ess.c revision 1.76.4.2 1 /* $NetBSD: ess.c,v 1.76.4.2 2010/08/11 22:53:35 yamt Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.76.4.2 2010/08/11 22:53:35 yamt Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79
80 #include <sys/cpu.h>
81 #include <sys/intr.h>
82 #include <sys/bus.h>
83
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94
95 #include "joy_ess.h"
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (essdebug) printf x
99 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
100 int essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114
115
116 int ess_setup_sc(struct ess_softc *, int);
117
118 int ess_open(void *, int);
119 void ess_close(void *);
120 int ess_getdev(void *, struct audio_device *);
121 int ess_drain(void *);
122
123 int ess_query_encoding(void *, struct audio_encoding *);
124
125 int ess_set_params(void *, int, int, audio_params_t *,
126 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
127
128 int ess_round_blocksize(void *, int, int, const audio_params_t *);
129
130 int ess_audio1_trigger_output(void *, void *, void *, int,
131 void (*)(void *), void *, const audio_params_t *);
132 int ess_audio2_trigger_output(void *, void *, void *, int,
133 void (*)(void *), void *, const audio_params_t *);
134 int ess_audio1_trigger_input(void *, void *, void *, int,
135 void (*)(void *), void *, const audio_params_t *);
136 int ess_audio1_halt(void *);
137 int ess_audio2_halt(void *);
138 int ess_audio1_intr(void *);
139 int ess_audio2_intr(void *);
140 void ess_audio1_poll(void *);
141 void ess_audio2_poll(void *);
142
143 int ess_speaker_ctl(void *, int);
144
145 int ess_getdev(void *, struct audio_device *);
146
147 int ess_set_port(void *, mixer_ctrl_t *);
148 int ess_get_port(void *, mixer_ctrl_t *);
149
150 void *ess_malloc(void *, int, size_t, struct malloc_type *, int);
151 void ess_free(void *, void *, struct malloc_type *);
152 size_t ess_round_buffersize(void *, int, size_t);
153 paddr_t ess_mappage(void *, void *, off_t, int);
154
155
156 int ess_query_devinfo(void *, mixer_devinfo_t *);
157 int ess_1788_get_props(void *);
158 int ess_1888_get_props(void *);
159
160 void ess_speaker_on(struct ess_softc *);
161 void ess_speaker_off(struct ess_softc *);
162
163 void ess_config_irq(struct ess_softc *);
164 void ess_config_drq(struct ess_softc *);
165 void ess_setup(struct ess_softc *);
166 int ess_identify(struct ess_softc *);
167
168 int ess_reset(struct ess_softc *);
169 void ess_set_gain(struct ess_softc *, int, int);
170 int ess_set_in_port(struct ess_softc *, int);
171 int ess_set_in_ports(struct ess_softc *, int);
172 u_int ess_srtotc(u_int);
173 u_int ess_srtofc(u_int);
174 u_char ess_get_dsp_status(struct ess_softc *);
175 u_char ess_dsp_read_ready(struct ess_softc *);
176 u_char ess_dsp_write_ready(struct ess_softc *);
177 int ess_rdsp(struct ess_softc *);
178 int ess_wdsp(struct ess_softc *, u_char);
179 u_char ess_read_x_reg(struct ess_softc *, u_char);
180 int ess_write_x_reg(struct ess_softc *, u_char, u_char);
181 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
182 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
183 u_char ess_read_mix_reg(struct ess_softc *, u_char);
184 void ess_write_mix_reg(struct ess_softc *, u_char, u_char);
185 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
186 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
187 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t);
188
189 static const char *essmodel[] = {
190 "unsupported",
191
192 "688",
193 "1688",
194 "1788",
195 "1868",
196 "1869",
197 "1878",
198 "1879",
199
200 "888",
201 "1887",
202 "1888",
203 };
204
205 struct audio_device ess_device = {
206 "ESS Technology",
207 "x",
208 "ess"
209 };
210
211 /*
212 * Define our interface to the higher level audio driver.
213 */
214
215 const struct audio_hw_if ess_1788_hw_if = {
216 ess_open,
217 ess_close,
218 ess_drain,
219 ess_query_encoding,
220 ess_set_params,
221 ess_round_blocksize,
222 NULL,
223 NULL,
224 NULL,
225 NULL,
226 NULL,
227 ess_audio1_halt,
228 ess_audio1_halt,
229 ess_speaker_ctl,
230 ess_getdev,
231 NULL,
232 ess_set_port,
233 ess_get_port,
234 ess_query_devinfo,
235 ess_malloc,
236 ess_free,
237 ess_round_buffersize,
238 ess_mappage,
239 ess_1788_get_props,
240 ess_audio1_trigger_output,
241 ess_audio1_trigger_input,
242 NULL,
243 NULL,
244 };
245
246 const struct audio_hw_if ess_1888_hw_if = {
247 ess_open,
248 ess_close,
249 ess_drain,
250 ess_query_encoding,
251 ess_set_params,
252 ess_round_blocksize,
253 NULL,
254 NULL,
255 NULL,
256 NULL,
257 NULL,
258 ess_audio2_halt,
259 ess_audio1_halt,
260 ess_speaker_ctl,
261 ess_getdev,
262 NULL,
263 ess_set_port,
264 ess_get_port,
265 ess_query_devinfo,
266 ess_malloc,
267 ess_free,
268 ess_round_buffersize,
269 ess_mappage,
270 ess_1888_get_props,
271 ess_audio2_trigger_output,
272 ess_audio1_trigger_input,
273 NULL,
274 NULL,
275 };
276
277 #define ESS_NFORMATS 8
278 static const struct audio_format ess_formats[ESS_NFORMATS] = {
279 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
280 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
281 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
282 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
283 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
284 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
285 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
286 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
287 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
288 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
289 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
290 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
291 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
292 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
293 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
294 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
295 };
296
297 #ifdef AUDIO_DEBUG
298 void ess_printsc(struct ess_softc *);
299 void ess_dump_mixer(struct ess_softc *);
300
301 void
302 ess_printsc(struct ess_softc *sc)
303 {
304 int i;
305
306 printf("iobase 0x%x outport %u inport %u speaker %s\n",
307 sc->sc_iobase, sc->out_port,
308 sc->in_port, sc->spkr_state ? "on" : "off");
309
310 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
311 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
312 sc->sc_audio1.intr, sc->sc_audio1.arg);
313
314 if (!ESS_USE_AUDIO1(sc->sc_model)) {
315 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
316 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
317 sc->sc_audio2.intr, sc->sc_audio2.arg);
318 }
319
320 printf("gain:");
321 for (i = 0; i < sc->ndevs; i++)
322 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
323 printf("\n");
324 }
325
326 void
327 ess_dump_mixer(struct ess_softc *sc)
328 {
329
330 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
331 0x7C, ess_read_mix_reg(sc, 0x7C));
332 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
333 0x1A, ess_read_mix_reg(sc, 0x1A));
334 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
335 0x3E, ess_read_mix_reg(sc, 0x3E));
336 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
337 0x36, ess_read_mix_reg(sc, 0x36));
338 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
339 0x38, ess_read_mix_reg(sc, 0x38));
340 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
341 0x3A, ess_read_mix_reg(sc, 0x3A));
342 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
343 0x32, ess_read_mix_reg(sc, 0x32));
344 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
345 0x3C, ess_read_mix_reg(sc, 0x3C));
346 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
347 0x69, ess_read_mix_reg(sc, 0x69));
348 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
349 0x68, ess_read_mix_reg(sc, 0x68));
350 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
351 0x6E, ess_read_mix_reg(sc, 0x6E));
352 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
353 0x6B, ess_read_mix_reg(sc, 0x6B));
354 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
355 0x6A, ess_read_mix_reg(sc, 0x6A));
356 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
357 0x6C, ess_read_mix_reg(sc, 0x6C));
358 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
359 0xB4, ess_read_x_reg(sc, 0xB4));
360 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
361 0x14, ess_read_mix_reg(sc, 0x14));
362
363 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
364 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
365 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
366 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
367 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
368 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
369 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
370 }
371
372 #endif
373
374 /*
375 * Configure the ESS chip for the desired audio base address.
376 */
377 int
378 ess_config_addr(struct ess_softc *sc)
379 {
380 int iobase;
381 bus_space_tag_t iot;
382 /*
383 * Configure using the System Control Register method. This
384 * method is used when the AMODE line is tied high, which is
385 * the case for the Shark, but not for the evaluation board.
386 */
387 bus_space_handle_t scr_access_ioh;
388 bus_space_handle_t scr_ioh;
389 u_short scr_value;
390
391 iobase = sc->sc_iobase;
392 iot = sc->sc_iot;
393 /*
394 * Set the SCR bit to enable audio.
395 */
396 scr_value = ESS_SCR_AUDIO_ENABLE;
397
398 /*
399 * Set the SCR bits necessary to select the specified audio
400 * base address.
401 */
402 switch(iobase) {
403 case 0x220:
404 scr_value |= ESS_SCR_AUDIO_220;
405 break;
406 case 0x230:
407 scr_value |= ESS_SCR_AUDIO_230;
408 break;
409 case 0x240:
410 scr_value |= ESS_SCR_AUDIO_240;
411 break;
412 case 0x250:
413 scr_value |= ESS_SCR_AUDIO_250;
414 break;
415 default:
416 printf("ess: configured iobase 0x%x invalid\n", iobase);
417 return 1;
418 break;
419 }
420
421 /*
422 * Get a mapping for the System Control Register (SCR) access
423 * registers and the SCR data registers.
424 */
425 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
426 0, &scr_access_ioh)) {
427 printf("ess: can't map SCR access registers\n");
428 return 1;
429 }
430 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
431 0, &scr_ioh)) {
432 printf("ess: can't map SCR registers\n");
433 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
434 return 1;
435 }
436
437 /* Unlock the SCR. */
438 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
439
440 /* Write the base address information into SCR[0]. */
441 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
442 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
443
444 /* Lock the SCR. */
445 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
446
447 /* Unmap the SCR access ports and the SCR data ports. */
448 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
449 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
450
451 return 0;
452 }
453
454
455 /*
456 * Configure the ESS chip for the desired IRQ and DMA channels.
457 * ESS ISA
458 * --------
459 * IRQA irq9
460 * IRQB irq5
461 * IRQC irq7
462 * IRQD irq10
463 * IRQE irq15
464 *
465 * DRQA drq0
466 * DRQB drq1
467 * DRQC drq3
468 * DRQD drq5
469 */
470 void
471 ess_config_irq(struct ess_softc *sc)
472 {
473 int v;
474
475 DPRINTFN(2,("ess_config_irq\n"));
476
477 if (sc->sc_model == ESS_1887 &&
478 sc->sc_audio1.irq == sc->sc_audio2.irq &&
479 sc->sc_audio1.irq != -1) {
480 /* Use new method, both interrupts are the same. */
481 v = ESS_IS_SELECT_IRQ; /* enable intrs */
482 switch (sc->sc_audio1.irq) {
483 case 5:
484 v |= ESS_IS_INTRB;
485 break;
486 case 7:
487 v |= ESS_IS_INTRC;
488 break;
489 case 9:
490 v |= ESS_IS_INTRA;
491 break;
492 case 10:
493 v |= ESS_IS_INTRD;
494 break;
495 case 15:
496 v |= ESS_IS_INTRE;
497 break;
498 #ifdef DIAGNOSTIC
499 default:
500 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
501 sc->sc_audio1.irq);
502 return;
503 #endif
504 }
505 /* Set the IRQ */
506 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
507 return;
508 }
509
510 if (sc->sc_model == ESS_1887) {
511 /* Tell the 1887 to use the old interrupt method. */
512 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
513 }
514
515 if (sc->sc_audio1.polled) {
516 /* Turn off Audio1 interrupts. */
517 v = 0;
518 } else {
519 /* Configure Audio 1 for the appropriate IRQ line. */
520 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
521 switch (sc->sc_audio1.irq) {
522 case 5:
523 v |= ESS_IRQ_CTRL_INTRB;
524 break;
525 case 7:
526 v |= ESS_IRQ_CTRL_INTRC;
527 break;
528 case 9:
529 v |= ESS_IRQ_CTRL_INTRA;
530 break;
531 case 10:
532 v |= ESS_IRQ_CTRL_INTRD;
533 break;
534 #ifdef DIAGNOSTIC
535 default:
536 printf("ess: configured irq %d not supported for Audio 1\n",
537 sc->sc_audio1.irq);
538 return;
539 #endif
540 }
541 }
542 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
543
544 if (ESS_USE_AUDIO1(sc->sc_model))
545 return;
546
547 if (sc->sc_audio2.polled) {
548 /* Turn off Audio2 interrupts. */
549 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
550 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
551 } else {
552 /* Audio2 is hardwired to INTRE in this mode. */
553 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
554 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
555 }
556 }
557
558
559 void
560 ess_config_drq(struct ess_softc *sc)
561 {
562 int v;
563
564 DPRINTFN(2,("ess_config_drq\n"));
565
566 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
567 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
568 switch (sc->sc_audio1.drq) {
569 case 0:
570 v |= ESS_DRQ_CTRL_DRQA;
571 break;
572 case 1:
573 v |= ESS_DRQ_CTRL_DRQB;
574 break;
575 case 3:
576 v |= ESS_DRQ_CTRL_DRQC;
577 break;
578 #ifdef DIAGNOSTIC
579 default:
580 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
581 sc->sc_audio1.drq);
582 return;
583 #endif
584 }
585 /* Set DRQ1 */
586 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
587
588 if (ESS_USE_AUDIO1(sc->sc_model))
589 return;
590
591 /* Configure DRQ2 */
592 v = ESS_AUDIO2_CTRL3_DRQ_PD;
593 switch (sc->sc_audio2.drq) {
594 case 0:
595 v |= ESS_AUDIO2_CTRL3_DRQA;
596 break;
597 case 1:
598 v |= ESS_AUDIO2_CTRL3_DRQB;
599 break;
600 case 3:
601 v |= ESS_AUDIO2_CTRL3_DRQC;
602 break;
603 case 5:
604 v |= ESS_AUDIO2_CTRL3_DRQD;
605 break;
606 #ifdef DIAGNOSTIC
607 default:
608 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
609 sc->sc_audio2.drq);
610 return;
611 #endif
612 }
613 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
614 /* Enable DMA 2 */
615 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
616 ESS_AUDIO2_CTRL2_DMA_ENABLE);
617 }
618
619 /*
620 * Set up registers after a reset.
621 */
622 void
623 ess_setup(struct ess_softc *sc)
624 {
625
626 ess_config_irq(sc);
627 ess_config_drq(sc);
628
629 DPRINTFN(2,("ess_setup: done\n"));
630 }
631
632 /*
633 * Determine the model of ESS chip we are talking to. Currently we
634 * only support ES1888, ES1887 and ES888. The method of determining
635 * the chip is based on the information on page 27 of the ES1887 data
636 * sheet.
637 *
638 * This routine sets the values of sc->sc_model and sc->sc_version.
639 */
640 int
641 ess_identify(struct ess_softc *sc)
642 {
643 u_char reg1;
644 u_char reg2;
645 u_char reg3;
646 u_int8_t ident[4];
647
648 sc->sc_model = ESS_UNSUPPORTED;
649 sc->sc_version = 0;
650
651 memset(ident, 0, sizeof(ident));
652
653 /*
654 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
655 * n >= 8 for an ES1887 or an ES888. Other values indicate
656 * earlier (unsupported) chips.
657 */
658 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
659
660 if ((reg1 = ess_rdsp(sc)) != 0x68) {
661 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
662 return 1;
663 }
664
665 reg2 = ess_rdsp(sc);
666 if (((reg2 & 0xf0) != 0x80) ||
667 ((reg2 & 0x0f) < 8)) {
668 sc->sc_model = ESS_688;
669 return 0;
670 }
671
672 /*
673 * Store the ID bytes as the version.
674 */
675 sc->sc_version = (reg1 << 8) + reg2;
676
677
678 /*
679 * 2. Verify we can change bit 2 in mixer register 0x64. This
680 * should be possible on all supported chips.
681 */
682 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
683 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
684
685 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
686
687 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
688 switch (sc->sc_version) {
689 case 0x688b:
690 sc->sc_model = ESS_1688;
691 break;
692 default:
693 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
694 return 1;
695 }
696 return 0;
697 }
698
699 /*
700 * Restore the original value of mixer register 0x64.
701 */
702 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
703
704
705 /*
706 * 3. Verify we can change the value of mixer register
707 * ESS_MREG_SAMPLE_RATE.
708 * This is possible on the 1888/1887/888, but not on the 1788.
709 * It is not necessary to restore the value of this mixer register.
710 */
711 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
712 reg2 = reg1 ^ 0xff; /* toggle all bits */
713
714 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
715
716 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
717 /* If we got this far before failing, it's a 1788. */
718 sc->sc_model = ESS_1788;
719
720 /*
721 * Identify ESS model for ES18[67]8.
722 */
723 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
724 if(ident[0] == 0x18) {
725 switch(ident[1]) {
726 case 0x68:
727 sc->sc_model = ESS_1868;
728 break;
729 case 0x78:
730 sc->sc_model = ESS_1878;
731 break;
732 }
733 }
734
735 return 0;
736 }
737
738 /*
739 * 4. Determine if we can change bit 5 in mixer register 0x64.
740 * This determines whether we have an ES1887:
741 *
742 * - can change indicates ES1887
743 * - can't change indicates ES1888 or ES888
744 */
745 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
746 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
747
748 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
749
750 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
751 sc->sc_model = ESS_1887;
752
753 /*
754 * Restore the original value of mixer register 0x64.
755 */
756 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
757
758 /*
759 * Identify ESS model for ES18[67]9.
760 */
761 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
762 if(ident[0] == 0x18) {
763 switch(ident[1]) {
764 case 0x69:
765 sc->sc_model = ESS_1869;
766 break;
767 case 0x79:
768 sc->sc_model = ESS_1879;
769 break;
770 }
771 }
772
773 return 0;
774 }
775
776 /*
777 * 5. Determine if we can change the value of mixer
778 * register 0x69 independently of mixer register
779 * 0x68. This determines which chip we have:
780 *
781 * - can modify idependently indicates ES888
782 * - register 0x69 is an alias of 0x68 indicates ES1888
783 */
784 reg1 = ess_read_mix_reg(sc, 0x68);
785 reg2 = ess_read_mix_reg(sc, 0x69);
786 reg3 = reg2 ^ 0xff; /* toggle all bits */
787
788 /*
789 * Write different values to each register.
790 */
791 ess_write_mix_reg(sc, 0x68, reg2);
792 ess_write_mix_reg(sc, 0x69, reg3);
793
794 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
795 ess_read_mix_reg(sc, 0x69) == reg3)
796 sc->sc_model = ESS_888;
797 else
798 sc->sc_model = ESS_1888;
799
800 /*
801 * Restore the original value of the registers.
802 */
803 ess_write_mix_reg(sc, 0x68, reg1);
804 ess_write_mix_reg(sc, 0x69, reg2);
805
806 return 0;
807 }
808
809
810 int
811 ess_setup_sc(struct ess_softc *sc, int doinit)
812 {
813
814 callout_init(&sc->sc_poll1_ch, 0);
815 callout_init(&sc->sc_poll2_ch, 0);
816
817 /* Reset the chip. */
818 if (ess_reset(sc) != 0) {
819 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
820 return 1;
821 }
822
823 /* Identify the ESS chip, and check that it is supported. */
824 if (ess_identify(sc)) {
825 DPRINTF(("ess_setup_sc: couldn't identify\n"));
826 return 1;
827 }
828
829 return 0;
830 }
831
832 /*
833 * Probe for the ESS hardware.
834 */
835 int
836 essmatch(struct ess_softc *sc)
837 {
838 if (!ESS_BASE_VALID(sc->sc_iobase)) {
839 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
840 return 0;
841 }
842
843 if (ess_setup_sc(sc, 1))
844 return 0;
845
846 if (sc->sc_model == ESS_UNSUPPORTED) {
847 DPRINTF(("ess: Unsupported model\n"));
848 return 0;
849 }
850
851 /* Check that requested DMA channels are valid and different. */
852 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
853 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
854 return 0;
855 }
856 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
857 return 0;
858 if (!ESS_USE_AUDIO1(sc->sc_model)) {
859 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
860 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
861 return 0;
862 }
863 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
864 printf("ess: play and record drq both %d\n",
865 sc->sc_audio1.drq);
866 return 0;
867 }
868 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
869 return 0;
870 }
871
872 /*
873 * The 1887 has an additional IRQ mode where both channels are mapped
874 * to the same IRQ.
875 */
876 if (sc->sc_model == ESS_1887 &&
877 sc->sc_audio1.irq == sc->sc_audio2.irq &&
878 sc->sc_audio1.irq != -1 &&
879 ESS_IRQ12_VALID(sc->sc_audio1.irq))
880 goto irq_not1888;
881
882 /* Check that requested IRQ lines are valid and different. */
883 if (sc->sc_audio1.irq != -1 &&
884 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
885 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
886 return 0;
887 }
888 if (!ESS_USE_AUDIO1(sc->sc_model)) {
889 if (sc->sc_audio2.irq != -1 &&
890 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
891 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
892 return 0;
893 }
894 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
895 sc->sc_audio1.irq != -1) {
896 printf("ess: play and record irq both %d\n",
897 sc->sc_audio1.irq);
898 return 0;
899 }
900 }
901
902 irq_not1888:
903 /* XXX should we check IRQs as well? */
904
905 return 2; /* beat "sb" */
906 }
907
908
909 /*
910 * Attach hardware to driver, attach hardware driver to audio
911 * pseudo-device driver.
912 */
913 void
914 essattach(struct ess_softc *sc, int enablejoy)
915 {
916 struct audio_attach_args arg;
917 int i;
918 u_int v;
919
920 if (ess_setup_sc(sc, 0)) {
921 printf(": setup failed\n");
922 return;
923 }
924
925 aprint_normal(": ESS Technology ES%s [version 0x%04x]\n",
926 essmodel[sc->sc_model], sc->sc_version);
927
928 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
929 if (!sc->sc_audio1.polled) {
930 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
931 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
932 ess_audio1_intr, sc);
933 aprint_normal_dev(sc->sc_dev,
934 "audio1 interrupting at irq %d\n", sc->sc_audio1.irq);
935 } else
936 aprint_normal_dev(sc->sc_dev, "audio1 polled\n");
937 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
938
939 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
940 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
941 sc->sc_audio1.drq);
942 return;
943 }
944
945 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
946 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
947 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n",
948 sc->sc_audio1.drq);
949 return;
950 }
951
952 if (!ESS_USE_AUDIO1(sc->sc_model)) {
953 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
954 if (!sc->sc_audio2.polled) {
955 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
956 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
957 ess_audio2_intr, sc);
958 aprint_normal_dev(sc->sc_dev,
959 "audio2 interrupting at irq %d\n",
960 sc->sc_audio2.irq);
961 } else
962 aprint_normal_dev(sc->sc_dev, "audio2 polled\n");
963 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
964 sc->sc_audio2.drq);
965
966 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
967 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
968 sc->sc_audio2.drq);
969 return;
970 }
971
972 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
973 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
974 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n",
975 sc->sc_audio2.drq);
976 return;
977 }
978 }
979
980 /* Do a hardware reset on the mixer. */
981 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
982
983 /*
984 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
985 * to playback mixer, since playback is always through Audio 2.
986 */
987 if (!ESS_USE_AUDIO1(sc->sc_model))
988 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
989 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
990
991 if (ESS_USE_AUDIO1(sc->sc_model)) {
992 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
993 sc->in_port = ESS_SOURCE_MIC;
994 sc->ndevs = ESS_1788_NDEVS;
995 } else {
996 /*
997 * Set hardware record source to use output of the record
998 * mixer. We do the selection of record source in software by
999 * setting the gain of the unused sources to zero. (See
1000 * ess_set_in_ports.)
1001 */
1002 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1003 sc->in_mask = 1 << ESS_MIC_REC_VOL;
1004 sc->ndevs = ESS_1888_NDEVS;
1005 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1006 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1007 }
1008
1009 /*
1010 * Set gain on each mixer device to a sensible value.
1011 * Devices not normally used are turned off, and other devices
1012 * are set to 50% volume.
1013 */
1014 for (i = 0; i < sc->ndevs; i++) {
1015 switch (i) {
1016 case ESS_MIC_PLAY_VOL:
1017 case ESS_LINE_PLAY_VOL:
1018 case ESS_CD_PLAY_VOL:
1019 case ESS_AUXB_PLAY_VOL:
1020 case ESS_DAC_REC_VOL:
1021 case ESS_LINE_REC_VOL:
1022 case ESS_SYNTH_REC_VOL:
1023 case ESS_CD_REC_VOL:
1024 case ESS_AUXB_REC_VOL:
1025 v = 0;
1026 break;
1027 default:
1028 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1029 break;
1030 }
1031 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1032 ess_set_gain(sc, i, 1);
1033 }
1034
1035 ess_setup(sc);
1036
1037 /* Disable the speaker until the device is opened. */
1038 ess_speaker_off(sc);
1039 sc->spkr_state = SPKR_OFF;
1040
1041 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1042 essmodel[sc->sc_model]);
1043 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1044 sc->sc_version);
1045
1046 if (ESS_USE_AUDIO1(sc->sc_model))
1047 audio_attach_mi(&ess_1788_hw_if, sc, sc->sc_dev);
1048 else
1049 audio_attach_mi(&ess_1888_hw_if, sc, sc->sc_dev);
1050
1051 arg.type = AUDIODEV_TYPE_OPL;
1052 arg.hwif = 0;
1053 arg.hdl = 0;
1054 (void)config_found(sc->sc_dev, &arg, audioprint);
1055
1056 #if NJOY_ESS > 0
1057 if (sc->sc_model == ESS_1888 && enablejoy) {
1058 unsigned char m40;
1059
1060 m40 = ess_read_mix_reg(sc, 0x40);
1061 m40 |= 2;
1062 ess_write_mix_reg(sc, 0x40, m40);
1063
1064 arg.type = AUDIODEV_TYPE_AUX;
1065 (void)config_found(sc->sc_dev, &arg, audioprint);
1066 }
1067 #endif
1068
1069 #ifdef AUDIO_DEBUG
1070 if (essdebug > 0)
1071 ess_printsc(sc);
1072 #endif
1073 }
1074
1075 /*
1076 * Various routines to interface to higher level audio driver
1077 */
1078
1079 int
1080 ess_open(void *addr, int flags)
1081 {
1082 return 0;
1083 }
1084
1085 void
1086 ess_close(void *addr)
1087 {
1088 struct ess_softc *sc;
1089
1090 sc = addr;
1091 DPRINTF(("ess_close: sc=%p\n", sc));
1092
1093 ess_speaker_off(sc);
1094 sc->spkr_state = SPKR_OFF;
1095
1096 DPRINTF(("ess_close: closed\n"));
1097 }
1098
1099 /*
1100 * Wait for FIFO to drain, and analog section to settle.
1101 * XXX should check FIFO empty bit.
1102 */
1103 int
1104 ess_drain(void *addr)
1105 {
1106
1107 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1108 return 0;
1109 }
1110
1111 /* XXX should use reference count */
1112 int
1113 ess_speaker_ctl(void *addr, int newstate)
1114 {
1115 struct ess_softc *sc;
1116
1117 sc = addr;
1118 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1119 ess_speaker_on(sc);
1120 sc->spkr_state = SPKR_ON;
1121 }
1122 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1123 ess_speaker_off(sc);
1124 sc->spkr_state = SPKR_OFF;
1125 }
1126 return 0;
1127 }
1128
1129 int
1130 ess_getdev(void *addr, struct audio_device *retp)
1131 {
1132
1133 *retp = ess_device;
1134 return 0;
1135 }
1136
1137 int
1138 ess_query_encoding(void *addr, struct audio_encoding *fp)
1139 {
1140 /*struct ess_softc *sc = addr;*/
1141
1142 switch (fp->index) {
1143 case 0:
1144 strcpy(fp->name, AudioEulinear);
1145 fp->encoding = AUDIO_ENCODING_ULINEAR;
1146 fp->precision = 8;
1147 fp->flags = 0;
1148 return 0;
1149 case 1:
1150 strcpy(fp->name, AudioEmulaw);
1151 fp->encoding = AUDIO_ENCODING_ULAW;
1152 fp->precision = 8;
1153 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1154 return 0;
1155 case 2:
1156 strcpy(fp->name, AudioEalaw);
1157 fp->encoding = AUDIO_ENCODING_ALAW;
1158 fp->precision = 8;
1159 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1160 return 0;
1161 case 3:
1162 strcpy(fp->name, AudioEslinear);
1163 fp->encoding = AUDIO_ENCODING_SLINEAR;
1164 fp->precision = 8;
1165 fp->flags = 0;
1166 return 0;
1167 case 4:
1168 strcpy(fp->name, AudioEslinear_le);
1169 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1170 fp->precision = 16;
1171 fp->flags = 0;
1172 return 0;
1173 case 5:
1174 strcpy(fp->name, AudioEulinear_le);
1175 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1176 fp->precision = 16;
1177 fp->flags = 0;
1178 return 0;
1179 case 6:
1180 strcpy(fp->name, AudioEslinear_be);
1181 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1182 fp->precision = 16;
1183 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1184 return 0;
1185 case 7:
1186 strcpy(fp->name, AudioEulinear_be);
1187 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1188 fp->precision = 16;
1189 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1190 return 0;
1191 default:
1192 return EINVAL;
1193 }
1194 return 0;
1195 }
1196
1197 int
1198 ess_set_params(
1199 void *addr,
1200 int setmode, int usemode,
1201 audio_params_t *play, audio_params_t *rec,
1202 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1203 {
1204 struct ess_softc *sc;
1205 int rate;
1206
1207 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1208 sc = addr;
1209 /*
1210 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1211 * full-duplex operation the sample rates must be the same for both
1212 * channels. This appears to be false; the only bit in common is the
1213 * clock source selection. However, we'll be conservative here.
1214 * - mycroft
1215 */
1216 if (play->sample_rate != rec->sample_rate &&
1217 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1218 if (setmode == AUMODE_PLAY) {
1219 rec->sample_rate = play->sample_rate;
1220 setmode |= AUMODE_RECORD;
1221 } else if (setmode == AUMODE_RECORD) {
1222 play->sample_rate = rec->sample_rate;
1223 setmode |= AUMODE_PLAY;
1224 } else
1225 return EINVAL;
1226 }
1227
1228 if (setmode & AUMODE_RECORD) {
1229 if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1230 AUMODE_RECORD, rec, FALSE, rfil) < 0)
1231 return EINVAL;
1232 }
1233 if (setmode & AUMODE_PLAY) {
1234 if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1235 AUMODE_PLAY, play, FALSE, pfil) < 0)
1236 return EINVAL;
1237 }
1238
1239 if (usemode == AUMODE_RECORD)
1240 rate = rec->sample_rate;
1241 else
1242 rate = play->sample_rate;
1243
1244 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1245 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1246
1247 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1248 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1249 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1250 }
1251
1252 return 0;
1253 }
1254
1255 int
1256 ess_audio1_trigger_output(
1257 void *addr,
1258 void *start, void *end,
1259 int blksize,
1260 void (*intr)(void *),
1261 void *arg,
1262 const audio_params_t *param)
1263 {
1264 struct ess_softc *sc;
1265 u_int8_t reg;
1266
1267 sc = addr;
1268 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
1269 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1270
1271 if (sc->sc_audio1.active)
1272 panic("ess_audio1_trigger_output: already running");
1273
1274 sc->sc_audio1.active = 1;
1275 sc->sc_audio1.intr = intr;
1276 sc->sc_audio1.arg = arg;
1277 if (sc->sc_audio1.polled) {
1278 sc->sc_audio1.dmapos = 0;
1279 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1280 sc->sc_audio1.dmacount = 0;
1281 sc->sc_audio1.blksize = blksize;
1282 callout_reset(&sc->sc_poll1_ch, hz / 30,
1283 ess_audio1_poll, sc);
1284 }
1285
1286 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1287 if (param->channels == 2) {
1288 reg &= ~ESS_AUDIO_CTRL_MONO;
1289 reg |= ESS_AUDIO_CTRL_STEREO;
1290 } else {
1291 reg |= ESS_AUDIO_CTRL_MONO;
1292 reg &= ~ESS_AUDIO_CTRL_STEREO;
1293 }
1294 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1295
1296 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1297 if (param->precision == 16)
1298 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1299 else
1300 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1301 if (param->channels == 2)
1302 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1303 else
1304 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1305 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1306 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1307 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1308 else
1309 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1310 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1311 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1312
1313 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1314 (char *)end - (char *)start, NULL,
1315 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1316
1317 /* Program transfer count registers with 2's complement of count. */
1318 blksize = -blksize;
1319 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1320 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1321
1322 /* Use 4 bytes per output DMA. */
1323 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1324
1325 /* Start auto-init DMA */
1326 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1327 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1328 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1329 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1330 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1331
1332 return 0;
1333 }
1334
1335 int
1336 ess_audio2_trigger_output(
1337 void *addr,
1338 void *start, void *end,
1339 int blksize,
1340 void (*intr)(void *),
1341 void *arg,
1342 const audio_params_t *param)
1343 {
1344 struct ess_softc *sc;
1345 u_int8_t reg;
1346
1347 sc = addr;
1348 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
1349 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1350
1351 if (sc->sc_audio2.active)
1352 panic("ess_audio2_trigger_output: already running");
1353
1354 sc->sc_audio2.active = 1;
1355 sc->sc_audio2.intr = intr;
1356 sc->sc_audio2.arg = arg;
1357 if (sc->sc_audio2.polled) {
1358 sc->sc_audio2.dmapos = 0;
1359 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1360 sc->sc_audio2.dmacount = 0;
1361 sc->sc_audio2.blksize = blksize;
1362 callout_reset(&sc->sc_poll2_ch, hz / 30,
1363 ess_audio2_poll, sc);
1364 }
1365
1366 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1367 if (param->precision == 16)
1368 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1369 else
1370 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1371 if (param->channels == 2)
1372 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1373 else
1374 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1375 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1376 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1377 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1378 else
1379 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1380 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1381
1382 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1383 (char *)end - (char *)start, NULL,
1384 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1385
1386 if (IS16BITDRQ(sc->sc_audio2.drq))
1387 blksize >>= 1; /* use word count for 16 bit DMA */
1388 /* Program transfer count registers with 2's complement of count. */
1389 blksize = -blksize;
1390 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1391 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1392
1393 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1394 if (IS16BITDRQ(sc->sc_audio2.drq))
1395 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1396 else
1397 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1398 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1399 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1400 ESS_AUDIO2_CTRL1_AUTO_INIT;
1401 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1402
1403 return (0);
1404 }
1405
1406 int
1407 ess_audio1_trigger_input(
1408 void *addr,
1409 void *start, void *end,
1410 int blksize,
1411 void (*intr)(void *),
1412 void *arg,
1413 const audio_params_t *param)
1414 {
1415 struct ess_softc *sc;
1416 u_int8_t reg;
1417
1418 sc = addr;
1419 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
1420 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1421
1422 if (sc->sc_audio1.active)
1423 panic("ess_audio1_trigger_input: already running");
1424
1425 sc->sc_audio1.active = 1;
1426 sc->sc_audio1.intr = intr;
1427 sc->sc_audio1.arg = arg;
1428 if (sc->sc_audio1.polled) {
1429 sc->sc_audio1.dmapos = 0;
1430 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1431 sc->sc_audio1.dmacount = 0;
1432 sc->sc_audio1.blksize = blksize;
1433 callout_reset(&sc->sc_poll1_ch, hz / 30,
1434 ess_audio1_poll, sc);
1435 }
1436
1437 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1438 if (param->channels == 2) {
1439 reg &= ~ESS_AUDIO_CTRL_MONO;
1440 reg |= ESS_AUDIO_CTRL_STEREO;
1441 } else {
1442 reg |= ESS_AUDIO_CTRL_MONO;
1443 reg &= ~ESS_AUDIO_CTRL_STEREO;
1444 }
1445 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1446
1447 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1448 if (param->precision == 16)
1449 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1450 else
1451 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1452 if (param->channels == 2)
1453 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1454 else
1455 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1456 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1457 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1458 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1459 else
1460 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1461 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1462 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1463
1464 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1465 (char *)end - (char *)start, NULL,
1466 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1467
1468 /* Program transfer count registers with 2's complement of count. */
1469 blksize = -blksize;
1470 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1471 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1472
1473 /* Use 4 bytes per input DMA. */
1474 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1475
1476 /* Start auto-init DMA */
1477 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1478 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1479 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1480 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1481 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1482
1483 return 0;
1484 }
1485
1486 int
1487 ess_audio1_halt(void *addr)
1488 {
1489 struct ess_softc *sc;
1490
1491 sc = addr;
1492 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1493
1494 if (sc->sc_audio1.active) {
1495 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1496 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1497 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1498 if (sc->sc_audio1.polled)
1499 callout_stop(&sc->sc_poll1_ch);
1500 sc->sc_audio1.active = 0;
1501 }
1502
1503 return 0;
1504 }
1505
1506 int
1507 ess_audio2_halt(void *addr)
1508 {
1509 struct ess_softc *sc;
1510
1511 sc = addr;
1512 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1513
1514 if (sc->sc_audio2.active) {
1515 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1516 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1517 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1518 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1519 if (sc->sc_audio2.polled)
1520 callout_stop(&sc->sc_poll2_ch);
1521 sc->sc_audio2.active = 0;
1522 }
1523
1524 return 0;
1525 }
1526
1527 int
1528 ess_audio1_intr(void *arg)
1529 {
1530 struct ess_softc *sc;
1531 uint8_t reg;
1532
1533 sc = arg;
1534 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1535
1536 /* Check and clear interrupt on Audio1. */
1537 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1538 if ((reg & ESS_DSP_READ_OFLOW) == 0)
1539 return 0;
1540 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1541
1542 sc->sc_audio1.nintr++;
1543
1544 if (sc->sc_audio1.active) {
1545 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1546 return 1;
1547 } else
1548 return 0;
1549 }
1550
1551 int
1552 ess_audio2_intr(void *arg)
1553 {
1554 struct ess_softc *sc;
1555 uint8_t reg;
1556
1557 sc = arg;
1558 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1559
1560 /* Check and clear interrupt on Audio2. */
1561 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1562 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1563 return 0;
1564 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1565 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1566
1567 sc->sc_audio2.nintr++;
1568
1569 if (sc->sc_audio2.active) {
1570 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1571 return 1;
1572 } else
1573 return 0;
1574 }
1575
1576 void
1577 ess_audio1_poll(void *addr)
1578 {
1579 struct ess_softc *sc;
1580 int dmapos, dmacount;
1581
1582 sc = addr;
1583 if (!sc->sc_audio1.active)
1584 return;
1585
1586 sc->sc_audio1.nintr++;
1587
1588 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1589 dmacount = sc->sc_audio1.dmapos - dmapos;
1590 if (dmacount < 0)
1591 dmacount += sc->sc_audio1.buffersize;
1592 sc->sc_audio1.dmapos = dmapos;
1593 #if 1
1594 dmacount += sc->sc_audio1.dmacount;
1595 while (dmacount > sc->sc_audio1.blksize) {
1596 dmacount -= sc->sc_audio1.blksize;
1597 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1598 }
1599 sc->sc_audio1.dmacount = dmacount;
1600 #else
1601 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1602 #endif
1603
1604 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1605 }
1606
1607 void
1608 ess_audio2_poll(void *addr)
1609 {
1610 struct ess_softc *sc;
1611 int dmapos, dmacount;
1612
1613 sc = addr;
1614 if (!sc->sc_audio2.active)
1615 return;
1616
1617 sc->sc_audio2.nintr++;
1618
1619 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1620 dmacount = sc->sc_audio2.dmapos - dmapos;
1621 if (dmacount < 0)
1622 dmacount += sc->sc_audio2.buffersize;
1623 sc->sc_audio2.dmapos = dmapos;
1624 #if 1
1625 dmacount += sc->sc_audio2.dmacount;
1626 while (dmacount > sc->sc_audio2.blksize) {
1627 dmacount -= sc->sc_audio2.blksize;
1628 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1629 }
1630 sc->sc_audio2.dmacount = dmacount;
1631 #else
1632 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1633 #endif
1634
1635 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1636 }
1637
1638 int
1639 ess_round_blocksize(void *addr, int blk, int mode,
1640 const audio_params_t *param)
1641 {
1642
1643 return blk & -8; /* round for max DMA size */
1644 }
1645
1646 int
1647 ess_set_port(void *addr, mixer_ctrl_t *cp)
1648 {
1649 struct ess_softc *sc;
1650 int lgain, rgain;
1651
1652 sc = addr;
1653 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1654 cp->dev, cp->un.value.num_channels));
1655
1656 switch (cp->dev) {
1657 /*
1658 * The following mixer ports are all stereo. If we get a
1659 * single-channel gain value passed in, then we duplicate it
1660 * to both left and right channels.
1661 */
1662 case ESS_MASTER_VOL:
1663 case ESS_DAC_PLAY_VOL:
1664 case ESS_MIC_PLAY_VOL:
1665 case ESS_LINE_PLAY_VOL:
1666 case ESS_SYNTH_PLAY_VOL:
1667 case ESS_CD_PLAY_VOL:
1668 case ESS_AUXB_PLAY_VOL:
1669 case ESS_RECORD_VOL:
1670 if (cp->type != AUDIO_MIXER_VALUE)
1671 return EINVAL;
1672
1673 switch (cp->un.value.num_channels) {
1674 case 1:
1675 lgain = rgain = ESS_4BIT_GAIN(
1676 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1677 break;
1678 case 2:
1679 lgain = ESS_4BIT_GAIN(
1680 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1681 rgain = ESS_4BIT_GAIN(
1682 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1683 break;
1684 default:
1685 return EINVAL;
1686 }
1687
1688 sc->gain[cp->dev][ESS_LEFT] = lgain;
1689 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1690 ess_set_gain(sc, cp->dev, 1);
1691 return 0;
1692
1693 /*
1694 * The PC speaker port is mono. If we get a stereo gain value
1695 * passed in, then we return EINVAL.
1696 */
1697 case ESS_PCSPEAKER_VOL:
1698 if (cp->un.value.num_channels != 1)
1699 return EINVAL;
1700
1701 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1702 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1703 ess_set_gain(sc, cp->dev, 1);
1704 return 0;
1705
1706 case ESS_RECORD_SOURCE:
1707 if (ESS_USE_AUDIO1(sc->sc_model)) {
1708 if (cp->type == AUDIO_MIXER_ENUM)
1709 return ess_set_in_port(sc, cp->un.ord);
1710 else
1711 return EINVAL;
1712 } else {
1713 if (cp->type == AUDIO_MIXER_SET)
1714 return ess_set_in_ports(sc, cp->un.mask);
1715 else
1716 return EINVAL;
1717 }
1718 return 0;
1719
1720 case ESS_RECORD_MONITOR:
1721 if (cp->type != AUDIO_MIXER_ENUM)
1722 return EINVAL;
1723
1724 if (cp->un.ord)
1725 /* Enable monitor */
1726 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1727 ESS_AUDIO_CTRL_MONITOR);
1728 else
1729 /* Disable monitor */
1730 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1731 ESS_AUDIO_CTRL_MONITOR);
1732 return 0;
1733 }
1734
1735 if (ESS_USE_AUDIO1(sc->sc_model))
1736 return EINVAL;
1737
1738 switch (cp->dev) {
1739 case ESS_DAC_REC_VOL:
1740 case ESS_MIC_REC_VOL:
1741 case ESS_LINE_REC_VOL:
1742 case ESS_SYNTH_REC_VOL:
1743 case ESS_CD_REC_VOL:
1744 case ESS_AUXB_REC_VOL:
1745 if (cp->type != AUDIO_MIXER_VALUE)
1746 return EINVAL;
1747
1748 switch (cp->un.value.num_channels) {
1749 case 1:
1750 lgain = rgain = ESS_4BIT_GAIN(
1751 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1752 break;
1753 case 2:
1754 lgain = ESS_4BIT_GAIN(
1755 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1756 rgain = ESS_4BIT_GAIN(
1757 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1758 break;
1759 default:
1760 return EINVAL;
1761 }
1762
1763 sc->gain[cp->dev][ESS_LEFT] = lgain;
1764 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1765 ess_set_gain(sc, cp->dev, 1);
1766 return 0;
1767
1768 case ESS_MIC_PREAMP:
1769 if (cp->type != AUDIO_MIXER_ENUM)
1770 return EINVAL;
1771
1772 if (cp->un.ord)
1773 /* Enable microphone preamp */
1774 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1775 ESS_PREAMP_CTRL_ENABLE);
1776 else
1777 /* Disable microphone preamp */
1778 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1779 ESS_PREAMP_CTRL_ENABLE);
1780 return 0;
1781 }
1782
1783 return EINVAL;
1784 }
1785
1786 int
1787 ess_get_port(void *addr, mixer_ctrl_t *cp)
1788 {
1789 struct ess_softc *sc;
1790
1791 sc = addr;
1792 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1793
1794 switch (cp->dev) {
1795 case ESS_MASTER_VOL:
1796 case ESS_DAC_PLAY_VOL:
1797 case ESS_MIC_PLAY_VOL:
1798 case ESS_LINE_PLAY_VOL:
1799 case ESS_SYNTH_PLAY_VOL:
1800 case ESS_CD_PLAY_VOL:
1801 case ESS_AUXB_PLAY_VOL:
1802 case ESS_RECORD_VOL:
1803 switch (cp->un.value.num_channels) {
1804 case 1:
1805 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1806 sc->gain[cp->dev][ESS_LEFT];
1807 break;
1808 case 2:
1809 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1810 sc->gain[cp->dev][ESS_LEFT];
1811 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1812 sc->gain[cp->dev][ESS_RIGHT];
1813 break;
1814 default:
1815 return EINVAL;
1816 }
1817 return 0;
1818
1819 case ESS_PCSPEAKER_VOL:
1820 if (cp->un.value.num_channels != 1)
1821 return EINVAL;
1822
1823 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1824 sc->gain[cp->dev][ESS_LEFT];
1825 return 0;
1826
1827 case ESS_RECORD_SOURCE:
1828 if (ESS_USE_AUDIO1(sc->sc_model))
1829 cp->un.ord = sc->in_port;
1830 else
1831 cp->un.mask = sc->in_mask;
1832 return 0;
1833
1834 case ESS_RECORD_MONITOR:
1835 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1836 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1837 return 0;
1838 }
1839
1840 if (ESS_USE_AUDIO1(sc->sc_model))
1841 return EINVAL;
1842
1843 switch (cp->dev) {
1844 case ESS_DAC_REC_VOL:
1845 case ESS_MIC_REC_VOL:
1846 case ESS_LINE_REC_VOL:
1847 case ESS_SYNTH_REC_VOL:
1848 case ESS_CD_REC_VOL:
1849 case ESS_AUXB_REC_VOL:
1850 switch (cp->un.value.num_channels) {
1851 case 1:
1852 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1853 sc->gain[cp->dev][ESS_LEFT];
1854 break;
1855 case 2:
1856 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1857 sc->gain[cp->dev][ESS_LEFT];
1858 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1859 sc->gain[cp->dev][ESS_RIGHT];
1860 break;
1861 default:
1862 return EINVAL;
1863 }
1864 return 0;
1865
1866 case ESS_MIC_PREAMP:
1867 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1868 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1869 return 0;
1870 }
1871
1872 return EINVAL;
1873 }
1874
1875 int
1876 ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
1877 {
1878 struct ess_softc *sc;
1879
1880 sc = addr;
1881 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1882 sc->sc_model, dip->index));
1883
1884 /*
1885 * REVISIT: There are some slight differences between the
1886 * mixers on the different ESS chips, which can
1887 * be sorted out using the chip model rather than a
1888 * separate mixer model.
1889 * This is currently coded assuming an ES1887; we
1890 * need to work out which bits are not applicable to
1891 * the other models (1888 and 888).
1892 */
1893 switch (dip->index) {
1894 case ESS_DAC_PLAY_VOL:
1895 dip->mixer_class = ESS_INPUT_CLASS;
1896 dip->next = dip->prev = AUDIO_MIXER_LAST;
1897 strcpy(dip->label.name, AudioNdac);
1898 dip->type = AUDIO_MIXER_VALUE;
1899 dip->un.v.num_channels = 2;
1900 strcpy(dip->un.v.units.name, AudioNvolume);
1901 return 0;
1902
1903 case ESS_MIC_PLAY_VOL:
1904 dip->mixer_class = ESS_INPUT_CLASS;
1905 dip->prev = AUDIO_MIXER_LAST;
1906 if (ESS_USE_AUDIO1(sc->sc_model))
1907 dip->next = AUDIO_MIXER_LAST;
1908 else
1909 dip->next = ESS_MIC_PREAMP;
1910 strcpy(dip->label.name, AudioNmicrophone);
1911 dip->type = AUDIO_MIXER_VALUE;
1912 dip->un.v.num_channels = 2;
1913 strcpy(dip->un.v.units.name, AudioNvolume);
1914 return 0;
1915
1916 case ESS_LINE_PLAY_VOL:
1917 dip->mixer_class = ESS_INPUT_CLASS;
1918 dip->next = dip->prev = AUDIO_MIXER_LAST;
1919 strcpy(dip->label.name, AudioNline);
1920 dip->type = AUDIO_MIXER_VALUE;
1921 dip->un.v.num_channels = 2;
1922 strcpy(dip->un.v.units.name, AudioNvolume);
1923 return 0;
1924
1925 case ESS_SYNTH_PLAY_VOL:
1926 dip->mixer_class = ESS_INPUT_CLASS;
1927 dip->next = dip->prev = AUDIO_MIXER_LAST;
1928 strcpy(dip->label.name, AudioNfmsynth);
1929 dip->type = AUDIO_MIXER_VALUE;
1930 dip->un.v.num_channels = 2;
1931 strcpy(dip->un.v.units.name, AudioNvolume);
1932 return 0;
1933
1934 case ESS_CD_PLAY_VOL:
1935 dip->mixer_class = ESS_INPUT_CLASS;
1936 dip->next = dip->prev = AUDIO_MIXER_LAST;
1937 strcpy(dip->label.name, AudioNcd);
1938 dip->type = AUDIO_MIXER_VALUE;
1939 dip->un.v.num_channels = 2;
1940 strcpy(dip->un.v.units.name, AudioNvolume);
1941 return 0;
1942
1943 case ESS_AUXB_PLAY_VOL:
1944 dip->mixer_class = ESS_INPUT_CLASS;
1945 dip->next = dip->prev = AUDIO_MIXER_LAST;
1946 strcpy(dip->label.name, "auxb");
1947 dip->type = AUDIO_MIXER_VALUE;
1948 dip->un.v.num_channels = 2;
1949 strcpy(dip->un.v.units.name, AudioNvolume);
1950 return 0;
1951
1952 case ESS_INPUT_CLASS:
1953 dip->mixer_class = ESS_INPUT_CLASS;
1954 dip->next = dip->prev = AUDIO_MIXER_LAST;
1955 strcpy(dip->label.name, AudioCinputs);
1956 dip->type = AUDIO_MIXER_CLASS;
1957 return 0;
1958
1959 case ESS_MASTER_VOL:
1960 dip->mixer_class = ESS_OUTPUT_CLASS;
1961 dip->next = dip->prev = AUDIO_MIXER_LAST;
1962 strcpy(dip->label.name, AudioNmaster);
1963 dip->type = AUDIO_MIXER_VALUE;
1964 dip->un.v.num_channels = 2;
1965 strcpy(dip->un.v.units.name, AudioNvolume);
1966 return 0;
1967
1968 case ESS_PCSPEAKER_VOL:
1969 dip->mixer_class = ESS_OUTPUT_CLASS;
1970 dip->next = dip->prev = AUDIO_MIXER_LAST;
1971 strcpy(dip->label.name, "pc_speaker");
1972 dip->type = AUDIO_MIXER_VALUE;
1973 dip->un.v.num_channels = 1;
1974 strcpy(dip->un.v.units.name, AudioNvolume);
1975 return 0;
1976
1977 case ESS_OUTPUT_CLASS:
1978 dip->mixer_class = ESS_OUTPUT_CLASS;
1979 dip->next = dip->prev = AUDIO_MIXER_LAST;
1980 strcpy(dip->label.name, AudioCoutputs);
1981 dip->type = AUDIO_MIXER_CLASS;
1982 return 0;
1983
1984 case ESS_RECORD_VOL:
1985 dip->mixer_class = ESS_RECORD_CLASS;
1986 dip->next = dip->prev = AUDIO_MIXER_LAST;
1987 strcpy(dip->label.name, AudioNrecord);
1988 dip->type = AUDIO_MIXER_VALUE;
1989 dip->un.v.num_channels = 2;
1990 strcpy(dip->un.v.units.name, AudioNvolume);
1991 return 0;
1992
1993 case ESS_RECORD_SOURCE:
1994 dip->mixer_class = ESS_RECORD_CLASS;
1995 dip->next = dip->prev = AUDIO_MIXER_LAST;
1996 strcpy(dip->label.name, AudioNsource);
1997 if (ESS_USE_AUDIO1(sc->sc_model)) {
1998 /*
1999 * The 1788 doesn't use the input mixer control that
2000 * the 1888 uses, because it's a pain when you only
2001 * have one mixer.
2002 * Perhaps it could be emulated by keeping both sets of
2003 * gain values, and doing a `context switch' of the
2004 * mixer registers when shifting from playing to
2005 * recording.
2006 */
2007 dip->type = AUDIO_MIXER_ENUM;
2008 dip->un.e.num_mem = 4;
2009 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2010 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2011 strcpy(dip->un.e.member[1].label.name, AudioNline);
2012 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2013 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2014 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2015 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2016 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2017 } else {
2018 dip->type = AUDIO_MIXER_SET;
2019 dip->un.s.num_mem = 6;
2020 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2021 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2022 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2023 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2024 strcpy(dip->un.s.member[2].label.name, AudioNline);
2025 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2026 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2027 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2028 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2029 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2030 strcpy(dip->un.s.member[5].label.name, "auxb");
2031 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2032 }
2033 return 0;
2034
2035 case ESS_RECORD_CLASS:
2036 dip->mixer_class = ESS_RECORD_CLASS;
2037 dip->next = dip->prev = AUDIO_MIXER_LAST;
2038 strcpy(dip->label.name, AudioCrecord);
2039 dip->type = AUDIO_MIXER_CLASS;
2040 return 0;
2041
2042 case ESS_RECORD_MONITOR:
2043 dip->prev = dip->next = AUDIO_MIXER_LAST;
2044 strcpy(dip->label.name, AudioNmute);
2045 dip->type = AUDIO_MIXER_ENUM;
2046 dip->mixer_class = ESS_MONITOR_CLASS;
2047 dip->un.e.num_mem = 2;
2048 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2049 dip->un.e.member[0].ord = 0;
2050 strcpy(dip->un.e.member[1].label.name, AudioNon);
2051 dip->un.e.member[1].ord = 1;
2052 return 0;
2053
2054 case ESS_MONITOR_CLASS:
2055 dip->mixer_class = ESS_MONITOR_CLASS;
2056 dip->next = dip->prev = AUDIO_MIXER_LAST;
2057 strcpy(dip->label.name, AudioCmonitor);
2058 dip->type = AUDIO_MIXER_CLASS;
2059 return 0;
2060 }
2061
2062 if (ESS_USE_AUDIO1(sc->sc_model))
2063 return ENXIO;
2064
2065 switch (dip->index) {
2066 case ESS_DAC_REC_VOL:
2067 dip->mixer_class = ESS_RECORD_CLASS;
2068 dip->next = dip->prev = AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioNdac);
2070 dip->type = AUDIO_MIXER_VALUE;
2071 dip->un.v.num_channels = 2;
2072 strcpy(dip->un.v.units.name, AudioNvolume);
2073 return 0;
2074
2075 case ESS_MIC_REC_VOL:
2076 dip->mixer_class = ESS_RECORD_CLASS;
2077 dip->next = dip->prev = AUDIO_MIXER_LAST;
2078 strcpy(dip->label.name, AudioNmicrophone);
2079 dip->type = AUDIO_MIXER_VALUE;
2080 dip->un.v.num_channels = 2;
2081 strcpy(dip->un.v.units.name, AudioNvolume);
2082 return 0;
2083
2084 case ESS_LINE_REC_VOL:
2085 dip->mixer_class = ESS_RECORD_CLASS;
2086 dip->next = dip->prev = AUDIO_MIXER_LAST;
2087 strcpy(dip->label.name, AudioNline);
2088 dip->type = AUDIO_MIXER_VALUE;
2089 dip->un.v.num_channels = 2;
2090 strcpy(dip->un.v.units.name, AudioNvolume);
2091 return 0;
2092
2093 case ESS_SYNTH_REC_VOL:
2094 dip->mixer_class = ESS_RECORD_CLASS;
2095 dip->next = dip->prev = AUDIO_MIXER_LAST;
2096 strcpy(dip->label.name, AudioNfmsynth);
2097 dip->type = AUDIO_MIXER_VALUE;
2098 dip->un.v.num_channels = 2;
2099 strcpy(dip->un.v.units.name, AudioNvolume);
2100 return 0;
2101
2102 case ESS_CD_REC_VOL:
2103 dip->mixer_class = ESS_RECORD_CLASS;
2104 dip->next = dip->prev = AUDIO_MIXER_LAST;
2105 strcpy(dip->label.name, AudioNcd);
2106 dip->type = AUDIO_MIXER_VALUE;
2107 dip->un.v.num_channels = 2;
2108 strcpy(dip->un.v.units.name, AudioNvolume);
2109 return 0;
2110
2111 case ESS_AUXB_REC_VOL:
2112 dip->mixer_class = ESS_RECORD_CLASS;
2113 dip->next = dip->prev = AUDIO_MIXER_LAST;
2114 strcpy(dip->label.name, "auxb");
2115 dip->type = AUDIO_MIXER_VALUE;
2116 dip->un.v.num_channels = 2;
2117 strcpy(dip->un.v.units.name, AudioNvolume);
2118 return 0;
2119
2120 case ESS_MIC_PREAMP:
2121 dip->mixer_class = ESS_INPUT_CLASS;
2122 dip->prev = ESS_MIC_PLAY_VOL;
2123 dip->next = AUDIO_MIXER_LAST;
2124 strcpy(dip->label.name, AudioNpreamp);
2125 dip->type = AUDIO_MIXER_ENUM;
2126 dip->un.e.num_mem = 2;
2127 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2128 dip->un.e.member[0].ord = 0;
2129 strcpy(dip->un.e.member[1].label.name, AudioNon);
2130 dip->un.e.member[1].ord = 1;
2131 return 0;
2132 }
2133
2134 return ENXIO;
2135 }
2136
2137 void *
2138 ess_malloc(void *addr, int direction, size_t size,
2139 struct malloc_type *pool, int flags)
2140 {
2141 struct ess_softc *sc;
2142 int drq;
2143
2144 sc = addr;
2145 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2146 drq = sc->sc_audio2.drq;
2147 else
2148 drq = sc->sc_audio1.drq;
2149 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2150 }
2151
2152 void
2153 ess_free(void *addr, void *ptr, struct malloc_type *pool)
2154 {
2155
2156 isa_free(ptr, pool);
2157 }
2158
2159 size_t
2160 ess_round_buffersize(void *addr, int direction, size_t size)
2161 {
2162 struct ess_softc *sc;
2163 bus_size_t maxsize;
2164
2165 sc = addr;
2166 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2167 maxsize = sc->sc_audio2.maxsize;
2168 else
2169 maxsize = sc->sc_audio1.maxsize;
2170
2171 if (size > maxsize)
2172 size = maxsize;
2173 return size;
2174 }
2175
2176 paddr_t
2177 ess_mappage(void *addr, void *mem, off_t off, int prot)
2178 {
2179
2180 return isa_mappage(mem, off, prot);
2181 }
2182
2183 int
2184 ess_1788_get_props(void *addr)
2185 {
2186
2187 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT;
2188 }
2189
2190 int
2191 ess_1888_get_props(void *addr)
2192 {
2193
2194 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
2195 }
2196
2197 /* ============================================
2198 * Generic functions for ess, not used by audio h/w i/f
2199 * =============================================
2200 */
2201
2202 /*
2203 * Reset the chip.
2204 * Return non-zero if the chip isn't detected.
2205 */
2206 int
2207 ess_reset(struct ess_softc *sc)
2208 {
2209 bus_space_tag_t iot;
2210 bus_space_handle_t ioh;
2211
2212 iot = sc->sc_iot;
2213 ioh = sc->sc_ioh;
2214 sc->sc_audio1.active = 0;
2215 sc->sc_audio2.active = 0;
2216
2217 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2218 delay(10000); /* XXX shouldn't delay so long */
2219 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2220 if (ess_rdsp(sc) != ESS_MAGIC)
2221 return 1;
2222
2223 /* Enable access to the ESS extension commands. */
2224 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2225
2226 return 0;
2227 }
2228
2229 void
2230 ess_set_gain(struct ess_softc *sc, int port, int on)
2231 {
2232 int gain, left, right;
2233 int mix;
2234 int src;
2235 int stereo;
2236
2237 /*
2238 * Most gain controls are found in the mixer registers and
2239 * are stereo. Any that are not, must set mix and stereo as
2240 * required.
2241 */
2242 mix = 1;
2243 stereo = 1;
2244
2245 switch (port) {
2246 case ESS_MASTER_VOL:
2247 src = ESS_MREG_VOLUME_MASTER;
2248 break;
2249 case ESS_DAC_PLAY_VOL:
2250 if (ESS_USE_AUDIO1(sc->sc_model))
2251 src = ESS_MREG_VOLUME_VOICE;
2252 else
2253 src = 0x7C;
2254 break;
2255 case ESS_MIC_PLAY_VOL:
2256 src = ESS_MREG_VOLUME_MIC;
2257 break;
2258 case ESS_LINE_PLAY_VOL:
2259 src = ESS_MREG_VOLUME_LINE;
2260 break;
2261 case ESS_SYNTH_PLAY_VOL:
2262 src = ESS_MREG_VOLUME_SYNTH;
2263 break;
2264 case ESS_CD_PLAY_VOL:
2265 src = ESS_MREG_VOLUME_CD;
2266 break;
2267 case ESS_AUXB_PLAY_VOL:
2268 src = ESS_MREG_VOLUME_AUXB;
2269 break;
2270 case ESS_PCSPEAKER_VOL:
2271 src = ESS_MREG_VOLUME_PCSPKR;
2272 stereo = 0;
2273 break;
2274 case ESS_DAC_REC_VOL:
2275 src = 0x69;
2276 break;
2277 case ESS_MIC_REC_VOL:
2278 src = 0x68;
2279 break;
2280 case ESS_LINE_REC_VOL:
2281 src = 0x6E;
2282 break;
2283 case ESS_SYNTH_REC_VOL:
2284 src = 0x6B;
2285 break;
2286 case ESS_CD_REC_VOL:
2287 src = 0x6A;
2288 break;
2289 case ESS_AUXB_REC_VOL:
2290 src = 0x6C;
2291 break;
2292 case ESS_RECORD_VOL:
2293 src = ESS_XCMD_VOLIN_CTRL;
2294 mix = 0;
2295 break;
2296 default:
2297 return;
2298 }
2299
2300 /* 1788 doesn't have a separate recording mixer */
2301 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2302 return;
2303
2304 if (on) {
2305 left = sc->gain[port][ESS_LEFT];
2306 right = sc->gain[port][ESS_RIGHT];
2307 } else {
2308 left = right = 0;
2309 }
2310
2311 if (stereo)
2312 gain = ESS_STEREO_GAIN(left, right);
2313 else
2314 gain = ESS_MONO_GAIN(left);
2315
2316 if (mix)
2317 ess_write_mix_reg(sc, src, gain);
2318 else
2319 ess_write_x_reg(sc, src, gain);
2320 }
2321
2322 /* Set the input device on devices without an input mixer. */
2323 int
2324 ess_set_in_port(struct ess_softc *sc, int ord)
2325 {
2326 mixer_devinfo_t di;
2327 int i;
2328
2329 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2330
2331 /*
2332 * Get the device info for the record source control,
2333 * including the list of available sources.
2334 */
2335 di.index = ESS_RECORD_SOURCE;
2336 if (ess_query_devinfo(sc, &di))
2337 return EINVAL;
2338
2339 /* See if the given ord value was anywhere in the list. */
2340 for (i = 0; i < di.un.e.num_mem; i++) {
2341 if (ord == di.un.e.member[i].ord)
2342 break;
2343 }
2344 if (i == di.un.e.num_mem)
2345 return EINVAL;
2346
2347 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2348
2349 sc->in_port = ord;
2350 return 0;
2351 }
2352
2353 /* Set the input device levels on input-mixer-enabled devices. */
2354 int
2355 ess_set_in_ports(struct ess_softc *sc, int mask)
2356 {
2357 mixer_devinfo_t di;
2358 int i, port;
2359
2360 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2361
2362 /*
2363 * Get the device info for the record source control,
2364 * including the list of available sources.
2365 */
2366 di.index = ESS_RECORD_SOURCE;
2367 if (ess_query_devinfo(sc, &di))
2368 return EINVAL;
2369
2370 /*
2371 * Set or disable the record volume control for each of the
2372 * possible sources.
2373 */
2374 for (i = 0; i < di.un.s.num_mem; i++) {
2375 /*
2376 * Calculate the source port number from its mask.
2377 */
2378 port = ffs(di.un.s.member[i].mask);
2379
2380 /*
2381 * Set the source gain:
2382 * to the current value if source is enabled
2383 * to zero if source is disabled
2384 */
2385 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2386 }
2387
2388 sc->in_mask = mask;
2389 return 0;
2390 }
2391
2392 void
2393 ess_speaker_on(struct ess_softc *sc)
2394 {
2395
2396 /* Unmute the DAC. */
2397 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2398 }
2399
2400 void
2401 ess_speaker_off(struct ess_softc *sc)
2402 {
2403
2404 /* Mute the DAC. */
2405 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2406 }
2407
2408 /*
2409 * Calculate the time constant for the requested sampling rate.
2410 */
2411 u_int
2412 ess_srtotc(u_int rate)
2413 {
2414 u_int tc;
2415
2416 /* The following formulae are from the ESS data sheet. */
2417 if (rate <= 22050)
2418 tc = 128 - 397700L / rate;
2419 else
2420 tc = 256 - 795500L / rate;
2421
2422 return tc;
2423 }
2424
2425
2426 /*
2427 * Calculate the filter constant for the reuqested sampling rate.
2428 */
2429 u_int
2430 ess_srtofc(u_int rate)
2431 {
2432 /*
2433 * The following formula is derived from the information in
2434 * the ES1887 data sheet, based on a roll-off frequency of
2435 * 87%.
2436 */
2437 return 256 - 200279L / rate;
2438 }
2439
2440
2441 /*
2442 * Return the status of the DSP.
2443 */
2444 u_char
2445 ess_get_dsp_status(struct ess_softc *sc)
2446 {
2447 return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
2448 }
2449
2450
2451 /*
2452 * Return the read status of the DSP: 1 -> DSP ready for reading
2453 * 0 -> DSP not ready for reading
2454 */
2455 u_char
2456 ess_dsp_read_ready(struct ess_softc *sc)
2457 {
2458
2459 return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
2460 }
2461
2462
2463 /*
2464 * Return the write status of the DSP: 1 -> DSP ready for writing
2465 * 0 -> DSP not ready for writing
2466 */
2467 u_char
2468 ess_dsp_write_ready(struct ess_softc *sc)
2469 {
2470 return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
2471 }
2472
2473
2474 /*
2475 * Read a byte from the DSP.
2476 */
2477 int
2478 ess_rdsp(struct ess_softc *sc)
2479 {
2480 bus_space_tag_t iot;
2481 bus_space_handle_t ioh;
2482 int i;
2483
2484 iot = sc->sc_iot;
2485 ioh = sc->sc_ioh;
2486 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2487 if (ess_dsp_read_ready(sc)) {
2488 i = EREAD1(iot, ioh, ESS_DSP_READ);
2489 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2490 return i;
2491 } else
2492 delay(10);
2493 }
2494
2495 DPRINTF(("ess_rdsp: timed out\n"));
2496 return -1;
2497 }
2498
2499 /*
2500 * Write a byte to the DSP.
2501 */
2502 int
2503 ess_wdsp(struct ess_softc *sc, u_char v)
2504 {
2505 bus_space_tag_t iot;
2506 bus_space_handle_t ioh;
2507 int i;
2508
2509 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2510
2511 iot = sc->sc_iot;
2512 ioh = sc->sc_ioh;
2513 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2514 if (ess_dsp_write_ready(sc)) {
2515 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2516 return 0;
2517 } else
2518 delay(10);
2519 }
2520
2521 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2522 return -1;
2523 }
2524
2525 /*
2526 * Write a value to one of the ESS extended registers.
2527 */
2528 int
2529 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
2530 {
2531 int error;
2532
2533 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2534 if ((error = ess_wdsp(sc, reg)) == 0)
2535 error = ess_wdsp(sc, val);
2536
2537 return error;
2538 }
2539
2540 /*
2541 * Read the value of one of the ESS extended registers.
2542 */
2543 u_char
2544 ess_read_x_reg(struct ess_softc *sc, u_char reg)
2545 {
2546 int error;
2547 int val;
2548
2549 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2550 error = ess_wdsp(sc, reg);
2551 if (error) {
2552 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2553 }
2554 /* REVISIT: what if an error is returned above? */
2555 val = ess_rdsp(sc);
2556 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2557 return val;
2558 }
2559
2560 void
2561 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2562 {
2563 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) {
2564 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2565 reg));
2566 }
2567 }
2568
2569 void
2570 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2571 {
2572 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) {
2573 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2574 reg));
2575 }
2576 }
2577
2578
2579 /*
2580 * Write a value to one of the ESS mixer registers.
2581 */
2582 void
2583 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
2584 {
2585 bus_space_tag_t iot;
2586 bus_space_handle_t ioh;
2587 int s;
2588
2589 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2590
2591 iot = sc->sc_iot;
2592 ioh = sc->sc_ioh;
2593 s = splaudio();
2594 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2595 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2596 splx(s);
2597 }
2598
2599 /*
2600 * Read the value of one of the ESS mixer registers.
2601 */
2602 u_char
2603 ess_read_mix_reg(struct ess_softc *sc, u_char reg)
2604 {
2605 bus_space_tag_t iot;
2606 bus_space_handle_t ioh;
2607 int s;
2608 u_char val;
2609
2610 iot = sc->sc_iot;
2611 ioh = sc->sc_ioh;
2612 s = splaudio();
2613 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2614 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2615 splx(s);
2616
2617 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2618 return val;
2619 }
2620
2621 void
2622 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2623 {
2624
2625 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2626 }
2627
2628 void
2629 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2630 {
2631
2632 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2633 }
2634
2635 void
2636 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
2637 uint8_t *datap, bus_size_t count)
2638 {
2639 bus_space_tag_t iot;
2640 bus_space_handle_t ioh;
2641 int s;
2642
2643 iot = sc->sc_iot;
2644 ioh = sc->sc_ioh;
2645 s = splaudio();
2646 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2647 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2648 splx(s);
2649 }
2650