Home | History | Annotate | Line # | Download | only in isa
gus.c revision 1.113
      1 /*	$NetBSD: gus.c,v 1.113 2018/06/23 06:57:24 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1999, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Ken Hornstein and John Kohl.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *
     34  * TODO:
     35  *	. figure out why mixer activity while sound is playing causes problems
     36  *	  (phantom interrupts?)
     37  *	. figure out a better deinterleave strategy that avoids sucking up
     38  *	  CPU, memory and cache bandwidth.  (Maybe a special encoding?
     39  *	  Maybe use the double-speed sampling/hardware deinterleave trick
     40  *	  from the GUS SDK?)  A 486/33 isn't quite fast enough to keep
     41  *	  up with 44.1kHz 16-bit stereo output without some drop-outs.
     42  *	. use CS4231 for 16-bit sampling, for A-law and mu-law playback.
     43  *	. actually test full-duplex sampling(recording) and playback.
     44  */
     45 
     46 /*
     47  * Gravis UltraSound driver
     48  *
     49  * For more detailed information, see the GUS developers' kit
     50  * available on the net at:
     51  *
     52  * http://www.gravis.com/Public/sdk/GUSDK222.ZIP
     53  *
     54  *		See ultrawrd.doc inside--it's MS Word (ick), but it's the bible
     55  *
     56  */
     57 
     58 /*
     59  * The GUS Max has a slightly strange set of connections between the CS4231
     60  * and the GF1 and the DMA interconnects.  It's set up so that the CS4231 can
     61  * be playing while the GF1 is loading patches from the system.
     62  *
     63  * Here's a recreation of the DMA interconnect diagram:
     64  *
     65  *       GF1
     66  *   +---------+				 digital
     67  *   |         |  record			 ASIC
     68  *   |         |--------------+
     69  *   |         |              |		       +--------+
     70  *   |         | play (dram)  |      +----+    |	|
     71  *   |         |--------------(------|-\  |    |   +-+  |
     72  *   +---------+              |      |  >-|----|---|C|--|------  DMA chan 1
     73  *                            |  +---|-/  |    |   +-+	|
     74  *                            |  |   +----+    |    |   |
     75  *                            |	 |   +----+    |    |   |
     76  *   +---------+        +-+   +--(---|-\  |    |    |   |
     77  *   |         | play   |8|      |   |  >-|----|----+---|------  DMA chan 2
     78  *   | ---C----|--------|/|------(---|-/  |    |        |
     79  *   |    ^    |record  |1|      |   +----+    |	|
     80  *   |    |    |   /----|6|------+	       +--------+
     81  *   | ---+----|--/     +-+
     82  *   +---------+
     83  *     CS4231		8-to-16 bit bus conversion, if needed
     84  *
     85  *
     86  * "C" is an optional combiner.
     87  *
     88  */
     89 
     90 #include <sys/cdefs.h>
     91 __KERNEL_RCSID(0, "$NetBSD: gus.c,v 1.113 2018/06/23 06:57:24 maxv Exp $");
     92 
     93 #include <sys/param.h>
     94 #include <sys/systm.h>
     95 #include <sys/callout.h>
     96 #include <sys/errno.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/syslog.h>
     99 #include <sys/device.h>
    100 #include <sys/proc.h>
    101 #include <sys/buf.h>
    102 #include <sys/fcntl.h>
    103 #include <sys/kmem.h>
    104 #include <sys/kernel.h>
    105 #include <sys/cpu.h>
    106 #include <sys/intr.h>
    107 #include <sys/bus.h>
    108 #include <sys/audioio.h>
    109 
    110 #include <dev/audio_if.h>
    111 #include <dev/mulaw.h>
    112 #include <dev/auconv.h>
    113 
    114 #include <dev/ic/ics2101reg.h>
    115 #include <dev/ic/cs4231reg.h>
    116 #include <dev/ic/ad1848reg.h>
    117 
    118 #include <dev/isa/isavar.h>
    119 #include <dev/isa/isadmavar.h>
    120 #include <dev/isa/ics2101var.h>
    121 #include <dev/isa/ad1848var.h>
    122 #include <dev/isa/cs4231var.h>
    123 #include <dev/isa/gusreg.h>
    124 
    125 #ifdef AUDIO_DEBUG
    126 #define STATIC /* empty; for debugging symbols */
    127 #else
    128 #define STATIC static
    129 #endif
    130 
    131 #define	GUS_MAX_BLOCKSIZE	65536
    132 
    133 /*
    134  * Software state of a single "voice" on the GUS
    135  */
    136 
    137 struct gus_voice {
    138 
    139 	/*
    140 	 * Various control bits
    141 	 */
    142 
    143 	unsigned char voccntl;	/* State of voice control register */
    144 	unsigned char volcntl;	/* State of volume control register */
    145 	unsigned char pan_pos;	/* Position of volume panning (4 bits) */
    146 	int rate;		/* Sample rate of voice being played back */
    147 
    148 	/*
    149 	 * Address of the voice data into the GUS's DRAM.  20 bits each
    150 	 */
    151 
    152 	u_long start_addr;	/* Starting address of voice data loop area */
    153 	u_long end_addr;	/* Ending address of voice data loop */
    154 	u_long current_addr;	/* Beginning address of voice data
    155 				   (start playing here) */
    156 
    157 	/*
    158 	 * linear volume values for the GUS's volume ramp.  0-511 (9 bits).
    159 	 * These values must be translated into the logarithmic values using
    160 	 * gus_log_volumes[]
    161 	 */
    162 
    163 	int start_volume;	/* Starting position of volume ramp */
    164 	int current_volume;	/* Current position of volume on volume ramp */
    165 	int end_volume;		/* Ending position of volume on volume ramp */
    166 };
    167 
    168 /*
    169  * Software state of GUS
    170  */
    171 
    172 struct gus_softc {
    173 	device_t sc_dev;		/* base device */
    174 	kmutex_t sc_lock;
    175 	kmutex_t sc_intr_lock;
    176 	void *sc_ih;			/* interrupt vector */
    177 	bus_space_tag_t sc_iot;		/* tag */
    178 	bus_space_handle_t sc_ioh1;	/* handle */
    179 	bus_space_handle_t sc_ioh2;	/* handle */
    180 	bus_space_handle_t sc_ioh3;	/* ICS2101 handle */
    181 	bus_space_handle_t sc_ioh4;	/* MIDI handle */
    182 	char padding[20];
    183 
    184 	callout_t sc_dmaout_ch;
    185 
    186 	isa_chipset_tag_t sc_ic;	/* ISA chipset info */
    187 	char padding1[4];
    188 	int sc_irq;			/* IRQ used */
    189 	int sc_playdrq;			/* DMA channel for play */
    190 	bus_size_t sc_play_maxsize;	/* DMA size for play */
    191 	int sc_recdrq;			/* DMA channel for recording */
    192 	bus_size_t sc_req_maxsize;	/* DMA size for recording */
    193 
    194 	int sc_flags;			/* Various flags about the GUS */
    195 #define GUS_MIXER_INSTALLED	0x01	/* An ICS mixer is installed */
    196 #define GUS_LOCKED		0x02	/* GUS is busy doing multi-phase DMA */
    197 #define GUS_CODEC_INSTALLED	0x04	/* CS4231 installed/MAX */
    198 #define GUS_PLAYING		0x08	/* GUS is playing a voice */
    199 #define GUS_DMAOUT_ACTIVE	0x10	/* GUS is busy doing audio DMA */
    200 #define GUS_DMAIN_ACTIVE	0x20	/* GUS is busy sampling  */
    201 #define GUS_OPEN		0x100	/* GUS is open */
    202 	int sc_dsize;			/* Size of GUS DRAM */
    203 	int sc_voices;			/* Number of active voices */
    204 	u_char sc_revision;		/* Board revision of GUS */
    205 	u_char sc_mixcontrol;		/* Value of GUS_MIX_CONTROL register */
    206 
    207 	u_long sc_orate;		/* Output sampling rate */
    208 	u_long sc_irate;		/* Input sampling rate */
    209 
    210 	int sc_encoding;		/* Current data encoding type */
    211 	int sc_precision;		/* # of bits of precision */
    212 	int sc_channels;		/* Number of active channels */
    213 	int sc_blocksize;		/* Current blocksize */
    214 	int sc_chanblocksize;		/* Current blocksize for each in-use
    215 					   channel */
    216 	short sc_nbufs;			/* how many on-GUS bufs per-channel */
    217 	short sc_bufcnt;		/* how many need to be played */
    218 	void *sc_deintr_buf;		/* deinterleave buffer for stereo */
    219 
    220 	int sc_ogain;			/* Output gain control */
    221 	u_char sc_out_port;		/* Current out port (generic only) */
    222 	u_char sc_in_port;		/* keep track of it when no codec */
    223 
    224 	void (*sc_dmaoutintr)(void*);	/* DMA completion intr handler */
    225 	void *sc_outarg;		/* argument for sc_dmaoutintr() */
    226 	u_char *sc_dmaoutaddr;		/* for isa_dmadone */
    227 	u_long sc_gusaddr;		/* where did we just put it? */
    228 	int sc_dmaoutcnt;		/* for isa_dmadone */
    229 
    230 	void (*sc_dmainintr)(void*);	/* DMA completion intr handler */
    231 	void *sc_inarg;			/* argument for sc_dmaoutintr() */
    232 	u_char *sc_dmainaddr;		/* for isa_dmadone */
    233 	int sc_dmaincnt;		/* for isa_dmadone */
    234 
    235 	struct stereo_dma_intr {
    236 		void (*intr)(void *);
    237 		void *arg;
    238 		u_char *buffer;
    239 		u_long dmabuf;
    240 		int size;
    241 		int flags;
    242 	} sc_stereo;
    243 
    244 	/*
    245 	 * State information for linear audio layer
    246 	 */
    247 
    248 	int sc_dmabuf;			/* Which ring buffer we're DMA'ing to */
    249 	int sc_playbuf;			/* Which ring buffer we're playing */
    250 
    251 	/*
    252 	 * Voice information array.  All voice-specific information is stored
    253 	 * here
    254 	 */
    255 
    256 	struct gus_voice sc_voc[32];	/* Voice data for each voice */
    257 	union {
    258 		struct ics2101_softc sc_mixer_u;
    259 		struct ad1848_isa_softc sc_codec_u;
    260 	} u;
    261 	int sc_iobase;			/* I/O base address */
    262 #define sc_mixer u.sc_mixer_u
    263 #define sc_codec u.sc_codec_u
    264 };
    265 
    266 struct ics2101_volume {
    267 	u_char left;
    268 	u_char right;
    269 };
    270 
    271 #define HAS_CODEC(sc) ((sc)->sc_flags & GUS_CODEC_INSTALLED)
    272 #define HAS_MIXER(sc) ((sc)->sc_flags & GUS_MIXER_INSTALLED)
    273 
    274 /*
    275  * Mixer devices for ICS2101
    276  */
    277 /* MIC IN mute, line in mute, line out mute are first since they can be done
    278    even if no ICS mixer. */
    279 #define GUSICS_MIC_IN_MUTE		0
    280 #define GUSICS_LINE_IN_MUTE		1
    281 #define GUSICS_MASTER_MUTE		2
    282 #define GUSICS_CD_MUTE			3
    283 #define GUSICS_DAC_MUTE			4
    284 #define GUSICS_MIC_IN_LVL		5
    285 #define GUSICS_LINE_IN_LVL		6
    286 #define GUSICS_CD_LVL			7
    287 #define GUSICS_DAC_LVL			8
    288 #define GUSICS_MASTER_LVL		9
    289 
    290 #define GUSICS_RECORD_SOURCE		10
    291 
    292 /* Classes */
    293 #define GUSICS_INPUT_CLASS		11
    294 #define GUSICS_OUTPUT_CLASS		12
    295 #define GUSICS_RECORD_CLASS		13
    296 
    297 /*
    298  * Mixer & MUX devices for CS4231
    299  */
    300 #define GUSMAX_MONO_LVL			0 /* mic input to MUX;
    301 					     also mono mixer input */
    302 #define GUSMAX_DAC_LVL			1 /* input to MUX; also mixer input */
    303 #define GUSMAX_LINE_IN_LVL		2 /* input to MUX; also mixer input */
    304 #define GUSMAX_CD_LVL			3 /* mixer input only */
    305 #define GUSMAX_MONITOR_LVL		4 /* digital mix (?) */
    306 #define GUSMAX_OUT_LVL			5 /* output level. (?) */
    307 #define GUSMAX_SPEAKER_LVL		6 /* pseudo-device for mute */
    308 #define GUSMAX_LINE_IN_MUTE		7 /* pre-mixer */
    309 #define GUSMAX_DAC_MUTE			8 /* pre-mixer */
    310 #define GUSMAX_CD_MUTE			9 /* pre-mixer */
    311 #define GUSMAX_MONO_MUTE		10 /* pre-mixer--microphone/mono */
    312 #define GUSMAX_MONITOR_MUTE		11 /* post-mixer level/mute */
    313 #define GUSMAX_SPEAKER_MUTE		12 /* speaker mute */
    314 
    315 #define GUSMAX_REC_LVL			13 /* post-MUX gain */
    316 
    317 #define GUSMAX_RECORD_SOURCE		14
    318 
    319 /* Classes */
    320 #define GUSMAX_INPUT_CLASS		15
    321 #define GUSMAX_RECORD_CLASS		16
    322 #define GUSMAX_MONITOR_CLASS		17
    323 #define GUSMAX_OUTPUT_CLASS		18
    324 
    325 #ifdef AUDIO_DEBUG
    326 #define GUSPLAYDEBUG	/*XXX*/
    327 #define DPRINTF(x)	if (gusdebug) printf x
    328 #define DMAPRINTF(x)	if (gusdmadebug) printf x
    329 int	gusdebug = 0;
    330 int	gusdmadebug = 0;
    331 #else
    332 #define DPRINTF(x)
    333 #define DMAPRINTF(x)
    334 #endif
    335 int	gus_dostereo = 1;
    336 
    337 #define NDMARECS 2048
    338 #ifdef GUSPLAYDEBUG
    339 int	gusstats = 0;
    340 struct dma_record {
    341 	struct timeval tv;
    342 	u_long gusaddr;
    343 	void *bsdaddr;
    344 	u_short count;
    345 	u_char channel;
    346 	u_char direction;
    347 } dmarecords[NDMARECS];
    348 
    349 int dmarecord_index = 0;
    350 #endif
    351 
    352 /*
    353  * local routines
    354  */
    355 
    356 int	gusopen(void *, int);
    357 void	gusclose(void *);
    358 void	gusmax_close(void *);
    359 int	gusintr(void *);
    360 int	gus_set_in_gain(void *, u_int, u_char);
    361 int	gus_get_in_gain(void *);
    362 int	gus_set_out_gain(void *, u_int, u_char);
    363 int	gus_get_out_gain(void *);
    364 int	gus_set_params(void *, int, int, audio_params_t *,
    365 	    audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
    366 int	gusmax_set_params(void *, int, int, audio_params_t *,
    367 	    audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
    368 int	gus_round_blocksize(void *, int, int, const audio_params_t *);
    369 int	gus_commit_settings(void *);
    370 int	gus_dma_output(void *, void *, int, void (*)(void *), void *);
    371 int	gus_dma_input(void *, void *, int, void (*)(void *), void *);
    372 int	gus_halt_out_dma(void *);
    373 int	gus_halt_in_dma(void *);
    374 int	gus_speaker_ctl(void *, int);
    375 int	gusmaxopen(void *, int);
    376 int	gusmax_round_blocksize(void *, int, int, const audio_params_t *);
    377 int	gusmax_commit_settings(void *);
    378 int	gusmax_dma_output(void *, void *, int, void (*)(void *), void *);
    379 int	gusmax_dma_input(void *, void *, int, void (*)(void *), void *);
    380 int	gusmax_halt_out_dma(void *);
    381 int	gusmax_halt_in_dma(void *);
    382 int	gusmax_speaker_ctl(void *, int);
    383 int	gus_getdev(void *, struct audio_device *);
    384 
    385 STATIC void	gus_deinterleave(struct gus_softc *, void *, int);
    386 
    387 STATIC int	gus_mic_ctl(void *, int);
    388 STATIC int	gus_linein_ctl(void *, int);
    389 STATIC int	gus_test_iobase(bus_space_tag_t, int);
    390 STATIC void	guspoke(bus_space_tag_t, bus_space_handle_t, long, u_char);
    391 STATIC void	gusdmaout(struct gus_softc *, int, u_long, void *, int);
    392 STATIC int	gus_init_cs4231(struct gus_softc *);
    393 STATIC void	gus_init_ics2101(struct gus_softc *);
    394 
    395 STATIC void	gus_set_chan_addrs(struct gus_softc *);
    396 STATIC void	gusreset(struct gus_softc *, int);
    397 STATIC void	gus_set_voices(struct gus_softc *, int);
    398 STATIC void	gus_set_volume(struct gus_softc *, int, int);
    399 STATIC void	gus_set_samprate(struct gus_softc *, int, int);
    400 STATIC void	gus_set_recrate(struct gus_softc *, u_long);
    401 STATIC void	gus_start_voice(struct gus_softc *, int, int);
    402 STATIC void	gus_stop_voice(struct gus_softc *, int, int);
    403 STATIC void	gus_set_endaddr(struct gus_softc *, int, u_long);
    404 #ifdef GUSPLAYDEBUG
    405 STATIC void	gus_set_curaddr(struct gus_softc *, int, u_long);
    406 STATIC u_long	gus_get_curaddr(struct gus_softc *, int);
    407 #endif
    408 STATIC int	gus_dmaout_intr(struct gus_softc *);
    409 STATIC void	gus_dmaout_dointr(struct gus_softc *);
    410 STATIC void	gus_dmaout_timeout(void *);
    411 STATIC int	gus_dmain_intr(struct gus_softc *);
    412 STATIC int	gus_voice_intr(struct gus_softc *);
    413 STATIC void	gus_start_playing(struct gus_softc *, int);
    414 STATIC int	gus_continue_playing(struct gus_softc *, int);
    415 STATIC u_char guspeek(bus_space_tag_t, bus_space_handle_t, u_long);
    416 STATIC u_long convert_to_16bit(u_long);
    417 STATIC int	gus_mixer_set_port(void *, mixer_ctrl_t *);
    418 STATIC int	gus_mixer_get_port(void *, mixer_ctrl_t *);
    419 STATIC int	gusmax_mixer_set_port(void *, mixer_ctrl_t *);
    420 STATIC int	gusmax_mixer_get_port(void *, mixer_ctrl_t *);
    421 STATIC int	gus_mixer_query_devinfo(void *, mixer_devinfo_t *);
    422 STATIC int	gusmax_mixer_query_devinfo(void *, mixer_devinfo_t *);
    423 STATIC int	gus_query_encoding(void *, struct audio_encoding *);
    424 STATIC int	gus_get_props(void *);
    425 STATIC int	gusmax_get_props(void *);
    426 
    427 STATIC void	gusics_master_mute(struct ics2101_softc *, int);
    428 STATIC void	gusics_dac_mute(struct ics2101_softc *, int);
    429 STATIC void	gusics_mic_mute(struct ics2101_softc *, int);
    430 STATIC void	gusics_linein_mute(struct ics2101_softc *, int);
    431 STATIC void	gusics_cd_mute(struct ics2101_softc *, int);
    432 
    433 void	stereo_dmaintr(void *);
    434 
    435 /*
    436  * ISA bus driver routines
    437  */
    438 
    439 int	gusprobe(device_t, cfdata_t, void *);
    440 void	gusattach(device_t, device_t, void *);
    441 
    442 CFATTACH_DECL_NEW(gus, sizeof(struct gus_softc),
    443     gusprobe, gusattach, NULL, NULL);
    444 
    445 /*
    446  * A mapping from IRQ/DRQ values to the values used in the GUS's internal
    447  * registers.  A zero means that the referenced IRQ/DRQ is invalid
    448  */
    449 
    450 static const int gus_irq_map[] = {
    451 	-1, -1, 1, 3, -1, 2, -1, 4,
    452 	-1, 1, -1, 5, 6, -1, -1, 7
    453 };
    454 static const int gus_drq_map[] = {
    455 	-1, 1, -1, 2, -1, 3, 4, 5
    456 };
    457 
    458 /*
    459  * A list of valid base addresses for the GUS
    460  */
    461 
    462 static const int gus_base_addrs[] = {
    463 	0x210, 0x220, 0x230, 0x240, 0x250, 0x260
    464 };
    465 static const int gus_addrs = sizeof(gus_base_addrs) / sizeof(gus_base_addrs[0]);
    466 
    467 /*
    468  * Maximum frequency values of the GUS based on the number of currently active
    469  * voices.  Since the GUS samples a voice every 1.6 us, the maximum frequency
    470  * is dependent on the number of active voices.  Yes, it is pretty weird.
    471  */
    472 
    473 static const int gus_max_frequency[] = {
    474 		44100,		/* 14 voices */
    475 		41160,		/* 15 voices */
    476 		38587,		/* 16 voices */
    477 		36317,		/* 17 voices */
    478 		34300,		/* 18 voices */
    479 		32494,		/* 19 voices */
    480 		30870,		/* 20 voices */
    481 		29400,		/* 21 voices */
    482 		28063,		/* 22 voices */
    483 		26843,		/* 23 voices */
    484 		25725,		/* 24 voices */
    485 		24696,		/* 25 voices */
    486 		23746,		/* 26 voices */
    487 		22866,		/* 27 voices */
    488 		22050,		/* 28 voices */
    489 		21289,		/* 29 voices */
    490 		20580,		/* 30 voices */
    491 		19916,		/* 31 voices */
    492 		19293		/* 32 voices */
    493 };
    494 /*
    495  * A mapping of linear volume levels to the logarithmic volume values used
    496  * by the GF1 chip on the GUS.  From GUS SDK vol1.c.
    497  */
    498 
    499 static const unsigned short gus_log_volumes[512] = {
    500  0x0000,
    501  0x0700, 0x07ff, 0x0880, 0x08ff, 0x0940, 0x0980, 0x09c0, 0x09ff, 0x0a20,
    502  0x0a40, 0x0a60, 0x0a80, 0x0aa0, 0x0ac0, 0x0ae0, 0x0aff, 0x0b10, 0x0b20,
    503  0x0b30, 0x0b40, 0x0b50, 0x0b60, 0x0b70, 0x0b80, 0x0b90, 0x0ba0, 0x0bb0,
    504  0x0bc0, 0x0bd0, 0x0be0, 0x0bf0, 0x0bff, 0x0c08, 0x0c10, 0x0c18, 0x0c20,
    505  0x0c28, 0x0c30, 0x0c38, 0x0c40, 0x0c48, 0x0c50, 0x0c58, 0x0c60, 0x0c68,
    506  0x0c70, 0x0c78, 0x0c80, 0x0c88, 0x0c90, 0x0c98, 0x0ca0, 0x0ca8, 0x0cb0,
    507  0x0cb8, 0x0cc0, 0x0cc8, 0x0cd0, 0x0cd8, 0x0ce0, 0x0ce8, 0x0cf0, 0x0cf8,
    508  0x0cff, 0x0d04, 0x0d08, 0x0d0c, 0x0d10, 0x0d14, 0x0d18, 0x0d1c, 0x0d20,
    509  0x0d24, 0x0d28, 0x0d2c, 0x0d30, 0x0d34, 0x0d38, 0x0d3c, 0x0d40, 0x0d44,
    510  0x0d48, 0x0d4c, 0x0d50, 0x0d54, 0x0d58, 0x0d5c, 0x0d60, 0x0d64, 0x0d68,
    511  0x0d6c, 0x0d70, 0x0d74, 0x0d78, 0x0d7c, 0x0d80, 0x0d84, 0x0d88, 0x0d8c,
    512  0x0d90, 0x0d94, 0x0d98, 0x0d9c, 0x0da0, 0x0da4, 0x0da8, 0x0dac, 0x0db0,
    513  0x0db4, 0x0db8, 0x0dbc, 0x0dc0, 0x0dc4, 0x0dc8, 0x0dcc, 0x0dd0, 0x0dd4,
    514  0x0dd8, 0x0ddc, 0x0de0, 0x0de4, 0x0de8, 0x0dec, 0x0df0, 0x0df4, 0x0df8,
    515  0x0dfc, 0x0dff, 0x0e02, 0x0e04, 0x0e06, 0x0e08, 0x0e0a, 0x0e0c, 0x0e0e,
    516  0x0e10, 0x0e12, 0x0e14, 0x0e16, 0x0e18, 0x0e1a, 0x0e1c, 0x0e1e, 0x0e20,
    517  0x0e22, 0x0e24, 0x0e26, 0x0e28, 0x0e2a, 0x0e2c, 0x0e2e, 0x0e30, 0x0e32,
    518  0x0e34, 0x0e36, 0x0e38, 0x0e3a, 0x0e3c, 0x0e3e, 0x0e40, 0x0e42, 0x0e44,
    519  0x0e46, 0x0e48, 0x0e4a, 0x0e4c, 0x0e4e, 0x0e50, 0x0e52, 0x0e54, 0x0e56,
    520  0x0e58, 0x0e5a, 0x0e5c, 0x0e5e, 0x0e60, 0x0e62, 0x0e64, 0x0e66, 0x0e68,
    521  0x0e6a, 0x0e6c, 0x0e6e, 0x0e70, 0x0e72, 0x0e74, 0x0e76, 0x0e78, 0x0e7a,
    522  0x0e7c, 0x0e7e, 0x0e80, 0x0e82, 0x0e84, 0x0e86, 0x0e88, 0x0e8a, 0x0e8c,
    523  0x0e8e, 0x0e90, 0x0e92, 0x0e94, 0x0e96, 0x0e98, 0x0e9a, 0x0e9c, 0x0e9e,
    524  0x0ea0, 0x0ea2, 0x0ea4, 0x0ea6, 0x0ea8, 0x0eaa, 0x0eac, 0x0eae, 0x0eb0,
    525  0x0eb2, 0x0eb4, 0x0eb6, 0x0eb8, 0x0eba, 0x0ebc, 0x0ebe, 0x0ec0, 0x0ec2,
    526  0x0ec4, 0x0ec6, 0x0ec8, 0x0eca, 0x0ecc, 0x0ece, 0x0ed0, 0x0ed2, 0x0ed4,
    527  0x0ed6, 0x0ed8, 0x0eda, 0x0edc, 0x0ede, 0x0ee0, 0x0ee2, 0x0ee4, 0x0ee6,
    528  0x0ee8, 0x0eea, 0x0eec, 0x0eee, 0x0ef0, 0x0ef2, 0x0ef4, 0x0ef6, 0x0ef8,
    529  0x0efa, 0x0efc, 0x0efe, 0x0eff, 0x0f01, 0x0f02, 0x0f03, 0x0f04, 0x0f05,
    530  0x0f06, 0x0f07, 0x0f08, 0x0f09, 0x0f0a, 0x0f0b, 0x0f0c, 0x0f0d, 0x0f0e,
    531  0x0f0f, 0x0f10, 0x0f11, 0x0f12, 0x0f13, 0x0f14, 0x0f15, 0x0f16, 0x0f17,
    532  0x0f18, 0x0f19, 0x0f1a, 0x0f1b, 0x0f1c, 0x0f1d, 0x0f1e, 0x0f1f, 0x0f20,
    533  0x0f21, 0x0f22, 0x0f23, 0x0f24, 0x0f25, 0x0f26, 0x0f27, 0x0f28, 0x0f29,
    534  0x0f2a, 0x0f2b, 0x0f2c, 0x0f2d, 0x0f2e, 0x0f2f, 0x0f30, 0x0f31, 0x0f32,
    535  0x0f33, 0x0f34, 0x0f35, 0x0f36, 0x0f37, 0x0f38, 0x0f39, 0x0f3a, 0x0f3b,
    536  0x0f3c, 0x0f3d, 0x0f3e, 0x0f3f, 0x0f40, 0x0f41, 0x0f42, 0x0f43, 0x0f44,
    537  0x0f45, 0x0f46, 0x0f47, 0x0f48, 0x0f49, 0x0f4a, 0x0f4b, 0x0f4c, 0x0f4d,
    538  0x0f4e, 0x0f4f, 0x0f50, 0x0f51, 0x0f52, 0x0f53, 0x0f54, 0x0f55, 0x0f56,
    539  0x0f57, 0x0f58, 0x0f59, 0x0f5a, 0x0f5b, 0x0f5c, 0x0f5d, 0x0f5e, 0x0f5f,
    540  0x0f60, 0x0f61, 0x0f62, 0x0f63, 0x0f64, 0x0f65, 0x0f66, 0x0f67, 0x0f68,
    541  0x0f69, 0x0f6a, 0x0f6b, 0x0f6c, 0x0f6d, 0x0f6e, 0x0f6f, 0x0f70, 0x0f71,
    542  0x0f72, 0x0f73, 0x0f74, 0x0f75, 0x0f76, 0x0f77, 0x0f78, 0x0f79, 0x0f7a,
    543  0x0f7b, 0x0f7c, 0x0f7d, 0x0f7e, 0x0f7f, 0x0f80, 0x0f81, 0x0f82, 0x0f83,
    544  0x0f84, 0x0f85, 0x0f86, 0x0f87, 0x0f88, 0x0f89, 0x0f8a, 0x0f8b, 0x0f8c,
    545  0x0f8d, 0x0f8e, 0x0f8f, 0x0f90, 0x0f91, 0x0f92, 0x0f93, 0x0f94, 0x0f95,
    546  0x0f96, 0x0f97, 0x0f98, 0x0f99, 0x0f9a, 0x0f9b, 0x0f9c, 0x0f9d, 0x0f9e,
    547  0x0f9f, 0x0fa0, 0x0fa1, 0x0fa2, 0x0fa3, 0x0fa4, 0x0fa5, 0x0fa6, 0x0fa7,
    548  0x0fa8, 0x0fa9, 0x0faa, 0x0fab, 0x0fac, 0x0fad, 0x0fae, 0x0faf, 0x0fb0,
    549  0x0fb1, 0x0fb2, 0x0fb3, 0x0fb4, 0x0fb5, 0x0fb6, 0x0fb7, 0x0fb8, 0x0fb9,
    550  0x0fba, 0x0fbb, 0x0fbc, 0x0fbd, 0x0fbe, 0x0fbf, 0x0fc0, 0x0fc1, 0x0fc2,
    551  0x0fc3, 0x0fc4, 0x0fc5, 0x0fc6, 0x0fc7, 0x0fc8, 0x0fc9, 0x0fca, 0x0fcb,
    552  0x0fcc, 0x0fcd, 0x0fce, 0x0fcf, 0x0fd0, 0x0fd1, 0x0fd2, 0x0fd3, 0x0fd4,
    553  0x0fd5, 0x0fd6, 0x0fd7, 0x0fd8, 0x0fd9, 0x0fda, 0x0fdb, 0x0fdc, 0x0fdd,
    554  0x0fde, 0x0fdf, 0x0fe0, 0x0fe1, 0x0fe2, 0x0fe3, 0x0fe4, 0x0fe5, 0x0fe6,
    555  0x0fe7, 0x0fe8, 0x0fe9, 0x0fea, 0x0feb, 0x0fec, 0x0fed, 0x0fee, 0x0fef,
    556  0x0ff0, 0x0ff1, 0x0ff2, 0x0ff3, 0x0ff4, 0x0ff5, 0x0ff6, 0x0ff7, 0x0ff8,
    557  0x0ff9, 0x0ffa, 0x0ffb, 0x0ffc, 0x0ffd, 0x0ffe, 0x0fff};
    558 
    559 #define SELECT_GUS_REG(iot,ioh1,x) bus_space_write_1(iot,ioh1,GUS_REG_SELECT,x)
    560 #define ADDR_HIGH(x) (unsigned int) ((x >> 7L) & 0x1fffL)
    561 #define ADDR_LOW(x) (unsigned int) ((x & 0x7fL) << 9L)
    562 
    563 #define GUS_MIN_VOICES 14	/* Minimum possible number of voices */
    564 #define GUS_MAX_VOICES 32	/* Maximum possible number of voices */
    565 #define GUS_VOICE_LEFT 0	/* Voice used for left (and mono) playback */
    566 #define GUS_VOICE_RIGHT 1	/* Voice used for right playback */
    567 #define GUS_MEM_OFFSET 32	/* Offset into GUS memory to begin of buffer */
    568 #define GUS_BUFFER_MULTIPLE 1024	/* Audio buffers are multiples of this */
    569 #define	GUS_MEM_FOR_BUFFERS	131072	/* use this many bytes on-GUS */
    570 #define	GUS_LEFT_RIGHT_OFFSET	(sc->sc_nbufs * sc->sc_chanblocksize + GUS_MEM_OFFSET)
    571 
    572 #define GUS_PREC_BYTES (sc->sc_precision >> 3) /* precision to bytes */
    573 
    574 /*
    575  * Interface to higher level audio driver
    576  */
    577 
    578 const struct audio_hw_if gus_hw_if = {
    579 	gusopen,
    580 	gusclose,
    581 	NULL,				/* drain */
    582 	gus_query_encoding,
    583 	gus_set_params,
    584 	gus_round_blocksize,
    585 	gus_commit_settings,
    586 	NULL,
    587 	NULL,
    588 	gus_dma_output,
    589 	gus_dma_input,
    590 	gus_halt_out_dma,
    591 	gus_halt_in_dma,
    592 	gus_speaker_ctl,
    593 	gus_getdev,
    594 	NULL,
    595 	gus_mixer_set_port,
    596 	gus_mixer_get_port,
    597 	gus_mixer_query_devinfo,
    598 	ad1848_isa_malloc,
    599 	ad1848_isa_free,
    600 	ad1848_isa_round_buffersize,
    601 	ad1848_isa_mappage,
    602 	gus_get_props,
    603 	NULL,
    604 	NULL,
    605 	NULL,
    606 	ad1848_get_locks,
    607 };
    608 
    609 static const struct audio_hw_if gusmax_hw_if = {
    610 	gusmaxopen,
    611 	gusmax_close,
    612 	NULL,			/* drain */
    613 	gus_query_encoding,	/* query encoding */
    614 	gusmax_set_params,
    615 	gusmax_round_blocksize,
    616 	gusmax_commit_settings,
    617 	NULL,
    618 	NULL,
    619 	gusmax_dma_output,
    620 	gusmax_dma_input,
    621 	gusmax_halt_out_dma,
    622 	gusmax_halt_in_dma,
    623 	gusmax_speaker_ctl,
    624 	gus_getdev,
    625 	NULL,
    626 	gusmax_mixer_set_port,
    627 	gusmax_mixer_get_port,
    628 	gusmax_mixer_query_devinfo,
    629 	ad1848_isa_malloc,
    630 	ad1848_isa_free,
    631 	ad1848_isa_round_buffersize,
    632 	ad1848_isa_mappage,
    633 	gusmax_get_props,
    634 	NULL,
    635 	NULL,
    636 	NULL,
    637 	ad1848_get_locks,
    638 };
    639 
    640 /*
    641  * Some info about the current audio device
    642  */
    643 
    644 struct audio_device gus_device = {
    645 	"UltraSound",
    646 	"",
    647 	"gus",
    648 };
    649 
    650 #define FLIP_REV	5		/* This rev has flipped mixer chans */
    651 
    652 
    653 int
    654 gusprobe(device_t parent, cfdata_t match, void *aux)
    655 {
    656 	struct isa_attach_args *ia;
    657 	int iobase, recdrq;
    658 
    659 	ia = aux;
    660 	if (ia->ia_nio < 1)
    661 		return 0;
    662 	if (ia->ia_nirq < 1)
    663 		return 0;
    664 	if (ia->ia_ndrq < 1)
    665 		return 0;
    666 
    667 	if (ISA_DIRECT_CONFIG(ia))
    668 		return 0;
    669 
    670 	iobase = ia->ia_io[0].ir_addr;
    671 	if (ia->ia_ndrq > 1)
    672 		recdrq = ia->ia_drq[1].ir_drq;
    673 	else
    674 		recdrq = ISA_UNKNOWN_DRQ;
    675 
    676 	/*
    677 	 * Before we do anything else, make sure requested IRQ and DRQ are
    678 	 * valid for this card.
    679 	 */
    680 
    681 	/* XXX range check before indexing!! */
    682 	if (ia->ia_irq[0].ir_irq == ISA_UNKNOWN_IRQ ||
    683 	    gus_irq_map[ia->ia_irq[0].ir_irq] == -1) {
    684 		printf("gus: invalid irq %d, card not probed\n",
    685 		    ia->ia_irq[0].ir_irq);
    686 		return 0;
    687 	}
    688 
    689 	if (ia->ia_drq[0].ir_drq == ISA_UNKNOWN_DRQ ||
    690 	    gus_drq_map[ia->ia_drq[0].ir_drq] == -1) {
    691 		printf("gus: invalid drq %d, card not probed\n",
    692 		    ia->ia_drq[0].ir_drq);
    693 		return 0;
    694 	}
    695 
    696 	if (recdrq != ISA_UNKNOWN_DRQ) {
    697 		if (recdrq > 7 || gus_drq_map[recdrq] == -1) {
    698 			printf("gus: invalid second DMA channel (%d), card "
    699 			    "not probed\n", recdrq);
    700 			return 0;
    701 		}
    702 	} else
    703 		recdrq = ia->ia_drq[0].ir_drq;
    704 
    705 	if (iobase == ISA_UNKNOWN_PORT) {
    706 		int i;
    707 		for (i = 0; i < gus_addrs; i++)
    708 			if (gus_test_iobase(ia->ia_iot, gus_base_addrs[i])) {
    709 				iobase = gus_base_addrs[i];
    710 				goto done;
    711 			}
    712 		return 0;
    713 	} else if (!gus_test_iobase(ia->ia_iot, iobase))
    714 			return 0;
    715 
    716 done:
    717 	if (!isa_drq_isfree(ia->ia_ic, ia->ia_drq[0].ir_drq) ||
    718 	    (recdrq != ia->ia_drq[0].ir_drq &&
    719 	     !isa_drq_isfree(ia->ia_ic, recdrq)))
    720 		return 0;
    721 
    722 	ia->ia_nio = 1;
    723 	ia->ia_io[0].ir_addr = iobase;
    724 	ia->ia_io[0].ir_size = GUS_NPORT1;
    725 
    726 	ia->ia_nirq = 1;
    727 	ia->ia_ndrq = (recdrq != ia->ia_drq[0].ir_drq) ? 2 : 1;
    728 
    729 	ia->ia_niomem = 0;
    730 
    731 	return 1;
    732 }
    733 
    734 /*
    735  * Test to see if a particular I/O base is valid for the GUS.  Return true
    736  * if it is.
    737  */
    738 
    739 STATIC int
    740 gus_test_iobase (bus_space_tag_t iot, int iobase)
    741 {
    742 	bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
    743 	u_char s1, s2;
    744 	int rv;
    745 
    746 	rv = 0;
    747 	/* Map i/o space */
    748 	if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
    749 		return 0;
    750 	if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
    751 		goto bad1;
    752 
    753 	/* XXX Maybe we shouldn't fail on mapping this, but just assume
    754 	 * the card is of revision 0? */
    755 	if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
    756 		goto bad2;
    757 
    758 	if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
    759 		goto bad3;
    760 
    761 	/*
    762 	 * Reset GUS to an initial state before we do anything.
    763 	 */
    764 
    765 	delay(500);
    766 
    767 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    768 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
    769 
    770 	delay(500);
    771 
    772 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    773 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
    774 
    775 	delay(500);
    776 
    777 	/*
    778 	 * See if we can write to the board's memory
    779 	 */
    780 
    781 	s1 = guspeek(iot, ioh2, 0L);
    782 	s2 = guspeek(iot, ioh2, 1L);
    783 
    784 	guspoke(iot, ioh2, 0L, 0xaa);
    785 	guspoke(iot, ioh2, 1L, 0x55);
    786 
    787 	if (guspeek(iot, ioh2, 0L) != 0xaa)
    788 		goto bad;
    789 
    790 	guspoke(iot, ioh2, 0L, s1);
    791 	guspoke(iot, ioh2, 1L, s2);
    792 
    793 	rv = 1;
    794 
    795 bad:
    796 	bus_space_unmap(iot, ioh4, GUS_NPORT4);
    797 bad3:
    798 	bus_space_unmap(iot, ioh3, GUS_NPORT3);
    799 bad2:
    800 	bus_space_unmap(iot, ioh2, GUS_NPORT2);
    801 bad1:
    802 	bus_space_unmap(iot, ioh1, GUS_NPORT1);
    803 	return rv;
    804 }
    805 
    806 /*
    807  * Setup the GUS for use; called shortly after probe
    808  */
    809 
    810 void
    811 gusattach(device_t parent, device_t self, void *aux)
    812 {
    813 	struct gus_softc *sc;
    814 	struct isa_attach_args *ia;
    815 	bus_space_tag_t iot;
    816 	bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
    817 	int		iobase, i;
    818 	unsigned char	c, m;
    819 	int d = -1;
    820 	const struct audio_hw_if *hwif;
    821 
    822 	sc = device_private(self);
    823 	sc->sc_dev = self;
    824 	ia = aux;
    825 	callout_init(&sc->sc_dmaout_ch, CALLOUT_MPSAFE);
    826 	ad1848_init_locks(&sc->sc_codec.sc_ad1848, IPL_AUDIO);
    827 	sc->sc_lock = sc->sc_codec.sc_ad1848.sc_lock;
    828 	sc->sc_intr_lock = sc->sc_codec.sc_ad1848.sc_intr_lock;
    829 
    830 	sc->sc_iot = iot = ia->ia_iot;
    831 	sc->sc_ic = ia->ia_ic;
    832 	iobase = ia->ia_io[0].ir_addr;
    833 
    834 	/* Map i/o space */
    835 	if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
    836 		panic("%s: can't map io port range 1", device_xname(self));
    837 	sc->sc_ioh1 = ioh1;
    838 	if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
    839 		panic("%s: can't map io port range 2", device_xname(self));
    840 	sc->sc_ioh2 = ioh2;
    841 
    842 	/* XXX Maybe we shouldn't fail on mapping this, but just assume
    843 	 * the card is of revision 0? */
    844 	if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
    845 		panic("%s: can't map io port range 3", device_xname(self));
    846 	sc->sc_ioh3 = ioh3;
    847 
    848 	if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
    849 		panic("%s: can't map io port range 4", device_xname(self));
    850 	sc->sc_ioh4 = ioh4;
    851 
    852 	sc->sc_iobase = iobase;
    853 	sc->sc_irq = ia->ia_irq[0].ir_irq;
    854 	sc->sc_playdrq = ia->ia_drq[0].ir_drq;
    855 	sc->sc_recdrq = (ia->ia_ndrq == 2) ?
    856 	    ia->ia_drq[1].ir_drq : ia->ia_drq[0].ir_drq;
    857 
    858 	/*
    859 	 * Figure out our board rev, and see if we need to initialize the
    860 	 * mixer
    861 	 */
    862 
    863 	sc->sc_ic = ia->ia_ic;
    864 
    865 	delay(500);
    866 
    867 	mutex_spin_enter(&sc->sc_codec.sc_ad1848.sc_intr_lock);
    868 
    869 	c = bus_space_read_1(iot, ioh3, GUS_BOARD_REV);
    870 	if (c != 0xff)
    871 		sc->sc_revision = c;
    872 	else
    873 		sc->sc_revision = 0;
    874 
    875 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    876 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
    877 
    878 	gusreset(sc, GUS_MAX_VOICES); /* initialize all voices */
    879 	gusreset(sc, GUS_MIN_VOICES); /* then set to just the ones we use */
    880 	mutex_spin_exit(&sc->sc_codec.sc_ad1848.sc_intr_lock);
    881 
    882 	/*
    883 	 * Setup the IRQ and DRQ lines in software, using values from
    884 	 * config file
    885 	 */
    886 
    887 	m = GUSMASK_LINE_IN|GUSMASK_LINE_OUT;		/* disable all */
    888 
    889 	c = ((unsigned char) gus_irq_map[ia->ia_irq[0].ir_irq]) |
    890 	    GUSMASK_BOTH_RQ;
    891 
    892 	if (sc->sc_playdrq != -1) {
    893 		if (sc->sc_recdrq == sc->sc_playdrq)
    894 			d = (unsigned char) (gus_drq_map[sc->sc_playdrq] |
    895 			    GUSMASK_BOTH_RQ);
    896 		else if (sc->sc_recdrq != -1)
    897 			d = (unsigned char) (gus_drq_map[sc->sc_playdrq] |
    898 			    gus_drq_map[sc->sc_recdrq] << 3);
    899 	}
    900 	if (d == -1)
    901 		printf("%s: WARNING: Cannot initialize drq\n",
    902 		    device_xname(sc->sc_dev));
    903 
    904 	/*
    905 	 * Program the IRQ and DMA channels on the GUS.  Note that we hardwire
    906 	 * the GUS to only use one IRQ channel, but we give the user the
    907 	 * option of using two DMA channels (the other one given by the drq2
    908 	 * option in the config file).  Two DMA channels are needed for full-
    909 	 * duplex operation.
    910 	 *
    911 	 * The order of these operations is very magical.
    912 	 */
    913 
    914 	bus_space_write_1(iot, ioh1, GUS_REG_CONTROL, GUS_REG_IRQCTL);
    915 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    916 	bus_space_write_1(iot, ioh1, GUS_IRQCTL_CONTROL, 0x00);
    917 	bus_space_write_1(iot, ioh1, 0x0f, 0x00);
    918 
    919 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    920 	bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d | 0x80); /* magic reset? */
    921 
    922 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
    923 	bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
    924 
    925 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    926 	bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d);
    927 
    928 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
    929 	bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
    930 
    931 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
    932 
    933 	/* enable line in, line out.  leave mic disabled. */
    934 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL,
    935 	     (m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN));
    936 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
    937 
    938 	sc->sc_mixcontrol =
    939 		(m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN);
    940 
    941 	if (sc->sc_playdrq != -1) {
    942 		sc->sc_play_maxsize = isa_dmamaxsize(sc->sc_ic,
    943 		    sc->sc_playdrq);
    944 		if (isa_drq_alloc(sc->sc_ic, sc->sc_playdrq) != 0) {
    945 			aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
    946 			    sc->sc_playdrq);
    947 			ad1848_destroy_locks(&sc->sc_codec.sc_ad1848);
    948 			return;
    949 		}
    950 		if (isa_dmamap_create(sc->sc_ic, sc->sc_playdrq,
    951 		    sc->sc_play_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW)) {
    952 			aprint_error_dev(sc->sc_dev,
    953 			    "can't create map for drq %d\n", sc->sc_playdrq);
    954 			ad1848_destroy_locks(&sc->sc_codec.sc_ad1848);
    955 			return;
    956 		}
    957 	}
    958 	if (sc->sc_recdrq != -1 && sc->sc_recdrq != sc->sc_playdrq) {
    959 		sc->sc_req_maxsize = isa_dmamaxsize(sc->sc_ic,
    960 		    sc->sc_recdrq);
    961 		if (isa_drq_alloc(sc->sc_ic, sc->sc_recdrq) != 0) {
    962 			aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
    963 			    sc->sc_recdrq);
    964 			ad1848_destroy_locks(&sc->sc_codec.sc_ad1848);
    965 			return;
    966 		}
    967 		if (isa_dmamap_create(sc->sc_ic, sc->sc_recdrq,
    968 		    sc->sc_req_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW)) {
    969 			aprint_error_dev(sc->sc_dev,
    970 			    "can't create map for drq %d\n", sc->sc_recdrq);
    971 			ad1848_destroy_locks(&sc->sc_codec.sc_ad1848);
    972 			return;
    973 		}
    974 	}
    975 
    976 	/* XXX WILL THIS ALWAYS WORK THE WAY THEY'RE OVERLAYED?! */
    977 	sc->sc_codec.sc_ic = sc->sc_ic;
    978 
    979 	if (sc->sc_revision >= 5 && sc->sc_revision <= 9) {
    980 		sc->sc_flags |= GUS_MIXER_INSTALLED;
    981 		gus_init_ics2101(sc);
    982 	}
    983 	hwif = &gus_hw_if;
    984 	if (sc->sc_revision >= 10)
    985 		if (gus_init_cs4231(sc))
    986 			hwif = &gusmax_hw_if;
    987 
    988 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    989 	/*
    990 	 * Check to see how much memory we have on this card; see if any
    991 	 * "mirroring" occurs.  We're assuming at least 256K already exists
    992 	 * on the card; otherwise the initial probe would have failed
    993 	 */
    994 
    995 	guspoke(iot, ioh2, 0L, 0x00);
    996 	for (i = 1; i < 1024; i++) {
    997 		u_long loc;
    998 
    999 		/*
   1000 		 * See if we've run into mirroring yet
   1001 		 */
   1002 
   1003 		if (guspeek(iot, ioh2, 0L) != 0)
   1004 			break;
   1005 
   1006 		loc = i << 10;
   1007 
   1008 		guspoke(iot, ioh2, loc, 0xaa);
   1009 		if (guspeek(iot, ioh2, loc) != 0xaa)
   1010 			break;
   1011 	}
   1012 
   1013 	sc->sc_dsize = i;
   1014 
   1015 	/* The "official" (3.x) version number cannot easily be obtained.
   1016 	 * The revision register does not correspond to the minor number
   1017 	 * of the board version. Simply use the revision register as
   1018 	 * identification.
   1019 	 */
   1020 	snprintf(gus_device.version, sizeof(gus_device.version), "%d",
   1021 	    sc->sc_revision);
   1022 
   1023 	printf("\n%s: Gravis UltraSound", device_xname(sc->sc_dev));
   1024 	if (sc->sc_revision >= 10)
   1025 		printf(" MAX");
   1026 	else {
   1027 		if (HAS_MIXER(sc))
   1028 			printf(", mixer");
   1029 		if (HAS_CODEC(sc))
   1030 			printf(" with CODEC module");
   1031 	}
   1032 	printf(", %dKB memory\n", sc->sc_dsize);
   1033 
   1034 	/* A GUS MAX should always have a CODEC installed */
   1035 	if ((sc->sc_revision >= 10) && !(HAS_CODEC(sc)))
   1036 		printf("%s: WARNING: did not attach CODEC on MAX\n",
   1037 		    device_xname(sc->sc_dev));
   1038 
   1039 	/*
   1040 	 * Setup a default interrupt handler
   1041 	 */
   1042 
   1043 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq[0].ir_irq,
   1044 	    IST_EDGE, IPL_AUDIO, gusintr, sc /* sc->sc_gusdsp */);
   1045 
   1046 	/*
   1047 	 * Set some default values
   1048 	 * XXX others start with 8kHz mono mu-law
   1049 	 */
   1050 
   1051 	sc->sc_irate = sc->sc_orate = 44100;
   1052 	sc->sc_encoding = AUDIO_ENCODING_SLINEAR_LE;
   1053 	sc->sc_precision = 16;
   1054 	sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
   1055 	sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
   1056 	sc->sc_channels = 1;
   1057 	sc->sc_ogain = 340;
   1058 	gus_commit_settings(sc);
   1059 
   1060 	/*
   1061 	 * We always put the left channel full left & right channel
   1062 	 * full right.
   1063 	 * For mono playback, we set up both voices playing the same buffer.
   1064 	 */
   1065 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT,
   1066 	    (unsigned char)GUS_VOICE_LEFT);
   1067 	SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   1068 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_LEFT);
   1069 
   1070 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT,
   1071 	    (unsigned char)GUS_VOICE_RIGHT);
   1072 	SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   1073 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_RIGHT);
   1074 
   1075 	/* set up buffer to hold the deinterleave, if necessary
   1076 	   for stereo output */
   1077 	sc->sc_deintr_buf = kmem_alloc(GUS_MAX_BLOCKSIZE>>1, KM_SLEEP);
   1078 
   1079 	/*
   1080 	 * Attach to the generic audio layer
   1081 	 */
   1082 
   1083 	audio_attach_mi(hwif,
   1084 	    HAS_CODEC(sc) ? (void *)&sc->sc_codec : (void *)sc, sc->sc_dev);
   1085 }
   1086 
   1087 int
   1088 gusopen(void *addr, int flags)
   1089 {
   1090 	struct gus_softc *sc;
   1091 
   1092 	sc = addr;
   1093 	DPRINTF(("gusopen() called\n"));
   1094 
   1095 	if (sc->sc_flags & GUS_OPEN)
   1096 		return EBUSY;
   1097 
   1098 	/*
   1099 	 * Some initialization
   1100 	 */
   1101 
   1102 	sc->sc_flags |= GUS_OPEN;
   1103 	sc->sc_dmabuf = 0;
   1104 	sc->sc_playbuf = -1;
   1105 	sc->sc_bufcnt = 0;
   1106 	sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
   1107 	sc->sc_voc[GUS_VOICE_LEFT].current_addr = GUS_MEM_OFFSET;
   1108 
   1109 	if (HAS_CODEC(sc)) {
   1110 		ad1848_open(&sc->sc_codec.sc_ad1848, flags);
   1111 		sc->sc_codec.sc_ad1848.mute[AD1848_AUX1_CHANNEL] = 0;
   1112 
   1113 		/* turn on DAC output */
   1114 		ad1848_mute_channel(&sc->sc_codec.sc_ad1848,
   1115 				    AD1848_AUX1_CHANNEL, 0);
   1116 		if (flags & FREAD) {
   1117 			sc->sc_codec.sc_ad1848.mute[AD1848_MONO_CHANNEL] = 0;
   1118 			ad1848_mute_channel(&sc->sc_codec.sc_ad1848,
   1119 					    AD1848_MONO_CHANNEL, 0);
   1120 		}
   1121 	} else if (flags & FREAD) {
   1122 		/* enable/unmute the microphone */
   1123 		if (HAS_MIXER(sc)) {
   1124 			gusics_mic_mute(&sc->sc_mixer, 0);
   1125 		} else
   1126 			gus_mic_ctl(sc, SPKR_ON);
   1127 	}
   1128 	if (sc->sc_nbufs == 0)
   1129 	    gus_round_blocksize(sc, GUS_BUFFER_MULTIPLE, /* default blksiz */
   1130 				0, NULL); /* XXX */
   1131 	return 0;
   1132 }
   1133 
   1134 int
   1135 gusmaxopen(void *addr, int flags)
   1136 {
   1137 	struct ad1848_isa_softc *ac;
   1138 
   1139 	ac = addr;
   1140 	return gusopen(ac->sc_ad1848.parent, flags);
   1141 }
   1142 
   1143 STATIC void
   1144 gus_deinterleave(struct gus_softc *sc, void *tbuf, int size)
   1145 {
   1146 	/* deinterleave the stereo data.  We can use sc->sc_deintr_buf
   1147 	   for scratch space. */
   1148 	int i;
   1149 
   1150 	if (size > sc->sc_blocksize) {
   1151 		printf("gus: deinterleave %d > %d\n", size, sc->sc_blocksize);
   1152 		return;
   1153 	} else if (size < sc->sc_blocksize) {
   1154 		DPRINTF(("gus: deinterleave %d < %d\n", size,
   1155 			sc->sc_blocksize));
   1156 	}
   1157 
   1158 	/*
   1159 	 * size is in bytes.
   1160 	 */
   1161 	if (sc->sc_precision == 16) {
   1162 		u_short *dei = sc->sc_deintr_buf;
   1163 		u_short *sbuf = tbuf;
   1164 		size >>= 1;		/* bytecnt to shortcnt */
   1165 		/* copy 2nd of each pair of samples to the staging area, while
   1166 		   compacting the 1st of each pair into the original area. */
   1167 		for (i = 0; i < size/2-1; i++)  {
   1168 			dei[i] = sbuf[i*2+1];
   1169 			sbuf[i+1] = sbuf[i*2+2];
   1170 		}
   1171 		/*
   1172 		 * this has copied one less sample than half of the
   1173 		 * buffer.  The first sample of the 1st stream was
   1174 		 * already in place and didn't need copying.
   1175 		 * Therefore, we've moved all of the 1st stream's
   1176 		 * samples into place.  We have one sample from 2nd
   1177 		 * stream in the last slot of original area, not
   1178 		 * copied to the staging area (But we don't need to!).
   1179 		 * Copy the remainder of the original stream into place.
   1180 		 */
   1181 		memcpy(&sbuf[size/2], dei, i * sizeof(short));
   1182 	} else {
   1183 		u_char *dei = sc->sc_deintr_buf;
   1184 		u_char *sbuf = tbuf;
   1185 		for (i = 0; i < size/2-1; i++)  {
   1186 			dei[i] = sbuf[i*2+1];
   1187 			sbuf[i+1] = sbuf[i*2+2];
   1188 		}
   1189 		memcpy(&sbuf[size/2], dei, i);
   1190 	}
   1191 }
   1192 
   1193 /*
   1194  * Actually output a buffer to the DSP chip
   1195  */
   1196 
   1197 int
   1198 gusmax_dma_output(void *addr, void *tbuf, int size,
   1199 		  void (*intr)(void *), void *arg)
   1200 {
   1201 	struct ad1848_isa_softc *ac;
   1202 
   1203 	ac = addr;
   1204 	return gus_dma_output(ac->sc_ad1848.parent, tbuf, size, intr, arg);
   1205 }
   1206 
   1207 /*
   1208  * called from interrupt handler.
   1209  */
   1210 void
   1211 stereo_dmaintr(void *arg)
   1212 {
   1213 	struct gus_softc *sc;
   1214 	struct stereo_dma_intr *sa;
   1215 
   1216 	DMAPRINTF(("stereo_dmaintr"));
   1217 	sc = arg;
   1218 	sa = &sc->sc_stereo;
   1219 
   1220 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   1221 
   1222 	/*
   1223 	 * Put other half in its place, then call the real interrupt routine :)
   1224 	 */
   1225 
   1226 	sc->sc_dmaoutintr = sa->intr;
   1227 	sc->sc_outarg = sa->arg;
   1228 
   1229 #ifdef GUSPLAYDEBUG
   1230 	if (gusstats) {
   1231 		microtime(&dmarecords[dmarecord_index].tv);
   1232 		dmarecords[dmarecord_index].gusaddr = sa->dmabuf;
   1233 		dmarecords[dmarecord_index].bsdaddr = sa->buffer;
   1234 		dmarecords[dmarecord_index].count = sa->size;
   1235 		dmarecords[dmarecord_index].channel = 1;
   1236 		dmarecords[dmarecord_index].direction = 1;
   1237 		dmarecord_index = (dmarecord_index + 1) % NDMARECS;
   1238 	}
   1239 #endif
   1240 
   1241 	gusdmaout(sc, sa->flags, sa->dmabuf, (void *) sa->buffer, sa->size);
   1242 
   1243 	sa->flags = 0;
   1244 	sa->dmabuf = 0;
   1245 	sa->buffer = 0;
   1246 	sa->size = 0;
   1247 	sa->intr = 0;
   1248 	sa->arg = 0;
   1249 }
   1250 
   1251 /*
   1252  * Start up DMA output to the card.
   1253  */
   1254 int
   1255 gus_dma_output(void *addr, void *tbuf, int size,
   1256 	       void (*intr)(void *), void *arg)
   1257 {
   1258 	struct gus_softc *sc;
   1259 	u_char *buffer;
   1260 	u_long boarddma;
   1261 	int flags;
   1262 
   1263 	DMAPRINTF(("gus_dma_output %d @ %p\n", size, tbuf));
   1264 	sc = addr;
   1265 	buffer = tbuf;
   1266 
   1267 	if (size != sc->sc_blocksize) {
   1268 		DPRINTF(("gus_dma_output reqsize %d not sc_blocksize %d\n",
   1269 		     size, sc->sc_blocksize));
   1270 		return EINVAL;
   1271 	}
   1272 
   1273 	flags = GUSMASK_DMA_WRITE;
   1274 	if (sc->sc_precision == 16)
   1275 		flags |= GUSMASK_DMA_DATA_SIZE;
   1276 	if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   1277 	    sc->sc_encoding == AUDIO_ENCODING_ALAW ||
   1278 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE ||
   1279 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE)
   1280 		flags |= GUSMASK_DMA_INVBIT;
   1281 
   1282 	if (sc->sc_channels == 2) {
   1283 		if (sc->sc_precision == 16) {
   1284 			if (size & 3) {
   1285 				DPRINTF(("gus_dma_output: unpaired 16bit samples"));
   1286 				size &= 3;
   1287 			}
   1288 		} else if (size & 1) {
   1289 			DPRINTF(("gus_dma_output: unpaired samples"));
   1290 			size &= 1;
   1291 		}
   1292 		if (size == 0)
   1293 			return 0;
   1294 
   1295 		gus_deinterleave(sc, (void *)buffer, size);
   1296 
   1297 		size >>= 1;
   1298 
   1299 		boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
   1300 
   1301 		sc->sc_stereo.intr = intr;
   1302 		sc->sc_stereo.arg = arg;
   1303 		sc->sc_stereo.size = size;
   1304 		sc->sc_stereo.dmabuf = boarddma + GUS_LEFT_RIGHT_OFFSET;
   1305 		sc->sc_stereo.buffer = buffer + size;
   1306 		sc->sc_stereo.flags = flags;
   1307 		if (gus_dostereo) {
   1308 			intr = stereo_dmaintr;
   1309 			arg = sc;
   1310 		}
   1311 	} else
   1312 		boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
   1313 
   1314 
   1315 	sc->sc_flags |= GUS_LOCKED;
   1316 	sc->sc_dmaoutintr = intr;
   1317 	sc->sc_outarg = arg;
   1318 
   1319 #ifdef GUSPLAYDEBUG
   1320 	if (gusstats) {
   1321 		microtime(&dmarecords[dmarecord_index].tv);
   1322 		dmarecords[dmarecord_index].gusaddr = boarddma;
   1323 		dmarecords[dmarecord_index].bsdaddr = buffer;
   1324 		dmarecords[dmarecord_index].count = size;
   1325 		dmarecords[dmarecord_index].channel = 0;
   1326 		dmarecords[dmarecord_index].direction = 1;
   1327 		dmarecord_index = (dmarecord_index + 1) % NDMARECS;
   1328 	}
   1329 #endif
   1330 
   1331 	gusdmaout(sc, flags, boarddma, (void *) buffer, size);
   1332 
   1333 	return 0;
   1334 }
   1335 
   1336 void
   1337 gusmax_close(void *addr)
   1338 {
   1339 	struct ad1848_isa_softc *ac;
   1340 	struct gus_softc *sc;
   1341 
   1342 	ac = addr;
   1343 	sc = ac->sc_ad1848.parent;
   1344 #if 0
   1345 	ac->mute[AD1848_AUX1_CHANNEL] = MUTE_ALL;
   1346 	ad1848_mute_channel(ac, MUTE_ALL); /* turn off DAC output */
   1347 #endif
   1348 	ad1848_close(&ac->sc_ad1848);
   1349 	gusclose(sc);
   1350 }
   1351 
   1352 /*
   1353  * Close out device stuff.
   1354  */
   1355 void
   1356 gusclose(void *addr)
   1357 {
   1358 	struct gus_softc *sc;
   1359 
   1360 	sc = addr;
   1361 	DPRINTF(("gus_close: sc=%p\n", sc));
   1362 
   1363 
   1364 /*	if (sc->sc_flags & GUS_DMAOUT_ACTIVE) */ {
   1365 		gus_halt_out_dma(sc);
   1366 	}
   1367 /*	if (sc->sc_flags & GUS_DMAIN_ACTIVE) */ {
   1368 		gus_halt_in_dma(sc);
   1369 	}
   1370 	sc->sc_flags &= ~(GUS_OPEN|GUS_LOCKED|GUS_DMAOUT_ACTIVE|GUS_DMAIN_ACTIVE);
   1371 
   1372 	/* turn off speaker, etc. */
   1373 
   1374 	/* make sure the voices shut up: */
   1375 	gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   1376 	gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1377 }
   1378 
   1379 /*
   1380  * Service interrupts.  Farm them off to helper routines if we are using the
   1381  * GUS for simple playback/record
   1382  */
   1383 
   1384 #ifdef DIAGNOSTIC
   1385 int gusintrcnt;
   1386 int gusdmaintrcnt;
   1387 int gusvocintrcnt;
   1388 #endif
   1389 
   1390 int
   1391 gusintr(void *arg)
   1392 {
   1393 	struct gus_softc *sc;
   1394 	bus_space_tag_t iot;
   1395 	bus_space_handle_t ioh1;
   1396 	bus_space_handle_t ioh2;
   1397 	unsigned char intr;
   1398 	int retval;
   1399 
   1400 	DPRINTF(("gusintr\n"));
   1401 	sc = arg;
   1402 	iot = sc->sc_iot;
   1403 	ioh1 = sc->sc_ioh1;
   1404 	ioh2 = sc->sc_ioh2;
   1405 	retval = 0;
   1406 #ifdef DIAGNOSTIC
   1407 	gusintrcnt++;
   1408 #endif
   1409 
   1410 	mutex_spin_enter(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   1411 
   1412 	if (HAS_CODEC(sc))
   1413 		retval = ad1848_isa_intr(&sc->sc_codec);
   1414 	if ((intr = bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS))
   1415 	    & GUSMASK_IRQ_DMATC) {
   1416 		DMAPRINTF(("gusintr DMA flags=%x\n", sc->sc_flags));
   1417 #ifdef DIAGNOSTIC
   1418 		gusdmaintrcnt++;
   1419 #endif
   1420 		retval += gus_dmaout_intr(sc);
   1421 		if (sc->sc_flags & GUS_DMAIN_ACTIVE) {
   1422 			SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   1423 			intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1424 			if (intr & GUSMASK_SAMPLE_DMATC) {
   1425 				retval += gus_dmain_intr(sc);
   1426 			}
   1427 		}
   1428 	}
   1429 	if (intr & (GUSMASK_IRQ_VOICE | GUSMASK_IRQ_VOLUME)) {
   1430 		DMAPRINTF(("gusintr voice flags=%x\n", sc->sc_flags));
   1431 #ifdef DIAGNOSTIC
   1432 		gusvocintrcnt++;
   1433 #endif
   1434 		retval += gus_voice_intr(sc);
   1435 	}
   1436 
   1437 	mutex_spin_exit(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   1438 
   1439 	return retval;
   1440 }
   1441 
   1442 int gus_bufcnt[GUS_MEM_FOR_BUFFERS / GUS_BUFFER_MULTIPLE];
   1443 int gus_restart;				/* how many restarts? */
   1444 int gus_stops;				/* how many times did voice stop? */
   1445 int gus_falsestops;			/* stopped but not done? */
   1446 int gus_continues;
   1447 
   1448 struct playcont {
   1449 	struct timeval tv;
   1450 	u_int playbuf;
   1451 	u_int dmabuf;
   1452 	u_char bufcnt;
   1453 	u_char vaction;
   1454 	u_char voccntl;
   1455 	u_char volcntl;
   1456 	u_long curaddr;
   1457 	u_long endaddr;
   1458 } playstats[NDMARECS];
   1459 
   1460 int playcntr;
   1461 
   1462 STATIC void
   1463 gus_dmaout_timeout(void *arg)
   1464 {
   1465 	struct gus_softc *sc;
   1466 	bus_space_tag_t iot;
   1467 	bus_space_handle_t ioh2;
   1468 
   1469 	sc = arg;
   1470 	iot = sc->sc_iot;
   1471 	ioh2 = sc->sc_ioh2;
   1472 	printf("%s: dmaout timeout\n", device_xname(sc->sc_dev));
   1473 
   1474 	/*
   1475 	 * Stop any DMA.
   1476 	 */
   1477 	mutex_spin_enter(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   1478 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   1479 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   1480 #if 0
   1481 	/* XXX we will dmadone below? */
   1482 	isa_dmaabort(device_parent(sc->sc_dev), sc->sc_playdrq);
   1483 #endif
   1484 
   1485 	gus_dmaout_dointr(sc);
   1486 	mutex_spin_exit(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   1487 }
   1488 
   1489 
   1490 /*
   1491  * Service DMA interrupts.  This routine will only get called if we're doing
   1492  * a DMA transfer for playback/record requests from the audio layer.
   1493  */
   1494 
   1495 STATIC int
   1496 gus_dmaout_intr(struct gus_softc *sc)
   1497 {
   1498 	bus_space_tag_t iot;
   1499 	bus_space_handle_t ioh2;
   1500 
   1501 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   1502 
   1503 	iot = sc->sc_iot;
   1504 	ioh2 = sc->sc_ioh2;
   1505 	/*
   1506 	 * If we got a DMA transfer complete from the GUS DRAM, then deal
   1507 	 * with it.
   1508 	 */
   1509 
   1510 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   1511 	if (bus_space_read_1(iot, ioh2, GUS_DATA_HIGH) & GUSMASK_DMA_IRQPEND) {
   1512 		callout_stop(&sc->sc_dmaout_ch);
   1513 		gus_dmaout_dointr(sc);
   1514 		return 1;
   1515 	}
   1516 	return 0;
   1517 }
   1518 
   1519 STATIC void
   1520 gus_dmaout_dointr(struct gus_softc *sc)
   1521 {
   1522 	bus_space_tag_t iot;
   1523 	bus_space_handle_t ioh2;
   1524 
   1525 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   1526 
   1527 	iot = sc->sc_iot;
   1528 	ioh2 = sc->sc_ioh2;
   1529 	/* sc->sc_dmaoutcnt - 1 because DMA controller counts from zero?. */
   1530 	isa_dmadone(sc->sc_ic, sc->sc_playdrq);
   1531 	sc->sc_flags &= ~GUS_DMAOUT_ACTIVE;  /* pending DMA is done */
   1532 	DMAPRINTF(("gus_dmaout_dointr %d @ %p\n", sc->sc_dmaoutcnt,
   1533 		   sc->sc_dmaoutaddr));
   1534 
   1535 	/*
   1536 	 * to prevent clicking, we need to copy last sample
   1537 	 * from last buffer to scratch area just before beginning of
   1538 	 * buffer.  However, if we're doing formats that are converted by
   1539 	 * the card during the DMA process, we need to pick up the converted
   1540 	 * byte rather than the one we have in memory.
   1541 	 */
   1542 	if (sc->sc_dmabuf == sc->sc_nbufs - 1) {
   1543 		int i;
   1544 		switch (sc->sc_encoding) {
   1545 		case AUDIO_ENCODING_SLINEAR_LE:
   1546 		case AUDIO_ENCODING_SLINEAR_BE:
   1547 			if (sc->sc_precision == 8)
   1548 				goto byte;
   1549 			/* we have the native format */
   1550 			for (i = 1; i <= 2; i++)
   1551 				guspoke(iot, ioh2, sc->sc_gusaddr -
   1552 					(sc->sc_nbufs - 1) * sc->sc_chanblocksize - i,
   1553 					sc->sc_dmaoutaddr[sc->sc_dmaoutcnt-i]);
   1554 			break;
   1555 		case AUDIO_ENCODING_ULINEAR_LE:
   1556 		case AUDIO_ENCODING_ULINEAR_BE:
   1557 			guspoke(iot, ioh2, sc->sc_gusaddr -
   1558 				(sc->sc_nbufs - 1) * sc->sc_chanblocksize - 2,
   1559 				guspeek(iot, ioh2,
   1560 					sc->sc_gusaddr + sc->sc_chanblocksize - 2));
   1561 		case AUDIO_ENCODING_ALAW:
   1562 		case AUDIO_ENCODING_ULAW:
   1563 		byte:
   1564 			/* we need to fetch the translated byte, then stuff it. */
   1565 			guspoke(iot, ioh2, sc->sc_gusaddr -
   1566 				(sc->sc_nbufs - 1) * sc->sc_chanblocksize - 1,
   1567 				guspeek(iot, ioh2,
   1568 					sc->sc_gusaddr + sc->sc_chanblocksize - 1));
   1569 			break;
   1570 		}
   1571 	}
   1572 	/*
   1573 	 * If this is the first half of stereo, "ignore" this one
   1574 	 * and copy out the second half.
   1575 	 */
   1576 	if (sc->sc_dmaoutintr == stereo_dmaintr) {
   1577 		(*sc->sc_dmaoutintr)(sc->sc_outarg);
   1578 		return;
   1579 	}
   1580 	/*
   1581 	 * If the voice is stopped, then start it.  Reset the loop
   1582 	 * and roll bits.  Call the audio layer routine, since if
   1583 	 * we're starting a stopped voice, that means that the next
   1584 	 * buffer can be filled
   1585 	 */
   1586 
   1587 	sc->sc_flags &= ~GUS_LOCKED;
   1588 	if (sc->sc_voc[GUS_VOICE_LEFT].voccntl &
   1589 	    GUSMASK_VOICE_STOPPED) {
   1590 		if (sc->sc_flags & GUS_PLAYING) {
   1591 			printf("%s: playing yet stopped?\n", device_xname(sc->sc_dev));
   1592 		}
   1593 		sc->sc_bufcnt++; /* another yet to be played */
   1594 		gus_start_playing(sc, sc->sc_dmabuf);
   1595 		gus_restart++;
   1596 	} else {
   1597 		/*
   1598 		 * set the sound action based on which buffer we
   1599 		 * just transferred.  If we just transferred buffer 0
   1600 		 * we want the sound to loop when it gets to the nth
   1601 		 * buffer; if we just transferred
   1602 		 * any other buffer, we want the sound to roll over
   1603 		 * at least one more time.  The voice interrupt
   1604 		 * handlers will take care of accounting &
   1605 		 * setting control bits if it's not caught up to us
   1606 		 * yet.
   1607 		 */
   1608 		if (++sc->sc_bufcnt == 2) {
   1609 			/*
   1610 			 * XXX
   1611 			 * If we're too slow in reaction here,
   1612 			 * the voice could be just approaching the
   1613 			 * end of its run.  It should be set to stop,
   1614 			 * so these adjustments might not DTRT.
   1615 			 */
   1616 			if (sc->sc_dmabuf == 0 &&
   1617 			    sc->sc_playbuf == sc->sc_nbufs - 1) {
   1618 				/* player is just at the last tbuf, we're at the
   1619 				   first.  Turn on looping, turn off rolling. */
   1620 				sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
   1621 				sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~GUSMASK_VOICE_ROLL;
   1622 				playstats[playcntr].vaction = 3;
   1623 			} else {
   1624 				/* player is at previous tbuf:
   1625 				   turn on rolling, turn off looping */
   1626 				sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1627 				sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
   1628 				playstats[playcntr].vaction = 4;
   1629 			}
   1630 #ifdef GUSPLAYDEBUG
   1631 			if (gusstats) {
   1632 				microtime(&playstats[playcntr].tv);
   1633 				playstats[playcntr].endaddr
   1634 				    = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
   1635 				playstats[playcntr].voccntl
   1636 				    = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
   1637 				playstats[playcntr].volcntl
   1638 				    = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
   1639 				playstats[playcntr].playbuf = sc->sc_playbuf;
   1640 				playstats[playcntr].dmabuf = sc->sc_dmabuf;
   1641 				playstats[playcntr].bufcnt = sc->sc_bufcnt;
   1642 				playstats[playcntr].curaddr
   1643 				    = gus_get_curaddr(sc, GUS_VOICE_LEFT);
   1644 				playcntr = (playcntr + 1) % NDMARECS;
   1645 			}
   1646 #endif
   1647 			bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
   1648 			SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1649 			bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   1650 					  sc->sc_voc[GUS_VOICE_LEFT].voccntl);
   1651 			SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1652 			bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   1653 					  sc->sc_voc[GUS_VOICE_LEFT].volcntl);
   1654 		}
   1655 	}
   1656 	gus_bufcnt[sc->sc_bufcnt-1]++;
   1657 	/*
   1658 	 * flip to the next DMA buffer
   1659 	 */
   1660 
   1661 	sc->sc_dmabuf = (sc->sc_dmabuf + 1) % sc->sc_nbufs;
   1662 	/*
   1663 	 * See comments below about DMA admission control strategy.
   1664 	 * We can call the upper level here if we have an
   1665 	 * idle buffer (not currently playing) to DMA into.
   1666 	 */
   1667 	if (sc->sc_dmaoutintr && sc->sc_bufcnt < sc->sc_nbufs) {
   1668 		/* clean out to prevent double calls */
   1669 		void (*pfunc)(void *);
   1670 		void *arg;
   1671 
   1672 		pfunc = sc->sc_dmaoutintr;
   1673 		arg = sc->sc_outarg;
   1674 		sc->sc_outarg = 0;
   1675 		sc->sc_dmaoutintr = 0;
   1676 		(*pfunc)(arg);
   1677 	}
   1678 }
   1679 
   1680 /*
   1681  * Service voice interrupts
   1682  */
   1683 
   1684 STATIC int
   1685 gus_voice_intr(struct gus_softc *sc)
   1686 {
   1687 	bus_space_tag_t iot;
   1688 	bus_space_handle_t ioh2;
   1689 	int ignore, voice, rval;
   1690 	unsigned char intr, status;
   1691 
   1692 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   1693 
   1694 	iot = sc->sc_iot;
   1695 	ioh2 = sc->sc_ioh2;
   1696 	ignore = 0;
   1697 	rval = 0;
   1698 	/*
   1699 	 * The point of this may not be obvious at first.  A voice can
   1700 	 * interrupt more than once; according to the GUS SDK we are supposed
   1701 	 * to ignore multiple interrupts for the same voice.
   1702 	 */
   1703 
   1704 	while (1) {
   1705 		SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   1706 		intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1707 
   1708 		if ((intr & (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
   1709 			== (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
   1710 			/*
   1711 			 * No more interrupts, time to return
   1712 			 */
   1713 			return rval;
   1714 
   1715 		if ((intr & GUSMASK_WIRQ_VOICE) == 0) {
   1716 
   1717 			/*
   1718 			 * We've got a voice interrupt.  Ignore previous
   1719 			 * interrupts by the same voice.
   1720 			 */
   1721 
   1722 			rval = 1;
   1723 			voice = intr & GUSMASK_WIRQ_VOICEMASK;
   1724 
   1725 			if ((1 << voice) & ignore)
   1726 				break;
   1727 
   1728 			ignore |= 1 << voice;
   1729 
   1730 			/*
   1731 			 * If the voice is stopped, then force it to stop
   1732 			 * (this stops it from continuously generating IRQs)
   1733 			 */
   1734 
   1735 			SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL+0x80);
   1736 			status = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1737 			if (status & GUSMASK_VOICE_STOPPED) {
   1738 				if (voice != GUS_VOICE_LEFT) {
   1739 					DMAPRINTF(("%s: spurious voice %d "
   1740 					    "stop?\n",
   1741 					    device_xname(sc->sc_dev), voice));
   1742 					gus_stop_voice(sc, voice, 0);
   1743 					continue;
   1744 				}
   1745 				gus_stop_voice(sc, voice, 1);
   1746 				/* also kill right voice */
   1747 				gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1748 				sc->sc_bufcnt--; /* it finished a buffer */
   1749 				if (sc->sc_bufcnt > 0) {
   1750 					/*
   1751 					 * probably a race to get here: the
   1752 					 * voice stopped while the DMA code was
   1753 					 * just trying to get the next buffer
   1754 					 * in place.  Start the voice again.
   1755 					 */
   1756 					printf("%s: stopped voice not drained?"
   1757 					    " (%x)\n",
   1758 					    device_xname(sc->sc_dev),
   1759 					    sc->sc_bufcnt);
   1760 					gus_falsestops++;
   1761 
   1762 					sc->sc_playbuf = (sc->sc_playbuf + 1)
   1763 					    % sc->sc_nbufs;
   1764 					gus_start_playing(sc, sc->sc_playbuf);
   1765 				} else if (sc->sc_bufcnt < 0) {
   1766 					panic("%s: negative bufcnt in stopped "
   1767 					    "voice", device_xname(sc->sc_dev));
   1768 				} else {
   1769 					sc->sc_playbuf = -1; /* none are active */
   1770 					gus_stops++;
   1771 				}
   1772 				/* fall through to callback and admit another
   1773 				   buffer.... */
   1774 			} else if (sc->sc_bufcnt != 0) {
   1775 				/*
   1776 				 * This should always be taken if the voice
   1777 				 * is not stopped.
   1778 				 */
   1779 				gus_continues++;
   1780 				if (gus_continue_playing(sc, voice)) {
   1781 					/*
   1782 					 * we shouldn't have continued--active
   1783 					 * DMA is in the way in the ring, for
   1784 					 * some as-yet undebugged reason.
   1785 					 */
   1786 					gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   1787 					/* also kill right voice */
   1788 					gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1789 					sc->sc_playbuf = -1;
   1790 					gus_stops++;
   1791 				}
   1792 			}
   1793 			/*
   1794 			 * call the upper level to send on down another
   1795 			 * block. We do admission rate control as follows:
   1796 			 *
   1797 			 * When starting up output (in the first N
   1798 			 * blocks), call the upper layer after the DMA is
   1799 			 * complete (see above in gus_dmaout_intr()).
   1800 			 *
   1801 			 * When output is already in progress and we have
   1802 			 * no more GUS buffers to use for DMA, the DMA
   1803 			 * output routines do not call the upper layer.
   1804 			 * Instead, we call the DMA completion routine
   1805 			 * here, after the voice interrupts indicating
   1806 			 * that it's finished with a buffer.
   1807 			 *
   1808 			 * However, don't call anything here if the DMA
   1809 			 * output flag is set, (which shouldn't happen)
   1810 			 * because we'll squish somebody else's DMA if
   1811 			 * that's the case.  When DMA is done, it will
   1812 			 * call back if there is a spare buffer.
   1813 			 */
   1814 			if (sc->sc_dmaoutintr && !(sc->sc_flags & GUS_LOCKED)) {
   1815 				if (sc->sc_dmaoutintr == stereo_dmaintr)
   1816 					printf("gusdmaout botch?\n");
   1817 				else {
   1818 					/* clean out to avoid double calls */
   1819 					void (*pfunc)(void *);
   1820 					void *arg;
   1821 
   1822 					pfunc = sc->sc_dmaoutintr;
   1823 					arg = sc->sc_outarg;
   1824 					sc->sc_outarg = 0;
   1825 					sc->sc_dmaoutintr = 0;
   1826 					(*pfunc)(arg);
   1827 				}
   1828 			}
   1829 		}
   1830 
   1831 		/*
   1832 		 * Ignore other interrupts for now
   1833 		 */
   1834 	}
   1835 	return 0;
   1836 }
   1837 
   1838 /*
   1839  * Start the voices playing, with buffer BUFNO.
   1840  */
   1841 STATIC void
   1842 gus_start_playing(struct gus_softc *sc, int bufno)
   1843 {
   1844 	bus_space_tag_t iot;
   1845 	bus_space_handle_t ioh2;
   1846 
   1847 	iot = sc->sc_iot;
   1848 	ioh2 = sc->sc_ioh2;
   1849 	/*
   1850 	 * Loop or roll if we have buffers ready.
   1851 	 */
   1852 
   1853 	if (sc->sc_bufcnt == 1) {
   1854 		sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~(GUSMASK_LOOP_ENABLE);
   1855 		sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1856 	} else {
   1857 		if (bufno == sc->sc_nbufs - 1) {
   1858 			sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
   1859 			sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1860 		} else {
   1861 			sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1862 			sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
   1863 		}
   1864 	}
   1865 
   1866 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
   1867 
   1868 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1869 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].voccntl);
   1870 
   1871 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1872 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].volcntl);
   1873 
   1874 	sc->sc_voc[GUS_VOICE_LEFT].current_addr =
   1875 	    GUS_MEM_OFFSET + sc->sc_chanblocksize * bufno;
   1876 	sc->sc_voc[GUS_VOICE_LEFT].end_addr =
   1877 	    sc->sc_voc[GUS_VOICE_LEFT].current_addr + sc->sc_chanblocksize - 1;
   1878 	sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
   1879 	    sc->sc_voc[GUS_VOICE_LEFT].current_addr +
   1880 	    (gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0);
   1881 	/*
   1882 	 * set up right channel to just loop forever, no interrupts,
   1883 	 * starting at the buffer we just filled.  We'll feed it data
   1884 	 * at the same time as left channel.
   1885 	 */
   1886 	sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_LOOP_ENABLE;
   1887 	sc->sc_voc[GUS_VOICE_RIGHT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1888 
   1889 #ifdef GUSPLAYDEBUG
   1890 	if (gusstats) {
   1891 		microtime(&playstats[playcntr].tv);
   1892 		playstats[playcntr].curaddr = sc->sc_voc[GUS_VOICE_LEFT].current_addr;
   1893 
   1894 		playstats[playcntr].voccntl = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
   1895 		playstats[playcntr].volcntl = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
   1896 		playstats[playcntr].endaddr = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
   1897 		playstats[playcntr].playbuf = bufno;
   1898 		playstats[playcntr].dmabuf = sc->sc_dmabuf;
   1899 		playstats[playcntr].bufcnt = sc->sc_bufcnt;
   1900 		playstats[playcntr].vaction = 5;
   1901 		playcntr = (playcntr + 1) % NDMARECS;
   1902 	}
   1903 #endif
   1904 
   1905 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_RIGHT);
   1906 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1907 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].voccntl);
   1908 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1909 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].volcntl);
   1910 
   1911 	gus_start_voice(sc, GUS_VOICE_RIGHT, 0);
   1912 	gus_start_voice(sc, GUS_VOICE_LEFT, 1);
   1913 	if (sc->sc_playbuf == -1)
   1914 		/* mark start of playing */
   1915 		sc->sc_playbuf = bufno;
   1916 }
   1917 
   1918 STATIC int
   1919 gus_continue_playing(struct gus_softc *sc, int voice)
   1920 {
   1921 	bus_space_tag_t iot;
   1922 	bus_space_handle_t ioh2;
   1923 
   1924 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   1925 
   1926 	/*
   1927 	 * stop this voice from interrupting while we work.
   1928 	 */
   1929 	iot = sc->sc_iot;
   1930 	ioh2 = sc->sc_ioh2;
   1931 
   1932 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1933 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   1934 	    sc->sc_voc[voice].voccntl & ~(GUSMASK_VOICE_IRQ));
   1935 
   1936 	/*
   1937 	 * update playbuf to point to the buffer the hardware just started
   1938 	 * playing
   1939 	 */
   1940 	sc->sc_playbuf = (sc->sc_playbuf + 1) % sc->sc_nbufs;
   1941 
   1942 	/*
   1943 	 * account for buffer just finished
   1944 	 */
   1945 	if (--sc->sc_bufcnt == 0) {
   1946 		DPRINTF(("gus: bufcnt 0 on continuing voice?\n"));
   1947 	}
   1948 	if (sc->sc_playbuf == sc->sc_dmabuf && (sc->sc_flags & GUS_LOCKED)) {
   1949 		aprint_error_dev(sc->sc_dev, "continue into active dmabuf?\n");
   1950 		return 1;
   1951 	}
   1952 
   1953 	/*
   1954 	 * Select the end of the buffer based on the currently active
   1955 	 * buffer, [plus extra contiguous buffers (if ready)].
   1956 	 */
   1957 
   1958 	/*
   1959 	 * set endpoint at end of buffer we just started playing.
   1960 	 *
   1961 	 * The total gets -1 because end addrs are one less than you might
   1962 	 * think (the end_addr is the address of the last sample to play)
   1963 	 */
   1964 	gus_set_endaddr(sc, voice, GUS_MEM_OFFSET +
   1965 			sc->sc_chanblocksize * (sc->sc_playbuf + 1) - 1);
   1966 
   1967 	if (sc->sc_bufcnt < 2) {
   1968 		/*
   1969 		 * Clear out the loop and roll flags, and rotate the currently
   1970 		 * playing buffer.  That way, if we don't manage to get more
   1971 		 * data before this buffer finishes, we'll just stop.
   1972 		 */
   1973 		sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1974 		sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
   1975 		playstats[playcntr].vaction = 0;
   1976 	} else {
   1977 		/*
   1978 		 * We have some buffers to play.  set LOOP if we're on the
   1979 		 * last buffer in the ring, otherwise set ROLL.
   1980 		 */
   1981 		if (sc->sc_playbuf == sc->sc_nbufs - 1) {
   1982 			sc->sc_voc[voice].voccntl |= GUSMASK_LOOP_ENABLE;
   1983 			sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
   1984 			playstats[playcntr].vaction = 1;
   1985 		} else {
   1986 			sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1987 			sc->sc_voc[voice].volcntl |= GUSMASK_VOICE_ROLL;
   1988 			playstats[playcntr].vaction = 2;
   1989 		}
   1990 	}
   1991 #ifdef GUSPLAYDEBUG
   1992 	if (gusstats) {
   1993 		microtime(&playstats[playcntr].tv);
   1994 		playstats[playcntr].curaddr = gus_get_curaddr(sc, voice);
   1995 
   1996 		playstats[playcntr].voccntl = sc->sc_voc[voice].voccntl;
   1997 		playstats[playcntr].volcntl = sc->sc_voc[voice].volcntl;
   1998 		playstats[playcntr].endaddr = sc->sc_voc[voice].end_addr;
   1999 		playstats[playcntr].playbuf = sc->sc_playbuf;
   2000 		playstats[playcntr].dmabuf = sc->sc_dmabuf;
   2001 		playstats[playcntr].bufcnt = sc->sc_bufcnt;
   2002 		playcntr = (playcntr + 1) % NDMARECS;
   2003 	}
   2004 #endif
   2005 
   2006 	/*
   2007 	 * (re-)set voice parameters.  This will reenable interrupts from this
   2008 	 * voice.
   2009 	 */
   2010 
   2011 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2012 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2013 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2014 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].volcntl);
   2015 	return 0;
   2016 }
   2017 
   2018 /*
   2019  * Send/receive data into GUS's DRAM using DMA.
   2020  */
   2021 STATIC void
   2022 gusdmaout(struct gus_softc *sc, int flags,
   2023 	  u_long gusaddr, void *buffaddr, int length)
   2024 {
   2025 	unsigned char c;
   2026 	bus_space_tag_t iot;
   2027 	bus_space_handle_t ioh2;
   2028 
   2029 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2030 
   2031 	DMAPRINTF(("gusdmaout flags=%x scflags=%x\n", flags, sc->sc_flags));
   2032 	c = (unsigned char) flags;
   2033 	iot = sc->sc_iot;
   2034 	ioh2 = sc->sc_ioh2;
   2035 
   2036 	sc->sc_gusaddr = gusaddr;
   2037 
   2038 	/*
   2039 	 * If we're using a 16 bit DMA channel, we have to jump through some
   2040 	 * extra hoops; this includes translating the DRAM address a bit
   2041 	 */
   2042 
   2043 	if (sc->sc_playdrq >= 4) {
   2044 		c |= GUSMASK_DMA_WIDTH;
   2045 		gusaddr = convert_to_16bit(gusaddr);
   2046 	}
   2047 
   2048 	/*
   2049 	 * Add flag bits that we always set - fast DMA, enable IRQ
   2050 	 */
   2051 
   2052 	c |= GUSMASK_DMA_ENABLE | GUSMASK_DMA_R0 | GUSMASK_DMA_IRQ;
   2053 
   2054 	/*
   2055 	 * Make sure the GUS _isn't_ setup for DMA
   2056 	 */
   2057 
   2058 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2059 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   2060 
   2061 	/*
   2062 	 * Tell the PC DMA controller to start doing DMA
   2063 	 */
   2064 
   2065 	sc->sc_dmaoutaddr = (u_char *) buffaddr;
   2066 	sc->sc_dmaoutcnt = length;
   2067 	isa_dmastart(sc->sc_ic, sc->sc_playdrq, buffaddr, length,
   2068 	    NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
   2069 
   2070 	/*
   2071 	 * Set up DMA address - use the upper 16 bits ONLY
   2072 	 */
   2073 
   2074 	sc->sc_flags |= GUS_DMAOUT_ACTIVE;
   2075 
   2076 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_START);
   2077 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (int) (gusaddr >> 4));
   2078 
   2079 	/*
   2080 	 * Tell the GUS to start doing DMA
   2081 	 */
   2082 
   2083 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2084 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, c);
   2085 
   2086 	/*
   2087 	 * XXX If we don't finish in one second, give up...
   2088 	 */
   2089 	callout_reset(&sc->sc_dmaout_ch, hz, gus_dmaout_timeout, sc);
   2090 }
   2091 
   2092 /*
   2093  * Start a voice playing on the GUS.
   2094  */
   2095 
   2096 STATIC void
   2097 gus_start_voice(struct gus_softc *sc, int voice, int intrs)
   2098 {
   2099 	bus_space_tag_t iot;
   2100 	bus_space_handle_t ioh2;
   2101 	u_long start;
   2102 	u_long current;
   2103 	u_long end;
   2104 
   2105 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2106 
   2107 	iot = sc->sc_iot;
   2108 	ioh2 = sc->sc_ioh2;
   2109 	/*
   2110 	 * Pick all the values for the voice out of the gus_voice struct
   2111 	 * and use those to program the voice
   2112 	 */
   2113 
   2114 	start = sc->sc_voc[voice].start_addr;
   2115 	current = sc->sc_voc[voice].current_addr;
   2116 	end = sc->sc_voc[voice].end_addr;
   2117 
   2118 	/*
   2119 	 * If we're using 16 bit data, mangle the addresses a bit
   2120 	 */
   2121 
   2122 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16) {
   2123 		/* -1 on start so that we get onto sample boundary--other
   2124 		 * code always sets it for 1-byte rollover protection */
   2125 		start = convert_to_16bit(start-1);
   2126 		current = convert_to_16bit(current);
   2127 		end = convert_to_16bit(end);
   2128 	}
   2129 
   2130 	/*
   2131 	 * Select the voice we want to use, and program the data addresses
   2132 	 */
   2133 
   2134 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2135 
   2136 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
   2137 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(start));
   2138 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
   2139 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(start));
   2140 
   2141 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2142 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(current));
   2143 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2144 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(current));
   2145 
   2146 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2147 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(end));
   2148 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2149 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(end));
   2150 
   2151 	/*
   2152 	 * (maybe) enable interrupts, disable voice stopping
   2153 	 */
   2154 
   2155 	if (intrs) {
   2156 		sc->sc_flags |= GUS_PLAYING; /* playing is about to start */
   2157 		sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_IRQ;
   2158 		DMAPRINTF(("gus voice playing=%x\n", sc->sc_flags));
   2159 	} else
   2160 		sc->sc_voc[voice].voccntl &= ~GUSMASK_VOICE_IRQ;
   2161 	sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_STOPPED |
   2162 	    GUSMASK_STOP_VOICE);
   2163 
   2164 	/*
   2165 	 * Tell the GUS about it.  Note that we're doing volume ramping here
   2166 	 * from 0 up to the set volume to help reduce clicks.
   2167 	 */
   2168 
   2169 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2170 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2171 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2172 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2173 	    sc->sc_voc[voice].current_volume >> 4);
   2174 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2175 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x00);
   2176 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
   2177 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 63);
   2178 
   2179 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2180 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2181 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2182 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2183 	delay(50);
   2184 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2185 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2186 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2187 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2188 
   2189 }
   2190 
   2191 /*
   2192  * Stop a given voice.
   2193  */
   2194 STATIC void
   2195 gus_stop_voice(struct gus_softc *sc, int voice, int intrs_too)
   2196 {
   2197 	bus_space_tag_t iot;
   2198 	bus_space_handle_t ioh2;
   2199 
   2200 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2201 
   2202 	iot = sc->sc_iot;
   2203 	ioh2 = sc->sc_ioh2;
   2204 	sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_STOPPED |
   2205 	    GUSMASK_STOP_VOICE;
   2206 	if (intrs_too) {
   2207 		sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_IRQ);
   2208 		/* no more DMA to do */
   2209 		sc->sc_flags &= ~GUS_PLAYING;
   2210 	}
   2211 	DMAPRINTF(("gusintr voice notplaying=%x\n", sc->sc_flags));
   2212 
   2213 	guspoke(iot, ioh2, 0L, 0);
   2214 
   2215 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2216 
   2217 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2218 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2219 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2220 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2221 	delay(100);
   2222 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2223 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2224 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2225 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2226 
   2227 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2228 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2229 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2230 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2231 
   2232 }
   2233 
   2234 
   2235 /*
   2236  * Set the volume of a given voice.
   2237  */
   2238 STATIC void
   2239 gus_set_volume(struct gus_softc *sc, int voice, int volume)
   2240 {
   2241 	bus_space_tag_t iot;
   2242 	bus_space_handle_t ioh2;
   2243 	unsigned int gusvol;
   2244 
   2245 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2246 
   2247 	iot = sc->sc_iot;
   2248 	ioh2 = sc->sc_ioh2;
   2249 	gusvol = gus_log_volumes[volume < 512 ? volume : 511];
   2250 
   2251 	sc->sc_voc[voice].current_volume = gusvol;
   2252 
   2253 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2254 
   2255 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2256 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2257 	    (unsigned char)(gusvol >> 4));
   2258 
   2259 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2260 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2261 	    (unsigned char)(gusvol >> 4));
   2262 
   2263 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2264 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
   2265 	delay(500);
   2266 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
   2267 
   2268 }
   2269 
   2270 /*
   2271  * Interface to the audio layer.
   2272  */
   2273 
   2274 int
   2275 gusmax_set_params(void *addr, int setmode, int usemode, audio_params_t *p,
   2276 		  audio_params_t *r, stream_filter_list_t *pfil,
   2277 		  stream_filter_list_t *rfil)
   2278 {
   2279 	struct ad1848_isa_softc *ac;
   2280 	struct gus_softc *sc;
   2281 	int error;
   2282 
   2283 	ac = addr;
   2284 	sc = ac->sc_ad1848.parent;
   2285 	error = ad1848_set_params(ac, setmode, usemode, p, r, pfil, rfil);
   2286 	if (error)
   2287 		return error;
   2288 	/*
   2289 	 * ad1848_set_params() sets a filter for
   2290 	 *  SLINEAR_LE 8, SLINEAR_BE 16, ULINEAR_LE 16, ULINEAR_BE 16.
   2291 	 * gus_set_params() sets a filter for
   2292 	 *  ULAW, ALAW, ULINEAR_BE (16), SLINEAR_BE (16)
   2293 	 */
   2294 	error = gus_set_params(sc, setmode, usemode, p, r, pfil, rfil);
   2295 	return error;
   2296 }
   2297 
   2298 int
   2299 gus_set_params(void *addr,int setmode, int usemode, audio_params_t *p,
   2300 	       audio_params_t *r, stream_filter_list_t *pfil,
   2301 	       stream_filter_list_t *rfil)
   2302 {
   2303 	audio_params_t hw;
   2304 	struct gus_softc *sc;
   2305 
   2306 	sc = addr;
   2307 	switch (p->encoding) {
   2308 	case AUDIO_ENCODING_ULAW:
   2309 	case AUDIO_ENCODING_ALAW:
   2310 	case AUDIO_ENCODING_SLINEAR_LE:
   2311 	case AUDIO_ENCODING_ULINEAR_LE:
   2312 	case AUDIO_ENCODING_SLINEAR_BE:
   2313 	case AUDIO_ENCODING_ULINEAR_BE:
   2314 		break;
   2315 	default:
   2316 		return EINVAL;
   2317 	}
   2318 
   2319 	mutex_spin_enter(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   2320 
   2321 	if (p->precision == 8) {
   2322 		sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_DATA_SIZE16;
   2323 		sc->sc_voc[GUS_VOICE_RIGHT].voccntl &= ~GUSMASK_DATA_SIZE16;
   2324 	} else {
   2325 		sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
   2326 		sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
   2327 	}
   2328 
   2329 	sc->sc_encoding = p->encoding;
   2330 	sc->sc_precision = p->precision;
   2331 	sc->sc_channels = p->channels;
   2332 
   2333 	if (p->sample_rate > gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES])
   2334 		p->sample_rate = gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES];
   2335 	if (setmode & AUMODE_RECORD)
   2336 		sc->sc_irate = p->sample_rate;
   2337 	if (setmode & AUMODE_PLAY)
   2338 		sc->sc_orate = p->sample_rate;
   2339 
   2340 	mutex_spin_exit(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   2341 
   2342 	hw = *p;
   2343 	/* clear req_size before setting a filter to avoid confliction
   2344 	 * in gusmax_set_params() */
   2345 	switch (p->encoding) {
   2346 	case AUDIO_ENCODING_ULAW:
   2347 		hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
   2348 		pfil->req_size = rfil->req_size = 0;
   2349 		pfil->append(pfil, mulaw_to_linear8, &hw);
   2350 		rfil->append(rfil, linear8_to_mulaw, &hw);
   2351 		break;
   2352 	case AUDIO_ENCODING_ALAW:
   2353 		hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
   2354 		pfil->req_size = rfil->req_size = 0;
   2355 		pfil->append(pfil, alaw_to_linear8, &hw);
   2356 		rfil->append(rfil, linear8_to_alaw, &hw);
   2357 		break;
   2358 	case AUDIO_ENCODING_ULINEAR_BE:
   2359 		hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
   2360 		pfil->req_size = rfil->req_size = 0;
   2361 		pfil->append(pfil, swap_bytes, &hw);
   2362 		rfil->append(rfil, swap_bytes, &hw);
   2363 		break;
   2364 	case AUDIO_ENCODING_SLINEAR_BE:
   2365 		hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
   2366 		pfil->req_size = rfil->req_size = 0;
   2367 		pfil->append(pfil, swap_bytes, &hw);
   2368 		rfil->append(rfil, swap_bytes, &hw);
   2369 		break;
   2370 	}
   2371 
   2372 	return 0;
   2373 }
   2374 
   2375 /*
   2376  * Interface to the audio layer - set the blocksize to the correct number
   2377  * of units
   2378  */
   2379 
   2380 int
   2381 gusmax_round_blocksize(void *addr, int blocksize,
   2382 		       int mode, const audio_params_t *param)
   2383 {
   2384 	struct ad1848_isa_softc *ac;
   2385 	struct gus_softc *sc;
   2386 
   2387 	ac = addr;
   2388 	sc = ac->sc_ad1848.parent;
   2389 /*	blocksize = ad1848_round_blocksize(ac, blocksize, mode, param);*/
   2390 	return gus_round_blocksize(sc, blocksize, mode, param);
   2391 }
   2392 
   2393 int
   2394 gus_round_blocksize(void *addr, int blocksize,
   2395     int mode, const audio_params_t *param)
   2396 {
   2397 	struct gus_softc *sc;
   2398 
   2399 	DPRINTF(("gus_round_blocksize called\n"));
   2400 	sc = addr;
   2401 
   2402 	if ((sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   2403 	     sc->sc_encoding == AUDIO_ENCODING_ALAW) && blocksize > 32768)
   2404 		blocksize = 32768;
   2405 	else if (blocksize > 65536)
   2406 		blocksize = 65536;
   2407 
   2408 	if ((blocksize % GUS_BUFFER_MULTIPLE) != 0)
   2409 		blocksize = (blocksize / GUS_BUFFER_MULTIPLE + 1) *
   2410 			GUS_BUFFER_MULTIPLE;
   2411 
   2412 	sc->sc_blocksize = blocksize;
   2413 	/* multi-buffering not quite working yet. */
   2414 	sc->sc_nbufs = /*GUS_MEM_FOR_BUFFERS / blocksize*/ 2;
   2415 
   2416 	gus_set_chan_addrs(sc);
   2417 
   2418 	return blocksize;
   2419 }
   2420 
   2421 int
   2422 gus_get_out_gain(void *addr)
   2423 {
   2424 	struct gus_softc *sc;
   2425 
   2426 	DPRINTF(("gus_get_out_gain called\n"));
   2427 	sc = (struct gus_softc *) addr;
   2428 	return sc->sc_ogain / 2;
   2429 }
   2430 
   2431 STATIC inline void
   2432 gus_set_voices(struct gus_softc *sc, int voices)
   2433 {
   2434 	bus_space_tag_t iot;
   2435 	bus_space_handle_t ioh2;
   2436 
   2437 	iot = sc->sc_iot;
   2438 	ioh2 = sc->sc_ioh2;
   2439 	/*
   2440 	 * Select the active number of voices
   2441 	 */
   2442 	SELECT_GUS_REG(iot, ioh2, GUSREG_ACTIVE_VOICES);
   2443 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (voices-1) | 0xc0);
   2444 
   2445 	sc->sc_voices = voices;
   2446 }
   2447 
   2448 /*
   2449  * Actually set the settings of various values on the card
   2450  */
   2451 int
   2452 gusmax_commit_settings(void *addr)
   2453 {
   2454 	struct ad1848_isa_softc *ac;
   2455 	struct gus_softc *sc;
   2456 	int error;
   2457 
   2458 	ac = addr;
   2459 	sc = ac->sc_ad1848.parent;
   2460 	error = ad1848_commit_settings(ac);
   2461 	if (error)
   2462 		return error;
   2463 	return gus_commit_settings(sc);
   2464 }
   2465 
   2466 /*
   2467  * Commit the settings.
   2468  */
   2469 int
   2470 gus_commit_settings(void *addr)
   2471 {
   2472 	struct gus_softc *sc;
   2473 
   2474 	sc = addr;
   2475 	DPRINTF(("gus_commit_settings called (gain = %d)\n",sc->sc_ogain));
   2476 
   2477 	mutex_spin_enter(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   2478 	gus_set_recrate(sc, sc->sc_irate);
   2479 	gus_set_volume(sc, GUS_VOICE_LEFT, sc->sc_ogain);
   2480 	gus_set_volume(sc, GUS_VOICE_RIGHT, sc->sc_ogain);
   2481 	gus_set_samprate(sc, GUS_VOICE_LEFT, sc->sc_orate);
   2482 	gus_set_samprate(sc, GUS_VOICE_RIGHT, sc->sc_orate);
   2483 	mutex_spin_exit(&sc->sc_codec.sc_ad1848.sc_intr_lock);
   2484 
   2485 	gus_set_chan_addrs(sc);
   2486 
   2487 	return 0;
   2488 }
   2489 
   2490 STATIC void
   2491 gus_set_chan_addrs(struct gus_softc *sc)
   2492 {
   2493 
   2494 	/*
   2495 	 * We use sc_nbufs * blocksize bytes of storage in the on-board GUS
   2496 	 * ram.
   2497 	 * For mono, each of the sc_nbufs buffers is DMA'd to in one chunk,
   2498 	 * and both left & right channels play the same buffer.
   2499 	 *
   2500 	 * For stereo, each channel gets a contiguous half of the memory,
   2501 	 * and each has sc_nbufs buffers of size blocksize/2.
   2502 	 * Stereo data are deinterleaved in main memory before the DMA out
   2503 	 * routines are called to queue the output.
   2504 	 *
   2505 	 * The blocksize per channel is kept in sc_chanblocksize.
   2506 	 */
   2507 	if (sc->sc_channels == 2)
   2508 	    sc->sc_chanblocksize = sc->sc_blocksize/2;
   2509 	else
   2510 	    sc->sc_chanblocksize = sc->sc_blocksize;
   2511 
   2512 	sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
   2513 	sc->sc_voc[GUS_VOICE_RIGHT].start_addr =
   2514 	    (gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0)
   2515 	      + GUS_MEM_OFFSET - 1;
   2516 	sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
   2517 	    sc->sc_voc[GUS_VOICE_RIGHT].start_addr + 1;
   2518 	sc->sc_voc[GUS_VOICE_RIGHT].end_addr =
   2519 	    sc->sc_voc[GUS_VOICE_RIGHT].start_addr +
   2520 	    sc->sc_nbufs * sc->sc_chanblocksize;
   2521 
   2522 }
   2523 
   2524 /*
   2525  * Set the sample rate of the given voice.
   2526  */
   2527 STATIC void
   2528 gus_set_samprate(struct gus_softc *sc, int voice, int freq)
   2529 {
   2530 	bus_space_tag_t iot;
   2531 	bus_space_handle_t ioh2;
   2532 	unsigned int fc;
   2533 	u_long temp, f;
   2534 
   2535 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2536 
   2537 	iot = sc->sc_iot;
   2538 	ioh2 = sc->sc_ioh2;
   2539 	f = (u_long) freq;
   2540 	/*
   2541 	 * calculate fc based on the number of active voices;
   2542 	 * we need to use longs to preserve enough bits
   2543 	 */
   2544 
   2545 	temp = (u_long) gus_max_frequency[sc->sc_voices-GUS_MIN_VOICES];
   2546 
   2547 	fc = (unsigned int)(((f << 9L) + (temp >> 1L)) / temp);
   2548 	fc <<= 1;
   2549 
   2550 	/*
   2551 	 * Program the voice frequency, and set it in the voice data record
   2552 	 */
   2553 
   2554 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2555 	SELECT_GUS_REG(iot, ioh2, GUSREG_FREQ_CONTROL);
   2556 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, fc);
   2557 
   2558 	sc->sc_voc[voice].rate = freq;
   2559 
   2560 }
   2561 
   2562 /*
   2563  * Set the sample rate of the recording frequency.  Formula is from the GUS
   2564  * SDK.
   2565  */
   2566 STATIC void
   2567 gus_set_recrate(struct gus_softc *sc, u_long rate)
   2568 {
   2569 	bus_space_tag_t iot;
   2570 	bus_space_handle_t ioh2;
   2571 	u_char realrate;
   2572 
   2573 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2574 
   2575 	DPRINTF(("gus_set_recrate %lu\n", rate));
   2576 	iot = sc->sc_iot;
   2577 	ioh2 = sc->sc_ioh2;
   2578 
   2579 #if 0
   2580 	realrate = 9878400/(16*(rate+2)); /* formula from GUS docs */
   2581 #endif
   2582 	realrate = (9878400 >> 4)/rate - 2; /* formula from code, sigh. */
   2583 
   2584 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_FREQ);
   2585 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, realrate);
   2586 }
   2587 
   2588 /*
   2589  * Interface to the audio layer - turn the output on or off.  Note that some
   2590  * of these bits are flipped in the register
   2591  */
   2592 
   2593 int
   2594 gusmax_speaker_ctl(void *addr, int newstate)
   2595 {
   2596 	struct ad1848_isa_softc *sc;
   2597 
   2598 	sc = addr;
   2599 	return gus_speaker_ctl(sc->sc_ad1848.parent, newstate);
   2600 }
   2601 
   2602 int
   2603 gus_speaker_ctl(void *addr, int newstate)
   2604 {
   2605 	struct gus_softc *sc;
   2606 	bus_space_tag_t iot;
   2607 	bus_space_handle_t ioh1;
   2608 
   2609 	sc = (struct gus_softc *) addr;
   2610 	iot = sc->sc_iot;
   2611 	ioh1 = sc->sc_ioh1;
   2612 	/* Line out bit is flipped: 0 enables, 1 disables */
   2613 	if ((newstate == SPKR_ON) &&
   2614 	    (sc->sc_mixcontrol & GUSMASK_LINE_OUT)) {
   2615 		sc->sc_mixcontrol &= ~GUSMASK_LINE_OUT;
   2616 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2617 	}
   2618 	if ((newstate == SPKR_OFF) &&
   2619 	    (sc->sc_mixcontrol & GUSMASK_LINE_OUT) == 0) {
   2620 		sc->sc_mixcontrol |= GUSMASK_LINE_OUT;
   2621 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2622 	}
   2623 
   2624 	return 0;
   2625 }
   2626 
   2627 STATIC int
   2628 gus_linein_ctl(void *addr, int newstate)
   2629 {
   2630 	struct gus_softc *sc;
   2631 	bus_space_tag_t iot;
   2632 	bus_space_handle_t ioh1;
   2633 
   2634 	sc = (struct gus_softc *) addr;
   2635 	iot = sc->sc_iot;
   2636 	ioh1 = sc->sc_ioh1;
   2637 	/* Line in bit is flipped: 0 enables, 1 disables */
   2638 	if ((newstate == SPKR_ON) &&
   2639 	    (sc->sc_mixcontrol & GUSMASK_LINE_IN)) {
   2640 		sc->sc_mixcontrol &= ~GUSMASK_LINE_IN;
   2641 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2642 	}
   2643 	if ((newstate == SPKR_OFF) &&
   2644 	    (sc->sc_mixcontrol & GUSMASK_LINE_IN) == 0) {
   2645 		sc->sc_mixcontrol |= GUSMASK_LINE_IN;
   2646 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2647 	}
   2648 
   2649 	return 0;
   2650 }
   2651 
   2652 STATIC int
   2653 gus_mic_ctl(void *addr, int newstate)
   2654 {
   2655 	struct gus_softc *sc;
   2656 	bus_space_tag_t iot;
   2657 	bus_space_handle_t ioh1;
   2658 
   2659 	sc = (struct gus_softc *) addr;
   2660 	iot = sc->sc_iot;
   2661 	ioh1 = sc->sc_ioh1;
   2662 	/* Mic bit is normal: 1 enables, 0 disables */
   2663 	if ((newstate == SPKR_ON) &&
   2664 	    (sc->sc_mixcontrol & GUSMASK_MIC_IN) == 0) {
   2665 		sc->sc_mixcontrol |= GUSMASK_MIC_IN;
   2666 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2667 	}
   2668 	if ((newstate == SPKR_OFF) &&
   2669 	    (sc->sc_mixcontrol & GUSMASK_MIC_IN)) {
   2670 		sc->sc_mixcontrol &= ~GUSMASK_MIC_IN;
   2671 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2672 	}
   2673 
   2674 	return 0;
   2675 }
   2676 
   2677 /*
   2678  * Set the end address of a give voice.
   2679  */
   2680 STATIC void
   2681 gus_set_endaddr(struct gus_softc *sc, int voice, u_long addr)
   2682 {
   2683 	bus_space_tag_t iot;
   2684 	bus_space_handle_t ioh2;
   2685 
   2686 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2687 
   2688 	iot = sc->sc_iot;
   2689 	ioh2 = sc->sc_ioh2;
   2690 	sc->sc_voc[voice].end_addr = addr;
   2691 
   2692 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2693 		addr = convert_to_16bit(addr);
   2694 
   2695 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2696 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
   2697 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2698 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
   2699 
   2700 }
   2701 
   2702 #ifdef GUSPLAYDEBUG
   2703 /*
   2704  * Set current address.
   2705  */
   2706 STATIC void
   2707 gus_set_curaddr(struct gus_softc *sc, int voice, u_long addr)
   2708 {
   2709 	bus_space_tag_t iot;
   2710 	bus_space_handle_t ioh2;
   2711 
   2712 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2713 
   2714 	iot = sc->sc_iot;
   2715 	ioh2 = sc->sc_ioh2;
   2716 	sc->sc_voc[voice].current_addr = addr;
   2717 
   2718 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2719 		addr = convert_to_16bit(addr);
   2720 
   2721 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2722 
   2723 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2724 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
   2725 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2726 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
   2727 
   2728 }
   2729 
   2730 /*
   2731  * Get current GUS playback address.
   2732  */
   2733 STATIC u_long
   2734 gus_get_curaddr(struct gus_softc *sc, int voice)
   2735 {
   2736 	bus_space_tag_t iot;
   2737 	bus_space_handle_t ioh2;
   2738 	u_long addr;
   2739 
   2740 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2741 
   2742 	iot = sc->sc_iot;
   2743 	ioh2 = sc->sc_ioh2;
   2744 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2745 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH|GUSREG_READ);
   2746 	addr = (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) & 0x1fff) << 7;
   2747 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW|GUSREG_READ);
   2748 	addr |= (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) >> 9L) & 0x7f;
   2749 
   2750 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2751 	    addr = (addr & 0xc0000) | ((addr & 0x1ffff) << 1); /* undo 16-bit change */
   2752 	DPRINTF(("gus voice %d curaddr %ld end_addr %ld\n",
   2753 		 voice, addr, sc->sc_voc[voice].end_addr));
   2754 	/* XXX sanity check the address? */
   2755 
   2756 	return addr;
   2757 }
   2758 #endif
   2759 
   2760 /*
   2761  * Convert an address value to a "16 bit" value - why this is necessary I
   2762  * have NO idea
   2763  */
   2764 
   2765 STATIC u_long
   2766 convert_to_16bit(u_long address)
   2767 {
   2768 	u_long old_address;
   2769 
   2770 	old_address = address;
   2771 	address >>= 1;
   2772 	address &= 0x0001ffffL;
   2773 	address |= (old_address & 0x000c0000L);
   2774 
   2775 	return address;
   2776 }
   2777 
   2778 /*
   2779  * Write a value into the GUS's DRAM
   2780  */
   2781 STATIC void
   2782 guspoke(bus_space_tag_t iot, bus_space_handle_t ioh2,
   2783 	long address, unsigned char value)
   2784 {
   2785 
   2786 	/*
   2787 	 * Select the DRAM address
   2788 	 */
   2789 
   2790 	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
   2791 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW,
   2792 	    (unsigned int)(address & 0xffff));
   2793 	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
   2794 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2795 	    (unsigned char)((address >> 16) & 0xff));
   2796 
   2797 	/*
   2798 	 * Actually write the data
   2799 	 */
   2800 
   2801 	bus_space_write_1(iot, ioh2, GUS_DRAM_DATA, value);
   2802 }
   2803 
   2804 /*
   2805  * Read a value from the GUS's DRAM
   2806  */
   2807 STATIC unsigned char
   2808 guspeek(bus_space_tag_t iot, bus_space_handle_t ioh2, u_long address)
   2809 {
   2810 
   2811 	/*
   2812 	 * Select the DRAM address
   2813 	 */
   2814 
   2815 	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
   2816 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW,
   2817 	    (unsigned int)(address & 0xffff));
   2818 	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
   2819 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2820 	    (unsigned char)((address >> 16) & 0xff));
   2821 
   2822 	/*
   2823 	 * Read in the data from the board
   2824 	 */
   2825 
   2826 	return (unsigned char) bus_space_read_1(iot, ioh2, GUS_DRAM_DATA);
   2827 }
   2828 
   2829 /*
   2830  * Reset the Gravis UltraSound card, completely
   2831  */
   2832 STATIC void
   2833 gusreset(struct gus_softc *sc, int voices)
   2834 {
   2835 	bus_space_tag_t iot;
   2836 	bus_space_handle_t ioh1;
   2837 	bus_space_handle_t ioh2;
   2838 	bus_space_handle_t ioh4;
   2839 	int i;
   2840 
   2841 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   2842 
   2843 	iot = sc->sc_iot;
   2844 	ioh1 = sc->sc_ioh1;
   2845 	ioh2 = sc->sc_ioh2;
   2846 	ioh4 = sc->sc_ioh4;
   2847 
   2848 	/*
   2849 	 * Reset the GF1 chip
   2850 	 */
   2851 
   2852 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2853 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2854 
   2855 	delay(500);
   2856 
   2857 	/*
   2858 	 * Release reset
   2859 	 */
   2860 
   2861 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2862 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
   2863 
   2864 	delay(500);
   2865 
   2866 	/*
   2867 	 * Reset MIDI port as well
   2868 	 */
   2869 
   2870 	bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, MIDI_RESET);
   2871 
   2872 	delay(500);
   2873 
   2874 	bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, 0x00);
   2875 
   2876 	/*
   2877 	 * Clear interrupts
   2878 	 */
   2879 
   2880 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2881 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2882 	SELECT_GUS_REG(iot, ioh2, GUSREG_TIMER_CONTROL);
   2883 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2884 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2885 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2886 
   2887 	gus_set_voices(sc, voices);
   2888 
   2889 	bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
   2890 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2891 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2892 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2893 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2894 	SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   2895 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2896 
   2897 	/*
   2898 	 * Reset voice specific information
   2899 	 */
   2900 
   2901 	for(i = 0; i < voices; i++) {
   2902 		bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) i);
   2903 
   2904 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2905 
   2906 		sc->sc_voc[i].voccntl = GUSMASK_VOICE_STOPPED |
   2907 			GUSMASK_STOP_VOICE;
   2908 
   2909 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].voccntl);
   2910 
   2911 		sc->sc_voc[i].volcntl = GUSMASK_VOLUME_STOPPED |
   2912 				GUSMASK_STOP_VOLUME;
   2913 
   2914 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2915 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].volcntl);
   2916 
   2917 		delay(100);
   2918 
   2919 		gus_set_samprate(sc, i, 8000);
   2920 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
   2921 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2922 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
   2923 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2924 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2925 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2926 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2927 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2928 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
   2929 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x01);
   2930 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2931 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x10);
   2932 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2933 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0xe0);
   2934 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2935 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2936 
   2937 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2938 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2939 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2940 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2941 		SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   2942 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x07);
   2943 	}
   2944 
   2945 	/*
   2946 	 * Clear out any pending IRQs
   2947 	 */
   2948 
   2949 	bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
   2950 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2951 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2952 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2953 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2954 	SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   2955 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2956 
   2957 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2958 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   2959 	    GUSMASK_MASTER_RESET | GUSMASK_DAC_ENABLE | GUSMASK_IRQ_ENABLE);
   2960 }
   2961 
   2962 
   2963 STATIC int
   2964 gus_init_cs4231(struct gus_softc *sc)
   2965 {
   2966 	bus_space_tag_t iot;
   2967 	bus_space_handle_t ioh1;
   2968 	int port;
   2969 	u_char ctrl;
   2970 
   2971 	iot = sc->sc_iot;
   2972 	ioh1 = sc->sc_ioh1;
   2973 	port = sc->sc_iobase;
   2974 	ctrl = (port & 0xf0) >> 4;	/* set port address middle nibble */
   2975 	/*
   2976 	 * The codec is a bit weird--swapped DMA channels.
   2977 	 */
   2978 	ctrl |= GUS_MAX_CODEC_ENABLE;
   2979 	if (sc->sc_playdrq >= 4)
   2980 		ctrl |= GUS_MAX_RECCHAN16;
   2981 	if (sc->sc_recdrq >= 4)
   2982 		ctrl |= GUS_MAX_PLAYCHAN16;
   2983 
   2984 	bus_space_write_1(iot, ioh1, GUS_MAX_CTRL, ctrl);
   2985 
   2986 	sc->sc_codec.sc_ad1848.sc_iot = sc->sc_iot;
   2987 	sc->sc_codec.sc_iobase = port+GUS_MAX_CODEC_BASE;
   2988 
   2989 	if (ad1848_isa_mapprobe(&sc->sc_codec, sc->sc_codec.sc_iobase) == 0) {
   2990 		sc->sc_flags &= ~GUS_CODEC_INSTALLED;
   2991 		return 0;
   2992 	} else {
   2993 		struct ad1848_volume vol = {AUDIO_MAX_GAIN, AUDIO_MAX_GAIN};
   2994 		sc->sc_flags |= GUS_CODEC_INSTALLED;
   2995 		sc->sc_codec.sc_ad1848.parent = sc;
   2996 		sc->sc_codec.sc_playdrq = sc->sc_recdrq;
   2997 		sc->sc_codec.sc_play_maxsize = sc->sc_req_maxsize;
   2998 		sc->sc_codec.sc_recdrq = sc->sc_playdrq;
   2999 		sc->sc_codec.sc_rec_maxsize = sc->sc_play_maxsize;
   3000 		/* enable line in and mic in the GUS mixer; the codec chip
   3001 		   will do the real mixing for them. */
   3002 		sc->sc_mixcontrol &= ~GUSMASK_LINE_IN; /* 0 enables. */
   3003 		sc->sc_mixcontrol |= GUSMASK_MIC_IN; /* 1 enables. */
   3004 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL,
   3005 		    sc->sc_mixcontrol);
   3006 
   3007 		ad1848_isa_attach(&sc->sc_codec);
   3008 		/* turn on pre-MUX microphone gain. */
   3009 		ad1848_set_mic_gain(&sc->sc_codec.sc_ad1848, &vol);
   3010 
   3011 		return 1;
   3012 	}
   3013 }
   3014 
   3015 
   3016 /*
   3017  * Return info about the audio device, for the AUDIO_GETINFO ioctl
   3018  */
   3019 int
   3020 gus_getdev(void *addr, struct audio_device *dev)
   3021 {
   3022 
   3023 	*dev = gus_device;
   3024 	return 0;
   3025 }
   3026 
   3027 /*
   3028  * stubs (XXX)
   3029  */
   3030 
   3031 int
   3032 gus_set_in_gain(void *addr, u_int gain,
   3033     u_char balance)
   3034 {
   3035 
   3036 	DPRINTF(("gus_set_in_gain called\n"));
   3037 	return 0;
   3038 }
   3039 
   3040 int
   3041 gus_get_in_gain(void *addr)
   3042 {
   3043 
   3044 	DPRINTF(("gus_get_in_gain called\n"));
   3045 	return 0;
   3046 }
   3047 
   3048 int
   3049 gusmax_dma_input(void *addr, void *tbuf, int size,
   3050 		 void (*callback)(void *), void *arg)
   3051 {
   3052 	struct ad1848_isa_softc *sc;
   3053 
   3054 	sc = addr;
   3055 	return gus_dma_input(sc->sc_ad1848.parent, tbuf, size, callback, arg);
   3056 }
   3057 
   3058 /*
   3059  * Start sampling the input source into the requested DMA buffer.
   3060  * Called from top-half or from interrupt handler.
   3061  */
   3062 int
   3063 gus_dma_input(void *addr, void *tbuf, int size,
   3064 	      void (*callback)(void *), void *arg)
   3065 {
   3066 	struct gus_softc *sc;
   3067 	bus_space_tag_t iot;
   3068 	bus_space_handle_t ioh2;
   3069 	u_char dmac;
   3070 
   3071 	DMAPRINTF(("gus_dma_input called\n"));
   3072 	sc = addr;
   3073 	iot = sc->sc_iot;
   3074 	ioh2 = sc->sc_ioh2;
   3075 
   3076 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   3077 
   3078 	/*
   3079 	 * Sample SIZE bytes of data from the card, into buffer at BUF.
   3080 	 */
   3081 
   3082 	if (sc->sc_precision == 16)
   3083 		return EINVAL;		/* XXX */
   3084 
   3085 	/* set DMA modes */
   3086 	dmac = GUSMASK_SAMPLE_IRQ|GUSMASK_SAMPLE_START;
   3087 	if (sc->sc_recdrq >= 4)
   3088 		dmac |= GUSMASK_SAMPLE_DATA16;
   3089 	if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   3090 	    sc->sc_encoding == AUDIO_ENCODING_ALAW ||
   3091 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE ||
   3092 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE)
   3093 		dmac |= GUSMASK_SAMPLE_INVBIT;
   3094 	if (sc->sc_channels == 2)
   3095 		dmac |= GUSMASK_SAMPLE_STEREO;
   3096 	isa_dmastart(sc->sc_ic, sc->sc_recdrq, tbuf, size,
   3097 	    NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
   3098 
   3099 	DMAPRINTF(("gus_dma_input isa_dmastarted\n"));
   3100 	sc->sc_flags |= GUS_DMAIN_ACTIVE;
   3101 	sc->sc_dmainintr = callback;
   3102 	sc->sc_inarg = arg;
   3103 	sc->sc_dmaincnt = size;
   3104 	sc->sc_dmainaddr = tbuf;
   3105 
   3106 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   3107 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, dmac);	/* Go! */
   3108 
   3109 
   3110 	DMAPRINTF(("gus_dma_input returning\n"));
   3111 
   3112 	return 0;
   3113 }
   3114 
   3115 STATIC int
   3116 gus_dmain_intr(struct gus_softc *sc)
   3117 {
   3118 	void (*callback)(void *);
   3119 	void *arg;
   3120 
   3121 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   3122 
   3123 	DMAPRINTF(("gus_dmain_intr called\n"));
   3124 	if (sc->sc_dmainintr) {
   3125 		isa_dmadone(sc->sc_ic, sc->sc_recdrq);
   3126 		callback = sc->sc_dmainintr;
   3127 		arg = sc->sc_inarg;
   3128 
   3129 		sc->sc_dmainaddr = 0;
   3130 		sc->sc_dmaincnt = 0;
   3131 		sc->sc_dmainintr = 0;
   3132 		sc->sc_inarg = 0;
   3133 
   3134 		sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
   3135 		DMAPRINTF(("calling dmain_intr callback %p(%p)\n", callback,
   3136 		    arg));
   3137 		(*callback)(arg);
   3138 		return 1;
   3139 	} else {
   3140 		DMAPRINTF(("gus_dmain_intr false?\n"));
   3141 		return 0;			/* XXX ??? */
   3142 	}
   3143 }
   3144 
   3145 int
   3146 gusmax_halt_out_dma(void *addr)
   3147 {
   3148 	struct ad1848_isa_softc *sc;
   3149 
   3150 	sc = addr;
   3151 	return gus_halt_out_dma(sc->sc_ad1848.parent);
   3152 }
   3153 
   3154 
   3155 int
   3156 gusmax_halt_in_dma(void *addr)
   3157 {
   3158 	struct ad1848_isa_softc *sc;
   3159 
   3160 	sc = addr;
   3161 	return gus_halt_in_dma(sc->sc_ad1848.parent);
   3162 }
   3163 
   3164 /*
   3165  * Stop any DMA output.
   3166  */
   3167 int
   3168 gus_halt_out_dma(void *addr)
   3169 {
   3170 	struct gus_softc *sc;
   3171 	bus_space_tag_t iot;
   3172 	bus_space_handle_t ioh2;
   3173 
   3174 	DMAPRINTF(("gus_halt_out_dma called\n"));
   3175 	sc = addr;
   3176 	iot = sc->sc_iot;
   3177 	ioh2 = sc->sc_ioh2;
   3178 
   3179 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   3180 
   3181 	/*
   3182 	 * Make sure the GUS _isn't_ setup for DMA
   3183 	 */
   3184 
   3185 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   3186 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   3187 
   3188 	callout_stop(&sc->sc_dmaout_ch);
   3189 	isa_dmaabort(sc->sc_ic, sc->sc_playdrq);
   3190 	sc->sc_flags &= ~(GUS_DMAOUT_ACTIVE|GUS_LOCKED);
   3191 	sc->sc_dmaoutintr = 0;
   3192 	sc->sc_outarg = 0;
   3193 	sc->sc_dmaoutaddr = 0;
   3194 	sc->sc_dmaoutcnt = 0;
   3195 	sc->sc_dmabuf = 0;
   3196 	sc->sc_bufcnt = 0;
   3197 	sc->sc_playbuf = -1;
   3198 	/* also stop playing */
   3199 	gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   3200 	gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   3201 
   3202 	return 0;
   3203 }
   3204 
   3205 /*
   3206  * Stop any DMA output.
   3207  */
   3208 int
   3209 gus_halt_in_dma(void *addr)
   3210 {
   3211 	struct gus_softc *sc;
   3212 	bus_space_tag_t iot;
   3213 	bus_space_handle_t ioh2;
   3214 
   3215 	DMAPRINTF(("gus_halt_in_dma called\n"));
   3216 	sc = addr;
   3217 	iot = sc->sc_iot;
   3218 	ioh2 = sc->sc_ioh2;
   3219 
   3220 	KASSERT(mutex_owned(&sc->sc_codec.sc_ad1848.sc_intr_lock));
   3221 
   3222 	/*
   3223 	 * Make sure the GUS _isn't_ setup for DMA
   3224 	 */
   3225 
   3226 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   3227 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   3228 	    bus_space_read_1(iot, ioh2, GUS_DATA_HIGH)
   3229 	    & ~(GUSMASK_SAMPLE_START|GUSMASK_SAMPLE_IRQ));
   3230 
   3231 	isa_dmaabort(sc->sc_ic, sc->sc_recdrq);
   3232 	sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
   3233 	sc->sc_dmainintr = 0;
   3234 	sc->sc_inarg = 0;
   3235 	sc->sc_dmainaddr = 0;
   3236 	sc->sc_dmaincnt = 0;
   3237 
   3238 	return 0;
   3239 }
   3240 
   3241 
   3242 static const ad1848_devmap_t gusmapping[] = {
   3243 	{ GUSMAX_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
   3244 	{ GUSMAX_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
   3245 	{ GUSMAX_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
   3246 	{ GUSMAX_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
   3247 	{ GUSMAX_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
   3248 	{ GUSMAX_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
   3249 	{ GUSMAX_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
   3250 	{ GUSMAX_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
   3251 	{ GUSMAX_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
   3252 	{ GUSMAX_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
   3253 	{ GUSMAX_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
   3254 	{ GUSMAX_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
   3255 	{ GUSMAX_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
   3256 };
   3257 
   3258 static const int nummap = sizeof(gusmapping) / sizeof(gusmapping[0]);
   3259 
   3260 STATIC int
   3261 gusmax_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   3262 {
   3263 	struct ad1848_isa_softc *ac;
   3264 	struct gus_softc *sc;
   3265 	struct ad1848_volume vol;
   3266 	int error;
   3267 
   3268 	ac = addr;
   3269 	sc = ac->sc_ad1848.parent;
   3270 	error = ad1848_mixer_get_port(&ac->sc_ad1848, gusmapping, nummap, cp);
   3271 	if (error != ENXIO)
   3272 		return error;
   3273 
   3274 	error = EINVAL;
   3275 
   3276 	switch (cp->dev) {
   3277 	case GUSMAX_SPEAKER_LVL:	/* fake speaker for mute naming */
   3278 		if (cp->type == AUDIO_MIXER_VALUE) {
   3279 			if (sc->sc_mixcontrol & GUSMASK_LINE_OUT)
   3280 				vol.left = vol.right = AUDIO_MAX_GAIN;
   3281 			else
   3282 				vol.left = vol.right = AUDIO_MIN_GAIN;
   3283 			error = 0;
   3284 			ad1848_from_vol(cp, &vol);
   3285 		}
   3286 		break;
   3287 
   3288 	case GUSMAX_SPEAKER_MUTE:
   3289 		if (cp->type == AUDIO_MIXER_ENUM) {
   3290 			cp->un.ord = sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
   3291 			error = 0;
   3292 		}
   3293 		break;
   3294 	default:
   3295 		error = ENXIO;
   3296 		break;
   3297 	}
   3298 
   3299 	return error;
   3300 }
   3301 
   3302 STATIC int
   3303 gus_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   3304 {
   3305 	struct gus_softc *sc;
   3306 	struct ics2101_softc *ic;
   3307 	struct ad1848_volume vol;
   3308 	int error;
   3309 
   3310 	DPRINTF(("gus_mixer_get_port: dev=%d type=%d\n", cp->dev, cp->type));
   3311 	sc = addr;
   3312 	ic = &sc->sc_mixer;
   3313 	error = EINVAL;
   3314 
   3315 	if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
   3316 		return ENXIO;
   3317 
   3318 	switch (cp->dev) {
   3319 
   3320 	case GUSICS_MIC_IN_MUTE:	/* Microphone */
   3321 		if (cp->type == AUDIO_MIXER_ENUM) {
   3322 			if (HAS_MIXER(sc))
   3323 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
   3324 			else
   3325 				cp->un.ord =
   3326 				    sc->sc_mixcontrol & GUSMASK_MIC_IN ? 0 : 1;
   3327 			error = 0;
   3328 		}
   3329 		break;
   3330 
   3331 	case GUSICS_LINE_IN_MUTE:
   3332 		if (cp->type == AUDIO_MIXER_ENUM) {
   3333 			if (HAS_MIXER(sc))
   3334 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
   3335 			else
   3336 				cp->un.ord =
   3337 				    sc->sc_mixcontrol & GUSMASK_LINE_IN ? 1 : 0;
   3338 			error = 0;
   3339 		}
   3340 		break;
   3341 
   3342 	case GUSICS_MASTER_MUTE:
   3343 		if (cp->type == AUDIO_MIXER_ENUM) {
   3344 			if (HAS_MIXER(sc))
   3345 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
   3346 			else
   3347 				cp->un.ord =
   3348 				    sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
   3349 			error = 0;
   3350 		}
   3351 		break;
   3352 
   3353 	case GUSICS_DAC_MUTE:
   3354 		if (cp->type == AUDIO_MIXER_ENUM) {
   3355 			cp->un.ord = ic->sc_mute[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
   3356 			error = 0;
   3357 		}
   3358 		break;
   3359 
   3360 	case GUSICS_CD_MUTE:
   3361 		if (cp->type == AUDIO_MIXER_ENUM) {
   3362 			cp->un.ord = ic->sc_mute[GUSMIX_CHAN_CD][ICSMIX_LEFT];
   3363 			error = 0;
   3364 		}
   3365 		break;
   3366 
   3367 	case GUSICS_MASTER_LVL:
   3368 		if (cp->type == AUDIO_MIXER_VALUE) {
   3369 			vol.left = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
   3370 			vol.right = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_RIGHT];
   3371 			if (ad1848_from_vol(cp, &vol))
   3372 				error = 0;
   3373 		}
   3374 		break;
   3375 
   3376 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   3377 		if (cp->type == AUDIO_MIXER_VALUE) {
   3378 			vol.left = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
   3379 			vol.right = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_RIGHT];
   3380 			if (ad1848_from_vol(cp, &vol))
   3381 				error = 0;
   3382 		}
   3383 		break;
   3384 
   3385 	case GUSICS_LINE_IN_LVL:	/* line in */
   3386 		if (cp->type == AUDIO_MIXER_VALUE) {
   3387 			vol.left = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
   3388 			vol.right = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_RIGHT];
   3389 			if (ad1848_from_vol(cp, &vol))
   3390 				error = 0;
   3391 		}
   3392 		break;
   3393 
   3394 
   3395 	case GUSICS_CD_LVL:
   3396 		if (cp->type == AUDIO_MIXER_VALUE) {
   3397 			vol.left = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_LEFT];
   3398 			vol.right = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_RIGHT];
   3399 			if (ad1848_from_vol(cp, &vol))
   3400 				error = 0;
   3401 		}
   3402 		break;
   3403 
   3404 	case GUSICS_DAC_LVL:		/* dac out */
   3405 		if (cp->type == AUDIO_MIXER_VALUE) {
   3406 			vol.left = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
   3407 			vol.right = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_RIGHT];
   3408 			if (ad1848_from_vol(cp, &vol))
   3409 				error = 0;
   3410 		}
   3411 		break;
   3412 
   3413 
   3414 	case GUSICS_RECORD_SOURCE:
   3415 		if (cp->type == AUDIO_MIXER_ENUM) {
   3416 			/* Can't set anything else useful, sigh. */
   3417 			 cp->un.ord = 0;
   3418 		}
   3419 		break;
   3420 
   3421 	default:
   3422 		return ENXIO;
   3423 		/*NOTREACHED*/
   3424 	}
   3425 	return error;
   3426 }
   3427 
   3428 STATIC void
   3429 gusics_master_mute(struct ics2101_softc *ic, int mute)
   3430 {
   3431 
   3432 	ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_LEFT, mute);
   3433 	ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_RIGHT, mute);
   3434 }
   3435 
   3436 STATIC void
   3437 gusics_mic_mute(struct ics2101_softc *ic, int mute)
   3438 {
   3439 
   3440 	ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_LEFT, mute);
   3441 	ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_RIGHT, mute);
   3442 }
   3443 
   3444 STATIC void
   3445 gusics_linein_mute(struct ics2101_softc *ic, int mute)
   3446 {
   3447 
   3448 	ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_LEFT, mute);
   3449 	ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_RIGHT, mute);
   3450 }
   3451 
   3452 STATIC void
   3453 gusics_cd_mute(struct ics2101_softc *ic, int mute)
   3454 {
   3455 
   3456 	ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_LEFT, mute);
   3457 	ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_RIGHT, mute);
   3458 }
   3459 
   3460 STATIC void
   3461 gusics_dac_mute(struct ics2101_softc *ic, int mute)
   3462 {
   3463 
   3464 	ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_LEFT, mute);
   3465 	ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_RIGHT, mute);
   3466 }
   3467 
   3468 STATIC int
   3469 gusmax_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   3470 {
   3471 	struct ad1848_isa_softc *ac;
   3472 	struct gus_softc *sc;
   3473 	struct ad1848_volume vol;
   3474 	int error;
   3475 
   3476 	ac = addr;
   3477 	sc = ac->sc_ad1848.parent;
   3478 	error = ad1848_mixer_set_port(&ac->sc_ad1848, gusmapping, nummap, cp);
   3479 	if (error != ENXIO)
   3480 		return error;
   3481 
   3482 	DPRINTF(("gusmax_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
   3483 
   3484 	switch (cp->dev) {
   3485 	case GUSMAX_SPEAKER_LVL:
   3486 		if (cp->type == AUDIO_MIXER_VALUE &&
   3487 		    cp->un.value.num_channels == 1) {
   3488 			if (ad1848_to_vol(cp, &vol)) {
   3489 				gus_speaker_ctl(sc, vol.left > AUDIO_MIN_GAIN ?
   3490 						SPKR_ON : SPKR_OFF);
   3491 				error = 0;
   3492 			}
   3493 		}
   3494 		break;
   3495 
   3496 	case GUSMAX_SPEAKER_MUTE:
   3497 		if (cp->type == AUDIO_MIXER_ENUM) {
   3498 			gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3499 			error = 0;
   3500 		}
   3501 		break;
   3502 
   3503 	default:
   3504 		return ENXIO;
   3505 		/*NOTREACHED*/
   3506 	}
   3507 	return error;
   3508 }
   3509 
   3510 STATIC int
   3511 gus_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   3512 {
   3513 	struct gus_softc *sc;
   3514 	struct ics2101_softc *ic;
   3515 	struct ad1848_volume vol;
   3516 	int error;
   3517 
   3518 	DPRINTF(("gus_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
   3519 	sc = addr;
   3520 	ic = &sc->sc_mixer;
   3521 	error = EINVAL;
   3522 
   3523 	if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
   3524 		return ENXIO;
   3525 
   3526 	switch (cp->dev) {
   3527 
   3528 	case GUSICS_MIC_IN_MUTE:	/* Microphone */
   3529 		if (cp->type == AUDIO_MIXER_ENUM) {
   3530 			DPRINTF(("mic mute %d\n", cp->un.ord));
   3531 			if (HAS_MIXER(sc)) {
   3532 				gusics_mic_mute(ic, cp->un.ord);
   3533 			}
   3534 			gus_mic_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3535 			error = 0;
   3536 		}
   3537 		break;
   3538 
   3539 	case GUSICS_LINE_IN_MUTE:
   3540 		if (cp->type == AUDIO_MIXER_ENUM) {
   3541 			DPRINTF(("linein mute %d\n", cp->un.ord));
   3542 			if (HAS_MIXER(sc)) {
   3543 				gusics_linein_mute(ic, cp->un.ord);
   3544 			}
   3545 			gus_linein_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3546 			error = 0;
   3547 		}
   3548 		break;
   3549 
   3550 	case GUSICS_MASTER_MUTE:
   3551 		if (cp->type == AUDIO_MIXER_ENUM) {
   3552 			DPRINTF(("master mute %d\n", cp->un.ord));
   3553 			if (HAS_MIXER(sc)) {
   3554 				gusics_master_mute(ic, cp->un.ord);
   3555 			}
   3556 			gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3557 			error = 0;
   3558 		}
   3559 		break;
   3560 
   3561 	case GUSICS_DAC_MUTE:
   3562 		if (cp->type == AUDIO_MIXER_ENUM) {
   3563 			gusics_dac_mute(ic, cp->un.ord);
   3564 			error = 0;
   3565 		}
   3566 		break;
   3567 
   3568 	case GUSICS_CD_MUTE:
   3569 		if (cp->type == AUDIO_MIXER_ENUM) {
   3570 			gusics_cd_mute(ic, cp->un.ord);
   3571 			error = 0;
   3572 		}
   3573 		break;
   3574 
   3575 	case GUSICS_MASTER_LVL:
   3576 		if (cp->type == AUDIO_MIXER_VALUE) {
   3577 			if (ad1848_to_vol(cp, &vol)) {
   3578 				ics2101_mix_attenuate(ic,
   3579 						      GUSMIX_CHAN_MASTER,
   3580 						      ICSMIX_LEFT,
   3581 						      vol.left);
   3582 				ics2101_mix_attenuate(ic,
   3583 						      GUSMIX_CHAN_MASTER,
   3584 						      ICSMIX_RIGHT,
   3585 						      vol.right);
   3586 				error = 0;
   3587 			}
   3588 		}
   3589 		break;
   3590 
   3591 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   3592 		if (cp->type == AUDIO_MIXER_VALUE) {
   3593 			if (ad1848_to_vol(cp, &vol)) {
   3594 				ics2101_mix_attenuate(ic,
   3595 						      GUSMIX_CHAN_MIC,
   3596 						      ICSMIX_LEFT,
   3597 						      vol.left);
   3598 				ics2101_mix_attenuate(ic,
   3599 						      GUSMIX_CHAN_MIC,
   3600 						      ICSMIX_RIGHT,
   3601 						      vol.right);
   3602 				error = 0;
   3603 			}
   3604 		}
   3605 		break;
   3606 
   3607 	case GUSICS_LINE_IN_LVL:	/* line in */
   3608 		if (cp->type == AUDIO_MIXER_VALUE) {
   3609 			if (ad1848_to_vol(cp, &vol)) {
   3610 				ics2101_mix_attenuate(ic,
   3611 						      GUSMIX_CHAN_LINE,
   3612 						      ICSMIX_LEFT,
   3613 						      vol.left);
   3614 				ics2101_mix_attenuate(ic,
   3615 						      GUSMIX_CHAN_LINE,
   3616 						      ICSMIX_RIGHT,
   3617 						      vol.right);
   3618 				error = 0;
   3619 			}
   3620 		}
   3621 		break;
   3622 
   3623 
   3624 	case GUSICS_CD_LVL:
   3625 		if (cp->type == AUDIO_MIXER_VALUE) {
   3626 			if (ad1848_to_vol(cp, &vol)) {
   3627 				ics2101_mix_attenuate(ic,
   3628 						      GUSMIX_CHAN_CD,
   3629 						      ICSMIX_LEFT,
   3630 						      vol.left);
   3631 				ics2101_mix_attenuate(ic,
   3632 						      GUSMIX_CHAN_CD,
   3633 						      ICSMIX_RIGHT,
   3634 						      vol.right);
   3635 				error = 0;
   3636 			}
   3637 		}
   3638 		break;
   3639 
   3640 	case GUSICS_DAC_LVL:		/* dac out */
   3641 		if (cp->type == AUDIO_MIXER_VALUE) {
   3642 			if (ad1848_to_vol(cp, &vol)) {
   3643 				ics2101_mix_attenuate(ic,
   3644 						      GUSMIX_CHAN_DAC,
   3645 						      ICSMIX_LEFT,
   3646 						      vol.left);
   3647 				ics2101_mix_attenuate(ic,
   3648 						      GUSMIX_CHAN_DAC,
   3649 						      ICSMIX_RIGHT,
   3650 						      vol.right);
   3651 				error = 0;
   3652 			}
   3653 		}
   3654 		break;
   3655 
   3656 
   3657 	case GUSICS_RECORD_SOURCE:
   3658 		if (cp->type == AUDIO_MIXER_ENUM && cp->un.ord == 0) {
   3659 			/* Can't set anything else useful, sigh. */
   3660 			error = 0;
   3661 		}
   3662 		break;
   3663 
   3664 	default:
   3665 		return ENXIO;
   3666 		/*NOTREACHED*/
   3667 	}
   3668 	return error;
   3669 }
   3670 
   3671 STATIC int
   3672 gus_get_props(void *addr)
   3673 {
   3674 	struct gus_softc *sc;
   3675 
   3676 	sc = addr;
   3677 	return AUDIO_PROP_MMAP |
   3678 	    (sc->sc_recdrq == sc->sc_playdrq ? 0 : AUDIO_PROP_FULLDUPLEX);
   3679 }
   3680 
   3681 STATIC int
   3682 gusmax_get_props(void *addr)
   3683 {
   3684 	struct ad1848_isa_softc *ac;
   3685 
   3686 	ac = addr;
   3687 	return gus_get_props(ac->sc_ad1848.parent);
   3688 }
   3689 
   3690 STATIC int
   3691 gusmax_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
   3692 {
   3693 
   3694 	DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
   3695 
   3696 	switch(dip->index) {
   3697 #if 0
   3698 	case GUSMAX_MIC_IN_LVL:	/* Microphone */
   3699 		dip->type = AUDIO_MIXER_VALUE;
   3700 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3701 		dip->prev = AUDIO_MIXER_LAST;
   3702 		dip->next = GUSMAX_MIC_IN_MUTE;
   3703 		strcpy(dip->label.name, AudioNmicrophone);
   3704 		dip->un.v.num_channels = 2;
   3705 		strcpy(dip->un.v.units.name, AudioNvolume);
   3706 		break;
   3707 #endif
   3708 
   3709 	case GUSMAX_MONO_LVL:	/* mono/microphone mixer */
   3710 		dip->type = AUDIO_MIXER_VALUE;
   3711 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3712 		dip->prev = AUDIO_MIXER_LAST;
   3713 		dip->next = GUSMAX_MONO_MUTE;
   3714 		strcpy(dip->label.name, AudioNmicrophone);
   3715 		dip->un.v.num_channels = 1;
   3716 		strcpy(dip->un.v.units.name, AudioNvolume);
   3717 		break;
   3718 
   3719 	case GUSMAX_DAC_LVL:		/*  dacout */
   3720 		dip->type = AUDIO_MIXER_VALUE;
   3721 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3722 		dip->prev = AUDIO_MIXER_LAST;
   3723 		dip->next = GUSMAX_DAC_MUTE;
   3724 		strcpy(dip->label.name, AudioNdac);
   3725 		dip->un.v.num_channels = 2;
   3726 		strcpy(dip->un.v.units.name, AudioNvolume);
   3727 		break;
   3728 
   3729 	case GUSMAX_LINE_IN_LVL:	/* line */
   3730 		dip->type = AUDIO_MIXER_VALUE;
   3731 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3732 		dip->prev = AUDIO_MIXER_LAST;
   3733 		dip->next = GUSMAX_LINE_IN_MUTE;
   3734 		strcpy(dip->label.name, AudioNline);
   3735 		dip->un.v.num_channels = 2;
   3736 		strcpy(dip->un.v.units.name, AudioNvolume);
   3737 		break;
   3738 
   3739 	case GUSMAX_CD_LVL:		/* cd */
   3740 		dip->type = AUDIO_MIXER_VALUE;
   3741 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3742 		dip->prev = AUDIO_MIXER_LAST;
   3743 		dip->next = GUSMAX_CD_MUTE;
   3744 		strcpy(dip->label.name, AudioNcd);
   3745 		dip->un.v.num_channels = 2;
   3746 		strcpy(dip->un.v.units.name, AudioNvolume);
   3747 		break;
   3748 
   3749 
   3750 	case GUSMAX_MONITOR_LVL:	/* monitor level */
   3751 		dip->type = AUDIO_MIXER_VALUE;
   3752 		dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3753 		dip->next = GUSMAX_MONITOR_MUTE;
   3754 		dip->prev = AUDIO_MIXER_LAST;
   3755 		strcpy(dip->label.name, AudioNmonitor);
   3756 		dip->un.v.num_channels = 1;
   3757 		strcpy(dip->un.v.units.name, AudioNvolume);
   3758 		break;
   3759 
   3760 	case GUSMAX_OUT_LVL:		/* cs4231 output volume: not useful? */
   3761 		dip->type = AUDIO_MIXER_VALUE;
   3762 		dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3763 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   3764 		strcpy(dip->label.name, AudioNoutput);
   3765 		dip->un.v.num_channels = 2;
   3766 		strcpy(dip->un.v.units.name, AudioNvolume);
   3767 		break;
   3768 
   3769 	case GUSMAX_SPEAKER_LVL:		/* fake speaker volume */
   3770 		dip->type = AUDIO_MIXER_VALUE;
   3771 		dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3772 		dip->prev = AUDIO_MIXER_LAST;
   3773 		dip->next = GUSMAX_SPEAKER_MUTE;
   3774 		strcpy(dip->label.name, AudioNmaster);
   3775 		dip->un.v.num_channels = 2;
   3776 		strcpy(dip->un.v.units.name, AudioNvolume);
   3777 		break;
   3778 
   3779 	case GUSMAX_LINE_IN_MUTE:
   3780 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3781 		dip->type = AUDIO_MIXER_ENUM;
   3782 		dip->prev = GUSMAX_LINE_IN_LVL;
   3783 		dip->next = AUDIO_MIXER_LAST;
   3784 		goto mute;
   3785 
   3786 	case GUSMAX_DAC_MUTE:
   3787 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3788 		dip->type = AUDIO_MIXER_ENUM;
   3789 		dip->prev = GUSMAX_DAC_LVL;
   3790 		dip->next = AUDIO_MIXER_LAST;
   3791 		goto mute;
   3792 
   3793 	case GUSMAX_CD_MUTE:
   3794 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3795 		dip->type = AUDIO_MIXER_ENUM;
   3796 		dip->prev = GUSMAX_CD_LVL;
   3797 		dip->next = AUDIO_MIXER_LAST;
   3798 		goto mute;
   3799 
   3800 	case GUSMAX_MONO_MUTE:
   3801 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3802 		dip->type = AUDIO_MIXER_ENUM;
   3803 		dip->prev = GUSMAX_MONO_LVL;
   3804 		dip->next = AUDIO_MIXER_LAST;
   3805 		goto mute;
   3806 
   3807 	case GUSMAX_MONITOR_MUTE:
   3808 		dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3809 		dip->type = AUDIO_MIXER_ENUM;
   3810 		dip->prev = GUSMAX_MONITOR_LVL;
   3811 		dip->next = AUDIO_MIXER_LAST;
   3812 		goto mute;
   3813 
   3814 	case GUSMAX_SPEAKER_MUTE:
   3815 		dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3816 		dip->type = AUDIO_MIXER_ENUM;
   3817 		dip->prev = GUSMAX_SPEAKER_LVL;
   3818 		dip->next = AUDIO_MIXER_LAST;
   3819 	mute:
   3820 		strcpy(dip->label.name, AudioNmute);
   3821 		dip->un.e.num_mem = 2;
   3822 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   3823 		dip->un.e.member[0].ord = 0;
   3824 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   3825 		dip->un.e.member[1].ord = 1;
   3826 		break;
   3827 
   3828 	case GUSMAX_REC_LVL:	/* record level */
   3829 		dip->type = AUDIO_MIXER_VALUE;
   3830 		dip->mixer_class = GUSMAX_RECORD_CLASS;
   3831 		dip->prev = AUDIO_MIXER_LAST;
   3832 		dip->next = GUSMAX_RECORD_SOURCE;
   3833 		strcpy(dip->label.name, AudioNrecord);
   3834 		dip->un.v.num_channels = 2;
   3835 		strcpy(dip->un.v.units.name, AudioNvolume);
   3836 		break;
   3837 
   3838 	case GUSMAX_RECORD_SOURCE:
   3839 		dip->mixer_class = GUSMAX_RECORD_CLASS;
   3840 		dip->type = AUDIO_MIXER_ENUM;
   3841 		dip->prev = GUSMAX_REC_LVL;
   3842 		dip->next = AUDIO_MIXER_LAST;
   3843 		strcpy(dip->label.name, AudioNsource);
   3844 		dip->un.e.num_mem = 4;
   3845 		strcpy(dip->un.e.member[0].label.name, AudioNoutput);
   3846 		dip->un.e.member[0].ord = DAC_IN_PORT;
   3847 		strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
   3848 		dip->un.e.member[1].ord = MIC_IN_PORT;
   3849 		strcpy(dip->un.e.member[2].label.name, AudioNdac);
   3850 		dip->un.e.member[2].ord = AUX1_IN_PORT;
   3851 		strcpy(dip->un.e.member[3].label.name, AudioNline);
   3852 		dip->un.e.member[3].ord = LINE_IN_PORT;
   3853 		break;
   3854 
   3855 	case GUSMAX_INPUT_CLASS:		/* input class descriptor */
   3856 		dip->type = AUDIO_MIXER_CLASS;
   3857 		dip->mixer_class = GUSMAX_INPUT_CLASS;
   3858 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   3859 		strcpy(dip->label.name, AudioCinputs);
   3860 		break;
   3861 
   3862 	case GUSMAX_OUTPUT_CLASS:		/* output class descriptor */
   3863 		dip->type = AUDIO_MIXER_CLASS;
   3864 		dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3865 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   3866 		strcpy(dip->label.name, AudioCoutputs);
   3867 		break;
   3868 
   3869 	case GUSMAX_MONITOR_CLASS:		/* monitor class descriptor */
   3870 		dip->type = AUDIO_MIXER_CLASS;
   3871 		dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3872 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   3873 		strcpy(dip->label.name, AudioCmonitor);
   3874 		break;
   3875 
   3876 	case GUSMAX_RECORD_CLASS:		/* record source class */
   3877 		dip->type = AUDIO_MIXER_CLASS;
   3878 		dip->mixer_class = GUSMAX_RECORD_CLASS;
   3879 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   3880 		strcpy(dip->label.name, AudioCrecord);
   3881 		break;
   3882 
   3883 	default:
   3884 		return ENXIO;
   3885 		/*NOTREACHED*/
   3886 	}
   3887 	DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
   3888 	return 0;
   3889 }
   3890 
   3891 STATIC int
   3892 gus_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
   3893 {
   3894 	struct gus_softc *sc;
   3895 
   3896 	DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
   3897 	sc = addr;
   3898 	if (!HAS_MIXER(sc) && dip->index > GUSICS_MASTER_MUTE)
   3899 		return ENXIO;
   3900 
   3901 	switch(dip->index) {
   3902 
   3903 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   3904 		dip->type = AUDIO_MIXER_VALUE;
   3905 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3906 		dip->prev = AUDIO_MIXER_LAST;
   3907 		dip->next = GUSICS_MIC_IN_MUTE;
   3908 		strcpy(dip->label.name, AudioNmicrophone);
   3909 		dip->un.v.num_channels = 2;
   3910 		strcpy(dip->un.v.units.name, AudioNvolume);
   3911 		break;
   3912 
   3913 	case GUSICS_LINE_IN_LVL:	/* line */
   3914 		dip->type = AUDIO_MIXER_VALUE;
   3915 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3916 		dip->prev = AUDIO_MIXER_LAST;
   3917 		dip->next = GUSICS_LINE_IN_MUTE;
   3918 		strcpy(dip->label.name, AudioNline);
   3919 		dip->un.v.num_channels = 2;
   3920 		strcpy(dip->un.v.units.name, AudioNvolume);
   3921 		break;
   3922 
   3923 	case GUSICS_CD_LVL:		/* cd */
   3924 		dip->type = AUDIO_MIXER_VALUE;
   3925 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3926 		dip->prev = AUDIO_MIXER_LAST;
   3927 		dip->next = GUSICS_CD_MUTE;
   3928 		strcpy(dip->label.name, AudioNcd);
   3929 		dip->un.v.num_channels = 2;
   3930 		strcpy(dip->un.v.units.name, AudioNvolume);
   3931 		break;
   3932 
   3933 	case GUSICS_DAC_LVL:		/*  dacout */
   3934 		dip->type = AUDIO_MIXER_VALUE;
   3935 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3936 		dip->prev = AUDIO_MIXER_LAST;
   3937 		dip->next = GUSICS_DAC_MUTE;
   3938 		strcpy(dip->label.name, AudioNdac);
   3939 		dip->un.v.num_channels = 2;
   3940 		strcpy(dip->un.v.units.name, AudioNvolume);
   3941 		break;
   3942 
   3943 	case GUSICS_MASTER_LVL:		/*  master output */
   3944 		dip->type = AUDIO_MIXER_VALUE;
   3945 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   3946 		dip->prev = AUDIO_MIXER_LAST;
   3947 		dip->next = GUSICS_MASTER_MUTE;
   3948 		strcpy(dip->label.name, AudioNmaster);
   3949 		dip->un.v.num_channels = 2;
   3950 		strcpy(dip->un.v.units.name, AudioNvolume);
   3951 		break;
   3952 
   3953 
   3954 	case GUSICS_LINE_IN_MUTE:
   3955 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3956 		dip->type = AUDIO_MIXER_ENUM;
   3957 		dip->prev = GUSICS_LINE_IN_LVL;
   3958 		dip->next = AUDIO_MIXER_LAST;
   3959 		goto mute;
   3960 
   3961 	case GUSICS_DAC_MUTE:
   3962 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3963 		dip->type = AUDIO_MIXER_ENUM;
   3964 		dip->prev = GUSICS_DAC_LVL;
   3965 		dip->next = AUDIO_MIXER_LAST;
   3966 		goto mute;
   3967 
   3968 	case GUSICS_CD_MUTE:
   3969 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3970 		dip->type = AUDIO_MIXER_ENUM;
   3971 		dip->prev = GUSICS_CD_LVL;
   3972 		dip->next = AUDIO_MIXER_LAST;
   3973 		goto mute;
   3974 
   3975 	case GUSICS_MIC_IN_MUTE:
   3976 		dip->mixer_class = GUSICS_INPUT_CLASS;
   3977 		dip->type = AUDIO_MIXER_ENUM;
   3978 		dip->prev = GUSICS_MIC_IN_LVL;
   3979 		dip->next = AUDIO_MIXER_LAST;
   3980 		goto mute;
   3981 
   3982 	case GUSICS_MASTER_MUTE:
   3983 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   3984 		dip->type = AUDIO_MIXER_ENUM;
   3985 		dip->prev = GUSICS_MASTER_LVL;
   3986 		dip->next = AUDIO_MIXER_LAST;
   3987 mute:
   3988 		strcpy(dip->label.name, AudioNmute);
   3989 		dip->un.e.num_mem = 2;
   3990 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   3991 		dip->un.e.member[0].ord = 0;
   3992 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   3993 		dip->un.e.member[1].ord = 1;
   3994 		break;
   3995 
   3996 	case GUSICS_RECORD_SOURCE:
   3997 		dip->mixer_class = GUSICS_RECORD_CLASS;
   3998 		dip->type = AUDIO_MIXER_ENUM;
   3999 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   4000 		strcpy(dip->label.name, AudioNsource);
   4001 		dip->un.e.num_mem = 1;
   4002 		strcpy(dip->un.e.member[0].label.name, AudioNoutput);
   4003 		dip->un.e.member[0].ord = GUSICS_MASTER_LVL;
   4004 		break;
   4005 
   4006 	case GUSICS_INPUT_CLASS:
   4007 		dip->type = AUDIO_MIXER_CLASS;
   4008 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4009 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4010 		strcpy(dip->label.name, AudioCinputs);
   4011 		break;
   4012 
   4013 	case GUSICS_OUTPUT_CLASS:
   4014 		dip->type = AUDIO_MIXER_CLASS;
   4015 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   4016 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4017 		strcpy(dip->label.name, AudioCoutputs);
   4018 		break;
   4019 
   4020 	case GUSICS_RECORD_CLASS:
   4021 		dip->type = AUDIO_MIXER_CLASS;
   4022 		dip->mixer_class = GUSICS_RECORD_CLASS;
   4023 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4024 		strcpy(dip->label.name, AudioCrecord);
   4025 		break;
   4026 
   4027 	default:
   4028 		return ENXIO;
   4029 		/*NOTREACHED*/
   4030 	}
   4031 	DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
   4032 	return 0;
   4033 }
   4034 
   4035 STATIC int
   4036 gus_query_encoding(void *addr, struct audio_encoding *fp)
   4037 {
   4038 
   4039 	switch (fp->index) {
   4040 	case 0:
   4041 		strcpy(fp->name, AudioEmulaw);
   4042 		fp->encoding = AUDIO_ENCODING_ULAW;
   4043 		fp->precision = 8;
   4044 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4045 		break;
   4046 	case 1:
   4047 		strcpy(fp->name, AudioEslinear);
   4048 		fp->encoding = AUDIO_ENCODING_SLINEAR;
   4049 		fp->precision = 8;
   4050 		fp->flags = 0;
   4051 		break;
   4052 	case 2:
   4053 		strcpy(fp->name, AudioEslinear_le);
   4054 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
   4055 		fp->precision = 16;
   4056 		fp->flags = 0;
   4057 		break;
   4058 	case 3:
   4059 		strcpy(fp->name, AudioEulinear);
   4060 		fp->encoding = AUDIO_ENCODING_ULINEAR;
   4061 		fp->precision = 8;
   4062 		fp->flags = 0;
   4063 		break;
   4064 	case 4:
   4065 		strcpy(fp->name, AudioEulinear_le);
   4066 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
   4067 		fp->precision = 16;
   4068 		fp->flags = 0;
   4069 		break;
   4070 	case 5:
   4071 		strcpy(fp->name, AudioEslinear_be);
   4072 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
   4073 		fp->precision = 16;
   4074 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4075 		break;
   4076 	case 6:
   4077 		strcpy(fp->name, AudioEulinear_be);
   4078 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
   4079 		fp->precision = 16;
   4080 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4081 		break;
   4082 	case 7:
   4083 		strcpy(fp->name, AudioEalaw);
   4084 		fp->encoding = AUDIO_ENCODING_ALAW;
   4085 		fp->precision = 8;
   4086 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4087 		break;
   4088 
   4089 	default:
   4090 		return EINVAL;
   4091 		/*NOTREACHED*/
   4092 	}
   4093 	return 0;
   4094 }
   4095 
   4096 /*
   4097  * Setup the ICS mixer in "transparent" mode: reset everything to a sensible
   4098  * level.  Levels as suggested by GUS SDK code.
   4099  */
   4100 STATIC void
   4101 gus_init_ics2101(struct gus_softc *sc)
   4102 {
   4103 	struct ics2101_softc *ic;
   4104 
   4105 	ic = &sc->sc_mixer;
   4106 	sc->sc_mixer.sc_iot = sc->sc_iot;
   4107 	sc->sc_mixer.sc_selio = GUS_MIXER_SELECT;
   4108 	sc->sc_mixer.sc_selio_ioh = sc->sc_ioh3;
   4109 	sc->sc_mixer.sc_dataio = GUS_MIXER_DATA;
   4110 	sc->sc_mixer.sc_dataio_ioh = sc->sc_ioh2;
   4111 	sc->sc_mixer.sc_flags = (sc->sc_revision == 5) ? ICS_FLIP : 0;
   4112 
   4113 	ics2101_mix_attenuate(ic,
   4114 			      GUSMIX_CHAN_MIC,
   4115 			      ICSMIX_LEFT,
   4116 			      ICSMIX_MIN_ATTN);
   4117 	ics2101_mix_attenuate(ic,
   4118 			      GUSMIX_CHAN_MIC,
   4119 			      ICSMIX_RIGHT,
   4120 			      ICSMIX_MIN_ATTN);
   4121 	/*
   4122 	 * Start with microphone muted by the mixer...
   4123 	 */
   4124 	gusics_mic_mute(ic, 1);
   4125 
   4126 	/* ... and enabled by the GUS master mix control */
   4127 	gus_mic_ctl(sc, SPKR_ON);
   4128 
   4129 	ics2101_mix_attenuate(ic,
   4130 			      GUSMIX_CHAN_LINE,
   4131 			      ICSMIX_LEFT,
   4132 			      ICSMIX_MIN_ATTN);
   4133 	ics2101_mix_attenuate(ic,
   4134 			      GUSMIX_CHAN_LINE,
   4135 			      ICSMIX_RIGHT,
   4136 			      ICSMIX_MIN_ATTN);
   4137 
   4138 	ics2101_mix_attenuate(ic,
   4139 			      GUSMIX_CHAN_CD,
   4140 			      ICSMIX_LEFT,
   4141 			      ICSMIX_MIN_ATTN);
   4142 	ics2101_mix_attenuate(ic,
   4143 			      GUSMIX_CHAN_CD,
   4144 			      ICSMIX_RIGHT,
   4145 			      ICSMIX_MIN_ATTN);
   4146 
   4147 	ics2101_mix_attenuate(ic,
   4148 			      GUSMIX_CHAN_DAC,
   4149 			      ICSMIX_LEFT,
   4150 			      ICSMIX_MIN_ATTN);
   4151 	ics2101_mix_attenuate(ic,
   4152 			      GUSMIX_CHAN_DAC,
   4153 			      ICSMIX_RIGHT,
   4154 			      ICSMIX_MIN_ATTN);
   4155 
   4156 	ics2101_mix_attenuate(ic,
   4157 			      ICSMIX_CHAN_4,
   4158 			      ICSMIX_LEFT,
   4159 			      ICSMIX_MAX_ATTN);
   4160 	ics2101_mix_attenuate(ic,
   4161 			      ICSMIX_CHAN_4,
   4162 			      ICSMIX_RIGHT,
   4163 			      ICSMIX_MAX_ATTN);
   4164 
   4165 	ics2101_mix_attenuate(ic,
   4166 			      GUSMIX_CHAN_MASTER,
   4167 			      ICSMIX_LEFT,
   4168 			      ICSMIX_MIN_ATTN);
   4169 	ics2101_mix_attenuate(ic,
   4170 			      GUSMIX_CHAN_MASTER,
   4171 			      ICSMIX_RIGHT,
   4172 			      ICSMIX_MIN_ATTN);
   4173 	/* unmute other stuff: */
   4174 	gusics_cd_mute(ic, 0);
   4175 	gusics_dac_mute(ic, 0);
   4176 	gusics_linein_mute(ic, 0);
   4177 	return;
   4178 }
   4179