ess.c revision 1.79 1 /* $NetBSD: ess.c,v 1.79 2011/11/23 23:07:32 jmcneill Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 **
39 ** ess.c
40 **
41 ** FACILITY:
42 **
43 ** DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 ** MODULE DESCRIPTION:
46 **
47 ** This module contains the device driver for the ESS
48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 ** used as a reference point when implementing this driver.
50 **
51 ** AUTHORS:
52 **
53 ** Blair Fidler Software Engineering Australia
54 ** Gold Coast, Australia.
55 **
56 ** CREATION DATE:
57 **
58 ** March 10, 1997.
59 **
60 ** MODIFICATION HISTORY:
61 **
62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 ** bus_dma, changes to audio interface, and many bug fixes.
64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.79 2011/11/23 23:07:32 jmcneill Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 #include <sys/cpu.h>
80 #include <sys/intr.h>
81 #include <sys/bus.h>
82 #include <sys/audioio.h>
83 #include <sys/malloc.h>
84
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94
95 #include "joy_ess.h"
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (essdebug) printf x
99 #define DPRINTFN(n,x) if (essdebug>(n)) printf x
100 int essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114
115
116 int ess_setup_sc(struct ess_softc *, int);
117
118 int ess_open(void *, int);
119 void ess_close(void *);
120 int ess_getdev(void *, struct audio_device *);
121 int ess_drain(void *);
122
123 int ess_query_encoding(void *, struct audio_encoding *);
124
125 int ess_set_params(void *, int, int, audio_params_t *,
126 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
127
128 int ess_round_blocksize(void *, int, int, const audio_params_t *);
129
130 int ess_audio1_trigger_output(void *, void *, void *, int,
131 void (*)(void *), void *, const audio_params_t *);
132 int ess_audio2_trigger_output(void *, void *, void *, int,
133 void (*)(void *), void *, const audio_params_t *);
134 int ess_audio1_trigger_input(void *, void *, void *, int,
135 void (*)(void *), void *, const audio_params_t *);
136 int ess_audio1_halt(void *);
137 int ess_audio2_halt(void *);
138 int ess_audio1_intr(void *);
139 int ess_audio2_intr(void *);
140 void ess_audio1_poll(void *);
141 void ess_audio2_poll(void *);
142
143 int ess_speaker_ctl(void *, int);
144
145 int ess_getdev(void *, struct audio_device *);
146
147 int ess_set_port(void *, mixer_ctrl_t *);
148 int ess_get_port(void *, mixer_ctrl_t *);
149
150 void *ess_malloc(void *, int, size_t);
151 void ess_free(void *, void *, size_t);
152 size_t ess_round_buffersize(void *, int, size_t);
153 paddr_t ess_mappage(void *, void *, off_t, int);
154
155
156 int ess_query_devinfo(void *, mixer_devinfo_t *);
157 int ess_1788_get_props(void *);
158 int ess_1888_get_props(void *);
159 void ess_get_locks(void *, kmutex_t **, kmutex_t **);
160
161 void ess_speaker_on(struct ess_softc *);
162 void ess_speaker_off(struct ess_softc *);
163
164 void ess_config_irq(struct ess_softc *);
165 void ess_config_drq(struct ess_softc *);
166 void ess_setup(struct ess_softc *);
167 int ess_identify(struct ess_softc *);
168
169 int ess_reset(struct ess_softc *);
170 void ess_set_gain(struct ess_softc *, int, int);
171 int ess_set_in_port(struct ess_softc *, int);
172 int ess_set_in_ports(struct ess_softc *, int);
173 u_int ess_srtotc(u_int);
174 u_int ess_srtofc(u_int);
175 u_char ess_get_dsp_status(struct ess_softc *);
176 u_char ess_dsp_read_ready(struct ess_softc *);
177 u_char ess_dsp_write_ready(struct ess_softc *);
178 int ess_rdsp(struct ess_softc *);
179 int ess_wdsp(struct ess_softc *, u_char);
180 u_char ess_read_x_reg(struct ess_softc *, u_char);
181 int ess_write_x_reg(struct ess_softc *, u_char, u_char);
182 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
183 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
184 u_char ess_read_mix_reg(struct ess_softc *, u_char);
185 void ess_write_mix_reg(struct ess_softc *, u_char, u_char);
186 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
187 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
188 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t);
189
190 static const char *essmodel[] = {
191 "unsupported",
192
193 "688",
194 "1688",
195 "1788",
196 "1868",
197 "1869",
198 "1878",
199 "1879",
200
201 "888",
202 "1887",
203 "1888",
204 };
205
206 struct audio_device ess_device = {
207 "ESS Technology",
208 "x",
209 "ess"
210 };
211
212 /*
213 * Define our interface to the higher level audio driver.
214 */
215
216 const struct audio_hw_if ess_1788_hw_if = {
217 ess_open,
218 ess_close,
219 ess_drain,
220 ess_query_encoding,
221 ess_set_params,
222 ess_round_blocksize,
223 NULL,
224 NULL,
225 NULL,
226 NULL,
227 NULL,
228 ess_audio1_halt,
229 ess_audio1_halt,
230 ess_speaker_ctl,
231 ess_getdev,
232 NULL,
233 ess_set_port,
234 ess_get_port,
235 ess_query_devinfo,
236 ess_malloc,
237 ess_free,
238 ess_round_buffersize,
239 ess_mappage,
240 ess_1788_get_props,
241 ess_audio1_trigger_output,
242 ess_audio1_trigger_input,
243 NULL,
244 ess_get_locks,
245 };
246
247 const struct audio_hw_if ess_1888_hw_if = {
248 ess_open,
249 ess_close,
250 ess_drain,
251 ess_query_encoding,
252 ess_set_params,
253 ess_round_blocksize,
254 NULL,
255 NULL,
256 NULL,
257 NULL,
258 NULL,
259 ess_audio2_halt,
260 ess_audio1_halt,
261 ess_speaker_ctl,
262 ess_getdev,
263 NULL,
264 ess_set_port,
265 ess_get_port,
266 ess_query_devinfo,
267 ess_malloc,
268 ess_free,
269 ess_round_buffersize,
270 ess_mappage,
271 ess_1888_get_props,
272 ess_audio2_trigger_output,
273 ess_audio1_trigger_input,
274 NULL,
275 ess_get_locks,
276 };
277
278 #define ESS_NFORMATS 8
279 static const struct audio_format ess_formats[ESS_NFORMATS] = {
280 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
281 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
282 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
283 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
284 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
285 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
286 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
287 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
288 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
289 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
290 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
291 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
292 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
293 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
294 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
295 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
296 };
297
298 #ifdef AUDIO_DEBUG
299 void ess_printsc(struct ess_softc *);
300 void ess_dump_mixer(struct ess_softc *);
301
302 void
303 ess_printsc(struct ess_softc *sc)
304 {
305 int i;
306
307 printf("iobase 0x%x outport %u inport %u speaker %s\n",
308 sc->sc_iobase, sc->out_port,
309 sc->in_port, sc->spkr_state ? "on" : "off");
310
311 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
312 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
313 sc->sc_audio1.intr, sc->sc_audio1.arg);
314
315 if (!ESS_USE_AUDIO1(sc->sc_model)) {
316 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
317 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
318 sc->sc_audio2.intr, sc->sc_audio2.arg);
319 }
320
321 printf("gain:");
322 for (i = 0; i < sc->ndevs; i++)
323 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
324 printf("\n");
325 }
326
327 void
328 ess_dump_mixer(struct ess_softc *sc)
329 {
330
331 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
332 0x7C, ess_read_mix_reg(sc, 0x7C));
333 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
334 0x1A, ess_read_mix_reg(sc, 0x1A));
335 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
336 0x3E, ess_read_mix_reg(sc, 0x3E));
337 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
338 0x36, ess_read_mix_reg(sc, 0x36));
339 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
340 0x38, ess_read_mix_reg(sc, 0x38));
341 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
342 0x3A, ess_read_mix_reg(sc, 0x3A));
343 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
344 0x32, ess_read_mix_reg(sc, 0x32));
345 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
346 0x3C, ess_read_mix_reg(sc, 0x3C));
347 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
348 0x69, ess_read_mix_reg(sc, 0x69));
349 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
350 0x68, ess_read_mix_reg(sc, 0x68));
351 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
352 0x6E, ess_read_mix_reg(sc, 0x6E));
353 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
354 0x6B, ess_read_mix_reg(sc, 0x6B));
355 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
356 0x6A, ess_read_mix_reg(sc, 0x6A));
357 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
358 0x6C, ess_read_mix_reg(sc, 0x6C));
359 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
360 0xB4, ess_read_x_reg(sc, 0xB4));
361 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
362 0x14, ess_read_mix_reg(sc, 0x14));
363
364 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
365 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
366 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
367 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
368 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
369 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
370 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
371 }
372
373 #endif
374
375 /*
376 * Configure the ESS chip for the desired audio base address.
377 */
378 int
379 ess_config_addr(struct ess_softc *sc)
380 {
381 int iobase;
382 bus_space_tag_t iot;
383 /*
384 * Configure using the System Control Register method. This
385 * method is used when the AMODE line is tied high, which is
386 * the case for the Shark, but not for the evaluation board.
387 */
388 bus_space_handle_t scr_access_ioh;
389 bus_space_handle_t scr_ioh;
390 u_short scr_value;
391
392 iobase = sc->sc_iobase;
393 iot = sc->sc_iot;
394 /*
395 * Set the SCR bit to enable audio.
396 */
397 scr_value = ESS_SCR_AUDIO_ENABLE;
398
399 /*
400 * Set the SCR bits necessary to select the specified audio
401 * base address.
402 */
403 switch(iobase) {
404 case 0x220:
405 scr_value |= ESS_SCR_AUDIO_220;
406 break;
407 case 0x230:
408 scr_value |= ESS_SCR_AUDIO_230;
409 break;
410 case 0x240:
411 scr_value |= ESS_SCR_AUDIO_240;
412 break;
413 case 0x250:
414 scr_value |= ESS_SCR_AUDIO_250;
415 break;
416 default:
417 printf("ess: configured iobase 0x%x invalid\n", iobase);
418 return 1;
419 break;
420 }
421
422 /*
423 * Get a mapping for the System Control Register (SCR) access
424 * registers and the SCR data registers.
425 */
426 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
427 0, &scr_access_ioh)) {
428 printf("ess: can't map SCR access registers\n");
429 return 1;
430 }
431 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
432 0, &scr_ioh)) {
433 printf("ess: can't map SCR registers\n");
434 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
435 return 1;
436 }
437
438 /* Unlock the SCR. */
439 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
440
441 /* Write the base address information into SCR[0]. */
442 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
443 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
444
445 /* Lock the SCR. */
446 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
447
448 /* Unmap the SCR access ports and the SCR data ports. */
449 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
450 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
451
452 return 0;
453 }
454
455
456 /*
457 * Configure the ESS chip for the desired IRQ and DMA channels.
458 * ESS ISA
459 * --------
460 * IRQA irq9
461 * IRQB irq5
462 * IRQC irq7
463 * IRQD irq10
464 * IRQE irq15
465 *
466 * DRQA drq0
467 * DRQB drq1
468 * DRQC drq3
469 * DRQD drq5
470 */
471 void
472 ess_config_irq(struct ess_softc *sc)
473 {
474 int v;
475
476 DPRINTFN(2,("ess_config_irq\n"));
477
478 if (sc->sc_model == ESS_1887 &&
479 sc->sc_audio1.irq == sc->sc_audio2.irq &&
480 sc->sc_audio1.irq != -1) {
481 /* Use new method, both interrupts are the same. */
482 v = ESS_IS_SELECT_IRQ; /* enable intrs */
483 switch (sc->sc_audio1.irq) {
484 case 5:
485 v |= ESS_IS_INTRB;
486 break;
487 case 7:
488 v |= ESS_IS_INTRC;
489 break;
490 case 9:
491 v |= ESS_IS_INTRA;
492 break;
493 case 10:
494 v |= ESS_IS_INTRD;
495 break;
496 case 15:
497 v |= ESS_IS_INTRE;
498 break;
499 #ifdef DIAGNOSTIC
500 default:
501 printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
502 sc->sc_audio1.irq);
503 return;
504 #endif
505 }
506 /* Set the IRQ */
507 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
508 return;
509 }
510
511 if (sc->sc_model == ESS_1887) {
512 /* Tell the 1887 to use the old interrupt method. */
513 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
514 }
515
516 if (sc->sc_audio1.polled) {
517 /* Turn off Audio1 interrupts. */
518 v = 0;
519 } else {
520 /* Configure Audio 1 for the appropriate IRQ line. */
521 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
522 switch (sc->sc_audio1.irq) {
523 case 5:
524 v |= ESS_IRQ_CTRL_INTRB;
525 break;
526 case 7:
527 v |= ESS_IRQ_CTRL_INTRC;
528 break;
529 case 9:
530 v |= ESS_IRQ_CTRL_INTRA;
531 break;
532 case 10:
533 v |= ESS_IRQ_CTRL_INTRD;
534 break;
535 #ifdef DIAGNOSTIC
536 default:
537 printf("ess: configured irq %d not supported for Audio 1\n",
538 sc->sc_audio1.irq);
539 return;
540 #endif
541 }
542 }
543 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
544
545 if (ESS_USE_AUDIO1(sc->sc_model))
546 return;
547
548 if (sc->sc_audio2.polled) {
549 /* Turn off Audio2 interrupts. */
550 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
551 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
552 } else {
553 /* Audio2 is hardwired to INTRE in this mode. */
554 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
555 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
556 }
557 }
558
559
560 void
561 ess_config_drq(struct ess_softc *sc)
562 {
563 int v;
564
565 DPRINTFN(2,("ess_config_drq\n"));
566
567 /* Configure Audio 1 (record) for DMA on the appropriate channel. */
568 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
569 switch (sc->sc_audio1.drq) {
570 case 0:
571 v |= ESS_DRQ_CTRL_DRQA;
572 break;
573 case 1:
574 v |= ESS_DRQ_CTRL_DRQB;
575 break;
576 case 3:
577 v |= ESS_DRQ_CTRL_DRQC;
578 break;
579 #ifdef DIAGNOSTIC
580 default:
581 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
582 sc->sc_audio1.drq);
583 return;
584 #endif
585 }
586 /* Set DRQ1 */
587 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
588
589 if (ESS_USE_AUDIO1(sc->sc_model))
590 return;
591
592 /* Configure DRQ2 */
593 v = ESS_AUDIO2_CTRL3_DRQ_PD;
594 switch (sc->sc_audio2.drq) {
595 case 0:
596 v |= ESS_AUDIO2_CTRL3_DRQA;
597 break;
598 case 1:
599 v |= ESS_AUDIO2_CTRL3_DRQB;
600 break;
601 case 3:
602 v |= ESS_AUDIO2_CTRL3_DRQC;
603 break;
604 case 5:
605 v |= ESS_AUDIO2_CTRL3_DRQD;
606 break;
607 #ifdef DIAGNOSTIC
608 default:
609 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
610 sc->sc_audio2.drq);
611 return;
612 #endif
613 }
614 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
615 /* Enable DMA 2 */
616 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
617 ESS_AUDIO2_CTRL2_DMA_ENABLE);
618 }
619
620 /*
621 * Set up registers after a reset.
622 */
623 void
624 ess_setup(struct ess_softc *sc)
625 {
626
627 ess_config_irq(sc);
628 ess_config_drq(sc);
629
630 DPRINTFN(2,("ess_setup: done\n"));
631 }
632
633 /*
634 * Determine the model of ESS chip we are talking to. Currently we
635 * only support ES1888, ES1887 and ES888. The method of determining
636 * the chip is based on the information on page 27 of the ES1887 data
637 * sheet.
638 *
639 * This routine sets the values of sc->sc_model and sc->sc_version.
640 */
641 int
642 ess_identify(struct ess_softc *sc)
643 {
644 u_char reg1;
645 u_char reg2;
646 u_char reg3;
647 u_int8_t ident[4];
648
649 sc->sc_model = ESS_UNSUPPORTED;
650 sc->sc_version = 0;
651
652 memset(ident, 0, sizeof(ident));
653
654 /*
655 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where
656 * n >= 8 for an ES1887 or an ES888. Other values indicate
657 * earlier (unsupported) chips.
658 */
659 ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
660
661 if ((reg1 = ess_rdsp(sc)) != 0x68) {
662 printf("ess: First ID byte wrong (0x%02x)\n", reg1);
663 return 1;
664 }
665
666 reg2 = ess_rdsp(sc);
667 if (((reg2 & 0xf0) != 0x80) ||
668 ((reg2 & 0x0f) < 8)) {
669 sc->sc_model = ESS_688;
670 return 0;
671 }
672
673 /*
674 * Store the ID bytes as the version.
675 */
676 sc->sc_version = (reg1 << 8) + reg2;
677
678
679 /*
680 * 2. Verify we can change bit 2 in mixer register 0x64. This
681 * should be possible on all supported chips.
682 */
683 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
684 reg2 = reg1 ^ 0x04; /* toggle bit 2 */
685
686 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
687
688 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
689 switch (sc->sc_version) {
690 case 0x688b:
691 sc->sc_model = ESS_1688;
692 break;
693 default:
694 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
695 return 1;
696 }
697 return 0;
698 }
699
700 /*
701 * Restore the original value of mixer register 0x64.
702 */
703 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
704
705
706 /*
707 * 3. Verify we can change the value of mixer register
708 * ESS_MREG_SAMPLE_RATE.
709 * This is possible on the 1888/1887/888, but not on the 1788.
710 * It is not necessary to restore the value of this mixer register.
711 */
712 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
713 reg2 = reg1 ^ 0xff; /* toggle all bits */
714
715 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
716
717 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
718 /* If we got this far before failing, it's a 1788. */
719 sc->sc_model = ESS_1788;
720
721 /*
722 * Identify ESS model for ES18[67]8.
723 */
724 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
725 if(ident[0] == 0x18) {
726 switch(ident[1]) {
727 case 0x68:
728 sc->sc_model = ESS_1868;
729 break;
730 case 0x78:
731 sc->sc_model = ESS_1878;
732 break;
733 }
734 }
735
736 return 0;
737 }
738
739 /*
740 * 4. Determine if we can change bit 5 in mixer register 0x64.
741 * This determines whether we have an ES1887:
742 *
743 * - can change indicates ES1887
744 * - can't change indicates ES1888 or ES888
745 */
746 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
747 reg2 = reg1 ^ 0x20; /* toggle bit 5 */
748
749 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
750
751 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
752 sc->sc_model = ESS_1887;
753
754 /*
755 * Restore the original value of mixer register 0x64.
756 */
757 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
758
759 /*
760 * Identify ESS model for ES18[67]9.
761 */
762 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
763 if(ident[0] == 0x18) {
764 switch(ident[1]) {
765 case 0x69:
766 sc->sc_model = ESS_1869;
767 break;
768 case 0x79:
769 sc->sc_model = ESS_1879;
770 break;
771 }
772 }
773
774 return 0;
775 }
776
777 /*
778 * 5. Determine if we can change the value of mixer
779 * register 0x69 independently of mixer register
780 * 0x68. This determines which chip we have:
781 *
782 * - can modify idependently indicates ES888
783 * - register 0x69 is an alias of 0x68 indicates ES1888
784 */
785 reg1 = ess_read_mix_reg(sc, 0x68);
786 reg2 = ess_read_mix_reg(sc, 0x69);
787 reg3 = reg2 ^ 0xff; /* toggle all bits */
788
789 /*
790 * Write different values to each register.
791 */
792 ess_write_mix_reg(sc, 0x68, reg2);
793 ess_write_mix_reg(sc, 0x69, reg3);
794
795 if (ess_read_mix_reg(sc, 0x68) == reg2 &&
796 ess_read_mix_reg(sc, 0x69) == reg3)
797 sc->sc_model = ESS_888;
798 else
799 sc->sc_model = ESS_1888;
800
801 /*
802 * Restore the original value of the registers.
803 */
804 ess_write_mix_reg(sc, 0x68, reg1);
805 ess_write_mix_reg(sc, 0x69, reg2);
806
807 return 0;
808 }
809
810
811 int
812 ess_setup_sc(struct ess_softc *sc, int doinit)
813 {
814
815 /* Reset the chip. */
816 if (ess_reset(sc) != 0) {
817 DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
818 return 1;
819 }
820
821 /* Identify the ESS chip, and check that it is supported. */
822 if (ess_identify(sc)) {
823 DPRINTF(("ess_setup_sc: couldn't identify\n"));
824 return 1;
825 }
826
827 return 0;
828 }
829
830 /*
831 * Probe for the ESS hardware.
832 */
833 int
834 essmatch(struct ess_softc *sc)
835 {
836 if (!ESS_BASE_VALID(sc->sc_iobase)) {
837 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
838 return 0;
839 }
840
841 if (ess_setup_sc(sc, 1))
842 return 0;
843
844 if (sc->sc_model == ESS_UNSUPPORTED) {
845 DPRINTF(("ess: Unsupported model\n"));
846 return 0;
847 }
848
849 /* Check that requested DMA channels are valid and different. */
850 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
851 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
852 return 0;
853 }
854 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
855 return 0;
856 if (!ESS_USE_AUDIO1(sc->sc_model)) {
857 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
858 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
859 return 0;
860 }
861 if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
862 printf("ess: play and record drq both %d\n",
863 sc->sc_audio1.drq);
864 return 0;
865 }
866 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
867 return 0;
868 }
869
870 /*
871 * The 1887 has an additional IRQ mode where both channels are mapped
872 * to the same IRQ.
873 */
874 if (sc->sc_model == ESS_1887 &&
875 sc->sc_audio1.irq == sc->sc_audio2.irq &&
876 sc->sc_audio1.irq != -1 &&
877 ESS_IRQ12_VALID(sc->sc_audio1.irq))
878 goto irq_not1888;
879
880 /* Check that requested IRQ lines are valid and different. */
881 if (sc->sc_audio1.irq != -1 &&
882 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
883 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
884 return 0;
885 }
886 if (!ESS_USE_AUDIO1(sc->sc_model)) {
887 if (sc->sc_audio2.irq != -1 &&
888 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
889 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
890 return 0;
891 }
892 if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
893 sc->sc_audio1.irq != -1) {
894 printf("ess: play and record irq both %d\n",
895 sc->sc_audio1.irq);
896 return 0;
897 }
898 }
899
900 irq_not1888:
901 /* XXX should we check IRQs as well? */
902
903 return 2; /* beat "sb" */
904 }
905
906
907 /*
908 * Attach hardware to driver, attach hardware driver to audio
909 * pseudo-device driver.
910 */
911 void
912 essattach(struct ess_softc *sc, int enablejoy)
913 {
914 struct audio_attach_args arg;
915 int i;
916 u_int v;
917
918 if (ess_setup_sc(sc, 0)) {
919 printf(": setup failed\n");
920 return;
921 }
922
923 aprint_normal(": ESS Technology ES%s [version 0x%04x]\n",
924 essmodel[sc->sc_model], sc->sc_version);
925
926 callout_init(&sc->sc_poll1_ch, CALLOUT_MPSAFE);
927 callout_init(&sc->sc_poll2_ch, CALLOUT_MPSAFE);
928 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
929 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
930
931 sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
932 if (!sc->sc_audio1.polled) {
933 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
934 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_SCHED,
935 ess_audio1_intr, sc);
936 aprint_normal_dev(sc->sc_dev,
937 "audio1 interrupting at irq %d\n", sc->sc_audio1.irq);
938 } else
939 aprint_normal_dev(sc->sc_dev, "audio1 polled\n");
940 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
941
942 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
943 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
944 sc->sc_audio1.drq);
945 goto fail;
946 }
947
948 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
949 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
950 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n",
951 sc->sc_audio1.drq);
952 goto fail;
953 }
954
955 if (!ESS_USE_AUDIO1(sc->sc_model)) {
956 sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
957 if (!sc->sc_audio2.polled) {
958 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
959 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_SCHED,
960 ess_audio2_intr, sc);
961 aprint_normal_dev(sc->sc_dev,
962 "audio2 interrupting at irq %d\n",
963 sc->sc_audio2.irq);
964 } else
965 aprint_normal_dev(sc->sc_dev, "audio2 polled\n");
966 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
967 sc->sc_audio2.drq);
968
969 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
970 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
971 sc->sc_audio2.drq);
972 goto fail;
973 }
974
975 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
976 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
977 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n",
978 sc->sc_audio2.drq);
979 goto fail;
980 }
981 }
982
983 /* Do a hardware reset on the mixer. */
984 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
985
986 /*
987 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
988 * to playback mixer, since playback is always through Audio 2.
989 */
990 if (!ESS_USE_AUDIO1(sc->sc_model))
991 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
992 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
993
994 if (ESS_USE_AUDIO1(sc->sc_model)) {
995 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
996 sc->in_port = ESS_SOURCE_MIC;
997 sc->ndevs = ESS_1788_NDEVS;
998 } else {
999 /*
1000 * Set hardware record source to use output of the record
1001 * mixer. We do the selection of record source in software by
1002 * setting the gain of the unused sources to zero. (See
1003 * ess_set_in_ports.)
1004 */
1005 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1006 sc->in_mask = 1 << ESS_MIC_REC_VOL;
1007 sc->ndevs = ESS_1888_NDEVS;
1008 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1009 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1010 }
1011
1012 /*
1013 * Set gain on each mixer device to a sensible value.
1014 * Devices not normally used are turned off, and other devices
1015 * are set to 50% volume.
1016 */
1017 for (i = 0; i < sc->ndevs; i++) {
1018 switch (i) {
1019 case ESS_MIC_PLAY_VOL:
1020 case ESS_LINE_PLAY_VOL:
1021 case ESS_CD_PLAY_VOL:
1022 case ESS_AUXB_PLAY_VOL:
1023 case ESS_DAC_REC_VOL:
1024 case ESS_LINE_REC_VOL:
1025 case ESS_SYNTH_REC_VOL:
1026 case ESS_CD_REC_VOL:
1027 case ESS_AUXB_REC_VOL:
1028 v = 0;
1029 break;
1030 default:
1031 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1032 break;
1033 }
1034 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1035 ess_set_gain(sc, i, 1);
1036 }
1037
1038 ess_setup(sc);
1039
1040 /* Disable the speaker until the device is opened. */
1041 ess_speaker_off(sc);
1042 sc->spkr_state = SPKR_OFF;
1043
1044 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1045 essmodel[sc->sc_model]);
1046 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1047 sc->sc_version);
1048
1049 if (ESS_USE_AUDIO1(sc->sc_model))
1050 audio_attach_mi(&ess_1788_hw_if, sc, sc->sc_dev);
1051 else
1052 audio_attach_mi(&ess_1888_hw_if, sc, sc->sc_dev);
1053
1054 arg.type = AUDIODEV_TYPE_OPL;
1055 arg.hwif = 0;
1056 arg.hdl = 0;
1057 (void)config_found(sc->sc_dev, &arg, audioprint);
1058
1059 #if NJOY_ESS > 0
1060 if (sc->sc_model == ESS_1888 && enablejoy) {
1061 unsigned char m40;
1062
1063 m40 = ess_read_mix_reg(sc, 0x40);
1064 m40 |= 2;
1065 ess_write_mix_reg(sc, 0x40, m40);
1066
1067 arg.type = AUDIODEV_TYPE_AUX;
1068 (void)config_found(sc->sc_dev, &arg, audioprint);
1069 }
1070 #endif
1071
1072 #ifdef AUDIO_DEBUG
1073 if (essdebug > 0)
1074 ess_printsc(sc);
1075 #endif
1076
1077 return;
1078
1079 fail:
1080 callout_destroy(&sc->sc_poll1_ch);
1081 callout_destroy(&sc->sc_poll2_ch);
1082 mutex_destroy(&sc->sc_lock);
1083 mutex_destroy(&sc->sc_intr_lock);
1084 }
1085
1086 /*
1087 * Various routines to interface to higher level audio driver
1088 */
1089
1090 int
1091 ess_open(void *addr, int flags)
1092 {
1093
1094 return 0;
1095 }
1096
1097 void
1098 ess_close(void *addr)
1099 {
1100 struct ess_softc *sc;
1101
1102 sc = addr;
1103 DPRINTF(("ess_close: sc=%p\n", sc));
1104
1105 ess_speaker_off(sc);
1106 sc->spkr_state = SPKR_OFF;
1107
1108 DPRINTF(("ess_close: closed\n"));
1109 }
1110
1111 /*
1112 * Wait for FIFO to drain, and analog section to settle.
1113 * XXX should check FIFO empty bit.
1114 */
1115 int
1116 ess_drain(void *addr)
1117 {
1118 struct ess_softc *sc;
1119
1120 sc = addr;
1121 mutex_exit(&sc->sc_lock);
1122 kpause("essdr", FALSE, hz/20, &sc->sc_intr_lock); /* XXX */
1123 if (!mutex_tryenter(&sc->sc_lock)) {
1124 mutex_spin_exit(&sc->sc_intr_lock);
1125 mutex_enter(&sc->sc_lock);
1126 mutex_spin_enter(&sc->sc_intr_lock);
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* XXX should use reference count */
1133 int
1134 ess_speaker_ctl(void *addr, int newstate)
1135 {
1136 struct ess_softc *sc;
1137
1138 sc = addr;
1139 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1140 ess_speaker_on(sc);
1141 sc->spkr_state = SPKR_ON;
1142 }
1143 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1144 ess_speaker_off(sc);
1145 sc->spkr_state = SPKR_OFF;
1146 }
1147 return 0;
1148 }
1149
1150 int
1151 ess_getdev(void *addr, struct audio_device *retp)
1152 {
1153
1154 *retp = ess_device;
1155 return 0;
1156 }
1157
1158 int
1159 ess_query_encoding(void *addr, struct audio_encoding *fp)
1160 {
1161 /*struct ess_softc *sc = addr;*/
1162
1163 switch (fp->index) {
1164 case 0:
1165 strcpy(fp->name, AudioEulinear);
1166 fp->encoding = AUDIO_ENCODING_ULINEAR;
1167 fp->precision = 8;
1168 fp->flags = 0;
1169 return 0;
1170 case 1:
1171 strcpy(fp->name, AudioEmulaw);
1172 fp->encoding = AUDIO_ENCODING_ULAW;
1173 fp->precision = 8;
1174 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1175 return 0;
1176 case 2:
1177 strcpy(fp->name, AudioEalaw);
1178 fp->encoding = AUDIO_ENCODING_ALAW;
1179 fp->precision = 8;
1180 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1181 return 0;
1182 case 3:
1183 strcpy(fp->name, AudioEslinear);
1184 fp->encoding = AUDIO_ENCODING_SLINEAR;
1185 fp->precision = 8;
1186 fp->flags = 0;
1187 return 0;
1188 case 4:
1189 strcpy(fp->name, AudioEslinear_le);
1190 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1191 fp->precision = 16;
1192 fp->flags = 0;
1193 return 0;
1194 case 5:
1195 strcpy(fp->name, AudioEulinear_le);
1196 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1197 fp->precision = 16;
1198 fp->flags = 0;
1199 return 0;
1200 case 6:
1201 strcpy(fp->name, AudioEslinear_be);
1202 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1203 fp->precision = 16;
1204 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1205 return 0;
1206 case 7:
1207 strcpy(fp->name, AudioEulinear_be);
1208 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1209 fp->precision = 16;
1210 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1211 return 0;
1212 default:
1213 return EINVAL;
1214 }
1215 return 0;
1216 }
1217
1218 int
1219 ess_set_params(
1220 void *addr,
1221 int setmode, int usemode,
1222 audio_params_t *play, audio_params_t *rec,
1223 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1224 {
1225 struct ess_softc *sc;
1226 int rate;
1227
1228 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1229 sc = addr;
1230 /*
1231 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1232 * full-duplex operation the sample rates must be the same for both
1233 * channels. This appears to be false; the only bit in common is the
1234 * clock source selection. However, we'll be conservative here.
1235 * - mycroft
1236 */
1237 if (play->sample_rate != rec->sample_rate &&
1238 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1239 if (setmode == AUMODE_PLAY) {
1240 rec->sample_rate = play->sample_rate;
1241 setmode |= AUMODE_RECORD;
1242 } else if (setmode == AUMODE_RECORD) {
1243 play->sample_rate = rec->sample_rate;
1244 setmode |= AUMODE_PLAY;
1245 } else
1246 return EINVAL;
1247 }
1248
1249 if (setmode & AUMODE_RECORD) {
1250 if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1251 AUMODE_RECORD, rec, FALSE, rfil) < 0)
1252 return EINVAL;
1253 }
1254 if (setmode & AUMODE_PLAY) {
1255 if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1256 AUMODE_PLAY, play, FALSE, pfil) < 0)
1257 return EINVAL;
1258 }
1259
1260 if (usemode == AUMODE_RECORD)
1261 rate = rec->sample_rate;
1262 else
1263 rate = play->sample_rate;
1264
1265 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1266 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1267
1268 if (!ESS_USE_AUDIO1(sc->sc_model)) {
1269 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1270 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1271 }
1272
1273 return 0;
1274 }
1275
1276 int
1277 ess_audio1_trigger_output(
1278 void *addr,
1279 void *start, void *end,
1280 int blksize,
1281 void (*intr)(void *),
1282 void *arg,
1283 const audio_params_t *param)
1284 {
1285 struct ess_softc *sc;
1286 u_int8_t reg;
1287
1288 sc = addr;
1289 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
1290 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1291
1292 if (sc->sc_audio1.active)
1293 panic("ess_audio1_trigger_output: already running");
1294
1295 sc->sc_audio1.active = 1;
1296 sc->sc_audio1.intr = intr;
1297 sc->sc_audio1.arg = arg;
1298 if (sc->sc_audio1.polled) {
1299 sc->sc_audio1.dmapos = 0;
1300 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1301 sc->sc_audio1.dmacount = 0;
1302 sc->sc_audio1.blksize = blksize;
1303 callout_reset(&sc->sc_poll1_ch, hz / 30,
1304 ess_audio1_poll, sc);
1305 }
1306
1307 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1308 if (param->channels == 2) {
1309 reg &= ~ESS_AUDIO_CTRL_MONO;
1310 reg |= ESS_AUDIO_CTRL_STEREO;
1311 } else {
1312 reg |= ESS_AUDIO_CTRL_MONO;
1313 reg &= ~ESS_AUDIO_CTRL_STEREO;
1314 }
1315 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1316
1317 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1318 if (param->precision == 16)
1319 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1320 else
1321 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1322 if (param->channels == 2)
1323 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1324 else
1325 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1326 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1327 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1328 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1329 else
1330 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1331 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1332 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1333
1334 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1335 (char *)end - (char *)start, NULL,
1336 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1337
1338 /* Program transfer count registers with 2's complement of count. */
1339 blksize = -blksize;
1340 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1341 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1342
1343 /* Use 4 bytes per output DMA. */
1344 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1345
1346 /* Start auto-init DMA */
1347 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1348 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1349 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1350 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1351 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1352
1353 return 0;
1354 }
1355
1356 int
1357 ess_audio2_trigger_output(
1358 void *addr,
1359 void *start, void *end,
1360 int blksize,
1361 void (*intr)(void *),
1362 void *arg,
1363 const audio_params_t *param)
1364 {
1365 struct ess_softc *sc;
1366 u_int8_t reg;
1367
1368 sc = addr;
1369 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
1370 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1371
1372 if (sc->sc_audio2.active)
1373 panic("ess_audio2_trigger_output: already running");
1374
1375 sc->sc_audio2.active = 1;
1376 sc->sc_audio2.intr = intr;
1377 sc->sc_audio2.arg = arg;
1378 if (sc->sc_audio2.polled) {
1379 sc->sc_audio2.dmapos = 0;
1380 sc->sc_audio2.buffersize = (char *)end - (char *)start;
1381 sc->sc_audio2.dmacount = 0;
1382 sc->sc_audio2.blksize = blksize;
1383 callout_reset(&sc->sc_poll2_ch, hz / 30,
1384 ess_audio2_poll, sc);
1385 }
1386
1387 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1388 if (param->precision == 16)
1389 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1390 else
1391 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1392 if (param->channels == 2)
1393 reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1394 else
1395 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1396 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1397 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1398 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1399 else
1400 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1401 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1402
1403 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1404 (char *)end - (char *)start, NULL,
1405 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1406
1407 if (IS16BITDRQ(sc->sc_audio2.drq))
1408 blksize >>= 1; /* use word count for 16 bit DMA */
1409 /* Program transfer count registers with 2's complement of count. */
1410 blksize = -blksize;
1411 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1412 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1413
1414 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1415 if (IS16BITDRQ(sc->sc_audio2.drq))
1416 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1417 else
1418 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1419 reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1420 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1421 ESS_AUDIO2_CTRL1_AUTO_INIT;
1422 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1423
1424 return (0);
1425 }
1426
1427 int
1428 ess_audio1_trigger_input(
1429 void *addr,
1430 void *start, void *end,
1431 int blksize,
1432 void (*intr)(void *),
1433 void *arg,
1434 const audio_params_t *param)
1435 {
1436 struct ess_softc *sc;
1437 u_int8_t reg;
1438
1439 sc = addr;
1440 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
1441 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1442
1443 if (sc->sc_audio1.active)
1444 panic("ess_audio1_trigger_input: already running");
1445
1446 sc->sc_audio1.active = 1;
1447 sc->sc_audio1.intr = intr;
1448 sc->sc_audio1.arg = arg;
1449 if (sc->sc_audio1.polled) {
1450 sc->sc_audio1.dmapos = 0;
1451 sc->sc_audio1.buffersize = (char *)end - (char *)start;
1452 sc->sc_audio1.dmacount = 0;
1453 sc->sc_audio1.blksize = blksize;
1454 callout_reset(&sc->sc_poll1_ch, hz / 30,
1455 ess_audio1_poll, sc);
1456 }
1457
1458 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1459 if (param->channels == 2) {
1460 reg &= ~ESS_AUDIO_CTRL_MONO;
1461 reg |= ESS_AUDIO_CTRL_STEREO;
1462 } else {
1463 reg |= ESS_AUDIO_CTRL_MONO;
1464 reg &= ~ESS_AUDIO_CTRL_STEREO;
1465 }
1466 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1467
1468 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1469 if (param->precision == 16)
1470 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1471 else
1472 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1473 if (param->channels == 2)
1474 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1475 else
1476 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1477 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1478 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1479 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1480 else
1481 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1482 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1483 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1484
1485 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1486 (char *)end - (char *)start, NULL,
1487 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1488
1489 /* Program transfer count registers with 2's complement of count. */
1490 blksize = -blksize;
1491 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1492 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1493
1494 /* Use 4 bytes per input DMA. */
1495 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1496
1497 /* Start auto-init DMA */
1498 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1499 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1500 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1501 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1502 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1503
1504 return 0;
1505 }
1506
1507 int
1508 ess_audio1_halt(void *addr)
1509 {
1510 struct ess_softc *sc;
1511
1512 sc = addr;
1513 DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1514
1515 if (sc->sc_audio1.active) {
1516 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1517 ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1518 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1519 if (sc->sc_audio1.polled)
1520 callout_stop(&sc->sc_poll1_ch);
1521 sc->sc_audio1.active = 0;
1522 }
1523
1524 return 0;
1525 }
1526
1527 int
1528 ess_audio2_halt(void *addr)
1529 {
1530 struct ess_softc *sc;
1531
1532 sc = addr;
1533 DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1534
1535 if (sc->sc_audio2.active) {
1536 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1537 ESS_AUDIO2_CTRL1_DAC_ENABLE |
1538 ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1539 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1540 if (sc->sc_audio2.polled)
1541 callout_stop(&sc->sc_poll2_ch);
1542 sc->sc_audio2.active = 0;
1543 }
1544
1545 return 0;
1546 }
1547
1548 int
1549 ess_audio1_intr(void *arg)
1550 {
1551 struct ess_softc *sc;
1552 uint8_t reg;
1553 int rv;
1554
1555 sc = arg;
1556 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1557
1558 mutex_spin_enter(&sc->sc_intr_lock);
1559
1560 /* Check and clear interrupt on Audio1. */
1561 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1562 if ((reg & ESS_DSP_READ_OFLOW) == 0) {
1563 mutex_spin_exit(&sc->sc_intr_lock);
1564 return 0;
1565 }
1566 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1567
1568 sc->sc_audio1.nintr++;
1569
1570 if (sc->sc_audio1.active) {
1571 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1572 rv = 1;
1573 } else
1574 rv = 0;
1575
1576 mutex_spin_exit(&sc->sc_intr_lock);
1577
1578 return rv;
1579 }
1580
1581 int
1582 ess_audio2_intr(void *arg)
1583 {
1584 struct ess_softc *sc;
1585 uint8_t reg;
1586 int rv;
1587
1588 sc = arg;
1589 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1590
1591 mutex_spin_enter(&sc->sc_intr_lock);
1592
1593 /* Check and clear interrupt on Audio2. */
1594 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1595 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) {
1596 mutex_spin_exit(&sc->sc_intr_lock);
1597 return 0;
1598 }
1599 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1600 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1601
1602 sc->sc_audio2.nintr++;
1603
1604 if (sc->sc_audio2.active) {
1605 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1606 rv = 1;
1607 } else
1608 rv = 0;
1609
1610 mutex_spin_exit(&sc->sc_intr_lock);
1611
1612 return rv;
1613 }
1614
1615 void
1616 ess_audio1_poll(void *addr)
1617 {
1618 struct ess_softc *sc;
1619 int dmapos, dmacount;
1620
1621 sc = addr;
1622 mutex_spin_enter(&sc->sc_intr_lock);
1623
1624 if (!sc->sc_audio1.active) {
1625 mutex_spin_exit(&sc->sc_intr_lock);
1626 return;
1627 }
1628
1629 sc->sc_audio1.nintr++;
1630
1631 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1632 dmacount = sc->sc_audio1.dmapos - dmapos;
1633 if (dmacount < 0)
1634 dmacount += sc->sc_audio1.buffersize;
1635 sc->sc_audio1.dmapos = dmapos;
1636 #if 1
1637 dmacount += sc->sc_audio1.dmacount;
1638 while (dmacount > sc->sc_audio1.blksize) {
1639 dmacount -= sc->sc_audio1.blksize;
1640 (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1641 }
1642 sc->sc_audio1.dmacount = dmacount;
1643 #else
1644 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1645 #endif
1646
1647 mutex_spin_exit(&sc->sc_intr_lock);
1648 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1649 }
1650
1651 void
1652 ess_audio2_poll(void *addr)
1653 {
1654 struct ess_softc *sc;
1655 int dmapos, dmacount;
1656
1657 sc = addr;
1658 mutex_spin_enter(&sc->sc_intr_lock);
1659
1660 if (!sc->sc_audio2.active) {
1661 mutex_spin_exit(&sc->sc_intr_lock);
1662 return;
1663 }
1664
1665 sc->sc_audio2.nintr++;
1666
1667 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1668 dmacount = sc->sc_audio2.dmapos - dmapos;
1669 if (dmacount < 0)
1670 dmacount += sc->sc_audio2.buffersize;
1671 sc->sc_audio2.dmapos = dmapos;
1672 #if 1
1673 dmacount += sc->sc_audio2.dmacount;
1674 while (dmacount > sc->sc_audio2.blksize) {
1675 dmacount -= sc->sc_audio2.blksize;
1676 (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1677 }
1678 sc->sc_audio2.dmacount = dmacount;
1679 #else
1680 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1681 #endif
1682
1683 mutex_spin_exit(&sc->sc_intr_lock);
1684 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1685 }
1686
1687 int
1688 ess_round_blocksize(void *addr, int blk, int mode,
1689 const audio_params_t *param)
1690 {
1691
1692 return blk & -8; /* round for max DMA size */
1693 }
1694
1695 int
1696 ess_set_port(void *addr, mixer_ctrl_t *cp)
1697 {
1698 struct ess_softc *sc;
1699 int lgain, rgain;
1700
1701 sc = addr;
1702 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1703 cp->dev, cp->un.value.num_channels));
1704
1705 switch (cp->dev) {
1706 /*
1707 * The following mixer ports are all stereo. If we get a
1708 * single-channel gain value passed in, then we duplicate it
1709 * to both left and right channels.
1710 */
1711 case ESS_MASTER_VOL:
1712 case ESS_DAC_PLAY_VOL:
1713 case ESS_MIC_PLAY_VOL:
1714 case ESS_LINE_PLAY_VOL:
1715 case ESS_SYNTH_PLAY_VOL:
1716 case ESS_CD_PLAY_VOL:
1717 case ESS_AUXB_PLAY_VOL:
1718 case ESS_RECORD_VOL:
1719 if (cp->type != AUDIO_MIXER_VALUE)
1720 return EINVAL;
1721
1722 switch (cp->un.value.num_channels) {
1723 case 1:
1724 lgain = rgain = ESS_4BIT_GAIN(
1725 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1726 break;
1727 case 2:
1728 lgain = ESS_4BIT_GAIN(
1729 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1730 rgain = ESS_4BIT_GAIN(
1731 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1732 break;
1733 default:
1734 return EINVAL;
1735 }
1736
1737 sc->gain[cp->dev][ESS_LEFT] = lgain;
1738 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1739 ess_set_gain(sc, cp->dev, 1);
1740 return 0;
1741
1742 /*
1743 * The PC speaker port is mono. If we get a stereo gain value
1744 * passed in, then we return EINVAL.
1745 */
1746 case ESS_PCSPEAKER_VOL:
1747 if (cp->un.value.num_channels != 1)
1748 return EINVAL;
1749
1750 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1751 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1752 ess_set_gain(sc, cp->dev, 1);
1753 return 0;
1754
1755 case ESS_RECORD_SOURCE:
1756 if (ESS_USE_AUDIO1(sc->sc_model)) {
1757 if (cp->type == AUDIO_MIXER_ENUM)
1758 return ess_set_in_port(sc, cp->un.ord);
1759 else
1760 return EINVAL;
1761 } else {
1762 if (cp->type == AUDIO_MIXER_SET)
1763 return ess_set_in_ports(sc, cp->un.mask);
1764 else
1765 return EINVAL;
1766 }
1767 return 0;
1768
1769 case ESS_RECORD_MONITOR:
1770 if (cp->type != AUDIO_MIXER_ENUM)
1771 return EINVAL;
1772
1773 if (cp->un.ord)
1774 /* Enable monitor */
1775 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1776 ESS_AUDIO_CTRL_MONITOR);
1777 else
1778 /* Disable monitor */
1779 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1780 ESS_AUDIO_CTRL_MONITOR);
1781 return 0;
1782 }
1783
1784 if (ESS_USE_AUDIO1(sc->sc_model))
1785 return EINVAL;
1786
1787 switch (cp->dev) {
1788 case ESS_DAC_REC_VOL:
1789 case ESS_MIC_REC_VOL:
1790 case ESS_LINE_REC_VOL:
1791 case ESS_SYNTH_REC_VOL:
1792 case ESS_CD_REC_VOL:
1793 case ESS_AUXB_REC_VOL:
1794 if (cp->type != AUDIO_MIXER_VALUE)
1795 return EINVAL;
1796
1797 switch (cp->un.value.num_channels) {
1798 case 1:
1799 lgain = rgain = ESS_4BIT_GAIN(
1800 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1801 break;
1802 case 2:
1803 lgain = ESS_4BIT_GAIN(
1804 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1805 rgain = ESS_4BIT_GAIN(
1806 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1807 break;
1808 default:
1809 return EINVAL;
1810 }
1811
1812 sc->gain[cp->dev][ESS_LEFT] = lgain;
1813 sc->gain[cp->dev][ESS_RIGHT] = rgain;
1814 ess_set_gain(sc, cp->dev, 1);
1815 return 0;
1816
1817 case ESS_MIC_PREAMP:
1818 if (cp->type != AUDIO_MIXER_ENUM)
1819 return EINVAL;
1820
1821 if (cp->un.ord)
1822 /* Enable microphone preamp */
1823 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1824 ESS_PREAMP_CTRL_ENABLE);
1825 else
1826 /* Disable microphone preamp */
1827 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1828 ESS_PREAMP_CTRL_ENABLE);
1829 return 0;
1830 }
1831
1832 return EINVAL;
1833 }
1834
1835 int
1836 ess_get_port(void *addr, mixer_ctrl_t *cp)
1837 {
1838 struct ess_softc *sc;
1839
1840 sc = addr;
1841 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1842
1843 switch (cp->dev) {
1844 case ESS_MASTER_VOL:
1845 case ESS_DAC_PLAY_VOL:
1846 case ESS_MIC_PLAY_VOL:
1847 case ESS_LINE_PLAY_VOL:
1848 case ESS_SYNTH_PLAY_VOL:
1849 case ESS_CD_PLAY_VOL:
1850 case ESS_AUXB_PLAY_VOL:
1851 case ESS_RECORD_VOL:
1852 switch (cp->un.value.num_channels) {
1853 case 1:
1854 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1855 sc->gain[cp->dev][ESS_LEFT];
1856 break;
1857 case 2:
1858 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1859 sc->gain[cp->dev][ESS_LEFT];
1860 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1861 sc->gain[cp->dev][ESS_RIGHT];
1862 break;
1863 default:
1864 return EINVAL;
1865 }
1866 return 0;
1867
1868 case ESS_PCSPEAKER_VOL:
1869 if (cp->un.value.num_channels != 1)
1870 return EINVAL;
1871
1872 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1873 sc->gain[cp->dev][ESS_LEFT];
1874 return 0;
1875
1876 case ESS_RECORD_SOURCE:
1877 if (ESS_USE_AUDIO1(sc->sc_model))
1878 cp->un.ord = sc->in_port;
1879 else
1880 cp->un.mask = sc->in_mask;
1881 return 0;
1882
1883 case ESS_RECORD_MONITOR:
1884 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1885 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1886 return 0;
1887 }
1888
1889 if (ESS_USE_AUDIO1(sc->sc_model))
1890 return EINVAL;
1891
1892 switch (cp->dev) {
1893 case ESS_DAC_REC_VOL:
1894 case ESS_MIC_REC_VOL:
1895 case ESS_LINE_REC_VOL:
1896 case ESS_SYNTH_REC_VOL:
1897 case ESS_CD_REC_VOL:
1898 case ESS_AUXB_REC_VOL:
1899 switch (cp->un.value.num_channels) {
1900 case 1:
1901 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1902 sc->gain[cp->dev][ESS_LEFT];
1903 break;
1904 case 2:
1905 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1906 sc->gain[cp->dev][ESS_LEFT];
1907 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1908 sc->gain[cp->dev][ESS_RIGHT];
1909 break;
1910 default:
1911 return EINVAL;
1912 }
1913 return 0;
1914
1915 case ESS_MIC_PREAMP:
1916 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1917 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1918 return 0;
1919 }
1920
1921 return EINVAL;
1922 }
1923
1924 int
1925 ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
1926 {
1927 struct ess_softc *sc;
1928
1929 sc = addr;
1930 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1931 sc->sc_model, dip->index));
1932
1933 /*
1934 * REVISIT: There are some slight differences between the
1935 * mixers on the different ESS chips, which can
1936 * be sorted out using the chip model rather than a
1937 * separate mixer model.
1938 * This is currently coded assuming an ES1887; we
1939 * need to work out which bits are not applicable to
1940 * the other models (1888 and 888).
1941 */
1942 switch (dip->index) {
1943 case ESS_DAC_PLAY_VOL:
1944 dip->mixer_class = ESS_INPUT_CLASS;
1945 dip->next = dip->prev = AUDIO_MIXER_LAST;
1946 strcpy(dip->label.name, AudioNdac);
1947 dip->type = AUDIO_MIXER_VALUE;
1948 dip->un.v.num_channels = 2;
1949 strcpy(dip->un.v.units.name, AudioNvolume);
1950 return 0;
1951
1952 case ESS_MIC_PLAY_VOL:
1953 dip->mixer_class = ESS_INPUT_CLASS;
1954 dip->prev = AUDIO_MIXER_LAST;
1955 if (ESS_USE_AUDIO1(sc->sc_model))
1956 dip->next = AUDIO_MIXER_LAST;
1957 else
1958 dip->next = ESS_MIC_PREAMP;
1959 strcpy(dip->label.name, AudioNmicrophone);
1960 dip->type = AUDIO_MIXER_VALUE;
1961 dip->un.v.num_channels = 2;
1962 strcpy(dip->un.v.units.name, AudioNvolume);
1963 return 0;
1964
1965 case ESS_LINE_PLAY_VOL:
1966 dip->mixer_class = ESS_INPUT_CLASS;
1967 dip->next = dip->prev = AUDIO_MIXER_LAST;
1968 strcpy(dip->label.name, AudioNline);
1969 dip->type = AUDIO_MIXER_VALUE;
1970 dip->un.v.num_channels = 2;
1971 strcpy(dip->un.v.units.name, AudioNvolume);
1972 return 0;
1973
1974 case ESS_SYNTH_PLAY_VOL:
1975 dip->mixer_class = ESS_INPUT_CLASS;
1976 dip->next = dip->prev = AUDIO_MIXER_LAST;
1977 strcpy(dip->label.name, AudioNfmsynth);
1978 dip->type = AUDIO_MIXER_VALUE;
1979 dip->un.v.num_channels = 2;
1980 strcpy(dip->un.v.units.name, AudioNvolume);
1981 return 0;
1982
1983 case ESS_CD_PLAY_VOL:
1984 dip->mixer_class = ESS_INPUT_CLASS;
1985 dip->next = dip->prev = AUDIO_MIXER_LAST;
1986 strcpy(dip->label.name, AudioNcd);
1987 dip->type = AUDIO_MIXER_VALUE;
1988 dip->un.v.num_channels = 2;
1989 strcpy(dip->un.v.units.name, AudioNvolume);
1990 return 0;
1991
1992 case ESS_AUXB_PLAY_VOL:
1993 dip->mixer_class = ESS_INPUT_CLASS;
1994 dip->next = dip->prev = AUDIO_MIXER_LAST;
1995 strcpy(dip->label.name, "auxb");
1996 dip->type = AUDIO_MIXER_VALUE;
1997 dip->un.v.num_channels = 2;
1998 strcpy(dip->un.v.units.name, AudioNvolume);
1999 return 0;
2000
2001 case ESS_INPUT_CLASS:
2002 dip->mixer_class = ESS_INPUT_CLASS;
2003 dip->next = dip->prev = AUDIO_MIXER_LAST;
2004 strcpy(dip->label.name, AudioCinputs);
2005 dip->type = AUDIO_MIXER_CLASS;
2006 return 0;
2007
2008 case ESS_MASTER_VOL:
2009 dip->mixer_class = ESS_OUTPUT_CLASS;
2010 dip->next = dip->prev = AUDIO_MIXER_LAST;
2011 strcpy(dip->label.name, AudioNmaster);
2012 dip->type = AUDIO_MIXER_VALUE;
2013 dip->un.v.num_channels = 2;
2014 strcpy(dip->un.v.units.name, AudioNvolume);
2015 return 0;
2016
2017 case ESS_PCSPEAKER_VOL:
2018 dip->mixer_class = ESS_OUTPUT_CLASS;
2019 dip->next = dip->prev = AUDIO_MIXER_LAST;
2020 strcpy(dip->label.name, "pc_speaker");
2021 dip->type = AUDIO_MIXER_VALUE;
2022 dip->un.v.num_channels = 1;
2023 strcpy(dip->un.v.units.name, AudioNvolume);
2024 return 0;
2025
2026 case ESS_OUTPUT_CLASS:
2027 dip->mixer_class = ESS_OUTPUT_CLASS;
2028 dip->next = dip->prev = AUDIO_MIXER_LAST;
2029 strcpy(dip->label.name, AudioCoutputs);
2030 dip->type = AUDIO_MIXER_CLASS;
2031 return 0;
2032
2033 case ESS_RECORD_VOL:
2034 dip->mixer_class = ESS_RECORD_CLASS;
2035 dip->next = dip->prev = AUDIO_MIXER_LAST;
2036 strcpy(dip->label.name, AudioNrecord);
2037 dip->type = AUDIO_MIXER_VALUE;
2038 dip->un.v.num_channels = 2;
2039 strcpy(dip->un.v.units.name, AudioNvolume);
2040 return 0;
2041
2042 case ESS_RECORD_SOURCE:
2043 dip->mixer_class = ESS_RECORD_CLASS;
2044 dip->next = dip->prev = AUDIO_MIXER_LAST;
2045 strcpy(dip->label.name, AudioNsource);
2046 if (ESS_USE_AUDIO1(sc->sc_model)) {
2047 /*
2048 * The 1788 doesn't use the input mixer control that
2049 * the 1888 uses, because it's a pain when you only
2050 * have one mixer.
2051 * Perhaps it could be emulated by keeping both sets of
2052 * gain values, and doing a `context switch' of the
2053 * mixer registers when shifting from playing to
2054 * recording.
2055 */
2056 dip->type = AUDIO_MIXER_ENUM;
2057 dip->un.e.num_mem = 4;
2058 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2059 dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2060 strcpy(dip->un.e.member[1].label.name, AudioNline);
2061 dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2062 strcpy(dip->un.e.member[2].label.name, AudioNcd);
2063 dip->un.e.member[2].ord = ESS_SOURCE_CD;
2064 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2065 dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2066 } else {
2067 dip->type = AUDIO_MIXER_SET;
2068 dip->un.s.num_mem = 6;
2069 strcpy(dip->un.s.member[0].label.name, AudioNdac);
2070 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2071 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2072 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2073 strcpy(dip->un.s.member[2].label.name, AudioNline);
2074 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2075 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2076 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2077 strcpy(dip->un.s.member[4].label.name, AudioNcd);
2078 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2079 strcpy(dip->un.s.member[5].label.name, "auxb");
2080 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2081 }
2082 return 0;
2083
2084 case ESS_RECORD_CLASS:
2085 dip->mixer_class = ESS_RECORD_CLASS;
2086 dip->next = dip->prev = AUDIO_MIXER_LAST;
2087 strcpy(dip->label.name, AudioCrecord);
2088 dip->type = AUDIO_MIXER_CLASS;
2089 return 0;
2090
2091 case ESS_RECORD_MONITOR:
2092 dip->prev = dip->next = AUDIO_MIXER_LAST;
2093 strcpy(dip->label.name, AudioNmute);
2094 dip->type = AUDIO_MIXER_ENUM;
2095 dip->mixer_class = ESS_MONITOR_CLASS;
2096 dip->un.e.num_mem = 2;
2097 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2098 dip->un.e.member[0].ord = 0;
2099 strcpy(dip->un.e.member[1].label.name, AudioNon);
2100 dip->un.e.member[1].ord = 1;
2101 return 0;
2102
2103 case ESS_MONITOR_CLASS:
2104 dip->mixer_class = ESS_MONITOR_CLASS;
2105 dip->next = dip->prev = AUDIO_MIXER_LAST;
2106 strcpy(dip->label.name, AudioCmonitor);
2107 dip->type = AUDIO_MIXER_CLASS;
2108 return 0;
2109 }
2110
2111 if (ESS_USE_AUDIO1(sc->sc_model))
2112 return ENXIO;
2113
2114 switch (dip->index) {
2115 case ESS_DAC_REC_VOL:
2116 dip->mixer_class = ESS_RECORD_CLASS;
2117 dip->next = dip->prev = AUDIO_MIXER_LAST;
2118 strcpy(dip->label.name, AudioNdac);
2119 dip->type = AUDIO_MIXER_VALUE;
2120 dip->un.v.num_channels = 2;
2121 strcpy(dip->un.v.units.name, AudioNvolume);
2122 return 0;
2123
2124 case ESS_MIC_REC_VOL:
2125 dip->mixer_class = ESS_RECORD_CLASS;
2126 dip->next = dip->prev = AUDIO_MIXER_LAST;
2127 strcpy(dip->label.name, AudioNmicrophone);
2128 dip->type = AUDIO_MIXER_VALUE;
2129 dip->un.v.num_channels = 2;
2130 strcpy(dip->un.v.units.name, AudioNvolume);
2131 return 0;
2132
2133 case ESS_LINE_REC_VOL:
2134 dip->mixer_class = ESS_RECORD_CLASS;
2135 dip->next = dip->prev = AUDIO_MIXER_LAST;
2136 strcpy(dip->label.name, AudioNline);
2137 dip->type = AUDIO_MIXER_VALUE;
2138 dip->un.v.num_channels = 2;
2139 strcpy(dip->un.v.units.name, AudioNvolume);
2140 return 0;
2141
2142 case ESS_SYNTH_REC_VOL:
2143 dip->mixer_class = ESS_RECORD_CLASS;
2144 dip->next = dip->prev = AUDIO_MIXER_LAST;
2145 strcpy(dip->label.name, AudioNfmsynth);
2146 dip->type = AUDIO_MIXER_VALUE;
2147 dip->un.v.num_channels = 2;
2148 strcpy(dip->un.v.units.name, AudioNvolume);
2149 return 0;
2150
2151 case ESS_CD_REC_VOL:
2152 dip->mixer_class = ESS_RECORD_CLASS;
2153 dip->next = dip->prev = AUDIO_MIXER_LAST;
2154 strcpy(dip->label.name, AudioNcd);
2155 dip->type = AUDIO_MIXER_VALUE;
2156 dip->un.v.num_channels = 2;
2157 strcpy(dip->un.v.units.name, AudioNvolume);
2158 return 0;
2159
2160 case ESS_AUXB_REC_VOL:
2161 dip->mixer_class = ESS_RECORD_CLASS;
2162 dip->next = dip->prev = AUDIO_MIXER_LAST;
2163 strcpy(dip->label.name, "auxb");
2164 dip->type = AUDIO_MIXER_VALUE;
2165 dip->un.v.num_channels = 2;
2166 strcpy(dip->un.v.units.name, AudioNvolume);
2167 return 0;
2168
2169 case ESS_MIC_PREAMP:
2170 dip->mixer_class = ESS_INPUT_CLASS;
2171 dip->prev = ESS_MIC_PLAY_VOL;
2172 dip->next = AUDIO_MIXER_LAST;
2173 strcpy(dip->label.name, AudioNpreamp);
2174 dip->type = AUDIO_MIXER_ENUM;
2175 dip->un.e.num_mem = 2;
2176 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2177 dip->un.e.member[0].ord = 0;
2178 strcpy(dip->un.e.member[1].label.name, AudioNon);
2179 dip->un.e.member[1].ord = 1;
2180 return 0;
2181 }
2182
2183 return ENXIO;
2184 }
2185
2186 void *
2187 ess_malloc(void *addr, int direction, size_t size)
2188 {
2189 struct ess_softc *sc;
2190 int drq;
2191
2192 sc = addr;
2193 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2194 drq = sc->sc_audio2.drq;
2195 else
2196 drq = sc->sc_audio1.drq;
2197 return (isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK));
2198 }
2199
2200 void
2201 ess_free(void *addr, void *ptr, size_t size)
2202 {
2203
2204 isa_free(ptr, M_DEVBUF);
2205 }
2206
2207 size_t
2208 ess_round_buffersize(void *addr, int direction, size_t size)
2209 {
2210 struct ess_softc *sc;
2211 bus_size_t maxsize;
2212
2213 sc = addr;
2214 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2215 maxsize = sc->sc_audio2.maxsize;
2216 else
2217 maxsize = sc->sc_audio1.maxsize;
2218
2219 if (size > maxsize)
2220 size = maxsize;
2221 return size;
2222 }
2223
2224 paddr_t
2225 ess_mappage(void *addr, void *mem, off_t off, int prot)
2226 {
2227
2228 return isa_mappage(mem, off, prot);
2229 }
2230
2231 int
2232 ess_1788_get_props(void *addr)
2233 {
2234
2235 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT;
2236 }
2237
2238 int
2239 ess_1888_get_props(void *addr)
2240 {
2241
2242 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
2243 }
2244
2245 void
2246 ess_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
2247 {
2248 struct ess_softc *sc;
2249
2250 sc = addr;
2251 *intr = &sc->sc_intr_lock;
2252 *thread = &sc->sc_lock;
2253 }
2254
2255
2256 /* ============================================
2257 * Generic functions for ess, not used by audio h/w i/f
2258 * =============================================
2259 */
2260
2261 /*
2262 * Reset the chip.
2263 * Return non-zero if the chip isn't detected.
2264 */
2265 int
2266 ess_reset(struct ess_softc *sc)
2267 {
2268 bus_space_tag_t iot;
2269 bus_space_handle_t ioh;
2270
2271 iot = sc->sc_iot;
2272 ioh = sc->sc_ioh;
2273 sc->sc_audio1.active = 0;
2274 sc->sc_audio2.active = 0;
2275
2276 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2277 delay(10000); /* XXX shouldn't delay so long */
2278 EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2279 if (ess_rdsp(sc) != ESS_MAGIC)
2280 return 1;
2281
2282 /* Enable access to the ESS extension commands. */
2283 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2284
2285 return 0;
2286 }
2287
2288 void
2289 ess_set_gain(struct ess_softc *sc, int port, int on)
2290 {
2291 int gain, left, right;
2292 int mix;
2293 int src;
2294 int stereo;
2295
2296 /*
2297 * Most gain controls are found in the mixer registers and
2298 * are stereo. Any that are not, must set mix and stereo as
2299 * required.
2300 */
2301 mix = 1;
2302 stereo = 1;
2303
2304 switch (port) {
2305 case ESS_MASTER_VOL:
2306 src = ESS_MREG_VOLUME_MASTER;
2307 break;
2308 case ESS_DAC_PLAY_VOL:
2309 if (ESS_USE_AUDIO1(sc->sc_model))
2310 src = ESS_MREG_VOLUME_VOICE;
2311 else
2312 src = 0x7C;
2313 break;
2314 case ESS_MIC_PLAY_VOL:
2315 src = ESS_MREG_VOLUME_MIC;
2316 break;
2317 case ESS_LINE_PLAY_VOL:
2318 src = ESS_MREG_VOLUME_LINE;
2319 break;
2320 case ESS_SYNTH_PLAY_VOL:
2321 src = ESS_MREG_VOLUME_SYNTH;
2322 break;
2323 case ESS_CD_PLAY_VOL:
2324 src = ESS_MREG_VOLUME_CD;
2325 break;
2326 case ESS_AUXB_PLAY_VOL:
2327 src = ESS_MREG_VOLUME_AUXB;
2328 break;
2329 case ESS_PCSPEAKER_VOL:
2330 src = ESS_MREG_VOLUME_PCSPKR;
2331 stereo = 0;
2332 break;
2333 case ESS_DAC_REC_VOL:
2334 src = 0x69;
2335 break;
2336 case ESS_MIC_REC_VOL:
2337 src = 0x68;
2338 break;
2339 case ESS_LINE_REC_VOL:
2340 src = 0x6E;
2341 break;
2342 case ESS_SYNTH_REC_VOL:
2343 src = 0x6B;
2344 break;
2345 case ESS_CD_REC_VOL:
2346 src = 0x6A;
2347 break;
2348 case ESS_AUXB_REC_VOL:
2349 src = 0x6C;
2350 break;
2351 case ESS_RECORD_VOL:
2352 src = ESS_XCMD_VOLIN_CTRL;
2353 mix = 0;
2354 break;
2355 default:
2356 return;
2357 }
2358
2359 /* 1788 doesn't have a separate recording mixer */
2360 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2361 return;
2362
2363 if (on) {
2364 left = sc->gain[port][ESS_LEFT];
2365 right = sc->gain[port][ESS_RIGHT];
2366 } else {
2367 left = right = 0;
2368 }
2369
2370 if (stereo)
2371 gain = ESS_STEREO_GAIN(left, right);
2372 else
2373 gain = ESS_MONO_GAIN(left);
2374
2375 if (mix)
2376 ess_write_mix_reg(sc, src, gain);
2377 else
2378 ess_write_x_reg(sc, src, gain);
2379 }
2380
2381 /* Set the input device on devices without an input mixer. */
2382 int
2383 ess_set_in_port(struct ess_softc *sc, int ord)
2384 {
2385 mixer_devinfo_t di;
2386 int i;
2387
2388 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2389
2390 /*
2391 * Get the device info for the record source control,
2392 * including the list of available sources.
2393 */
2394 di.index = ESS_RECORD_SOURCE;
2395 if (ess_query_devinfo(sc, &di))
2396 return EINVAL;
2397
2398 /* See if the given ord value was anywhere in the list. */
2399 for (i = 0; i < di.un.e.num_mem; i++) {
2400 if (ord == di.un.e.member[i].ord)
2401 break;
2402 }
2403 if (i == di.un.e.num_mem)
2404 return EINVAL;
2405
2406 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2407
2408 sc->in_port = ord;
2409 return 0;
2410 }
2411
2412 /* Set the input device levels on input-mixer-enabled devices. */
2413 int
2414 ess_set_in_ports(struct ess_softc *sc, int mask)
2415 {
2416 mixer_devinfo_t di;
2417 int i, port;
2418
2419 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2420
2421 /*
2422 * Get the device info for the record source control,
2423 * including the list of available sources.
2424 */
2425 di.index = ESS_RECORD_SOURCE;
2426 if (ess_query_devinfo(sc, &di))
2427 return EINVAL;
2428
2429 /*
2430 * Set or disable the record volume control for each of the
2431 * possible sources.
2432 */
2433 for (i = 0; i < di.un.s.num_mem; i++) {
2434 /*
2435 * Calculate the source port number from its mask.
2436 */
2437 port = ffs(di.un.s.member[i].mask);
2438
2439 /*
2440 * Set the source gain:
2441 * to the current value if source is enabled
2442 * to zero if source is disabled
2443 */
2444 ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2445 }
2446
2447 sc->in_mask = mask;
2448 return 0;
2449 }
2450
2451 void
2452 ess_speaker_on(struct ess_softc *sc)
2453 {
2454
2455 /* Unmute the DAC. */
2456 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2457 }
2458
2459 void
2460 ess_speaker_off(struct ess_softc *sc)
2461 {
2462
2463 /* Mute the DAC. */
2464 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2465 }
2466
2467 /*
2468 * Calculate the time constant for the requested sampling rate.
2469 */
2470 u_int
2471 ess_srtotc(u_int rate)
2472 {
2473 u_int tc;
2474
2475 /* The following formulae are from the ESS data sheet. */
2476 if (rate <= 22050)
2477 tc = 128 - 397700L / rate;
2478 else
2479 tc = 256 - 795500L / rate;
2480
2481 return tc;
2482 }
2483
2484
2485 /*
2486 * Calculate the filter constant for the reuqested sampling rate.
2487 */
2488 u_int
2489 ess_srtofc(u_int rate)
2490 {
2491 /*
2492 * The following formula is derived from the information in
2493 * the ES1887 data sheet, based on a roll-off frequency of
2494 * 87%.
2495 */
2496 return 256 - 200279L / rate;
2497 }
2498
2499
2500 /*
2501 * Return the status of the DSP.
2502 */
2503 u_char
2504 ess_get_dsp_status(struct ess_softc *sc)
2505 {
2506 return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
2507 }
2508
2509
2510 /*
2511 * Return the read status of the DSP: 1 -> DSP ready for reading
2512 * 0 -> DSP not ready for reading
2513 */
2514 u_char
2515 ess_dsp_read_ready(struct ess_softc *sc)
2516 {
2517
2518 return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
2519 }
2520
2521
2522 /*
2523 * Return the write status of the DSP: 1 -> DSP ready for writing
2524 * 0 -> DSP not ready for writing
2525 */
2526 u_char
2527 ess_dsp_write_ready(struct ess_softc *sc)
2528 {
2529 return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
2530 }
2531
2532
2533 /*
2534 * Read a byte from the DSP.
2535 */
2536 int
2537 ess_rdsp(struct ess_softc *sc)
2538 {
2539 bus_space_tag_t iot;
2540 bus_space_handle_t ioh;
2541 int i;
2542
2543 iot = sc->sc_iot;
2544 ioh = sc->sc_ioh;
2545 for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2546 if (ess_dsp_read_ready(sc)) {
2547 i = EREAD1(iot, ioh, ESS_DSP_READ);
2548 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2549 return i;
2550 } else
2551 delay(10);
2552 }
2553
2554 DPRINTF(("ess_rdsp: timed out\n"));
2555 return -1;
2556 }
2557
2558 /*
2559 * Write a byte to the DSP.
2560 */
2561 int
2562 ess_wdsp(struct ess_softc *sc, u_char v)
2563 {
2564 bus_space_tag_t iot;
2565 bus_space_handle_t ioh;
2566 int i;
2567
2568 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2569
2570 iot = sc->sc_iot;
2571 ioh = sc->sc_ioh;
2572 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2573 if (ess_dsp_write_ready(sc)) {
2574 EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2575 return 0;
2576 } else
2577 delay(10);
2578 }
2579
2580 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2581 return -1;
2582 }
2583
2584 /*
2585 * Write a value to one of the ESS extended registers.
2586 */
2587 int
2588 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
2589 {
2590 int error;
2591
2592 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2593 if ((error = ess_wdsp(sc, reg)) == 0)
2594 error = ess_wdsp(sc, val);
2595
2596 return error;
2597 }
2598
2599 /*
2600 * Read the value of one of the ESS extended registers.
2601 */
2602 u_char
2603 ess_read_x_reg(struct ess_softc *sc, u_char reg)
2604 {
2605 int error;
2606 int val;
2607
2608 if ((error = ess_wdsp(sc, 0xC0)) == 0)
2609 error = ess_wdsp(sc, reg);
2610 if (error) {
2611 DPRINTF(("Error reading extended register 0x%02x\n", reg));
2612 }
2613 /* REVISIT: what if an error is returned above? */
2614 val = ess_rdsp(sc);
2615 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2616 return val;
2617 }
2618
2619 void
2620 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2621 {
2622 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) {
2623 DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2624 reg));
2625 }
2626 }
2627
2628 void
2629 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2630 {
2631 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) {
2632 DPRINTF(("Error setting bits in extended register 0x%02x\n",
2633 reg));
2634 }
2635 }
2636
2637
2638 /*
2639 * Write a value to one of the ESS mixer registers.
2640 */
2641 void
2642 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
2643 {
2644 bus_space_tag_t iot;
2645 bus_space_handle_t ioh;
2646
2647 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2648
2649 iot = sc->sc_iot;
2650 ioh = sc->sc_ioh;
2651 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2652 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2653 }
2654
2655 /*
2656 * Read the value of one of the ESS mixer registers.
2657 */
2658 u_char
2659 ess_read_mix_reg(struct ess_softc *sc, u_char reg)
2660 {
2661 bus_space_tag_t iot;
2662 bus_space_handle_t ioh;
2663 u_char val;
2664
2665 iot = sc->sc_iot;
2666 ioh = sc->sc_ioh;
2667 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2668 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2669
2670 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2671 return val;
2672 }
2673
2674 void
2675 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2676 {
2677
2678 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2679 }
2680
2681 void
2682 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2683 {
2684
2685 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2686 }
2687
2688 void
2689 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
2690 uint8_t *datap, bus_size_t count)
2691 {
2692 bus_space_tag_t iot;
2693 bus_space_handle_t ioh;
2694
2695 iot = sc->sc_iot;
2696 ioh = sc->sc_ioh;
2697 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2698 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2699 }
2700