENCODING_ULINEAR_LE:
1256 break;
1257 case AUDIO_ENCODING_ULAW:
1258 if (mode == AUMODE_PLAY) {
1259 p->factor = 2;
1260 p->sw_code = mulaw_to_ulinear16_le;
1261 } else
1262 p->sw_code = ulinear8_to_mulaw;
1263 break;
1264 case AUDIO_ENCODING_ALAW:
1265 if (mode == AUMODE_PLAY) {
1266 p->factor = 2;
1267 p->sw_code = alaw_to_ulinear16_le;
1268 } else
1269 p->sw_code = ulinear8_to_alaw;
1270 break;
1271 default:
1272 return (EINVAL);
1273 }
1274 }
1275
1276 if (usemode == AUMODE_RECORD)
1277 rate = rec->sample_rate;
1278 else
1279 rate = play->sample_rate;
1280
1281 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1282 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1283
1284 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1285 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1286 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1287 }
1288
1289 return (0);
1290 }
1291
1292 int
1293 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1294 void *addr;
1295 void *start, *end;
1296 int blksize;
1297 void (*intr) __P((void *));
1298 void *arg;
1299 struct audio_params *param;
1300 {
1301 struct ess_softc *sc = addr;
1302 u_int8_t reg;
1303
1304 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1305 addr, start, end, blksize, intr, arg));
1306
1307 if (sc->sc_audio1.active)
1308 panic("ess_audio1_trigger_output: already running");
1309
1310 sc->sc_audio1.active = 1;
1311 sc->sc_audio1.intr = intr;
1312 sc->sc_audio1.arg = arg;
1313 if (sc->sc_audio1.polled) {
1314 sc->sc_audio1.dmapos = 0;
1315 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1316 sc->sc_audio1.dmacount = 0;
1317 sc->sc_audio1.blksize = blksize;
1318 callout_reset(&sc->sc_poll1_ch, hz / 30,
1319 ess_audio1_poll, sc);
1320 }
1321
1322 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1323 if (param->channels == 2) {
1324 reg &= ~ESS_AUDIO_CTRL_MONO;
1325 reg |= ESS_AUDIO_CTRL_STEREO;
1326 } else {
1327 reg |= ESS_AUDIO_CTRL_MONO;
1328 reg &= ~ESS_AUDIO_CTRL_STEREO;
1329 }
1330 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1331
1332 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1333 if (param->precision * param->factor == 16)
1334 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1335 else
1336 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1337 if (param->channels == 2)
1338 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1339 else
1340 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1341 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1342 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1343 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1344 else
1345 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1346 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1347 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1348
1349 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1350 (char *)end - (char *)start, NULL,
1351 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1352
1353 /* Program transfer count registers with 2's complement of count. */
1354 blksize = -blksize;
1355 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1356 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1357
1358 /* Use 4 bytes per output DMA. */
1359 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1360
1361 /* Start auto-init DMA */
1362 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1363 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1364 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1365 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1366 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1367
1368 return (0);
1369 }
1370
1371 int
1372 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1373 void *addr;
1374 void *start, *end;
1375 int blksize;
1376 void (*intr) __P((void *));
1377 void *arg;
1378 struct audio_params *param;
1379 {
1380 struct ess_softc *sc = addr;
1381 u_int8_t reg;
1382
1383 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1384 addr, start, end, blksize, intr, arg));
1385
1386 if (sc->sc_audio2.active)
1387 panic("ess_audio2_trigger_output: already running");
1388
1389 sc->sc_audio2.active = 1;
1390 sc->sc_audio2.intr = intr;
1391 sc->sc_audio2.arg = arg;
1392 if (sc->sc_audio2.polled) {
1393 sc->sc_audio2.dmapos = 0;
1394 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1395 sc->sc_audio2.dmacount = 0;
1396 sc->sc_audio2.blksize = blksize;
1397 callout_reset(&sc->sc_poll2_ch, hz / 30,
1398 ess_audio2_poll, sc);
1399 }
1400
1401 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1402 if (param->precision * param->factor == 16)
1403 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1404 else
1405 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1406 if (param->channels == 2)
1407 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1408 else
1409 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1410 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1411 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1412 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1413 else
1414 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1415 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1416
1417 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1418 (char *)end - (char *)start, NULL,
1419 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1420
1421 if (IS16BITDRQ(sc->sc_audio2.drq))
1422 blksize >>= 1; /* use word count for 16 bit DMA */
1423 /* Program transfer count registers with 2's complement of count. */
1424 blksize = -blksize;
1425 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1426 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1427
1428 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1429 if (IS16BITDRQ(sc->sc_audio2.drq))
1430 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1431 else
1432 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1433 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1434 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1435 ESS_AUDIO2_CTRL1_AUTO_INIT;
1436 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1437
1438 return (0);
1439 }
1440
1441 int
1442 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1443 void *addr;
1444 void *start, *end;
1445 int blksize;
1446 void (*intr) __P((void *));
1447 void *arg;
1448 struct audio_params *param;
1449 {
1450 struct ess_softc *sc = addr;
1451 u_int8_t reg;
1452
1453 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1454 addr, start, end, blksize, intr, arg));
1455
1456 if (sc->sc_audio1.active)
1457 panic("ess_audio1_trigger_input: already running");
1458
1459 sc->sc_audio1.active = 1;
1460 sc->sc_audio1.intr = intr;
1461 sc->sc_audio1.arg = arg;
1462 if (sc->sc_audio1.polled) {
1463 sc->sc_audio1.dmapos = 0;
1464 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1465 sc->sc_audio1.dmacount = 0;
1466 sc->sc_audio1.blksize = blksize;
1467 callout_reset(&sc->sc_poll1_ch, hz / 30,
1468 ess_audio1_poll, sc);
1469 }
1470
1471 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1472 if (param->channels == 2) {
1473 reg &= ~ESS_AUDIO_CTRL_MONO;
1474 reg |= ESS_AUDIO_CTRL_STEREO;
1475 } else {
1476 reg |= ESS_AUDIO_CTRL_MONO;
1477 reg &= ~ESS_AUDIO_CTRL_STEREO;
1478 }
1479 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1480
1481 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1482 if (param->precision * param->factor == 16)
1483 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1484 else
1485 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1486 if (param->channels == 2)
1487 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1488 else
1489 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1490 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1491 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1492 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1493 else
1494 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1495 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1496 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1497
1498 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1499 (char *)end - (char *)start, NULL,
1500 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1501
1502 /* Program transfer count registers with 2's complement of count. */
1503 blksize = -blksize;
1504 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1505 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1506
1507 /* Use 4 bytes per input DMA. */
1508 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1509
1510 /* Start auto-init DMA */
1511 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1512 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1513 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1514 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1515 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1516
1517 return (0);
1518 }
1519
1520 int
1521 ess_audio1_halt(addr)
1522 void *addr;
1523 {
1524 struct ess_softc *sc = addr;
1525
1526 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1527
1528 if (sc->sc_audio1.active) {
1529 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1530 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1531 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1532 if (sc->sc_audio1.polled)
1533 callout_stop(&sc->sc_poll1_ch);
1534 sc->sc_audio1.active = 0;
1535 }
1536
1537 return (0);
1538 }
1539
1540 int
1541 ess_audio2_halt(addr)
1542 void *addr;
1543 {
1544 struct ess_softc *sc = addr;
1545
1546 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1547
1548 if (sc->sc_audio2.active) {
1549 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1550 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1551 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1552 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1553 if (sc->sc_audio2.polled)
1554 callout_stop(&sc->sc_poll2_ch);
1555 sc->sc_audio2.active = 0;
1556 }
1557
1558 return (0);
1559 }
1560
1561 int
1562 ess_audio1_intr(arg)
1563 void *arg;
1564 {
1565 struct ess_softc *sc = arg;
1566 u_int8_t reg;
1567
1568 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1569
1570 /* Check and clear interrupt on Audio1. */
1571 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1572 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1573 return (0);
1574 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1575
1576 sc->sc_audio1.nintr++;
1577
1578 if (sc->sc_audio1.active) {
1579 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1580 return (1);
1581 } else
1582 return (0);
1583 }
1584
1585 int
1586 ess_audio2_intr(arg)
1587 void *arg;
1588 {
1589 struct ess_softc *sc = arg;
1590 u_int8_t reg;
1591
1592 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1593
1594 /* Check and clear interrupt on Audio2. */
1595 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1596 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1597 return (0);
1598 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1599 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1600
1601 sc->sc_audio2.nintr++;
1602
1603 if (sc->sc_audio2.active) {
1604 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1605 return (1);
1606 } else
1607 return (0);
1608 }
1609
1610 void
1611 ess_audio1_poll(addr)
1612 void *addr;
1613 {
1614 struct ess_softc *sc = addr;
1615 int dmapos, dmacount;
1616
1617 if (!sc->sc_audio1.active)
1618 return;
1619
1620 sc->sc_audio1.nintr++;
1621
1622 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1623 dmacount = sc->sc_audio1.dmapos - dmapos;
1624 if (dmacount < 0)
1625 dmacount += sc->sc_audio1.buffersize;
1626 sc->sc_audio1.dmapos = dmapos;
1627 #if 1
1628 dmacount += sc->sc_audio1.dmacount;
1629 while (dmacount > sc->sc_audio1.blksize) {
1630 dmacount -= sc->sc_audio1.blksize;
1631 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1632 }
1633 sc->sc_audio1.dmacount = dmacount;
1634 #else
1635 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1636 #endif
1637
1638 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1639 }
1640
1641 void
1642 ess_audio2_poll(addr)
1643 void *addr;
1644 {
1645 struct ess_softc *sc = addr;
1646 int dmapos, dmacount;
1647
1648 if (!sc->sc_audio2.active)
1649 return;
1650
1651 sc->sc_audio2.nintr++;
1652
1653 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1654 dmacount = sc->sc_audio2.dmapos - dmapos;
1655 if (dmacount < 0)
1656 dmacount += sc->sc_audio2.buffersize;
1657 sc->sc_audio2.dmapos = dmapos;
1658 #if 1
1659 dmacount += sc->sc_audio2.dmacount;
1660 while (dmacount > sc->sc_audio2.blksize) {
1661 dmacount -= sc->sc_audio2.blksize;
1662 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1663 }
1664 sc->sc_audio2.dmacount = dmacount;
1665 #else
1666 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1667 #endif
1668
1669 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1670 }
1671
1672 int
1673 ess_round_blocksize(addr, blk)
1674 void *addr;
1675 int blk;
1676 {
1677 return (blk & -8); /* round for max DMA size */
1678 }
1679
1680 int
1681 ess_set_port(addr, cp)
1682 void *addr;
1683 mixer_ctrl_t *cp;
1684 {
1685 struct ess_softc *sc = addr;
1686 int lgain, rgain;
1687
1688 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1689 cp->dev, cp->un.value.num_channels));
1690
1691 switch (cp->dev) {
1692 /*
1693 * The following mixer ports are all stereo. If we get a
1694 * single-channel gain value passed in, then we duplicate it
1695 * to both left and right channels.
1696 */
1697 case ESS_MASTER_VOL:
1698 case ESS_DAC_PLAY_VOL:
1699 case ESS_MIC_PLAY_VOL:
1700 case ESS_LINE_PLAY_VOL:
1701 case ESS_SYNTH_PLAY_VOL:
1702 case ESS_CD_PLAY_VOL:
1703 case ESS_AUXB_PLAY_VOL:
1704 case ESS_RECORD_VOL:
1705 if (cp->type != AUDIO_MIXER_VALUE)
1706 return EINVAL;
1707
1708 switch (cp->un.value.num_channels) {
1709 case 1:
1710 lgain = rgain = ESS_4BIT_GAIN(
1711 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1712 break;
1713 case 2:
1714 lgain = ESS_4BIT_GAIN(
1715 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1716 rgain = ESS_4BIT_GAIN(
1717 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1718 break;
1719 default:
1720 return EINVAL;
1721 }
1722
1723 sc->gain[cp->dev][ESS_LEFT] = lgain;
1724 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1725 ess_set_gain(sc, cp->dev, 1);
1726 return (0);
1727
1728 /*
1729 * The PC speaker port is mono. If we get a stereo gain value
1730 * passed in, then we return EINVAL.
1731 */
1732 case ESS_PCSPEAKER_VOL:
1733 if (cp->un.value.num_channels != 1)
1734 return EINVAL;
1735
1736 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1737 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1738 ess_set_gain(sc, cp->dev, 1);
1739 return (0);
1740
1741 case ESS_RECORD_SOURCE:
1742 if (ESS_USE_AUDIO1(sc->sc_model)) {
1743 if (cp->type == AUDIO_MIXER_ENUM)
1744 return (ess_set_in_port(sc, cp->un.ord));
1745 else
1746 return (EINVAL);
1747 } else {
1748 if (cp->type == AUDIO_MIXER_SET)
1749 return (ess_set_in_ports(sc, cp->un.mask));
1750 else
1751 return (EINVAL);
1752 }
1753 return (0);
1754
1755 case ESS_RECORD_MONITOR:
1756 if (cp->type != AUDIO_MIXER_ENUM)
1757 return EINVAL;
1758
1759 if (cp->un.ord)
1760 /* Enable monitor */
1761 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1762 ESS_AUDIO_CTRL_MONITOR);
1763 else
1764 /* Disable monitor */
1765 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1766 ESS_AUDIO_CTRL_MONITOR);
1767 return (0);
1768 }
1769
1770 if (ESS_USE_AUDIO1(sc->sc_model))
1771 return (EINVAL);
1772
1773 switch (cp->dev) {
1774 case ESS_DAC_REC_VOL:
1775 case ESS_MIC_REC_VOL:
1776 case ESS_LINE_REC_VOL:
1777 case ESS_SYNTH_REC_VOL:
1778 case ESS_CD_REC_VOL:
1779 case ESS_AUXB_REC_VOL:
1780 if (cp->type != AUDIO_MIXER_VALUE)
1781 return EINVAL;
1782
1783 switch (cp->un.value.num_channels) {
1784 case 1:
1785 lgain = rgain = ESS_4BIT_GAIN(
1786 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1787 break;
1788 case 2:
1789 lgain = ESS_4BIT_GAIN(
1790 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1791 rgain = ESS_4BIT_GAIN(
1792 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1793 break;
1794 default:
1795 return EINVAL;
1796 }
1797
1798 sc->gain[cp->dev][ESS_LEFT] = lgain;
1799 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1800 ess_set_gain(sc, cp->dev, 1);
1801 return (0);
1802
1803 case ESS_MIC_PREAMP:
1804 if (cp->type != AUDIO_MIXER_ENUM)
1805 return EINVAL;
1806
1807 if (cp->un.ord)
1808 /* Enable microphone preamp */
1809 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1810 ESS_PREAMP_CTRL_ENABLE);
1811 else
1812 /* Disable microphone preamp */
1813 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1814 ESS_PREAMP_CTRL_ENABLE);
1815 return (0);
1816 }
1817
1818 return (EINVAL);
1819 }
1820
1821 int
1822 ess_get_port(addr, cp)
1823 void *addr;
1824 mixer_ctrl_t *cp;
1825 {
1826 struct ess_softc *sc = addr;
1827
1828 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1829
1830 switch (cp->dev) {
1831 case ESS_MASTER_VOL:
1832 case ESS_DAC_PLAY_VOL:
1833 case ESS_MIC_PLAY_VOL:
1834 case ESS_LINE_PLAY_VOL:
1835 case ESS_SYNTH_PLAY_VOL:
1836 case ESS_CD_PLAY_VOL:
1837 case ESS_AUXB_PLAY_VOL:
1838 case ESS_RECORD_VOL:
1839 switch (cp->un.value.num_channels) {
1840 case 1:
1841 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1842 sc->gain[cp->dev][ESS_LEFT];
1843 break;
1844 case 2:
1845 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1846 sc->gain[cp->dev][ESS_LEFT];
1847 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1848 sc->gain[cp->dev][ESS_RIGHT];
1849 break;
1850 default:
1851 return EINVAL;
1852 }
1853 return (0);
1854
1855 case ESS_PCSPEAKER_VOL:
1856 if (cp->un.value.num_channels != 1)
1857 return EINVAL;
1858
1859 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1860 sc->gain[cp->dev][ESS_LEFT];
1861 return (0);
1862
1863 case ESS_RECORD_SOURCE:
1864 if (ESS_USE_AUDIO1(sc->sc_model))
1865 cp->un.ord = sc->in_port;
1866 else
1867 cp->un.mask = sc->in_mask;
1868 return (0);
1869
1870 case ESS_RECORD_MONITOR:
1871 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1872 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1873 return (0);
1874 }
1875
1876 if (ESS_USE_AUDIO1(sc->sc_model))
1877 return (EINVAL);
1878
1879 switch (cp->dev) {
1880 case ESS_DAC_REC_VOL:
1881 case ESS_MIC_REC_VOL:
1882 case ESS_LINE_REC_VOL:
1883 case ESS_SYNTH_REC_VOL:
1884 case ESS_CD_REC_VOL:
1885 case ESS_AUXB_REC_VOL:
1886 switch (cp->un.value.num_channels) {
1887 case 1:
1888 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1889 sc->gain[cp->dev][ESS_LEFT];
1890 break;
1891 case 2:
1892 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1893 sc->gain[cp->dev][ESS_LEFT];
1894 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1895 sc->gain[cp->dev][ESS_RIGHT];
1896 break;
1897 default:
1898 return EINVAL;
1899 }
1900 return (0);
1901
1902 case ESS_MIC_PREAMP:
1903 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1904 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1905 return (0);
1906 }
1907
1908 return (EINVAL);
1909 }
1910
1911 int
1912 ess_query_devinfo(addr, dip)
1913 void *addr;
1914 mixer_devinfo_t *dip;
1915 {
1916 struct ess_softc *sc = addr;
1917
1918 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1919 sc->sc_model, dip->index));
1920
1921 /*
1922 * REVISIT: There are some slight differences between the
1923 * mixers on the different ESS chips, which can
1924 * be sorted out using the chip model rather than a
1925 * separate mixer model.
1926 * This is currently coded assuming an ES1887; we
1927 * need to work out which bits are not applicable to
1928 * the other models (1888 and 888).
1929 */
1930 switch (dip->index) {
1931 case ESS_DAC_PLAY_VOL:
1932 dip->mixer_class = ESS_INPUT_CLASS;
1933 dip->next = dip->prev = AUDIO_MIXER_LAST;
1934 strcpy(dip->label.name, AudioNdac);
1935 dip->type = AUDIO_MIXER_VALUE;
1936 dip->un.v.num_channels = 2;
1937 strcpy(dip->un.v.units.name, AudioNvolume);
1938 return (0);
1939
1940 case ESS_MIC_PLAY_VOL:
1941 dip->mixer_class = ESS_INPUT_CLASS;
1942 dip->prev = AUDIO_MIXER_LAST;
1943 if (ESS_USE_AUDIO1(sc->sc_model))
1944 dip->next = AUDIO_MIXER_LAST;
1945 else
1946 dip->next = ESS_MIC_PREAMP;
1947 strcpy(dip->label.name, AudioNmicrophone);
1948 dip->type = AUDIO_MIXER_VALUE;
1949 dip->un.v.num_channels = 2;
1950 strcpy(dip->un.v.units.name, AudioNvolume);
1951 return (0);
1952
1953 case ESS_LINE_PLAY_VOL:
1954 dip->mixer_class = ESS_INPUT_CLASS;
1955 dip->next = dip->prev = AUDIO_MIXER_LAST;
1956 strcpy(dip->label.name, AudioNline);
1957 dip->type = AUDIO_MIXER_VALUE;
1958 dip->un.v.num_channels = 2;
1959 strcpy(dip->un.v.units.name, AudioNvolume);
1960 return (0);
1961
1962 case ESS_SYNTH_PLAY_VOL:
1963 dip->mixer_class = ESS_INPUT_CLASS;
1964 dip->next = dip->prev = AUDIO_MIXER_LAST;
1965 strcpy(dip->label.name, AudioNfmsynth);
1966 dip->type = AUDIO_MIXER_VALUE;
1967 dip->un.v.num_channels = 2;
1968 strcpy(dip->un.v.units.name, AudioNvolume);
1969 return (0);
1970
1971 case ESS_CD_PLAY_VOL:
1972 dip->mixer_class = ESS_INPUT_CLASS;
1973 dip->next = dip->prev = AUDIO_MIXER_LAST;
1974 strcpy(dip->label.name, AudioNcd);
1975 dip->type = AUDIO_MIXER_VALUE;
1976 dip->un.v.num_channels = 2;
1977 strcpy(dip->un.v.units.name, AudioNvolume);
1978 return (0);
1979
1980 case ESS_AUXB_PLAY_VOL:
1981 dip->mixer_class = ESS_INPUT_CLASS;
1982 dip->next = dip->prev = AUDIO_MIXER_LAST;
1983 strcpy(dip->label.name, "auxb");
1984 dip->type = AUDIO_MIXER_VALUE;
1985 dip->un.v.num_channels = 2;
1986 strcpy(dip->un.v.units.name, AudioNvolume);
1987 return (0);
1988
1989 case ESS_INPUT_CLASS:
1990 dip->mixer_class = ESS_INPUT_CLASS;
1991 dip->next = dip->prev = AUDIO_MIXER_LAST;
1992 strcpy(dip->label.name, AudioCinputs);
1993 dip->type = AUDIO_MIXER_CLASS;
1994 return (0);
1995
1996 case ESS_MASTER_VOL:
1997 dip->mixer_class = ESS_OUTPUT_CLASS;
1998 dip->next = dip->prev = AUDIO_MIXER_LAST;
1999 strcpy(dip->label.name, AudioNmaster);
2000 dip->type = AUDIO_MIXER_VALUE;
2001 dip->un.v.num_channels = 2;
2002 strcpy(dip->un.v.units.name, AudioNvolume);
2003 return (0);
2004
2005 case ESS_PCSPEAKER_VOL:
2006 dip->mixer_class = ESS_OUTPUT_CLASS;
2007 dip->next = dip->prev = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, "pc_speaker");
2009 dip->type = AUDIO_MIXER_VALUE;
2010 dip->un.v.num_channels = 1;
2011 strcpy(dip->un.v.units.name, AudioNvolume);
2012 return (0);
2013
2014 case ESS_OUTPUT_CLASS:
2015 dip->mixer_class = ESS_OUTPUT_CLASS;
2016 dip->next = dip->prev = AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioCoutputs);
2018 dip->type = AUDIO_MIXER_CLASS;
2019 return (0);
2020
2021 case ESS_RECORD_VOL:
2022 dip->mixer_class = ESS_RECORD_CLASS;
2023 dip->next = dip->prev = AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioNrecord);
2025 dip->type = AUDIO_MIXER_VALUE;
2026 dip->un.v.num_channels = 2;
2027 strcpy(dip->un.v.units.name, AudioNvolume);
2028 return (0);
2029
2030 case ESS_RECORD_SOURCE:
2031 dip->mixer_class = ESS_RECORD_CLASS;
2032 dip->next = dip->prev = AUDIO_MIXER_LAST;
2033 strcpy(dip->label.name, AudioNsource);
2034 if (ESS_USE_AUDIO1(sc->sc_model)) {
2035 /*
2036 * The 1788 doesn't use the input mixer control that
2037 * the 1888 uses, because it's a pain when you only
2038 * have one mixer.
2039 * Perhaps it could be emulated by keeping both sets of
2040 * gain values, and doing a `context switch' of the
2041 * mixer registers when shifting from playing to
2042 * recording.
2043 */
2044 dip->type = AUDIO_MIXER_ENUM;
2045 dip->un.e.num_mem = 4;
2046 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2047 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2048 strcpy(dip->un.e.member[1].label.name, AudioNline);
2049 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2050 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2051 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2052 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2053 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2054 } else {
2055 dip->type = AUDIO_MIXER_SET;
2056 dip->un.s.num_mem = 6;
2057 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2058 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2059 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2060 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2061 strcpy(dip->un.s.member[2].label.name, AudioNline);
2062 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2063 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2064 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2065 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2066 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2067 strcpy(dip->un.s.member[5].label.name, "auxb");
2068 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2069 }
2070 return (0);
2071
2072 case ESS_RECORD_CLASS:
2073 dip->mixer_class = ESS_RECORD_CLASS;
2074 dip->next = dip->prev = AUDIO_MIXER_LAST;
2075 strcpy(dip->label.name, AudioCrecord);
2076 dip->type = AUDIO_MIXER_CLASS;
2077 return (0);
2078
2079 case ESS_RECORD_MONITOR:
2080 dip->prev = dip->next = AUDIO_MIXER_LAST;
2081 strcpy(dip->label.name, AudioNmute);
2082 dip->type = AUDIO_MIXER_ENUM;
2083 dip->mixer_class = ESS_MONITOR_CLASS;
2084 dip->un.e.num_mem = 2;
2085 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2086 dip->un.e.member[0].ord = 0;
2087 strcpy(dip->un.e.member[1].label.name, AudioNon);
2088 dip->un.e.member[1].ord = 1;
2089 return (0);
2090
2091 case ESS_MONITOR_CLASS:
2092 dip->mixer_class = ESS_MONITOR_CLASS;
2093 dip->next = dip->prev = AUDIO_MIXER_LAST;
2094 strcpy(dip->label.name, AudioCmonitor);
2095 dip->type = AUDIO_MIXER_CLASS;
2096 return (0);
2097 }
2098
2099 if (ESS_USE_AUDIO1(sc->sc_model))
2100 return (ENXIO);
2101
2102 switch (dip->index) {
2103 case ESS_DAC_REC_VOL:
2104 dip->mixer_class = ESS_RECORD_CLASS;
2105 dip->next = dip->prev = AUDIO_MIXER_LAST;
2106 strcpy(dip->label.name, AudioNdac);
2107 dip->type = AUDIO_MIXER_VALUE;
2108 dip->un.v.num_channels = 2;
2109 strcpy(dip->un.v.units.name, AudioNvolume);
2110 return (0);
2111
2112 case ESS_MIC_REC_VOL:
2113 dip->mixer_class = ESS_RECORD_CLASS;
2114 dip->next = dip->prev = AUDIO_MIXER_LAST;
2115 strcpy(dip->label.name, AudioNmicrophone);
2116 dip->type = AUDIO_MIXER_VALUE;
2117 dip->un.v.num_channels = 2;
2118 strcpy(dip->un.v.units.name, AudioNvolume);
2119 return (0);
2120
2121 case ESS_LINE_REC_VOL:
2122 dip->mixer_class = ESS_RECORD_CLASS;
2123 dip->next = dip->prev = AUDIO_MIXER_LAST;
2124 strcpy(dip->label.name, AudioNline);
2125 dip->type = AUDIO_MIXER_VALUE;
2126 dip->un.v.num_channels = 2;
2127 strcpy(dip->un.v.units.name, AudioNvolume);
2128 return (0);
2129
2130 case ESS_SYNTH_REC_VOL:
2131 dip->mixer_class = ESS_RECORD_CLASS;
2132 dip->next = dip->prev = AUDIO_MIXER_LAST;
2133 strcpy(dip->label.name, AudioNfmsynth);
2134 dip->type = AUDIO_MIXER_VALUE;
2135 dip->un.v.num_channels = 2;
2136 strcpy(dip->un.v.units.name, AudioNvolume);
2137 return (0);
2138
2139 case ESS_CD_REC_VOL:
2140 dip->mixer_class = ESS_RECORD_CLASS;
2141 dip->next = dip->prev = AUDIO_MIXER_LAST;
2142 strcpy(dip->label.name, AudioNcd);
2143 dip->type = AUDIO_MIXER_VALUE;
2144 dip->un.v.num_channels = 2;
2145 strcpy(dip->un.v.units.name, AudioNvolume);
2146 return (0);
2147
2148 case ESS_AUXB_REC_VOL:
2149 dip->mixer_class = ESS_RECORD_CLASS;
2150 dip->next = dip->prev = AUDIO_MIXER_LAST;
2151 strcpy(dip->label.name, "auxb");
2152 dip->type = AUDIO_MIXER_VALUE;
2153 dip->un.v.num_channels = 2;
2154 strcpy(dip->un.v.units.name, AudioNvolume);
2155 return (0);
2156
2157 case ESS_MIC_PREAMP:
2158 dip->mixer_class = ESS_INPUT_CLASS;
2159 dip->prev = ESS_MIC_PLAY_VOL;
2160 dip->next = AUDIO_MIXER_LAST;
2161 strcpy(dip->label.name, AudioNpreamp);
2162 dip->type = AUDIO_MIXER_ENUM;
2163 dip->un.e.num_mem = 2;
2164 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2165 dip->un.e.member[0].ord = 0;
2166 strcpy(dip->un.e.member[1].label.name, AudioNon);
2167 dip->un.e.member[1].ord = 1;
2168 return (0);
2169 }
2170
2171 return (ENXIO);
2172 }
2173
2174 void *
2175 ess_malloc(addr, direction, size, pool, flags)
2176 void *addr;
2177 int direction;
2178 size_t size;
2179 struct malloc_type *pool;
2180 int flags;
2181 {
2182 struct ess_softc *sc = addr;
2183 int drq;
2184
2185 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2186 drq = sc->sc_audio2.drq;
2187 else
2188 drq = sc->sc_audio1.drq;
2189 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2190 }
2191
2192 void
2193 ess_free(addr, ptr, pool)
2194 void *addr;
2195 void *ptr;
2196 struct malloc_type *pool;
2197 {
2198 isa_free(ptr, pool);
2199 }
2200
2201 size_t
2202 ess_round_buffersize(addr, direction, size)
2203 void *addr;
2204 int direction;
2205 size_t size;
2206 {
2207 struct ess_softc *sc = addr;
2208 bus_size_t maxsize;
2209
2210 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2211 maxsize = sc->sc_audio2.maxsize;
2212 else
2213 maxsize = sc->sc_audio1.maxsize;
2214
2215 if (size > maxsize)
2216 size = maxsize;
2217 return (size);
2218 }
2219
2220 paddr_t
2221 ess_mappage(addr, mem, off, prot)
2222 void *addr;
2223 void *mem;
2224 off_t off;
2225 int prot;
2226 {
2227 return (isa_mappage(mem, off, prot));
2228 }
2229
2230 int
2231 ess_1788_get_props(addr)
2232 void *addr;
2233 {
2234
2235 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2236 }
2237
2238 int
2239 ess_1888_get_props(addr)
2240 void *addr;
2241 {
2242
2243 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2244 }
2245
2246 /* ============================================
2247 * Generic functions for ess, not used by audio h/w i/f
2248 * =============================================
2249 */
2250
2251 /*
2252 * Reset the chip.
2253 * Return non-zero if the chip isn't detected.
2254 */
2255 int
2256 ess_reset(sc)
2257 struct ess_softc *sc;
2258 {
2259 bus_space_tag_t iot = sc->sc_iot;
2260 bus_space_handle_t ioh = sc->sc_ioh;
2261
2262 sc->sc_audio1.active = 0;
2263 sc->sc_audio2.active = 0;
2264
2265 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2266 delay(10000); /* XXX shouldn't delay so long */
2267 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2268 if (ess_rdsp(sc) != ESS_MAGIC)
2269 return (1);
2270
2271 /* Enable access to the ESS extension commands. */
2272 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2273
2274 return (0);
2275 }
2276
2277 void
2278 ess_set_gain(sc, port, on)
2279 struct ess_softc *sc;
2280 int port;
2281 int on;
2282 {
2283 int gain, left, right;
2284 int mix;
2285 int src;
2286 int stereo;
2287
2288 /*
2289 * Most gain controls are found in the mixer registers and
2290 * are stereo. Any that are not, must set mix and stereo as
2291 * required.
2292 */
2293 mix = 1;
2294 stereo = 1;
2295
2296 switch (port) {
2297 case ESS_MASTER_VOL:
2298 src = ESS_MREG_VOLUME_MASTER;
2299 break;
2300 case ESS_DAC_PLAY_VOL:
2301 if (ESS_USE_AUDIO1(sc->sc_model))
2302 src = ESS_MREG_VOLUME_VOICE;
2303 else
2304 src = 0x7C;
2305 break;
2306 case ESS_MIC_PLAY_VOL:
2307 src = ESS_MREG_VOLUME_MIC;
2308 break;
2309 case ESS_LINE_PLAY_VOL:
2310 src = ESS_MREG_VOLUME_LINE;
2311 break;
2312 case ESS_SYNTH_PLAY_VOL:
2313 src = ESS_MREG_VOLUME_SYNTH;
2314 break;
2315 case ESS_CD_PLAY_VOL:
2316 src = ESS_MREG_VOLUME_CD;
2317 break;
2318 case ESS_AUXB_PLAY_VOL:
2319 src = ESS_MREG_VOLUME_AUXB;
2320 break;
2321 case ESS_PCSPEAKER_VOL:
2322 src = ESS_MREG_VOLUME_PCSPKR;
2323 stereo = 0;
2324 break;
2325 case ESS_DAC_REC_VOL:
2326 src = 0x69;
2327 break;
2328 case ESS_MIC_REC_VOL:
2329 src = 0x68;
2330 break;
2331 case ESS_LINE_REC_VOL:
2332 src = 0x6E;
2333 break;
2334 case ESS_SYNTH_REC_VOL:
2335 src = 0x6B;
2336 break;
2337 case ESS_CD_REC_VOL:
2338 src = 0x6A;
2339 break;
2340 case ESS_AUXB_REC_VOL:
2341 src = 0x6C;
2342 break;
2343 case ESS_RECORD_VOL:
2344 src = ESS_XCMD_VOLIN_CTRL;
2345 mix = 0;
2346 break;
2347 default:
2348 return;
2349 }
2350
2351 /* 1788 doesn't have a separate recording mixer */
2352 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2353 return;
2354
2355 if (on) {
2356 left = sc->gain[port][ESS_LEFT];
2357 right = sc->gain[port][ESS_RIGHT];
2358 } else {
2359 left = right = 0;
2360 }
2361
2362 if (stereo)
2363 gain = ESS_STEREO_GAIN(left, right);
2364 else
2365 gain = ESS_MONO_GAIN(left);
2366
2367 if (mix)
2368 ess_write_mix_reg(sc, src, gain);
2369 else
2370 ess_write_x_reg(sc, src, gain);
2371 }
2372
2373 /* Set the input device on devices without an input mixer. */
2374 int
2375 ess_set_in_port(sc, ord)
2376 struct ess_softc *sc;
2377 int ord;
2378 {
2379 mixer_devinfo_t di;
2380 int i;
2381
2382 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2383
2384 /*
2385 * Get the device info for the record source control,
2386 * including the list of available sources.
2387 */
2388 di.index = ESS_RECORD_SOURCE;
2389 if (ess_query_devinfo(sc, &di))
2390 return EINVAL;
2391
2392 /* See if the given ord value was anywhere in the list. */
2393 for (i = 0; i < di.un.e.num_mem; i++) {
2394 if (ord == di.un.e.member[i].ord)
2395 break;
2396 }
2397 if (i == di.un.e.num_mem)
2398 return EINVAL;
2399
2400 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2401
2402 sc->in_port = ord;
2403 return (0);
2404 }
2405
2406 /* Set the input device levels on input-mixer-enabled devices. */
2407 int
2408 ess_set_in_ports(sc, mask)
2409 struct ess_softc *sc;
2410 int mask;
2411 {
2412 mixer_devinfo_t di;
2413 int i, port;
2414
2415 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2416
2417 /*
2418 * Get the device info for the record source control,
2419 * including the list of available sources.
2420 */
2421 di.index = ESS_RECORD_SOURCE;
2422 if (ess_query_devinfo(sc, &di))
2423 return EINVAL;
2424
2425 /*
2426 * Set or disable the record volume control for each of the
2427 * possible sources.
2428 */
2429 for (i = 0; i < di.un.s.num_mem; i++) {
2430 /*
2431 * Calculate the source port number from its mask.
2432 */
2433 port = ffs(di.un.s.member[i].mask);
2434
2435 /*
2436 * Set the source gain:
2437 * to the current value if source is enabled
2438 * to zero if source is disabled
2439 */
2440 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2441 }
2442
2443 sc->in_mask = mask;
2444 return (0);
2445 }
2446
2447 void
2448 ess_speaker_on(sc)
2449 struct ess_softc *sc;
2450 {
2451 /* Unmute the DAC. */
2452 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2453 }
2454
2455 void
2456 ess_speaker_off(sc)
2457 struct ess_softc *sc;
2458 {
2459 /* Mute the DAC. */
2460 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2461 }
2462
2463 /*
2464 * Calculate the time constant for the requested sampling rate.
2465 */
2466 u_int
2467 ess_srtotc(rate)
2468 u_int rate;
2469 {
2470 u_int tc;
2471
2472 /* The following formulae are from the ESS data sheet. */
2473 if (rate <= 22050)
2474 tc = 128 - 397700L / rate;
2475 else
2476 tc = 256 - 795500L / rate;
2477
2478 return (tc);
2479 }
2480
2481
2482 /*
2483 * Calculate the filter constant for the reuqested sampling rate.
2484 */
2485 u_int
2486 ess_srtofc(rate)
2487 u_int rate;
2488 {
2489 /*
2490 * The following formula is derived from the information in
2491 * the ES1887 data sheet, based on a roll-off frequency of
2492 * 87%.
2493 */
2494 return (256 - 200279L / rate);
2495 }
2496
2497
2498 /*
2499 * Return the status of the DSP.
2500 */
2501 u_char
2502 ess_get_dsp_status(sc)
2503 struct ess_softc *sc;
2504 {
2505 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2506 }
2507
2508
2509 /*
2510 * Return the read status of the DSP: 1 -> DSP ready for reading
2511 * 0 -> DSP not ready for reading
2512 */
2513 u_char
2514 ess_dsp_read_ready(sc)
2515 struct ess_softc *sc;
2516 {
2517 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2518 }
2519
2520
2521 /*
2522 * Return the write status of the DSP: 1 -> DSP ready for writing
2523 * 0 -> DSP not ready for writing
2524 */
2525 u_char
2526 ess_dsp_write_ready(sc)
2527 struct ess_softc *sc;
2528 {
2529 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2530 }
2531
2532
2533 /*
2534 * Read a byte from the DSP.
2535 */
2536 int
2537 ess_rdsp(sc)
2538 struct ess_softc *sc;
2539 {
2540 bus_space_tag_t iot = sc->sc_iot;
2541 bus_space_handle_t ioh = sc->sc_ioh;
2542 int i;
2543
2544 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2545 if (ess_dsp_read_ready(sc)) {
2546 i = EREAD1(iot, ioh, ESS_DSP_READ);
2547 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2548 return i;
2549 } else
2550 delay(10);
2551 }
2552
2553 DPRINTF(("ess_rdsp: timed out\n"));
2554 return (-1);
2555 }
2556
2557 /*
2558 * Write a byte to the DSP.
2559 */
2560 int
2561 ess_wdsp(sc, v)
2562 struct ess_softc *sc;
2563 u_char v;
2564 {
2565 bus_space_tag_t iot = sc->sc_iot;
2566 bus_space_handle_t ioh = sc->sc_ioh;
2567 int i;
2568
2569 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2570
2571 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2572 if (ess_dsp_write_ready(sc)) {
2573 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2574 return (0);
2575 } else
2576 delay(10);
2577 }
2578
2579 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2580 return (-1);
2581 }
2582
2583 /*
2584 * Write a value to one of the ESS extended registers.
2585 */
2586 int
2587 ess_write_x_reg(sc, reg, val)
2588 struct ess_softc *sc;
2589 u_char reg;
2590 u_char val;
2591 {
2592 int error;
2593
2594 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2595 if ((error = ess_wdsp(sc, reg)) == 0)
2596 error = ess_wdsp(sc, val);
2597
2598 return error;
2599 }
2600
2601 /*
2602 * Read the value of one of the ESS extended registers.
2603 */
2604 u_char
2605 ess_read_x_reg(sc, reg)
2606 struct ess_softc *sc;
2607 u_char reg;
2608 {
2609 int error;
2610 int val;
2611
2612 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2613 error = ess_wdsp(sc, reg);
2614 if (error)
2615 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2616 /* REVISIT: what if an error is returned above? */
2617 val = ess_rdsp(sc);
2618 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2619 return val;
2620 }
2621
2622 void
2623 ess_clear_xreg_bits(sc, reg, mask)
2624 struct ess_softc *sc;
2625 u_char reg;
2626 u_char mask;
2627 {
2628 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2629 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2630 reg));
2631 }
2632
2633 void
2634 ess_set_xreg_bits(sc, reg, mask)
2635 struct ess_softc *sc;
2636 u_char reg;
2637 u_char mask;
2638 {
2639 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2640 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2641 reg));
2642 }
2643
2644
2645 /*
2646 * Write a value to one of the ESS mixer registers.
2647 */
2648 void
2649 ess_write_mix_reg(sc, reg, val)
2650 struct ess_softc *sc;
2651 u_char reg;
2652 u_char val;
2653 {
2654 bus_space_tag_t iot = sc->sc_iot;
2655 bus_space_handle_t ioh = sc->sc_ioh;
2656 int s;
2657
2658 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2659
2660 s = splaudio();
2661 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2662 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2663 splx(s);
2664 }
2665
2666 /*
2667 * Read the value of one of the ESS mixer registers.
2668 */
2669 u_char
2670 ess_read_mix_reg(sc, reg)
2671 struct ess_softc *sc;
2672 u_char reg;
2673 {
2674 bus_space_tag_t iot = sc->sc_iot;
2675 bus_space_handle_t ioh = sc->sc_ioh;
2676 int s;
2677 u_char val;
2678
2679 s = splaudio();
2680 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2681 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2682 splx(s);
2683
2684 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2685 return val;
2686 }
2687
2688 void
2689 ess_clear_mreg_bits(sc, reg, mask)
2690 struct ess_softc *sc;
2691 u_char reg;
2692 u_char mask;
2693 {
2694 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2695 }
2696
2697 void
2698 ess_set_mreg_bits(sc, reg, mask)
2699 struct ess_softc *sc;
2700 u_char reg;
2701 u_char mask;
2702 {
2703 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2704 }
2705
2706 void
2707 ess_read_multi_mix_reg(sc, reg, datap, count)
2708 struct ess_softc *sc;
2709 u_char reg;
2710 u_int8_t *datap;
2711 bus_size_t count;
2712 {
2713 bus_space_tag_t iot = sc->sc_iot;
2714 bus_space_handle_t ioh = sc->sc_ioh;
2715 int s;
2716
2717 s = splaudio();
2718 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2719 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2720 splx(s);
2721 }
2722