Home | History | Annotate | Line # | Download | only in isa
ess.c revision 1.63
      1 /*	$NetBSD: ess.c,v 1.63 2004/08/07 19:32:56 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright 1997
      5  * Digital Equipment Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and
      8  * copied only in accordance with the following terms and conditions.
      9  * Subject to these conditions, you may download, copy, install,
     10  * use, modify and distribute this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce
     14  *    and retain this copyright notice and list of conditions as
     15  *    they appear in the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Digital Equipment Corporation. Neither the "Digital Equipment
     19  *    Corporation" name nor any trademark or logo of Digital Equipment
     20  *    Corporation may be used to endorse or promote products derived
     21  *    from this software without the prior written permission of
     22  *    Digital Equipment Corporation.
     23  *
     24  * 3) This software is provided "AS-IS" and any express or implied
     25  *    warranties, including but not limited to, any implied warranties
     26  *    of merchantability, fitness for a particular purpose, or
     27  *    non-infringement are disclaimed. In no event shall DIGITAL be
     28  *    liable for any damages whatsoever, and in particular, DIGITAL
     29  *    shall not be liable for special, indirect, consequential, or
     30  *    incidental damages or damages for lost profits, loss of
     31  *    revenue or loss of use, whether such damages arise in contract,
     32  *    negligence, tort, under statute, in equity, at law or otherwise,
     33  *    even if advised of the possibility of such damage.
     34  */
     35 
     36 /*
     37 **++
     38 **
     39 **  ess.c
     40 **
     41 **  FACILITY:
     42 **
     43 **	DIGITAL Network Appliance Reference Design (DNARD)
     44 **
     45 **  MODULE DESCRIPTION:
     46 **
     47 **      This module contains the device driver for the ESS
     48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
     49 **	used as a reference point when implementing this driver.
     50 **
     51 **  AUTHORS:
     52 **
     53 **	Blair Fidler	Software Engineering Australia
     54 **			Gold Coast, Australia.
     55 **
     56 **  CREATION DATE:
     57 **
     58 **	March 10, 1997.
     59 **
     60 **  MODIFICATION HISTORY:
     61 **
     62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
     63 **	bus_dma, changes to audio interface, and many bug fixes.
     64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
     65 **--
     66 */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.63 2004/08/07 19:32:56 mycroft Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/errno.h>
     74 #include <sys/ioctl.h>
     75 #include <sys/syslog.h>
     76 #include <sys/device.h>
     77 #include <sys/proc.h>
     78 #include <sys/kernel.h>
     79 
     80 #include <machine/cpu.h>
     81 #include <machine/intr.h>
     82 #include <machine/bus.h>
     83 
     84 #include <sys/audioio.h>
     85 #include <dev/audio_if.h>
     86 #include <dev/auconv.h>
     87 #include <dev/mulaw.h>
     88 
     89 #include <dev/isa/isavar.h>
     90 #include <dev/isa/isadmavar.h>
     91 
     92 #include <dev/isa/essvar.h>
     93 #include <dev/isa/essreg.h>
     94 
     95 #include "joy_ess.h"
     96 
     97 #ifdef AUDIO_DEBUG
     98 #define DPRINTF(x)	if (essdebug) printf x
     99 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
    100 int	essdebug = 0;
    101 #else
    102 #define DPRINTF(x)
    103 #define DPRINTFN(n,x)
    104 #endif
    105 
    106 #if 0
    107 unsigned uuu;
    108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
    109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
    110 #else
    111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
    112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
    113 #endif
    114 
    115 
    116 int	ess_setup_sc __P((struct ess_softc *, int));
    117 
    118 int	ess_open __P((void *, int));
    119 void	ess_close __P((void *));
    120 int	ess_getdev __P((void *, struct audio_device *));
    121 int	ess_drain __P((void *));
    122 
    123 int	ess_query_encoding __P((void *, struct audio_encoding *));
    124 
    125 int	ess_set_params __P((void *, int, int, struct audio_params *,
    126 	    struct audio_params *));
    127 
    128 int	ess_round_blocksize __P((void *, int));
    129 
    130 int	ess_audio1_trigger_output __P((void *, void *, void *, int,
    131 	    void (*)(void *), void *, struct audio_params *));
    132 int	ess_audio2_trigger_output __P((void *, void *, void *, int,
    133 	    void (*)(void *), void *, struct audio_params *));
    134 int	ess_audio1_trigger_input __P((void *, void *, void *, int,
    135 	    void (*)(void *), void *, struct audio_params *));
    136 int	ess_audio1_halt __P((void *));
    137 int	ess_audio2_halt __P((void *));
    138 int	ess_audio1_intr __P((void *));
    139 int	ess_audio2_intr __P((void *));
    140 void	ess_audio1_poll __P((void *));
    141 void	ess_audio2_poll __P((void *));
    142 
    143 int	ess_speaker_ctl __P((void *, int));
    144 
    145 int	ess_getdev __P((void *, struct audio_device *));
    146 
    147 int	ess_set_port __P((void *, mixer_ctrl_t *));
    148 int	ess_get_port __P((void *, mixer_ctrl_t *));
    149 
    150 void   *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
    151 void	ess_free __P((void *, void *, struct malloc_type *));
    152 size_t	ess_round_buffersize __P((void *, int, size_t));
    153 paddr_t	ess_mappage __P((void *, void *, off_t, int));
    154 
    155 
    156 int	ess_query_devinfo __P((void *, mixer_devinfo_t *));
    157 int	ess_1788_get_props __P((void *));
    158 int	ess_1888_get_props __P((void *));
    159 
    160 void	ess_speaker_on __P((struct ess_softc *));
    161 void	ess_speaker_off __P((struct ess_softc *));
    162 
    163 void	ess_config_irq __P((struct ess_softc *));
    164 void	ess_config_drq __P((struct ess_softc *));
    165 void	ess_setup __P((struct ess_softc *));
    166 int	ess_identify __P((struct ess_softc *));
    167 
    168 int	ess_reset __P((struct ess_softc *));
    169 void	ess_set_gain __P((struct ess_softc *, int, int));
    170 int	ess_set_in_port __P((struct ess_softc *, int));
    171 int	ess_set_in_ports __P((struct ess_softc *, int));
    172 u_int	ess_srtotc __P((u_int));
    173 u_int	ess_srtofc __P((u_int));
    174 u_char	ess_get_dsp_status __P((struct ess_softc *));
    175 u_char	ess_dsp_read_ready __P((struct ess_softc *));
    176 u_char	ess_dsp_write_ready __P((struct ess_softc *));
    177 int	ess_rdsp __P((struct ess_softc *));
    178 int	ess_wdsp __P((struct ess_softc *, u_char));
    179 u_char	ess_read_x_reg __P((struct ess_softc *, u_char));
    180 int	ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
    181 void	ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
    182 void	ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
    183 u_char	ess_read_mix_reg __P((struct ess_softc *, u_char));
    184 void	ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
    185 void	ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
    186 void	ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
    187 void	ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
    188 
    189 static char *essmodel[] = {
    190 	"unsupported",
    191 
    192 	"688",
    193 	"1688",
    194 	"1788",
    195 	"1868",
    196 	"1869",
    197 	"1878",
    198 	"1879",
    199 
    200 	"888",
    201 	"1887",
    202 	"1888",
    203 };
    204 
    205 struct audio_device ess_device = {
    206 	"ESS Technology",
    207 	"x",
    208 	"ess"
    209 };
    210 
    211 /*
    212  * Define our interface to the higher level audio driver.
    213  */
    214 
    215 struct audio_hw_if ess_1788_hw_if = {
    216 	ess_open,
    217 	ess_close,
    218 	ess_drain,
    219 	ess_query_encoding,
    220 	ess_set_params,
    221 	ess_round_blocksize,
    222 	NULL,
    223 	NULL,
    224 	NULL,
    225 	NULL,
    226 	NULL,
    227 	ess_audio1_halt,
    228 	ess_audio1_halt,
    229 	ess_speaker_ctl,
    230 	ess_getdev,
    231 	NULL,
    232 	ess_set_port,
    233 	ess_get_port,
    234 	ess_query_devinfo,
    235 	ess_malloc,
    236 	ess_free,
    237 	ess_round_buffersize,
    238 	ess_mappage,
    239 	ess_1788_get_props,
    240 	ess_audio1_trigger_output,
    241 	ess_audio1_trigger_input,
    242 	NULL,
    243 };
    244 
    245 struct audio_hw_if ess_1888_hw_if = {
    246 	ess_open,
    247 	ess_close,
    248 	ess_drain,
    249 	ess_query_encoding,
    250 	ess_set_params,
    251 	ess_round_blocksize,
    252 	NULL,
    253 	NULL,
    254 	NULL,
    255 	NULL,
    256 	NULL,
    257 	ess_audio2_halt,
    258 	ess_audio1_halt,
    259 	ess_speaker_ctl,
    260 	ess_getdev,
    261 	NULL,
    262 	ess_set_port,
    263 	ess_get_port,
    264 	ess_query_devinfo,
    265 	ess_malloc,
    266 	ess_free,
    267 	ess_round_buffersize,
    268 	ess_mappage,
    269 	ess_1888_get_props,
    270 	ess_audio2_trigger_output,
    271 	ess_audio1_trigger_input,
    272 	NULL,
    273 };
    274 
    275 #ifdef AUDIO_DEBUG
    276 void ess_printsc __P((struct ess_softc *));
    277 void ess_dump_mixer __P((struct ess_softc *));
    278 
    279 void
    280 ess_printsc(sc)
    281 	struct ess_softc *sc;
    282 {
    283 	int i;
    284 
    285 	printf("iobase 0x%x outport %u inport %u speaker %s\n",
    286 	       sc->sc_iobase, sc->out_port,
    287 	       sc->in_port, sc->spkr_state ? "on" : "off");
    288 
    289 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
    290 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
    291 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
    292 
    293 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
    294 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
    295 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
    296 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
    297 	}
    298 
    299 	printf("gain:");
    300 	for (i = 0; i < sc->ndevs; i++)
    301 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
    302 	printf("\n");
    303 }
    304 
    305 void
    306 ess_dump_mixer(sc)
    307 	struct ess_softc *sc;
    308 {
    309 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    310 	       0x7C, ess_read_mix_reg(sc, 0x7C));
    311 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    312 	       0x1A, ess_read_mix_reg(sc, 0x1A));
    313 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    314 	       0x3E, ess_read_mix_reg(sc, 0x3E));
    315 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    316 	       0x36, ess_read_mix_reg(sc, 0x36));
    317 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    318 	       0x38, ess_read_mix_reg(sc, 0x38));
    319 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
    320 	       0x3A, ess_read_mix_reg(sc, 0x3A));
    321 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
    322 	       0x32, ess_read_mix_reg(sc, 0x32));
    323 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
    324 	       0x3C, ess_read_mix_reg(sc, 0x3C));
    325 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
    326 	       0x69, ess_read_mix_reg(sc, 0x69));
    327 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
    328 	       0x68, ess_read_mix_reg(sc, 0x68));
    329 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
    330 	       0x6E, ess_read_mix_reg(sc, 0x6E));
    331 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
    332 	       0x6B, ess_read_mix_reg(sc, 0x6B));
    333 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
    334 	       0x6A, ess_read_mix_reg(sc, 0x6A));
    335 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
    336 	       0x6C, ess_read_mix_reg(sc, 0x6C));
    337 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
    338 	       0xB4, ess_read_x_reg(sc, 0xB4));
    339 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
    340 	       0x14, ess_read_mix_reg(sc, 0x14));
    341 
    342 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
    343 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
    344 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
    345 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
    346 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
    347 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
    348 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
    349 }
    350 
    351 #endif
    352 
    353 /*
    354  * Configure the ESS chip for the desired audio base address.
    355  */
    356 int
    357 ess_config_addr(sc)
    358 	struct ess_softc *sc;
    359 {
    360 	int iobase = sc->sc_iobase;
    361 	bus_space_tag_t iot = sc->sc_iot;
    362 
    363 	/*
    364 	 * Configure using the System Control Register method.  This
    365 	 * method is used when the AMODE line is tied high, which is
    366 	 * the case for the Shark, but not for the evaluation board.
    367 	 */
    368 
    369 	bus_space_handle_t scr_access_ioh;
    370 	bus_space_handle_t scr_ioh;
    371 	u_short scr_value;
    372 
    373 	/*
    374 	 * Set the SCR bit to enable audio.
    375 	 */
    376 	scr_value = ESS_SCR_AUDIO_ENABLE;
    377 
    378 	/*
    379 	 * Set the SCR bits necessary to select the specified audio
    380 	 * base address.
    381 	 */
    382 	switch(iobase) {
    383 	case 0x220:
    384 		scr_value |= ESS_SCR_AUDIO_220;
    385 		break;
    386 	case 0x230:
    387 		scr_value |= ESS_SCR_AUDIO_230;
    388 		break;
    389 	case 0x240:
    390 		scr_value |= ESS_SCR_AUDIO_240;
    391 		break;
    392 	case 0x250:
    393 		scr_value |= ESS_SCR_AUDIO_250;
    394 		break;
    395 	default:
    396 		printf("ess: configured iobase 0x%x invalid\n", iobase);
    397 		return (1);
    398 		break;
    399 	}
    400 
    401 	/*
    402 	 * Get a mapping for the System Control Register (SCR) access
    403 	 * registers and the SCR data registers.
    404 	 */
    405 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
    406 			  0, &scr_access_ioh)) {
    407 		printf("ess: can't map SCR access registers\n");
    408 		return (1);
    409 	}
    410 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
    411 			  0, &scr_ioh)) {
    412 		printf("ess: can't map SCR registers\n");
    413 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
    414 		return (1);
    415 	}
    416 
    417 	/* Unlock the SCR. */
    418 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
    419 
    420 	/* Write the base address information into SCR[0]. */
    421 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
    422 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
    423 
    424 	/* Lock the SCR. */
    425 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
    426 
    427 	/* Unmap the SCR access ports and the SCR data ports. */
    428 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
    429 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
    430 
    431 	return 0;
    432 }
    433 
    434 
    435 /*
    436  * Configure the ESS chip for the desired IRQ and DMA channels.
    437  * ESS  ISA
    438  * --------
    439  * IRQA irq9
    440  * IRQB irq5
    441  * IRQC irq7
    442  * IRQD irq10
    443  * IRQE irq15
    444  *
    445  * DRQA drq0
    446  * DRQB drq1
    447  * DRQC drq3
    448  * DRQD drq5
    449  */
    450 void
    451 ess_config_irq(sc)
    452 	struct ess_softc *sc;
    453 {
    454 	int v;
    455 
    456 	DPRINTFN(2,("ess_config_irq\n"));
    457 
    458 	if (sc->sc_model == ESS_1887 &&
    459 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
    460 	    sc->sc_audio1.irq != -1) {
    461 		/* Use new method, both interrupts are the same. */
    462 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
    463 		switch (sc->sc_audio1.irq) {
    464 		case 5:
    465 			v |= ESS_IS_INTRB;
    466 			break;
    467 		case 7:
    468 			v |= ESS_IS_INTRC;
    469 			break;
    470 		case 9:
    471 			v |= ESS_IS_INTRA;
    472 			break;
    473 		case 10:
    474 			v |= ESS_IS_INTRD;
    475 			break;
    476 		case 15:
    477 			v |= ESS_IS_INTRE;
    478 			break;
    479 #ifdef DIAGNOSTIC
    480 		default:
    481 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
    482 			       sc->sc_audio1.irq);
    483 			return;
    484 #endif
    485 		}
    486 		/* Set the IRQ */
    487 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
    488 		return;
    489 	}
    490 
    491 	if (sc->sc_model == ESS_1887) {
    492 		/* Tell the 1887 to use the old interrupt method. */
    493 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
    494 	}
    495 
    496 	if (sc->sc_audio1.polled) {
    497 		/* Turn off Audio1 interrupts. */
    498 		v = 0;
    499 	} else {
    500 		/* Configure Audio 1 for the appropriate IRQ line. */
    501 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
    502 		switch (sc->sc_audio1.irq) {
    503 		case 5:
    504 			v |= ESS_IRQ_CTRL_INTRB;
    505 			break;
    506 		case 7:
    507 			v |= ESS_IRQ_CTRL_INTRC;
    508 			break;
    509 		case 9:
    510 			v |= ESS_IRQ_CTRL_INTRA;
    511 			break;
    512 		case 10:
    513 			v |= ESS_IRQ_CTRL_INTRD;
    514 			break;
    515 #ifdef DIAGNOSTIC
    516 		default:
    517 			printf("ess: configured irq %d not supported for Audio 1\n",
    518 			       sc->sc_audio1.irq);
    519 			return;
    520 #endif
    521 		}
    522 	}
    523 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
    524 
    525 	if (ESS_USE_AUDIO1(sc->sc_model))
    526 		return;
    527 
    528 	if (sc->sc_audio2.polled) {
    529 		/* Turn off Audio2 interrupts. */
    530 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
    531 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
    532 	} else {
    533 		/* Audio2 is hardwired to INTRE in this mode. */
    534 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
    535 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
    536 	}
    537 }
    538 
    539 
    540 void
    541 ess_config_drq(sc)
    542 	struct ess_softc *sc;
    543 {
    544 	int v;
    545 
    546 	DPRINTFN(2,("ess_config_drq\n"));
    547 
    548 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
    549 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
    550 	switch (sc->sc_audio1.drq) {
    551 	case 0:
    552 		v |= ESS_DRQ_CTRL_DRQA;
    553 		break;
    554 	case 1:
    555 		v |= ESS_DRQ_CTRL_DRQB;
    556 		break;
    557 	case 3:
    558 		v |= ESS_DRQ_CTRL_DRQC;
    559 		break;
    560 #ifdef DIAGNOSTIC
    561 	default:
    562 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
    563 		       sc->sc_audio1.drq);
    564 		return;
    565 #endif
    566 	}
    567 	/* Set DRQ1 */
    568 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
    569 
    570 	if (ESS_USE_AUDIO1(sc->sc_model))
    571 		return;
    572 
    573 	/* Configure DRQ2 */
    574 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
    575 	switch (sc->sc_audio2.drq) {
    576 	case 0:
    577 		v |= ESS_AUDIO2_CTRL3_DRQA;
    578 		break;
    579 	case 1:
    580 		v |= ESS_AUDIO2_CTRL3_DRQB;
    581 		break;
    582 	case 3:
    583 		v |= ESS_AUDIO2_CTRL3_DRQC;
    584 		break;
    585 	case 5:
    586 		v |= ESS_AUDIO2_CTRL3_DRQD;
    587 		break;
    588 #ifdef DIAGNOSTIC
    589 	default:
    590 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
    591 		       sc->sc_audio2.drq);
    592 		return;
    593 #endif
    594 	}
    595 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
    596 	/* Enable DMA 2 */
    597 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
    598 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
    599 }
    600 
    601 /*
    602  * Set up registers after a reset.
    603  */
    604 void
    605 ess_setup(sc)
    606 	struct ess_softc *sc;
    607 {
    608 
    609 	ess_config_irq(sc);
    610 	ess_config_drq(sc);
    611 
    612 	DPRINTFN(2,("ess_setup: done\n"));
    613 }
    614 
    615 /*
    616  * Determine the model of ESS chip we are talking to.  Currently we
    617  * only support ES1888, ES1887 and ES888.  The method of determining
    618  * the chip is based on the information on page 27 of the ES1887 data
    619  * sheet.
    620  *
    621  * This routine sets the values of sc->sc_model and sc->sc_version.
    622  */
    623 int
    624 ess_identify(sc)
    625 	struct ess_softc *sc;
    626 {
    627 	u_char reg1;
    628 	u_char reg2;
    629 	u_char reg3;
    630 	u_int8_t ident[4];
    631 
    632 	sc->sc_model = ESS_UNSUPPORTED;
    633 	sc->sc_version = 0;
    634 
    635 	memset(ident, 0, sizeof(ident));
    636 
    637 	/*
    638 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
    639 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
    640 	 *    earlier (unsupported) chips.
    641 	 */
    642 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
    643 
    644 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
    645 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
    646 		return 1;
    647 	}
    648 
    649 	reg2 = ess_rdsp(sc);
    650 	if (((reg2 & 0xf0) != 0x80) ||
    651 	    ((reg2 & 0x0f) < 8)) {
    652 		sc->sc_model = ESS_688;
    653 		return 0;
    654 	}
    655 
    656 	/*
    657 	 * Store the ID bytes as the version.
    658 	 */
    659 	sc->sc_version = (reg1 << 8) + reg2;
    660 
    661 
    662 	/*
    663 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
    664 	 *    should be possible on all supported chips.
    665 	 */
    666 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
    667 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
    668 
    669 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
    670 
    671 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
    672 		switch (sc->sc_version) {
    673 		case 0x688b:
    674 			sc->sc_model = ESS_1688;
    675 			break;
    676 		default:
    677 			printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
    678 			return 1;
    679 		}
    680 
    681 		return 0;
    682 	}
    683 
    684 	/*
    685 	 * Restore the original value of mixer register 0x64.
    686 	 */
    687 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
    688 
    689 
    690 	/*
    691 	 * 3. Verify we can change the value of mixer register
    692 	 *    ESS_MREG_SAMPLE_RATE.
    693 	 *    This is possible on the 1888/1887/888, but not on the 1788.
    694 	 *    It is not necessary to restore the value of this mixer register.
    695 	 */
    696 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
    697 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
    698 
    699 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
    700 
    701 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
    702 		/* If we got this far before failing, it's a 1788. */
    703 		sc->sc_model = ESS_1788;
    704 
    705 		/*
    706 		 * Identify ESS model for ES18[67]8.
    707 		 */
    708 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
    709 		if(ident[0] == 0x18) {
    710 			switch(ident[1]) {
    711 			case 0x68:
    712 				sc->sc_model = ESS_1868;
    713 				break;
    714 			case 0x78:
    715 				sc->sc_model = ESS_1878;
    716 				break;
    717 			}
    718 		}
    719 
    720 		return 0;
    721 	}
    722 
    723 	/*
    724 	 * 4. Determine if we can change bit 5 in mixer register 0x64.
    725 	 *    This determines whether we have an ES1887:
    726 	 *
    727 	 *    - can change indicates ES1887
    728 	 *    - can't change indicates ES1888 or ES888
    729 	 */
    730 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
    731 	reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
    732 
    733 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
    734 
    735 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
    736 		sc->sc_model = ESS_1887;
    737 
    738 		/*
    739 		 * Restore the original value of mixer register 0x64.
    740 		 */
    741 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
    742 
    743 		/*
    744 		 * Identify ESS model for ES18[67]9.
    745 		 */
    746 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
    747 		if(ident[0] == 0x18) {
    748 			switch(ident[1]) {
    749 			case 0x69:
    750 				sc->sc_model = ESS_1869;
    751 				break;
    752 			case 0x79:
    753 				sc->sc_model = ESS_1879;
    754 				break;
    755 			}
    756 		}
    757 
    758 		return 0;
    759 	}
    760 
    761 	/*
    762 	 * 5. Determine if we can change the value of mixer
    763 	 *    register 0x69 independently of mixer register
    764 	 *    0x68. This determines which chip we have:
    765 	 *
    766 	 *    - can modify idependently indicates ES888
    767 	 *    - register 0x69 is an alias of 0x68 indicates ES1888
    768 	 */
    769 	reg1 = ess_read_mix_reg(sc, 0x68);
    770 	reg2 = ess_read_mix_reg(sc, 0x69);
    771 	reg3 = reg2 ^ 0xff;  /* toggle all bits */
    772 
    773 	/*
    774 	 * Write different values to each register.
    775 	 */
    776 	ess_write_mix_reg(sc, 0x68, reg2);
    777 	ess_write_mix_reg(sc, 0x69, reg3);
    778 
    779 	if (ess_read_mix_reg(sc, 0x68) == reg2 &&
    780 	    ess_read_mix_reg(sc, 0x69) == reg3)
    781 		sc->sc_model = ESS_888;
    782 	else
    783 		sc->sc_model = ESS_1888;
    784 
    785 	/*
    786 	 * Restore the original value of the registers.
    787 	 */
    788 	ess_write_mix_reg(sc, 0x68, reg1);
    789 	ess_write_mix_reg(sc, 0x69, reg2);
    790 
    791 	return 0;
    792 }
    793 
    794 
    795 int
    796 ess_setup_sc(sc, doinit)
    797 	struct ess_softc *sc;
    798 	int doinit;
    799 {
    800 
    801 	callout_init(&sc->sc_poll1_ch);
    802 	callout_init(&sc->sc_poll2_ch);
    803 
    804 	/* Reset the chip. */
    805 	if (ess_reset(sc) != 0) {
    806 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
    807 		return (1);
    808 	}
    809 
    810 	/* Identify the ESS chip, and check that it is supported. */
    811 	if (ess_identify(sc)) {
    812 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
    813 		return (1);
    814 	}
    815 
    816 	return (0);
    817 }
    818 
    819 /*
    820  * Probe for the ESS hardware.
    821  */
    822 int
    823 essmatch(sc)
    824 	struct ess_softc *sc;
    825 {
    826 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
    827 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
    828 		return (0);
    829 	}
    830 
    831 	if (ess_setup_sc(sc, 1))
    832 		return (0);
    833 
    834 	if (sc->sc_model == ESS_UNSUPPORTED) {
    835 		DPRINTF(("ess: Unsupported model\n"));
    836 		return (0);
    837 	}
    838 
    839 	/* Check that requested DMA channels are valid and different. */
    840 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
    841 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
    842 		return (0);
    843 	}
    844 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
    845 		return (0);
    846 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
    847 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
    848 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
    849 			return (0);
    850 		}
    851 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
    852 			printf("ess: play and record drq both %d\n",
    853 			       sc->sc_audio1.drq);
    854 			return (0);
    855 		}
    856 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
    857 			return (0);
    858 	}
    859 
    860 	/*
    861 	 * The 1887 has an additional IRQ mode where both channels are mapped
    862 	 * to the same IRQ.
    863 	 */
    864 	if (sc->sc_model == ESS_1887 &&
    865 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
    866 	    sc->sc_audio1.irq != -1 &&
    867 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
    868 		goto irq_not1888;
    869 
    870 	/* Check that requested IRQ lines are valid and different. */
    871 	if (sc->sc_audio1.irq != -1 &&
    872 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
    873 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
    874 		return (0);
    875 	}
    876 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
    877 		if (sc->sc_audio2.irq != -1 &&
    878 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
    879 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
    880 			return (0);
    881 		}
    882 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
    883 		    sc->sc_audio1.irq != -1) {
    884 			printf("ess: play and record irq both %d\n",
    885 			       sc->sc_audio1.irq);
    886 			return (0);
    887 		}
    888 	}
    889 
    890 irq_not1888:
    891 	/* XXX should we check IRQs as well? */
    892 
    893 	return (2); /* beat "sb" */
    894 }
    895 
    896 
    897 /*
    898  * Attach hardware to driver, attach hardware driver to audio
    899  * pseudo-device driver.
    900  */
    901 void
    902 essattach(sc, enablejoy)
    903 	struct ess_softc *sc;
    904 	int enablejoy;
    905 {
    906 	struct audio_attach_args arg;
    907 	struct audio_params pparams, rparams;
    908 	int i;
    909 	u_int v;
    910 
    911 	if (ess_setup_sc(sc, 0)) {
    912 		printf(": setup failed\n");
    913 		return;
    914 	}
    915 
    916 	printf(": ESS Technology ES%s [version 0x%04x]\n",
    917 	       essmodel[sc->sc_model], sc->sc_version);
    918 
    919 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
    920 	if (!sc->sc_audio1.polled) {
    921 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
    922 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
    923 		    ess_audio1_intr, sc);
    924 		printf("%s: audio1 interrupting at irq %d\n",
    925 		    sc->sc_dev.dv_xname, sc->sc_audio1.irq);
    926 	} else
    927 		printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
    928 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
    929 
    930 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
    931 		printf("%s: can't reserve drq %d\n",
    932 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
    933 		return;
    934 	}
    935 
    936 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
    937 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
    938 		printf("%s: can't create map for drq %d\n",
    939 		       sc->sc_dev.dv_xname, sc->sc_audio1.drq);
    940 		return;
    941 	}
    942 
    943 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
    944 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
    945 		if (!sc->sc_audio2.polled) {
    946 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
    947 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
    948 			    ess_audio2_intr, sc);
    949 			printf("%s: audio2 interrupting at irq %d\n",
    950 			    sc->sc_dev.dv_xname, sc->sc_audio2.irq);
    951 		} else
    952 			printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
    953 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
    954 		    sc->sc_audio2.drq);
    955 
    956 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
    957 			printf("%s: can't reserve drq %d\n",
    958 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
    959 			return;
    960 		}
    961 
    962 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
    963 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
    964 			printf("%s: can't create map for drq %d\n",
    965 			       sc->sc_dev.dv_xname, sc->sc_audio2.drq);
    966 			return;
    967 		}
    968 	}
    969 
    970 	/*
    971 	 * Set record and play parameters to default values defined in
    972 	 * generic audio driver.
    973 	 */
    974 	pparams = audio_default;
    975 	rparams = audio_default;
    976 	ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    977 
    978 	/* Do a hardware reset on the mixer. */
    979 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
    980 
    981 	/*
    982 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
    983 	 * to playback mixer, since playback is always through Audio 2.
    984 	 */
    985 	if (!ESS_USE_AUDIO1(sc->sc_model))
    986 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
    987 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
    988 
    989 	if (ESS_USE_AUDIO1(sc->sc_model)) {
    990 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
    991 		sc->in_port = ESS_SOURCE_MIC;
    992 		sc->ndevs = ESS_1788_NDEVS;
    993 	} else {
    994 		/*
    995 		 * Set hardware record source to use output of the record
    996 		 * mixer. We do the selection of record source in software by
    997 		 * setting the gain of the unused sources to zero. (See
    998 		 * ess_set_in_ports.)
    999 		 */
   1000 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
   1001 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
   1002 		sc->ndevs = ESS_1888_NDEVS;
   1003 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
   1004 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
   1005 	}
   1006 
   1007 	/*
   1008 	 * Set gain on each mixer device to a sensible value.
   1009 	 * Devices not normally used are turned off, and other devices
   1010 	 * are set to 50% volume.
   1011 	 */
   1012 	for (i = 0; i < sc->ndevs; i++) {
   1013 		switch (i) {
   1014 		case ESS_MIC_PLAY_VOL:
   1015 		case ESS_LINE_PLAY_VOL:
   1016 		case ESS_CD_PLAY_VOL:
   1017 		case ESS_AUXB_PLAY_VOL:
   1018 		case ESS_DAC_REC_VOL:
   1019 		case ESS_LINE_REC_VOL:
   1020 		case ESS_SYNTH_REC_VOL:
   1021 		case ESS_CD_REC_VOL:
   1022 		case ESS_AUXB_REC_VOL:
   1023 			v = 0;
   1024 			break;
   1025 		default:
   1026 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
   1027 			break;
   1028 		}
   1029 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
   1030 		ess_set_gain(sc, i, 1);
   1031 	}
   1032 
   1033 	ess_setup(sc);
   1034 
   1035 	/* Disable the speaker until the device is opened.  */
   1036 	ess_speaker_off(sc);
   1037 	sc->spkr_state = SPKR_OFF;
   1038 
   1039 	snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
   1040 	    essmodel[sc->sc_model]);
   1041 	snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
   1042 	    sc->sc_version);
   1043 
   1044 	if (ESS_USE_AUDIO1(sc->sc_model))
   1045 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
   1046 	else
   1047 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
   1048 
   1049 	arg.type = AUDIODEV_TYPE_OPL;
   1050 	arg.hwif = 0;
   1051 	arg.hdl = 0;
   1052 	(void)config_found(&sc->sc_dev, &arg, audioprint);
   1053 
   1054 #if NJOY_ESS > 0
   1055 	if (sc->sc_model == ESS_1888 && enablejoy) {
   1056 		unsigned char m40;
   1057 
   1058 		m40 = ess_read_mix_reg(sc, 0x40);
   1059 		m40 |= 2;
   1060 		ess_write_mix_reg(sc, 0x40, m40);
   1061 
   1062 		arg.type = AUDIODEV_TYPE_AUX;
   1063 		(void)config_found(&sc->sc_dev, &arg, audioprint);
   1064 	}
   1065 #endif
   1066 
   1067 #ifdef AUDIO_DEBUG
   1068 	if (essdebug > 0)
   1069 		ess_printsc(sc);
   1070 #endif
   1071 }
   1072 
   1073 /*
   1074  * Various routines to interface to higher level audio driver
   1075  */
   1076 
   1077 int
   1078 ess_open(addr, flags)
   1079 	void *addr;
   1080 	int flags;
   1081 {
   1082 	return (0);
   1083 }
   1084 
   1085 void
   1086 ess_close(addr)
   1087 	void *addr;
   1088 {
   1089 	struct ess_softc *sc = addr;
   1090 
   1091 	DPRINTF(("ess_close: sc=%p\n", sc));
   1092 
   1093 	ess_speaker_off(sc);
   1094 	sc->spkr_state = SPKR_OFF;
   1095 
   1096 	DPRINTF(("ess_close: closed\n"));
   1097 }
   1098 
   1099 /*
   1100  * Wait for FIFO to drain, and analog section to settle.
   1101  * XXX should check FIFO empty bit.
   1102  */
   1103 int
   1104 ess_drain(addr)
   1105 	void *addr;
   1106 {
   1107 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
   1108 	return (0);
   1109 }
   1110 
   1111 /* XXX should use reference count */
   1112 int
   1113 ess_speaker_ctl(addr, newstate)
   1114 	void *addr;
   1115 	int newstate;
   1116 {
   1117 	struct ess_softc *sc = addr;
   1118 
   1119 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
   1120 		ess_speaker_on(sc);
   1121 		sc->spkr_state = SPKR_ON;
   1122 	}
   1123 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
   1124 		ess_speaker_off(sc);
   1125 		sc->spkr_state = SPKR_OFF;
   1126 	}
   1127 	return (0);
   1128 }
   1129 
   1130 int
   1131 ess_getdev(addr, retp)
   1132 	void *addr;
   1133 	struct audio_device *retp;
   1134 {
   1135 	*retp = ess_device;
   1136 	return (0);
   1137 }
   1138 
   1139 int
   1140 ess_query_encoding(addr, fp)
   1141 	void *addr;
   1142 	struct audio_encoding *fp;
   1143 {
   1144 	/*struct ess_softc *sc = addr;*/
   1145 
   1146 	switch (fp->index) {
   1147 	case 0:
   1148 		strcpy(fp->name, AudioEulinear);
   1149 		fp->encoding = AUDIO_ENCODING_ULINEAR;
   1150 		fp->precision = 8;
   1151 		fp->flags = 0;
   1152 		return (0);
   1153 	case 1:
   1154 		strcpy(fp->name, AudioEmulaw);
   1155 		fp->encoding = AUDIO_ENCODING_ULAW;
   1156 		fp->precision = 8;
   1157 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   1158 		return (0);
   1159 	case 2:
   1160 		strcpy(fp->name, AudioEalaw);
   1161 		fp->encoding = AUDIO_ENCODING_ALAW;
   1162 		fp->precision = 8;
   1163 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   1164 		return (0);
   1165 	case 3:
   1166 		strcpy(fp->name, AudioEslinear);
   1167 		fp->encoding = AUDIO_ENCODING_SLINEAR;
   1168 		fp->precision = 8;
   1169 		fp->flags = 0;
   1170 		return (0);
   1171 	case 4:
   1172 		strcpy(fp->name, AudioEslinear_le);
   1173 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
   1174 		fp->precision = 16;
   1175 		fp->flags = 0;
   1176 		return (0);
   1177 	case 5:
   1178 		strcpy(fp->name, AudioEulinear_le);
   1179 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
   1180 		fp->precision = 16;
   1181 		fp->flags = 0;
   1182 		return (0);
   1183 	case 6:
   1184 		strcpy(fp->name, AudioEslinear_be);
   1185 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
   1186 		fp->precision = 16;
   1187 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   1188 		return (0);
   1189 	case 7:
   1190 		strcpy(fp->name, AudioEulinear_be);
   1191 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
   1192 		fp->precision = 16;
   1193 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   1194 		return (0);
   1195 	default:
   1196 		return EINVAL;
   1197 	}
   1198 	return (0);
   1199 }
   1200 
   1201 int
   1202 ess_set_params(addr, setmode, usemode, play, rec)
   1203 	void *addr;
   1204 	int setmode, usemode;
   1205 	struct audio_params *play, *rec;
   1206 {
   1207 	struct ess_softc *sc = addr;
   1208 	struct audio_params *p;
   1209 	int mode;
   1210 	int rate;
   1211 
   1212 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
   1213 
   1214 	/*
   1215 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
   1216 	 * full-duplex operation the sample rates must be the same for both
   1217 	 * channels.  This appears to be false; the only bit in common is the
   1218 	 * clock source selection.  However, we'll be conservative here.
   1219 	 * - mycroft
   1220 	 */
   1221 	if (play->sample_rate != rec->sample_rate &&
   1222 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
   1223 		if (setmode == AUMODE_PLAY) {
   1224 			rec->sample_rate = play->sample_rate;
   1225 			setmode |= AUMODE_RECORD;
   1226 		} else if (setmode == AUMODE_RECORD) {
   1227 			play->sample_rate = rec->sample_rate;
   1228 			setmode |= AUMODE_PLAY;
   1229 		} else
   1230 			return (EINVAL);
   1231 	}
   1232 
   1233 	for (mode = AUMODE_RECORD; mode != -1;
   1234 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
   1235 		if ((setmode & mode) == 0)
   1236 			continue;
   1237 
   1238 		p = mode == AUMODE_PLAY ? play : rec;
   1239 
   1240 		if (p->sample_rate < ESS_MINRATE ||
   1241 		    p->sample_rate > ESS_MAXRATE ||
   1242 		    (p->precision != 8 && p->precision != 16) ||
   1243 		    (p->channels != 1 && p->channels != 2))
   1244 			return (EINVAL);
   1245 
   1246 		p->factor = 1;
   1247 		p->sw_code = 0;
   1248 		switch (p->encoding) {
   1249 		case AUDIO_ENCODING_SLINEAR_BE:
   1250 		case AUDIO_ENCODING_ULINEAR_BE:
   1251 			if (p->precision == 16)
   1252 				p->sw_code = swap_bytes;
   1253 			break;
   1254 		case AUDIO_ENCODING_SLINEAR_LE:
   1255 		case AUDIO_ENCODING_ULINEAR_LE:
   1256 			break;
   1257 		case AUDIO_ENCODING_ULAW:
   1258 			if (mode == AUMODE_PLAY) {
   1259 				p->factor = 2;
   1260 				p->sw_code = mulaw_to_ulinear16_le;
   1261 			} else
   1262 				p->sw_code = ulinear8_to_mulaw;
   1263 			break;
   1264 		case AUDIO_ENCODING_ALAW:
   1265 			if (mode == AUMODE_PLAY) {
   1266 				p->factor = 2;
   1267 				p->sw_code = alaw_to_ulinear16_le;
   1268 			} else
   1269 				p->sw_code = ulinear8_to_alaw;
   1270 			break;
   1271 		default:
   1272 			return (EINVAL);
   1273 		}
   1274 	}
   1275 
   1276 	if (usemode == AUMODE_RECORD)
   1277 		rate = rec->sample_rate;
   1278 	else
   1279 		rate = play->sample_rate;
   1280 
   1281 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
   1282 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
   1283 
   1284 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
   1285 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
   1286 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
   1287 	}
   1288 
   1289 	return (0);
   1290 }
   1291 
   1292 int
   1293 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
   1294 	void *addr;
   1295 	void *start, *end;
   1296 	int blksize;
   1297 	void (*intr) __P((void *));
   1298 	void *arg;
   1299 	struct audio_params *param;
   1300 {
   1301 	struct ess_softc *sc = addr;
   1302 	u_int8_t reg;
   1303 
   1304 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
   1305 	    addr, start, end, blksize, intr, arg));
   1306 
   1307 	if (sc->sc_audio1.active)
   1308 		panic("ess_audio1_trigger_output: already running");
   1309 
   1310 	sc->sc_audio1.active = 1;
   1311 	sc->sc_audio1.intr = intr;
   1312 	sc->sc_audio1.arg = arg;
   1313 	if (sc->sc_audio1.polled) {
   1314 		sc->sc_audio1.dmapos = 0;
   1315 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
   1316 		sc->sc_audio1.dmacount = 0;
   1317 		sc->sc_audio1.blksize = blksize;
   1318 		callout_reset(&sc->sc_poll1_ch, hz / 30,
   1319 		    ess_audio1_poll, sc);
   1320 	}
   1321 
   1322 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
   1323 	if (param->channels == 2) {
   1324 		reg &= ~ESS_AUDIO_CTRL_MONO;
   1325 		reg |= ESS_AUDIO_CTRL_STEREO;
   1326 	} else {
   1327 		reg |= ESS_AUDIO_CTRL_MONO;
   1328 		reg &= ~ESS_AUDIO_CTRL_STEREO;
   1329 	}
   1330 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
   1331 
   1332 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
   1333 	if (param->precision * param->factor == 16)
   1334 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
   1335 	else
   1336 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
   1337 	if (param->channels == 2)
   1338 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
   1339 	else
   1340 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
   1341 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1342 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1343 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
   1344 	else
   1345 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
   1346 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
   1347 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
   1348 
   1349 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
   1350 		     (char *)end - (char *)start, NULL,
   1351 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1352 
   1353 	/* Program transfer count registers with 2's complement of count. */
   1354 	blksize = -blksize;
   1355 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
   1356 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
   1357 
   1358 	/* Use 4 bytes per output DMA. */
   1359 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
   1360 
   1361 	/* Start auto-init DMA */
   1362   	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
   1363 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
   1364 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
   1365 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
   1366 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
   1367 
   1368 	return (0);
   1369 }
   1370 
   1371 int
   1372 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
   1373 	void *addr;
   1374 	void *start, *end;
   1375 	int blksize;
   1376 	void (*intr) __P((void *));
   1377 	void *arg;
   1378 	struct audio_params *param;
   1379 {
   1380 	struct ess_softc *sc = addr;
   1381 	u_int8_t reg;
   1382 
   1383 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
   1384 	    addr, start, end, blksize, intr, arg));
   1385 
   1386 	if (sc->sc_audio2.active)
   1387 		panic("ess_audio2_trigger_output: already running");
   1388 
   1389 	sc->sc_audio2.active = 1;
   1390 	sc->sc_audio2.intr = intr;
   1391 	sc->sc_audio2.arg = arg;
   1392 	if (sc->sc_audio2.polled) {
   1393 		sc->sc_audio2.dmapos = 0;
   1394 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
   1395 		sc->sc_audio2.dmacount = 0;
   1396 		sc->sc_audio2.blksize = blksize;
   1397 		callout_reset(&sc->sc_poll2_ch, hz / 30,
   1398 		    ess_audio2_poll, sc);
   1399 	}
   1400 
   1401 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
   1402 	if (param->precision * param->factor == 16)
   1403 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
   1404 	else
   1405 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
   1406 	if (param->channels == 2)
   1407 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
   1408 	else
   1409 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
   1410 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1411 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1412 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
   1413 	else
   1414 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
   1415 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
   1416 
   1417 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
   1418 		     (char *)end - (char *)start, NULL,
   1419 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1420 
   1421 	if (IS16BITDRQ(sc->sc_audio2.drq))
   1422 		blksize >>= 1;	/* use word count for 16 bit DMA */
   1423 	/* Program transfer count registers with 2's complement of count. */
   1424 	blksize = -blksize;
   1425 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
   1426 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
   1427 
   1428 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
   1429 	if (IS16BITDRQ(sc->sc_audio2.drq))
   1430 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
   1431 	else
   1432 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
   1433 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
   1434 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
   1435 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
   1436 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
   1437 
   1438 	return (0);
   1439 }
   1440 
   1441 int
   1442 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
   1443 	void *addr;
   1444 	void *start, *end;
   1445 	int blksize;
   1446 	void (*intr) __P((void *));
   1447 	void *arg;
   1448 	struct audio_params *param;
   1449 {
   1450 	struct ess_softc *sc = addr;
   1451 	u_int8_t reg;
   1452 
   1453 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
   1454 	    addr, start, end, blksize, intr, arg));
   1455 
   1456 	if (sc->sc_audio1.active)
   1457 		panic("ess_audio1_trigger_input: already running");
   1458 
   1459 	sc->sc_audio1.active = 1;
   1460 	sc->sc_audio1.intr = intr;
   1461 	sc->sc_audio1.arg = arg;
   1462 	if (sc->sc_audio1.polled) {
   1463 		sc->sc_audio1.dmapos = 0;
   1464 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
   1465 		sc->sc_audio1.dmacount = 0;
   1466 		sc->sc_audio1.blksize = blksize;
   1467 		callout_reset(&sc->sc_poll1_ch, hz / 30,
   1468 		    ess_audio1_poll, sc);
   1469 	}
   1470 
   1471 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
   1472 	if (param->channels == 2) {
   1473 		reg &= ~ESS_AUDIO_CTRL_MONO;
   1474 		reg |= ESS_AUDIO_CTRL_STEREO;
   1475 	} else {
   1476 		reg |= ESS_AUDIO_CTRL_MONO;
   1477 		reg &= ~ESS_AUDIO_CTRL_STEREO;
   1478 	}
   1479 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
   1480 
   1481 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
   1482 	if (param->precision * param->factor == 16)
   1483 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
   1484 	else
   1485 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
   1486 	if (param->channels == 2)
   1487 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
   1488 	else
   1489 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
   1490 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1491 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1492 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
   1493 	else
   1494 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
   1495 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
   1496 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
   1497 
   1498 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
   1499 		     (char *)end - (char *)start, NULL,
   1500 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1501 
   1502 	/* Program transfer count registers with 2's complement of count. */
   1503 	blksize = -blksize;
   1504 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
   1505 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
   1506 
   1507 	/* Use 4 bytes per input DMA. */
   1508 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
   1509 
   1510 	/* Start auto-init DMA */
   1511   	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
   1512 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
   1513 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
   1514 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
   1515 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
   1516 
   1517 	return (0);
   1518 }
   1519 
   1520 int
   1521 ess_audio1_halt(addr)
   1522 	void *addr;
   1523 {
   1524 	struct ess_softc *sc = addr;
   1525 
   1526 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
   1527 
   1528 	if (sc->sc_audio1.active) {
   1529 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
   1530 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
   1531 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
   1532 		if (sc->sc_audio1.polled)
   1533 			callout_stop(&sc->sc_poll1_ch);
   1534 		sc->sc_audio1.active = 0;
   1535 	}
   1536 
   1537 	return (0);
   1538 }
   1539 
   1540 int
   1541 ess_audio2_halt(addr)
   1542 	void *addr;
   1543 {
   1544 	struct ess_softc *sc = addr;
   1545 
   1546 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
   1547 
   1548 	if (sc->sc_audio2.active) {
   1549 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
   1550 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
   1551 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
   1552 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
   1553 		if (sc->sc_audio2.polled)
   1554 			callout_stop(&sc->sc_poll2_ch);
   1555 		sc->sc_audio2.active = 0;
   1556 	}
   1557 
   1558 	return (0);
   1559 }
   1560 
   1561 int
   1562 ess_audio1_intr(arg)
   1563 	void *arg;
   1564 {
   1565 	struct ess_softc *sc = arg;
   1566 	u_int8_t reg;
   1567 
   1568 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
   1569 
   1570 	/* Check and clear interrupt on Audio1. */
   1571 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
   1572 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
   1573 		return (0);
   1574 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
   1575 
   1576 	sc->sc_audio1.nintr++;
   1577 
   1578 	if (sc->sc_audio1.active) {
   1579 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
   1580 		return (1);
   1581 	} else
   1582 		return (0);
   1583 }
   1584 
   1585 int
   1586 ess_audio2_intr(arg)
   1587 	void *arg;
   1588 {
   1589 	struct ess_softc *sc = arg;
   1590 	u_int8_t reg;
   1591 
   1592 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
   1593 
   1594 	/* Check and clear interrupt on Audio2. */
   1595 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
   1596 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
   1597 		return (0);
   1598 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
   1599 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
   1600 
   1601 	sc->sc_audio2.nintr++;
   1602 
   1603 	if (sc->sc_audio2.active) {
   1604 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
   1605 		return (1);
   1606 	} else
   1607 		return (0);
   1608 }
   1609 
   1610 void
   1611 ess_audio1_poll(addr)
   1612 	void *addr;
   1613 {
   1614 	struct ess_softc *sc = addr;
   1615 	int dmapos, dmacount;
   1616 
   1617 	if (!sc->sc_audio1.active)
   1618 		return;
   1619 
   1620 	sc->sc_audio1.nintr++;
   1621 
   1622 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
   1623 	dmacount = sc->sc_audio1.dmapos - dmapos;
   1624 	if (dmacount < 0)
   1625 		dmacount += sc->sc_audio1.buffersize;
   1626 	sc->sc_audio1.dmapos = dmapos;
   1627 #if 1
   1628 	dmacount += sc->sc_audio1.dmacount;
   1629 	while (dmacount > sc->sc_audio1.blksize) {
   1630 		dmacount -= sc->sc_audio1.blksize;
   1631 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
   1632 	}
   1633 	sc->sc_audio1.dmacount = dmacount;
   1634 #else
   1635 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
   1636 #endif
   1637 
   1638 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
   1639 }
   1640 
   1641 void
   1642 ess_audio2_poll(addr)
   1643 	void *addr;
   1644 {
   1645 	struct ess_softc *sc = addr;
   1646 	int dmapos, dmacount;
   1647 
   1648 	if (!sc->sc_audio2.active)
   1649 		return;
   1650 
   1651 	sc->sc_audio2.nintr++;
   1652 
   1653 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
   1654 	dmacount = sc->sc_audio2.dmapos - dmapos;
   1655 	if (dmacount < 0)
   1656 		dmacount += sc->sc_audio2.buffersize;
   1657 	sc->sc_audio2.dmapos = dmapos;
   1658 #if 1
   1659 	dmacount += sc->sc_audio2.dmacount;
   1660 	while (dmacount > sc->sc_audio2.blksize) {
   1661 		dmacount -= sc->sc_audio2.blksize;
   1662 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
   1663 	}
   1664 	sc->sc_audio2.dmacount = dmacount;
   1665 #else
   1666 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
   1667 #endif
   1668 
   1669 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
   1670 }
   1671 
   1672 int
   1673 ess_round_blocksize(addr, blk)
   1674 	void *addr;
   1675 	int blk;
   1676 {
   1677 	return (blk & -8);	/* round for max DMA size */
   1678 }
   1679 
   1680 int
   1681 ess_set_port(addr, cp)
   1682 	void *addr;
   1683 	mixer_ctrl_t *cp;
   1684 {
   1685 	struct ess_softc *sc = addr;
   1686 	int lgain, rgain;
   1687 
   1688 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
   1689 		    cp->dev, cp->un.value.num_channels));
   1690 
   1691 	switch (cp->dev) {
   1692 	/*
   1693 	 * The following mixer ports are all stereo. If we get a
   1694 	 * single-channel gain value passed in, then we duplicate it
   1695 	 * to both left and right channels.
   1696 	 */
   1697 	case ESS_MASTER_VOL:
   1698 	case ESS_DAC_PLAY_VOL:
   1699 	case ESS_MIC_PLAY_VOL:
   1700 	case ESS_LINE_PLAY_VOL:
   1701 	case ESS_SYNTH_PLAY_VOL:
   1702 	case ESS_CD_PLAY_VOL:
   1703 	case ESS_AUXB_PLAY_VOL:
   1704 	case ESS_RECORD_VOL:
   1705 		if (cp->type != AUDIO_MIXER_VALUE)
   1706 			return EINVAL;
   1707 
   1708 		switch (cp->un.value.num_channels) {
   1709 		case 1:
   1710 			lgain = rgain = ESS_4BIT_GAIN(
   1711 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1712 			break;
   1713 		case 2:
   1714 			lgain = ESS_4BIT_GAIN(
   1715 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1716 			rgain = ESS_4BIT_GAIN(
   1717 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1718 			break;
   1719 		default:
   1720 			return EINVAL;
   1721 		}
   1722 
   1723 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
   1724 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
   1725 		ess_set_gain(sc, cp->dev, 1);
   1726 		return (0);
   1727 
   1728 	/*
   1729 	 * The PC speaker port is mono. If we get a stereo gain value
   1730 	 * passed in, then we return EINVAL.
   1731 	 */
   1732 	case ESS_PCSPEAKER_VOL:
   1733 		if (cp->un.value.num_channels != 1)
   1734 			return EINVAL;
   1735 
   1736 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
   1737 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1738 		ess_set_gain(sc, cp->dev, 1);
   1739 		return (0);
   1740 
   1741 	case ESS_RECORD_SOURCE:
   1742 		if (ESS_USE_AUDIO1(sc->sc_model)) {
   1743 			if (cp->type == AUDIO_MIXER_ENUM)
   1744 				return (ess_set_in_port(sc, cp->un.ord));
   1745 			else
   1746 				return (EINVAL);
   1747 		} else {
   1748 			if (cp->type == AUDIO_MIXER_SET)
   1749 				return (ess_set_in_ports(sc, cp->un.mask));
   1750 			else
   1751 				return (EINVAL);
   1752 		}
   1753 		return (0);
   1754 
   1755 	case ESS_RECORD_MONITOR:
   1756 		if (cp->type != AUDIO_MIXER_ENUM)
   1757 			return EINVAL;
   1758 
   1759 		if (cp->un.ord)
   1760 			/* Enable monitor */
   1761 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
   1762 					  ESS_AUDIO_CTRL_MONITOR);
   1763 		else
   1764 			/* Disable monitor */
   1765 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
   1766 					    ESS_AUDIO_CTRL_MONITOR);
   1767 		return (0);
   1768 	}
   1769 
   1770 	if (ESS_USE_AUDIO1(sc->sc_model))
   1771 		return (EINVAL);
   1772 
   1773 	switch (cp->dev) {
   1774 	case ESS_DAC_REC_VOL:
   1775 	case ESS_MIC_REC_VOL:
   1776 	case ESS_LINE_REC_VOL:
   1777 	case ESS_SYNTH_REC_VOL:
   1778 	case ESS_CD_REC_VOL:
   1779 	case ESS_AUXB_REC_VOL:
   1780 		if (cp->type != AUDIO_MIXER_VALUE)
   1781 			return EINVAL;
   1782 
   1783 		switch (cp->un.value.num_channels) {
   1784 		case 1:
   1785 			lgain = rgain = ESS_4BIT_GAIN(
   1786 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1787 			break;
   1788 		case 2:
   1789 			lgain = ESS_4BIT_GAIN(
   1790 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1791 			rgain = ESS_4BIT_GAIN(
   1792 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1793 			break;
   1794 		default:
   1795 			return EINVAL;
   1796 		}
   1797 
   1798 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
   1799 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
   1800 		ess_set_gain(sc, cp->dev, 1);
   1801 		return (0);
   1802 
   1803 	case ESS_MIC_PREAMP:
   1804 		if (cp->type != AUDIO_MIXER_ENUM)
   1805 			return EINVAL;
   1806 
   1807 		if (cp->un.ord)
   1808 			/* Enable microphone preamp */
   1809 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
   1810 					  ESS_PREAMP_CTRL_ENABLE);
   1811 		else
   1812 			/* Disable microphone preamp */
   1813 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
   1814 					  ESS_PREAMP_CTRL_ENABLE);
   1815 		return (0);
   1816 	}
   1817 
   1818 	return (EINVAL);
   1819 }
   1820 
   1821 int
   1822 ess_get_port(addr, cp)
   1823 	void *addr;
   1824 	mixer_ctrl_t *cp;
   1825 {
   1826 	struct ess_softc *sc = addr;
   1827 
   1828 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
   1829 
   1830 	switch (cp->dev) {
   1831 	case ESS_MASTER_VOL:
   1832 	case ESS_DAC_PLAY_VOL:
   1833 	case ESS_MIC_PLAY_VOL:
   1834 	case ESS_LINE_PLAY_VOL:
   1835 	case ESS_SYNTH_PLAY_VOL:
   1836 	case ESS_CD_PLAY_VOL:
   1837 	case ESS_AUXB_PLAY_VOL:
   1838 	case ESS_RECORD_VOL:
   1839 		switch (cp->un.value.num_channels) {
   1840 		case 1:
   1841 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1842 				sc->gain[cp->dev][ESS_LEFT];
   1843 			break;
   1844 		case 2:
   1845 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1846 				sc->gain[cp->dev][ESS_LEFT];
   1847 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1848 				sc->gain[cp->dev][ESS_RIGHT];
   1849 			break;
   1850 		default:
   1851 			return EINVAL;
   1852 		}
   1853 		return (0);
   1854 
   1855 	case ESS_PCSPEAKER_VOL:
   1856 		if (cp->un.value.num_channels != 1)
   1857 			return EINVAL;
   1858 
   1859 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1860 			sc->gain[cp->dev][ESS_LEFT];
   1861 		return (0);
   1862 
   1863 	case ESS_RECORD_SOURCE:
   1864 		if (ESS_USE_AUDIO1(sc->sc_model))
   1865 			cp->un.ord = sc->in_port;
   1866 		else
   1867 			cp->un.mask = sc->in_mask;
   1868 		return (0);
   1869 
   1870 	case ESS_RECORD_MONITOR:
   1871 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
   1872 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
   1873 		return (0);
   1874 	}
   1875 
   1876 	if (ESS_USE_AUDIO1(sc->sc_model))
   1877 		return (EINVAL);
   1878 
   1879 	switch (cp->dev) {
   1880 	case ESS_DAC_REC_VOL:
   1881 	case ESS_MIC_REC_VOL:
   1882 	case ESS_LINE_REC_VOL:
   1883 	case ESS_SYNTH_REC_VOL:
   1884 	case ESS_CD_REC_VOL:
   1885 	case ESS_AUXB_REC_VOL:
   1886 		switch (cp->un.value.num_channels) {
   1887 		case 1:
   1888 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1889 				sc->gain[cp->dev][ESS_LEFT];
   1890 			break;
   1891 		case 2:
   1892 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1893 				sc->gain[cp->dev][ESS_LEFT];
   1894 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1895 				sc->gain[cp->dev][ESS_RIGHT];
   1896 			break;
   1897 		default:
   1898 			return EINVAL;
   1899 		}
   1900 		return (0);
   1901 
   1902 	case ESS_MIC_PREAMP:
   1903 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
   1904 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
   1905 		return (0);
   1906 	}
   1907 
   1908 	return (EINVAL);
   1909 }
   1910 
   1911 int
   1912 ess_query_devinfo(addr, dip)
   1913 	void *addr;
   1914 	mixer_devinfo_t *dip;
   1915 {
   1916 	struct ess_softc *sc = addr;
   1917 
   1918 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
   1919 		    sc->sc_model, dip->index));
   1920 
   1921 	/*
   1922 	 * REVISIT: There are some slight differences between the
   1923 	 *          mixers on the different ESS chips, which can
   1924 	 *          be sorted out using the chip model rather than a
   1925 	 *          separate mixer model.
   1926 	 *          This is currently coded assuming an ES1887; we
   1927 	 *          need to work out which bits are not applicable to
   1928 	 *          the other models (1888 and 888).
   1929 	 */
   1930 	switch (dip->index) {
   1931 	case ESS_DAC_PLAY_VOL:
   1932 		dip->mixer_class = ESS_INPUT_CLASS;
   1933 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1934 		strcpy(dip->label.name, AudioNdac);
   1935 		dip->type = AUDIO_MIXER_VALUE;
   1936 		dip->un.v.num_channels = 2;
   1937 		strcpy(dip->un.v.units.name, AudioNvolume);
   1938 		return (0);
   1939 
   1940 	case ESS_MIC_PLAY_VOL:
   1941 		dip->mixer_class = ESS_INPUT_CLASS;
   1942 		dip->prev = AUDIO_MIXER_LAST;
   1943 		if (ESS_USE_AUDIO1(sc->sc_model))
   1944 			dip->next = AUDIO_MIXER_LAST;
   1945 		else
   1946 			dip->next = ESS_MIC_PREAMP;
   1947 		strcpy(dip->label.name, AudioNmicrophone);
   1948 		dip->type = AUDIO_MIXER_VALUE;
   1949 		dip->un.v.num_channels = 2;
   1950 		strcpy(dip->un.v.units.name, AudioNvolume);
   1951 		return (0);
   1952 
   1953 	case ESS_LINE_PLAY_VOL:
   1954 		dip->mixer_class = ESS_INPUT_CLASS;
   1955 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1956 		strcpy(dip->label.name, AudioNline);
   1957 		dip->type = AUDIO_MIXER_VALUE;
   1958 		dip->un.v.num_channels = 2;
   1959 		strcpy(dip->un.v.units.name, AudioNvolume);
   1960 		return (0);
   1961 
   1962 	case ESS_SYNTH_PLAY_VOL:
   1963 		dip->mixer_class = ESS_INPUT_CLASS;
   1964 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1965 		strcpy(dip->label.name, AudioNfmsynth);
   1966 		dip->type = AUDIO_MIXER_VALUE;
   1967 		dip->un.v.num_channels = 2;
   1968 		strcpy(dip->un.v.units.name, AudioNvolume);
   1969 		return (0);
   1970 
   1971 	case ESS_CD_PLAY_VOL:
   1972 		dip->mixer_class = ESS_INPUT_CLASS;
   1973 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1974 		strcpy(dip->label.name, AudioNcd);
   1975 		dip->type = AUDIO_MIXER_VALUE;
   1976 		dip->un.v.num_channels = 2;
   1977 		strcpy(dip->un.v.units.name, AudioNvolume);
   1978 		return (0);
   1979 
   1980 	case ESS_AUXB_PLAY_VOL:
   1981 		dip->mixer_class = ESS_INPUT_CLASS;
   1982 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1983 		strcpy(dip->label.name, "auxb");
   1984 		dip->type = AUDIO_MIXER_VALUE;
   1985 		dip->un.v.num_channels = 2;
   1986 		strcpy(dip->un.v.units.name, AudioNvolume);
   1987 		return (0);
   1988 
   1989 	case ESS_INPUT_CLASS:
   1990 		dip->mixer_class = ESS_INPUT_CLASS;
   1991 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1992 		strcpy(dip->label.name, AudioCinputs);
   1993 		dip->type = AUDIO_MIXER_CLASS;
   1994 		return (0);
   1995 
   1996 	case ESS_MASTER_VOL:
   1997 		dip->mixer_class = ESS_OUTPUT_CLASS;
   1998 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1999 		strcpy(dip->label.name, AudioNmaster);
   2000 		dip->type = AUDIO_MIXER_VALUE;
   2001 		dip->un.v.num_channels = 2;
   2002 		strcpy(dip->un.v.units.name, AudioNvolume);
   2003 		return (0);
   2004 
   2005 	case ESS_PCSPEAKER_VOL:
   2006 		dip->mixer_class = ESS_OUTPUT_CLASS;
   2007 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2008 		strcpy(dip->label.name, "pc_speaker");
   2009 		dip->type = AUDIO_MIXER_VALUE;
   2010 		dip->un.v.num_channels = 1;
   2011 		strcpy(dip->un.v.units.name, AudioNvolume);
   2012 		return (0);
   2013 
   2014 	case ESS_OUTPUT_CLASS:
   2015 		dip->mixer_class = ESS_OUTPUT_CLASS;
   2016 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2017 		strcpy(dip->label.name, AudioCoutputs);
   2018 		dip->type = AUDIO_MIXER_CLASS;
   2019 		return (0);
   2020 
   2021 	case ESS_RECORD_VOL:
   2022 		dip->mixer_class = ESS_RECORD_CLASS;
   2023 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2024 		strcpy(dip->label.name, AudioNrecord);
   2025 		dip->type = AUDIO_MIXER_VALUE;
   2026 		dip->un.v.num_channels = 2;
   2027 		strcpy(dip->un.v.units.name, AudioNvolume);
   2028 		return (0);
   2029 
   2030 	case ESS_RECORD_SOURCE:
   2031 		dip->mixer_class = ESS_RECORD_CLASS;
   2032 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2033 		strcpy(dip->label.name, AudioNsource);
   2034 		if (ESS_USE_AUDIO1(sc->sc_model)) {
   2035 			/*
   2036 			 * The 1788 doesn't use the input mixer control that
   2037 			 * the 1888 uses, because it's a pain when you only
   2038 			 * have one mixer.
   2039 			 * Perhaps it could be emulated by keeping both sets of
   2040 			 * gain values, and doing a `context switch' of the
   2041 			 * mixer registers when shifting from playing to
   2042 			 * recording.
   2043 			 */
   2044 			dip->type = AUDIO_MIXER_ENUM;
   2045 			dip->un.e.num_mem = 4;
   2046 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2047 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
   2048 			strcpy(dip->un.e.member[1].label.name, AudioNline);
   2049 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
   2050 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
   2051 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
   2052 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
   2053 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
   2054 		} else {
   2055 			dip->type = AUDIO_MIXER_SET;
   2056 			dip->un.s.num_mem = 6;
   2057 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
   2058 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
   2059 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
   2060 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
   2061 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2062 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
   2063 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2064 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
   2065 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
   2066 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
   2067 			strcpy(dip->un.s.member[5].label.name, "auxb");
   2068 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
   2069 		}
   2070 		return (0);
   2071 
   2072 	case ESS_RECORD_CLASS:
   2073 		dip->mixer_class = ESS_RECORD_CLASS;
   2074 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2075 		strcpy(dip->label.name, AudioCrecord);
   2076 		dip->type = AUDIO_MIXER_CLASS;
   2077 		return (0);
   2078 
   2079 	case ESS_RECORD_MONITOR:
   2080 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2081 		strcpy(dip->label.name, AudioNmute);
   2082 		dip->type = AUDIO_MIXER_ENUM;
   2083 		dip->mixer_class = ESS_MONITOR_CLASS;
   2084 		dip->un.e.num_mem = 2;
   2085 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2086 		dip->un.e.member[0].ord = 0;
   2087 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2088 		dip->un.e.member[1].ord = 1;
   2089 		return (0);
   2090 
   2091 	case ESS_MONITOR_CLASS:
   2092 		dip->mixer_class = ESS_MONITOR_CLASS;
   2093 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2094 		strcpy(dip->label.name, AudioCmonitor);
   2095 		dip->type = AUDIO_MIXER_CLASS;
   2096 		return (0);
   2097 	}
   2098 
   2099 	if (ESS_USE_AUDIO1(sc->sc_model))
   2100 		return (ENXIO);
   2101 
   2102 	switch (dip->index) {
   2103 	case ESS_DAC_REC_VOL:
   2104 		dip->mixer_class = ESS_RECORD_CLASS;
   2105 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2106 		strcpy(dip->label.name, AudioNdac);
   2107 		dip->type = AUDIO_MIXER_VALUE;
   2108 		dip->un.v.num_channels = 2;
   2109 		strcpy(dip->un.v.units.name, AudioNvolume);
   2110 		return (0);
   2111 
   2112 	case ESS_MIC_REC_VOL:
   2113 		dip->mixer_class = ESS_RECORD_CLASS;
   2114 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2115 		strcpy(dip->label.name, AudioNmicrophone);
   2116 		dip->type = AUDIO_MIXER_VALUE;
   2117 		dip->un.v.num_channels = 2;
   2118 		strcpy(dip->un.v.units.name, AudioNvolume);
   2119 		return (0);
   2120 
   2121 	case ESS_LINE_REC_VOL:
   2122 		dip->mixer_class = ESS_RECORD_CLASS;
   2123 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2124 		strcpy(dip->label.name, AudioNline);
   2125 		dip->type = AUDIO_MIXER_VALUE;
   2126 		dip->un.v.num_channels = 2;
   2127 		strcpy(dip->un.v.units.name, AudioNvolume);
   2128 		return (0);
   2129 
   2130 	case ESS_SYNTH_REC_VOL:
   2131 		dip->mixer_class = ESS_RECORD_CLASS;
   2132 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2133 		strcpy(dip->label.name, AudioNfmsynth);
   2134 		dip->type = AUDIO_MIXER_VALUE;
   2135 		dip->un.v.num_channels = 2;
   2136 		strcpy(dip->un.v.units.name, AudioNvolume);
   2137 		return (0);
   2138 
   2139 	case ESS_CD_REC_VOL:
   2140 		dip->mixer_class = ESS_RECORD_CLASS;
   2141 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2142 		strcpy(dip->label.name, AudioNcd);
   2143 		dip->type = AUDIO_MIXER_VALUE;
   2144 		dip->un.v.num_channels = 2;
   2145 		strcpy(dip->un.v.units.name, AudioNvolume);
   2146 		return (0);
   2147 
   2148 	case ESS_AUXB_REC_VOL:
   2149 		dip->mixer_class = ESS_RECORD_CLASS;
   2150 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2151 		strcpy(dip->label.name, "auxb");
   2152 		dip->type = AUDIO_MIXER_VALUE;
   2153 		dip->un.v.num_channels = 2;
   2154 		strcpy(dip->un.v.units.name, AudioNvolume);
   2155 		return (0);
   2156 
   2157 	case ESS_MIC_PREAMP:
   2158 		dip->mixer_class = ESS_INPUT_CLASS;
   2159 		dip->prev = ESS_MIC_PLAY_VOL;
   2160 		dip->next = AUDIO_MIXER_LAST;
   2161 		strcpy(dip->label.name, AudioNpreamp);
   2162 		dip->type = AUDIO_MIXER_ENUM;
   2163 		dip->un.e.num_mem = 2;
   2164 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2165 		dip->un.e.member[0].ord = 0;
   2166 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2167 		dip->un.e.member[1].ord = 1;
   2168 		return (0);
   2169 	}
   2170 
   2171 	return (ENXIO);
   2172 }
   2173 
   2174 void *
   2175 ess_malloc(addr, direction, size, pool, flags)
   2176 	void *addr;
   2177 	int direction;
   2178 	size_t size;
   2179 	struct malloc_type *pool;
   2180 	int flags;
   2181 {
   2182 	struct ess_softc *sc = addr;
   2183 	int drq;
   2184 
   2185 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
   2186 		drq = sc->sc_audio2.drq;
   2187 	else
   2188 		drq = sc->sc_audio1.drq;
   2189 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2190 }
   2191 
   2192 void
   2193 ess_free(addr, ptr, pool)
   2194 	void *addr;
   2195 	void *ptr;
   2196 	struct malloc_type *pool;
   2197 {
   2198 	isa_free(ptr, pool);
   2199 }
   2200 
   2201 size_t
   2202 ess_round_buffersize(addr, direction, size)
   2203 	void *addr;
   2204 	int direction;
   2205 	size_t size;
   2206 {
   2207 	struct ess_softc *sc = addr;
   2208 	bus_size_t maxsize;
   2209 
   2210 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
   2211 		maxsize = sc->sc_audio2.maxsize;
   2212 	else
   2213 		maxsize = sc->sc_audio1.maxsize;
   2214 
   2215 	if (size > maxsize)
   2216 		size = maxsize;
   2217 	return (size);
   2218 }
   2219 
   2220 paddr_t
   2221 ess_mappage(addr, mem, off, prot)
   2222 	void *addr;
   2223 	void *mem;
   2224 	off_t off;
   2225 	int prot;
   2226 {
   2227 	return (isa_mappage(mem, off, prot));
   2228 }
   2229 
   2230 int
   2231 ess_1788_get_props(addr)
   2232 	void *addr;
   2233 {
   2234 
   2235 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
   2236 }
   2237 
   2238 int
   2239 ess_1888_get_props(addr)
   2240 	void *addr;
   2241 {
   2242 
   2243 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   2244 }
   2245 
   2246 /* ============================================
   2247  * Generic functions for ess, not used by audio h/w i/f
   2248  * =============================================
   2249  */
   2250 
   2251 /*
   2252  * Reset the chip.
   2253  * Return non-zero if the chip isn't detected.
   2254  */
   2255 int
   2256 ess_reset(sc)
   2257 	struct ess_softc *sc;
   2258 {
   2259 	bus_space_tag_t iot = sc->sc_iot;
   2260 	bus_space_handle_t ioh = sc->sc_ioh;
   2261 
   2262 	sc->sc_audio1.active = 0;
   2263 	sc->sc_audio2.active = 0;
   2264 
   2265 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
   2266 	delay(10000);		/* XXX shouldn't delay so long */
   2267 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
   2268 	if (ess_rdsp(sc) != ESS_MAGIC)
   2269 		return (1);
   2270 
   2271 	/* Enable access to the ESS extension commands. */
   2272 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
   2273 
   2274 	return (0);
   2275 }
   2276 
   2277 void
   2278 ess_set_gain(sc, port, on)
   2279 	struct ess_softc *sc;
   2280 	int port;
   2281 	int on;
   2282 {
   2283 	int gain, left, right;
   2284 	int mix;
   2285 	int src;
   2286 	int stereo;
   2287 
   2288 	/*
   2289 	 * Most gain controls are found in the mixer registers and
   2290 	 * are stereo. Any that are not, must set mix and stereo as
   2291 	 * required.
   2292 	 */
   2293 	mix = 1;
   2294 	stereo = 1;
   2295 
   2296 	switch (port) {
   2297 	case ESS_MASTER_VOL:
   2298 		src = ESS_MREG_VOLUME_MASTER;
   2299 		break;
   2300 	case ESS_DAC_PLAY_VOL:
   2301 		if (ESS_USE_AUDIO1(sc->sc_model))
   2302 			src = ESS_MREG_VOLUME_VOICE;
   2303 		else
   2304 			src = 0x7C;
   2305 		break;
   2306 	case ESS_MIC_PLAY_VOL:
   2307 		src = ESS_MREG_VOLUME_MIC;
   2308 		break;
   2309 	case ESS_LINE_PLAY_VOL:
   2310 		src = ESS_MREG_VOLUME_LINE;
   2311 		break;
   2312 	case ESS_SYNTH_PLAY_VOL:
   2313 		src = ESS_MREG_VOLUME_SYNTH;
   2314 		break;
   2315 	case ESS_CD_PLAY_VOL:
   2316 		src = ESS_MREG_VOLUME_CD;
   2317 		break;
   2318 	case ESS_AUXB_PLAY_VOL:
   2319 		src = ESS_MREG_VOLUME_AUXB;
   2320 		break;
   2321 	case ESS_PCSPEAKER_VOL:
   2322 		src = ESS_MREG_VOLUME_PCSPKR;
   2323 		stereo = 0;
   2324 		break;
   2325 	case ESS_DAC_REC_VOL:
   2326 		src = 0x69;
   2327 		break;
   2328 	case ESS_MIC_REC_VOL:
   2329 		src = 0x68;
   2330 		break;
   2331 	case ESS_LINE_REC_VOL:
   2332 		src = 0x6E;
   2333 		break;
   2334 	case ESS_SYNTH_REC_VOL:
   2335 		src = 0x6B;
   2336 		break;
   2337 	case ESS_CD_REC_VOL:
   2338 		src = 0x6A;
   2339 		break;
   2340 	case ESS_AUXB_REC_VOL:
   2341 		src = 0x6C;
   2342 		break;
   2343 	case ESS_RECORD_VOL:
   2344 		src = ESS_XCMD_VOLIN_CTRL;
   2345 		mix = 0;
   2346 		break;
   2347 	default:
   2348 		return;
   2349 	}
   2350 
   2351 	/* 1788 doesn't have a separate recording mixer */
   2352 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
   2353 		return;
   2354 
   2355 	if (on) {
   2356 		left = sc->gain[port][ESS_LEFT];
   2357 		right = sc->gain[port][ESS_RIGHT];
   2358 	} else {
   2359 		left = right = 0;
   2360 	}
   2361 
   2362 	if (stereo)
   2363 		gain = ESS_STEREO_GAIN(left, right);
   2364 	else
   2365 		gain = ESS_MONO_GAIN(left);
   2366 
   2367 	if (mix)
   2368 		ess_write_mix_reg(sc, src, gain);
   2369 	else
   2370 		ess_write_x_reg(sc, src, gain);
   2371 }
   2372 
   2373 /* Set the input device on devices without an input mixer. */
   2374 int
   2375 ess_set_in_port(sc, ord)
   2376 	struct ess_softc *sc;
   2377 	int ord;
   2378 {
   2379 	mixer_devinfo_t di;
   2380 	int i;
   2381 
   2382 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
   2383 
   2384 	/*
   2385 	 * Get the device info for the record source control,
   2386 	 * including the list of available sources.
   2387 	 */
   2388 	di.index = ESS_RECORD_SOURCE;
   2389 	if (ess_query_devinfo(sc, &di))
   2390 		return EINVAL;
   2391 
   2392 	/* See if the given ord value was anywhere in the list. */
   2393 	for (i = 0; i < di.un.e.num_mem; i++) {
   2394 		if (ord == di.un.e.member[i].ord)
   2395 			break;
   2396 	}
   2397 	if (i == di.un.e.num_mem)
   2398 		return EINVAL;
   2399 
   2400 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
   2401 
   2402 	sc->in_port = ord;
   2403 	return (0);
   2404 }
   2405 
   2406 /* Set the input device levels on input-mixer-enabled devices. */
   2407 int
   2408 ess_set_in_ports(sc, mask)
   2409 	struct ess_softc *sc;
   2410 	int mask;
   2411 {
   2412 	mixer_devinfo_t di;
   2413 	int i, port;
   2414 
   2415 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
   2416 
   2417 	/*
   2418 	 * Get the device info for the record source control,
   2419 	 * including the list of available sources.
   2420 	 */
   2421 	di.index = ESS_RECORD_SOURCE;
   2422 	if (ess_query_devinfo(sc, &di))
   2423 		return EINVAL;
   2424 
   2425 	/*
   2426 	 * Set or disable the record volume control for each of the
   2427 	 * possible sources.
   2428 	 */
   2429 	for (i = 0; i < di.un.s.num_mem; i++) {
   2430 		/*
   2431 		 * Calculate the source port number from its mask.
   2432 		 */
   2433 		port = ffs(di.un.s.member[i].mask);
   2434 
   2435 		/*
   2436 		 * Set the source gain:
   2437 		 *	to the current value if source is enabled
   2438 		 *	to zero if source is disabled
   2439 		 */
   2440 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
   2441 	}
   2442 
   2443 	sc->in_mask = mask;
   2444 	return (0);
   2445 }
   2446 
   2447 void
   2448 ess_speaker_on(sc)
   2449 	struct ess_softc *sc;
   2450 {
   2451 	/* Unmute the DAC. */
   2452 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
   2453 }
   2454 
   2455 void
   2456 ess_speaker_off(sc)
   2457 	struct ess_softc *sc;
   2458 {
   2459 	/* Mute the DAC. */
   2460 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
   2461 }
   2462 
   2463 /*
   2464  * Calculate the time constant for the requested sampling rate.
   2465  */
   2466 u_int
   2467 ess_srtotc(rate)
   2468 	u_int rate;
   2469 {
   2470 	u_int tc;
   2471 
   2472 	/* The following formulae are from the ESS data sheet. */
   2473 	if (rate <= 22050)
   2474 		tc = 128 - 397700L / rate;
   2475 	else
   2476 		tc = 256 - 795500L / rate;
   2477 
   2478 	return (tc);
   2479 }
   2480 
   2481 
   2482 /*
   2483  * Calculate the filter constant for the reuqested sampling rate.
   2484  */
   2485 u_int
   2486 ess_srtofc(rate)
   2487 	u_int rate;
   2488 {
   2489 	/*
   2490 	 * The following formula is derived from the information in
   2491 	 * the ES1887 data sheet, based on a roll-off frequency of
   2492 	 * 87%.
   2493 	 */
   2494 	return (256 - 200279L / rate);
   2495 }
   2496 
   2497 
   2498 /*
   2499  * Return the status of the DSP.
   2500  */
   2501 u_char
   2502 ess_get_dsp_status(sc)
   2503 	struct ess_softc *sc;
   2504 {
   2505 	return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
   2506 }
   2507 
   2508 
   2509 /*
   2510  * Return the read status of the DSP:	1 -> DSP ready for reading
   2511  *					0 -> DSP not ready for reading
   2512  */
   2513 u_char
   2514 ess_dsp_read_ready(sc)
   2515 	struct ess_softc *sc;
   2516 {
   2517 	return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
   2518 }
   2519 
   2520 
   2521 /*
   2522  * Return the write status of the DSP:	1 -> DSP ready for writing
   2523  *					0 -> DSP not ready for writing
   2524  */
   2525 u_char
   2526 ess_dsp_write_ready(sc)
   2527 	struct ess_softc *sc;
   2528 {
   2529 	return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
   2530 }
   2531 
   2532 
   2533 /*
   2534  * Read a byte from the DSP.
   2535  */
   2536 int
   2537 ess_rdsp(sc)
   2538 	struct ess_softc *sc;
   2539 {
   2540 	bus_space_tag_t iot = sc->sc_iot;
   2541 	bus_space_handle_t ioh = sc->sc_ioh;
   2542 	int i;
   2543 
   2544 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
   2545 		if (ess_dsp_read_ready(sc)) {
   2546 			i = EREAD1(iot, ioh, ESS_DSP_READ);
   2547 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
   2548 			return i;
   2549 		} else
   2550 			delay(10);
   2551 	}
   2552 
   2553 	DPRINTF(("ess_rdsp: timed out\n"));
   2554 	return (-1);
   2555 }
   2556 
   2557 /*
   2558  * Write a byte to the DSP.
   2559  */
   2560 int
   2561 ess_wdsp(sc, v)
   2562 	struct ess_softc *sc;
   2563 	u_char v;
   2564 {
   2565 	bus_space_tag_t iot = sc->sc_iot;
   2566 	bus_space_handle_t ioh = sc->sc_ioh;
   2567 	int i;
   2568 
   2569 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
   2570 
   2571 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
   2572 		if (ess_dsp_write_ready(sc)) {
   2573 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
   2574 			return (0);
   2575 		} else
   2576 			delay(10);
   2577 	}
   2578 
   2579 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
   2580 	return (-1);
   2581 }
   2582 
   2583 /*
   2584  * Write a value to one of the ESS extended registers.
   2585  */
   2586 int
   2587 ess_write_x_reg(sc, reg, val)
   2588 	struct ess_softc *sc;
   2589 	u_char reg;
   2590 	u_char val;
   2591 {
   2592 	int error;
   2593 
   2594 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
   2595 	if ((error = ess_wdsp(sc, reg)) == 0)
   2596 		error = ess_wdsp(sc, val);
   2597 
   2598 	return error;
   2599 }
   2600 
   2601 /*
   2602  * Read the value of one of the ESS extended registers.
   2603  */
   2604 u_char
   2605 ess_read_x_reg(sc, reg)
   2606 	struct ess_softc *sc;
   2607 	u_char reg;
   2608 {
   2609 	int error;
   2610 	int val;
   2611 
   2612 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
   2613 		error = ess_wdsp(sc, reg);
   2614 	if (error)
   2615 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
   2616 /* REVISIT: what if an error is returned above? */
   2617 	val = ess_rdsp(sc);
   2618 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
   2619 	return val;
   2620 }
   2621 
   2622 void
   2623 ess_clear_xreg_bits(sc, reg, mask)
   2624 	struct ess_softc *sc;
   2625 	u_char reg;
   2626 	u_char mask;
   2627 {
   2628 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
   2629 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
   2630 			 reg));
   2631 }
   2632 
   2633 void
   2634 ess_set_xreg_bits(sc, reg, mask)
   2635 	struct ess_softc *sc;
   2636 	u_char reg;
   2637 	u_char mask;
   2638 {
   2639 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
   2640 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
   2641 			 reg));
   2642 }
   2643 
   2644 
   2645 /*
   2646  * Write a value to one of the ESS mixer registers.
   2647  */
   2648 void
   2649 ess_write_mix_reg(sc, reg, val)
   2650 	struct ess_softc *sc;
   2651 	u_char reg;
   2652 	u_char val;
   2653 {
   2654 	bus_space_tag_t iot = sc->sc_iot;
   2655 	bus_space_handle_t ioh = sc->sc_ioh;
   2656 	int s;
   2657 
   2658 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
   2659 
   2660 	s = splaudio();
   2661 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
   2662 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
   2663 	splx(s);
   2664 }
   2665 
   2666 /*
   2667  * Read the value of one of the ESS mixer registers.
   2668  */
   2669 u_char
   2670 ess_read_mix_reg(sc, reg)
   2671 	struct ess_softc *sc;
   2672 	u_char reg;
   2673 {
   2674 	bus_space_tag_t iot = sc->sc_iot;
   2675 	bus_space_handle_t ioh = sc->sc_ioh;
   2676 	int s;
   2677 	u_char val;
   2678 
   2679 	s = splaudio();
   2680 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
   2681 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
   2682 	splx(s);
   2683 
   2684 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
   2685 	return val;
   2686 }
   2687 
   2688 void
   2689 ess_clear_mreg_bits(sc, reg, mask)
   2690 	struct ess_softc *sc;
   2691 	u_char reg;
   2692 	u_char mask;
   2693 {
   2694 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
   2695 }
   2696 
   2697 void
   2698 ess_set_mreg_bits(sc, reg, mask)
   2699 	struct ess_softc *sc;
   2700 	u_char reg;
   2701 	u_char mask;
   2702 {
   2703 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
   2704 }
   2705 
   2706 void
   2707 ess_read_multi_mix_reg(sc, reg, datap, count)
   2708 	struct ess_softc *sc;
   2709 	u_char reg;
   2710 	u_int8_t *datap;
   2711 	bus_size_t count;
   2712 {
   2713 	bus_space_tag_t iot = sc->sc_iot;
   2714 	bus_space_handle_t ioh = sc->sc_ioh;
   2715 	int s;
   2716 
   2717 	s = splaudio();
   2718 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
   2719 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
   2720 	splx(s);
   2721 }
   2722