Home | History | Annotate | Line # | Download | only in isa
gus.c revision 1.50
      1 /*	$NetBSD: gus.c,v 1.50 1998/01/13 19:33:29 drochner Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Ken Hornstein and John Kohl.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  *
     41  * TODO:
     42  *	. figure out why mixer activity while sound is playing causes problems
     43  *	  (phantom interrupts?)
     44  *  	. figure out a better deinterleave strategy that avoids sucking up
     45  *	  CPU, memory and cache bandwidth.  (Maybe a special encoding?
     46  *	  Maybe use the double-speed sampling/hardware deinterleave trick
     47  *	  from the GUS SDK?)  A 486/33 isn't quite fast enough to keep
     48  *	  up with 44.1kHz 16-bit stereo output without some drop-outs.
     49  *	. use CS4231 for 16-bit sampling, for a-law and mu-law playback.
     50  *	. actually test full-duplex sampling(recording) and playback.
     51  */
     52 
     53 /*
     54  * Gravis UltraSound driver
     55  *
     56  * For more detailed information, see the GUS developers' kit
     57  * available on the net at:
     58  *
     59  * ftp://freedom.nmsu.edu/pub/ultrasound/gravis/util/
     60  * 	gusdkXXX.zip (developers' kit--get rev 2.22 or later)
     61  *		See ultrawrd.doc inside--it's MS Word (ick), but it's the bible
     62  *
     63  */
     64 
     65 /*
     66  * The GUS Max has a slightly strange set of connections between the CS4231
     67  * and the GF1 and the DMA interconnects.  It's set up so that the CS4231 can
     68  * be playing while the GF1 is loading patches from the system.
     69  *
     70  * Here's a recreation of the DMA interconnect diagram:
     71  *
     72  *       GF1
     73  *   +---------+				 digital
     74  *   |         |  record			 ASIC
     75  *   |         |--------------+
     76  *   |         |              |		       +--------+
     77  *   |         | play (dram)  |      +----+    |	|
     78  *   |         |--------------(------|-\  |    |   +-+  |
     79  *   +---------+              |      |  >-|----|---|C|--|------  dma chan 1
     80  *                            |  +---|-/  |    |   +-+ 	|
     81  *                            |  |   +----+    |    |   |
     82  *                            |	 |   +----+    |    |   |
     83  *   +---------+        +-+   +--(---|-\  |    |    |   |
     84  *   |         | play   |8|      |   |  >-|----|----+---|------  dma chan 2
     85  *   | ---C----|--------|/|------(---|-/  |    |        |
     86  *   |    ^    |record  |1|      |   +----+    |	|
     87  *   |    |    |   /----|6|------+   	       +--------+
     88  *   | ---+----|--/     +-+
     89  *   +---------+
     90  *     CS4231   	8-to-16 bit bus conversion, if needed
     91  *
     92  *
     93  * "C" is an optional combiner.
     94  *
     95  */
     96 
     97 #include "gus.h"
     98 #if NGUS > 0
     99 
    100 #include <sys/param.h>
    101 #include <sys/systm.h>
    102 #include <sys/errno.h>
    103 #include <sys/ioctl.h>
    104 #include <sys/syslog.h>
    105 #include <sys/device.h>
    106 #include <sys/proc.h>
    107 #include <sys/buf.h>
    108 #include <sys/fcntl.h>
    109 #include <sys/malloc.h>
    110 #include <sys/kernel.h>
    111 
    112 #include <machine/cpu.h>
    113 #include <machine/intr.h>
    114 #include <machine/bus.h>
    115 #include <machine/pio.h>
    116 #include <machine/cpufunc.h>
    117 #include <sys/audioio.h>
    118 #include <dev/audio_if.h>
    119 #include <dev/mulaw.h>
    120 #include <dev/auconv.h>
    121 
    122 #include <dev/isa/isavar.h>
    123 #include <dev/isa/isadmavar.h>
    124 #include <i386/isa/icu.h>
    125 
    126 #include <dev/ic/ics2101reg.h>
    127 #include <dev/ic/cs4231reg.h>
    128 #include <dev/ic/ad1848reg.h>
    129 #include <dev/isa/ics2101var.h>
    130 #include <dev/isa/ad1848var.h>
    131 #include <dev/isa/cs4231var.h>
    132 #include "gusreg.h"
    133 
    134 #ifdef AUDIO_DEBUG
    135 #define STATIC /* empty; for debugging symbols */
    136 #else
    137 #define STATIC static
    138 #endif
    139 
    140 /*
    141  * Software state of a single "voice" on the GUS
    142  */
    143 
    144 struct gus_voice {
    145 
    146 	/*
    147 	 * Various control bits
    148 	 */
    149 
    150 	unsigned char voccntl;	/* State of voice control register */
    151 	unsigned char volcntl;	/* State of volume control register */
    152 	unsigned char pan_pos;	/* Position of volume panning (4 bits) */
    153 	int rate;		/* Sample rate of voice being played back */
    154 
    155 	/*
    156 	 * Address of the voice data into the GUS's DRAM.  20 bits each
    157 	 */
    158 
    159 	u_long start_addr;	/* Starting address of voice data loop area */
    160 	u_long end_addr;	/* Ending address of voice data loop */
    161 	u_long current_addr;	/* Beginning address of voice data
    162 				   (start playing here) */
    163 
    164 	/*
    165 	 * linear volume values for the GUS's volume ramp.  0-511 (9 bits).
    166 	 * These values must be translated into the logarithmic values using
    167 	 * gus_log_volumes[]
    168 	 */
    169 
    170 	int start_volume;	/* Starting position of volume ramp */
    171 	int current_volume;	/* Current position of volume on volume ramp */
    172 	int end_volume;		/* Ending position of volume on volume ramp */
    173 };
    174 
    175 /*
    176  * Software state of GUS
    177  */
    178 
    179 struct gus_softc {
    180 	struct device sc_dev;		/* base device */
    181 	struct device *sc_isa;		/* pointer to ISA parent */
    182 	void *sc_ih;			/* interrupt vector */
    183 	bus_space_tag_t sc_iot;		/* tag */
    184 	bus_space_handle_t sc_ioh1;	/* handle */
    185 	bus_space_handle_t sc_ioh2;	/* handle */
    186 	bus_space_handle_t sc_ioh3;	/* ICS2101 handle */
    187 	bus_space_handle_t sc_ioh4;	/* MIDI handle */
    188 
    189 	int sc_iobase;			/* I/O base address */
    190 	int sc_irq;			/* IRQ used */
    191 	int sc_drq;			/* DMA channel for play */
    192 	int sc_recdrq;			/* DMA channel for recording */
    193 
    194 	int sc_flags;			/* Various flags about the GUS */
    195 #define GUS_MIXER_INSTALLED	0x01	/* An ICS mixer is installed */
    196 #define GUS_LOCKED		0x02	/* GUS is busy doing multi-phase DMA */
    197 #define GUS_CODEC_INSTALLED	0x04	/* CS4231 installed/MAX */
    198 #define GUS_PLAYING		0x08	/* GUS is playing a voice */
    199 #define GUS_DMAOUT_ACTIVE	0x10	/* GUS is busy doing audio DMA */
    200 #define GUS_DMAIN_ACTIVE	0x20	/* GUS is busy sampling  */
    201 #define GUS_OPEN		0x100	/* GUS is open */
    202 	int sc_dsize;			/* Size of GUS DRAM */
    203 	int sc_voices;			/* Number of active voices */
    204 	u_char sc_revision;		/* Board revision of GUS */
    205 	u_char sc_mixcontrol;		/* Value of GUS_MIX_CONTROL register */
    206 
    207 	u_long sc_orate;		/* Output sampling rate */
    208 	u_long sc_irate;		/* Input sampling rate */
    209 
    210 	int sc_encoding;		/* Current data encoding type */
    211 	int sc_precision;		/* # of bits of precision */
    212 	int sc_channels;		/* Number of active channels */
    213 	int sc_blocksize;		/* Current blocksize */
    214 	int sc_chanblocksize;		/* Current blocksize for each in-use
    215 					   channel */
    216 	short sc_nbufs;			/* how many on-GUS bufs per-channel */
    217 	short sc_bufcnt;		/* how many need to be played */
    218 	void *sc_deintr_buf;		/* deinterleave buffer for stereo */
    219 
    220 	int sc_ogain;			/* Output gain control */
    221 	u_char sc_out_port;		/* Current out port (generic only) */
    222 	u_char sc_in_port;		/* keep track of it when no codec */
    223 
    224 	void (*sc_dmaoutintr) __P((void*)); /* DMA completion intr handler */
    225 	void *sc_outarg;		/* argument for sc_dmaoutintr() */
    226 	u_char *sc_dmaoutaddr;		/* for isa_dmadone */
    227 	u_long sc_gusaddr;		/* where did we just put it? */
    228 	int sc_dmaoutcnt;		/* for isa_dmadone */
    229 
    230 	void (*sc_dmainintr) __P((void*)); /* DMA completion intr handler */
    231 	void *sc_inarg;			/* argument for sc_dmaoutintr() */
    232 	u_char *sc_dmainaddr;		/* for isa_dmadone */
    233 	int sc_dmaincnt;		/* for isa_dmadone */
    234 
    235 	struct stereo_dma_intr {
    236 		void (*intr)__P((void *));
    237 		void *arg;
    238 		u_char *buffer;
    239 		u_long dmabuf;
    240 		int size;
    241 		int flags;
    242 	} sc_stereo;
    243 
    244 	/*
    245 	 * State information for linear audio layer
    246 	 */
    247 
    248 	int sc_dmabuf;			/* Which ring buffer we're DMA'ing to */
    249 	int sc_playbuf;			/* Which ring buffer we're playing */
    250 
    251 	/*
    252 	 * Voice information array.  All voice-specific information is stored
    253 	 * here
    254 	 */
    255 
    256 	struct gus_voice sc_voc[32];	/* Voice data for each voice */
    257 	union {
    258 		struct ics2101_softc sc_mixer_u;
    259 		struct ad1848_softc sc_codec_u;
    260 	} u;
    261 #define sc_mixer u.sc_mixer_u
    262 #define sc_codec u.sc_codec_u
    263 };
    264 
    265 struct ics2101_volume {
    266 	u_char left;
    267 	u_char right;
    268 };
    269 
    270 #define HAS_CODEC(sc) ((sc)->sc_flags & GUS_CODEC_INSTALLED)
    271 #define HAS_MIXER(sc) ((sc)->sc_flags & GUS_MIXER_INSTALLED)
    272 
    273 /*
    274  * Mixer devices for ICS2101
    275  */
    276 /* MIC IN mute, line in mute, line out mute are first since they can be done
    277    even if no ICS mixer. */
    278 #define GUSICS_MIC_IN_MUTE		0
    279 #define GUSICS_LINE_IN_MUTE		1
    280 #define GUSICS_MASTER_MUTE		2
    281 #define GUSICS_CD_MUTE			3
    282 #define GUSICS_DAC_MUTE			4
    283 #define GUSICS_MIC_IN_LVL		5
    284 #define GUSICS_LINE_IN_LVL		6
    285 #define GUSICS_CD_LVL			7
    286 #define GUSICS_DAC_LVL			8
    287 #define GUSICS_MASTER_LVL		9
    288 
    289 #define GUSICS_RECORD_SOURCE		10
    290 
    291 /* Classes */
    292 #define GUSICS_INPUT_CLASS		11
    293 #define GUSICS_OUTPUT_CLASS		12
    294 #define GUSICS_RECORD_CLASS		13
    295 
    296 /*
    297  * Mixer & MUX devices for CS4231
    298  */
    299 #define GUSMAX_MONO_LVL			0 /* mic input to MUX;
    300 					     also mono mixer input */
    301 #define GUSMAX_DAC_LVL			1 /* input to MUX; also mixer input */
    302 #define GUSMAX_LINE_IN_LVL		2 /* input to MUX; also mixer input */
    303 #define GUSMAX_CD_LVL			3 /* mixer input only */
    304 #define GUSMAX_MONITOR_LVL		4 /* digital mix (?) */
    305 #define GUSMAX_OUT_LVL			5 /* output level. (?) */
    306 #define GUSMAX_SPEAKER_LVL		6 /* pseudo-device for mute */
    307 #define GUSMAX_LINE_IN_MUTE		7 /* pre-mixer */
    308 #define GUSMAX_DAC_MUTE			8 /* pre-mixer */
    309 #define GUSMAX_CD_MUTE			9 /* pre-mixer */
    310 #define GUSMAX_MONO_MUTE		10 /* pre-mixer--microphone/mono */
    311 #define GUSMAX_MONITOR_MUTE		11 /* post-mixer level/mute */
    312 #define GUSMAX_SPEAKER_MUTE		12 /* speaker mute */
    313 
    314 #define GUSMAX_REC_LVL			13 /* post-MUX gain */
    315 
    316 #define GUSMAX_RECORD_SOURCE		14
    317 
    318 /* Classes */
    319 #define GUSMAX_INPUT_CLASS		15
    320 #define GUSMAX_RECORD_CLASS		16
    321 #define GUSMAX_MONITOR_CLASS		17
    322 #define GUSMAX_OUTPUT_CLASS		18
    323 
    324 #ifdef AUDIO_DEBUG
    325 #define GUSPLAYDEBUG	/*XXX*/
    326 #define DPRINTF(x)	if (gusdebug) printf x
    327 #define DMAPRINTF(x)	if (gusdmadebug) printf x
    328 int	gusdebug = 0;
    329 int	gusdmadebug = 0;
    330 #else
    331 #define DPRINTF(x)
    332 #define DMAPRINTF(x)
    333 #endif
    334 int	gus_dostereo = 1;
    335 
    336 #define NDMARECS 2048
    337 #ifdef GUSPLAYDEBUG
    338 int	gusstats = 0;
    339 struct dma_record {
    340     struct timeval tv;
    341     u_long gusaddr;
    342     caddr_t bsdaddr;
    343     u_short count;
    344     u_char channel;
    345     u_char direction;
    346 } dmarecords[NDMARECS];
    347 
    348 int dmarecord_index = 0;
    349 #endif
    350 
    351 /*
    352  * local routines
    353  */
    354 
    355 int	gusopen __P((void *, int));
    356 void	gusclose __P((void *));
    357 void	gusmax_close __P((void *));
    358 int	gusintr __P((void *));
    359 int	gus_set_in_gain __P((caddr_t, u_int, u_char));
    360 int	gus_get_in_gain __P((caddr_t));
    361 int	gus_set_out_gain __P((caddr_t, u_int, u_char));
    362 int	gus_get_out_gain __P((caddr_t));
    363 int 	gus_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    364 int 	gusmax_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    365 int	gus_round_blocksize __P((void *, int));
    366 int	gus_commit_settings __P((void *));
    367 int	gus_dma_output __P((void *, void *, int, void (*)(void *), void *));
    368 int	gus_dma_input __P((void *, void *, int, void (*)(void *), void *));
    369 int	gus_halt_out_dma __P((void *));
    370 int	gus_halt_in_dma __P((void *));
    371 int	gus_speaker_ctl __P((void *, int));
    372 int	gusmaxopen __P((void *, int));
    373 int	gusmax_round_blocksize __P((void *, int));
    374 int	gusmax_commit_settings __P((void *));
    375 int	gusmax_dma_output __P((void *, void *, int, void (*)(void *), void *));
    376 int	gusmax_dma_input __P((void *, void *, int, void (*)(void *), void *));
    377 int	gusmax_halt_out_dma __P((void *));
    378 int	gusmax_halt_in_dma __P((void *));
    379 int	gusmax_speaker_ctl __P((void *, int));
    380 int	gus_getdev __P((void *, struct audio_device *));
    381 
    382 STATIC void	gus_deinterleave __P((struct gus_softc *, void *, int));
    383 
    384 STATIC int	gus_mic_ctl __P((void *, int));
    385 STATIC int	gus_linein_ctl __P((void *, int));
    386 STATIC int	gus_test_iobase __P((bus_space_tag_t, int));
    387 STATIC void	guspoke __P((bus_space_tag_t, bus_space_handle_t, long, u_char));
    388 STATIC void	gusdmaout __P((struct gus_softc *, int, u_long, caddr_t, int));
    389 STATIC void	gus_init_cs4231 __P((struct gus_softc *));
    390 STATIC void	gus_init_ics2101 __P((struct gus_softc *));
    391 
    392 STATIC void	gus_set_chan_addrs __P((struct gus_softc *));
    393 STATIC void	gusreset __P((struct gus_softc *, int));
    394 STATIC void	gus_set_voices __P((struct gus_softc *, int));
    395 STATIC void	gus_set_volume __P((struct gus_softc *, int, int));
    396 STATIC void	gus_set_samprate __P((struct gus_softc *, int, int));
    397 STATIC void	gus_set_recrate __P((struct gus_softc *, u_long));
    398 STATIC void	gus_start_voice __P((struct gus_softc *, int, int));
    399 STATIC void	gus_stop_voice __P((struct gus_softc *, int, int));
    400 STATIC void	gus_set_endaddr __P((struct gus_softc *, int, u_long));
    401 #ifdef GUSPLAYDEBUG
    402 STATIC void	gus_set_curaddr __P((struct gus_softc *, int, u_long));
    403 STATIC u_long	gus_get_curaddr __P((struct gus_softc *, int));
    404 #endif
    405 STATIC int	gus_dmaout_intr __P((struct gus_softc *));
    406 STATIC void	gus_dmaout_dointr __P((struct gus_softc *));
    407 STATIC void	gus_dmaout_timeout __P((void *));
    408 STATIC int	gus_dmain_intr __P((struct gus_softc *));
    409 STATIC int	gus_voice_intr __P((struct gus_softc *));
    410 STATIC void	gus_start_playing __P((struct gus_softc *, int));
    411 STATIC int	gus_continue_playing __P((struct gus_softc *, int));
    412 STATIC u_char guspeek __P((bus_space_tag_t, bus_space_handle_t, u_long));
    413 STATIC u_long convert_to_16bit __P((u_long));
    414 STATIC int	gus_mixer_set_port __P((void *, mixer_ctrl_t *));
    415 STATIC int	gus_mixer_get_port __P((void *, mixer_ctrl_t *));
    416 STATIC int	gusmax_mixer_set_port __P((void *, mixer_ctrl_t *));
    417 STATIC int	gusmax_mixer_get_port __P((void *, mixer_ctrl_t *));
    418 STATIC int	gus_mixer_query_devinfo __P((void *, mixer_devinfo_t *));
    419 STATIC int	gusmax_mixer_query_devinfo __P((void *, mixer_devinfo_t *));
    420 STATIC int	gus_query_encoding __P((void *, struct audio_encoding *));
    421 STATIC int	gus_get_props __P((void *));
    422 STATIC int	gusmax_get_props __P((void *));
    423 
    424 STATIC void	gusics_master_mute __P((struct ics2101_softc *, int));
    425 STATIC void	gusics_dac_mute __P((struct ics2101_softc *, int));
    426 STATIC void	gusics_mic_mute __P((struct ics2101_softc *, int));
    427 STATIC void	gusics_linein_mute __P((struct ics2101_softc *, int));
    428 STATIC void	gusics_cd_mute __P((struct ics2101_softc *, int));
    429 
    430 STATIC __inline int gus_to_vol __P((mixer_ctrl_t *, struct ad1848_volume *));
    431 STATIC __inline int gus_from_vol __P((mixer_ctrl_t *, struct ad1848_volume *));
    432 
    433 void	stereo_dmaintr __P((void *));
    434 
    435 /*
    436  * ISA bus driver routines
    437  */
    438 
    439 #ifdef __BROKEN_INDIRECT_CONFIG
    440 int	gusprobe __P((struct device *, void *, void *));
    441 #else
    442 int	gusprobe __P((struct device *, struct cfdata *, void *));
    443 #endif
    444 void	gusattach __P((struct device *, struct device *, void *));
    445 
    446 struct cfattach gus_ca = {
    447 	sizeof(struct gus_softc), gusprobe, gusattach,
    448 };
    449 
    450 /*
    451  * A mapping from IRQ/DRQ values to the values used in the GUS's internal
    452  * registers.  A zero means that the referenced IRQ/DRQ is invalid
    453  */
    454 
    455 static int gus_irq_map[] = {
    456 	IRQUNK, IRQUNK, 1, 3, IRQUNK, 2, IRQUNK, 4, IRQUNK, 1, IRQUNK, 5, 6,
    457 	IRQUNK, IRQUNK, 7
    458 };
    459 static int gus_drq_map[] = {
    460 	DRQUNK, 1, DRQUNK, 2, DRQUNK, 3, 4, 5
    461 };
    462 
    463 /*
    464  * A list of valid base addresses for the GUS
    465  */
    466 
    467 static int gus_base_addrs[] = {
    468 	0x210, 0x220, 0x230, 0x240, 0x250, 0x260
    469 };
    470 static int gus_addrs = sizeof(gus_base_addrs) / sizeof(gus_base_addrs[0]);
    471 
    472 /*
    473  * Maximum frequency values of the GUS based on the number of currently active
    474  * voices.  Since the GUS samples a voice every 1.6 us, the maximum frequency
    475  * is dependent on the number of active voices.  Yes, it is pretty weird.
    476  */
    477 
    478 static int gus_max_frequency[] = {
    479 		44100,		/* 14 voices */
    480 		41160,		/* 15 voices */
    481 		38587,		/* 16 voices */
    482 		36317,		/* 17 voices */
    483 		34300,		/* 18 voices */
    484 		32494,		/* 19 voices */
    485 		30870,		/* 20 voices */
    486 		29400,		/* 21 voices */
    487 		28063,		/* 22 voices */
    488 		26843,		/* 23 voices */
    489 		25725,		/* 24 voices */
    490 		24696,		/* 25 voices */
    491 		23746,		/* 26 voices */
    492 		22866,		/* 27 voices */
    493 		22050,		/* 28 voices */
    494 		21289,		/* 29 voices */
    495 		20580,		/* 30 voices */
    496 		19916,		/* 31 voices */
    497 		19293		/* 32 voices */
    498 };
    499 /*
    500  * A mapping of linear volume levels to the logarithmic volume values used
    501  * by the GF1 chip on the GUS.  From GUS SDK vol1.c.
    502  */
    503 
    504 static unsigned short gus_log_volumes[512] = {
    505  0x0000,
    506  0x0700, 0x07ff, 0x0880, 0x08ff, 0x0940, 0x0980, 0x09c0, 0x09ff, 0x0a20,
    507  0x0a40, 0x0a60, 0x0a80, 0x0aa0, 0x0ac0, 0x0ae0, 0x0aff, 0x0b10, 0x0b20,
    508  0x0b30, 0x0b40, 0x0b50, 0x0b60, 0x0b70, 0x0b80, 0x0b90, 0x0ba0, 0x0bb0,
    509  0x0bc0, 0x0bd0, 0x0be0, 0x0bf0, 0x0bff, 0x0c08, 0x0c10, 0x0c18, 0x0c20,
    510  0x0c28, 0x0c30, 0x0c38, 0x0c40, 0x0c48, 0x0c50, 0x0c58, 0x0c60, 0x0c68,
    511  0x0c70, 0x0c78, 0x0c80, 0x0c88, 0x0c90, 0x0c98, 0x0ca0, 0x0ca8, 0x0cb0,
    512  0x0cb8, 0x0cc0, 0x0cc8, 0x0cd0, 0x0cd8, 0x0ce0, 0x0ce8, 0x0cf0, 0x0cf8,
    513  0x0cff, 0x0d04, 0x0d08, 0x0d0c, 0x0d10, 0x0d14, 0x0d18, 0x0d1c, 0x0d20,
    514  0x0d24, 0x0d28, 0x0d2c, 0x0d30, 0x0d34, 0x0d38, 0x0d3c, 0x0d40, 0x0d44,
    515  0x0d48, 0x0d4c, 0x0d50, 0x0d54, 0x0d58, 0x0d5c, 0x0d60, 0x0d64, 0x0d68,
    516  0x0d6c, 0x0d70, 0x0d74, 0x0d78, 0x0d7c, 0x0d80, 0x0d84, 0x0d88, 0x0d8c,
    517  0x0d90, 0x0d94, 0x0d98, 0x0d9c, 0x0da0, 0x0da4, 0x0da8, 0x0dac, 0x0db0,
    518  0x0db4, 0x0db8, 0x0dbc, 0x0dc0, 0x0dc4, 0x0dc8, 0x0dcc, 0x0dd0, 0x0dd4,
    519  0x0dd8, 0x0ddc, 0x0de0, 0x0de4, 0x0de8, 0x0dec, 0x0df0, 0x0df4, 0x0df8,
    520  0x0dfc, 0x0dff, 0x0e02, 0x0e04, 0x0e06, 0x0e08, 0x0e0a, 0x0e0c, 0x0e0e,
    521  0x0e10, 0x0e12, 0x0e14, 0x0e16, 0x0e18, 0x0e1a, 0x0e1c, 0x0e1e, 0x0e20,
    522  0x0e22, 0x0e24, 0x0e26, 0x0e28, 0x0e2a, 0x0e2c, 0x0e2e, 0x0e30, 0x0e32,
    523  0x0e34, 0x0e36, 0x0e38, 0x0e3a, 0x0e3c, 0x0e3e, 0x0e40, 0x0e42, 0x0e44,
    524  0x0e46, 0x0e48, 0x0e4a, 0x0e4c, 0x0e4e, 0x0e50, 0x0e52, 0x0e54, 0x0e56,
    525  0x0e58, 0x0e5a, 0x0e5c, 0x0e5e, 0x0e60, 0x0e62, 0x0e64, 0x0e66, 0x0e68,
    526  0x0e6a, 0x0e6c, 0x0e6e, 0x0e70, 0x0e72, 0x0e74, 0x0e76, 0x0e78, 0x0e7a,
    527  0x0e7c, 0x0e7e, 0x0e80, 0x0e82, 0x0e84, 0x0e86, 0x0e88, 0x0e8a, 0x0e8c,
    528  0x0e8e, 0x0e90, 0x0e92, 0x0e94, 0x0e96, 0x0e98, 0x0e9a, 0x0e9c, 0x0e9e,
    529  0x0ea0, 0x0ea2, 0x0ea4, 0x0ea6, 0x0ea8, 0x0eaa, 0x0eac, 0x0eae, 0x0eb0,
    530  0x0eb2, 0x0eb4, 0x0eb6, 0x0eb8, 0x0eba, 0x0ebc, 0x0ebe, 0x0ec0, 0x0ec2,
    531  0x0ec4, 0x0ec6, 0x0ec8, 0x0eca, 0x0ecc, 0x0ece, 0x0ed0, 0x0ed2, 0x0ed4,
    532  0x0ed6, 0x0ed8, 0x0eda, 0x0edc, 0x0ede, 0x0ee0, 0x0ee2, 0x0ee4, 0x0ee6,
    533  0x0ee8, 0x0eea, 0x0eec, 0x0eee, 0x0ef0, 0x0ef2, 0x0ef4, 0x0ef6, 0x0ef8,
    534  0x0efa, 0x0efc, 0x0efe, 0x0eff, 0x0f01, 0x0f02, 0x0f03, 0x0f04, 0x0f05,
    535  0x0f06, 0x0f07, 0x0f08, 0x0f09, 0x0f0a, 0x0f0b, 0x0f0c, 0x0f0d, 0x0f0e,
    536  0x0f0f, 0x0f10, 0x0f11, 0x0f12, 0x0f13, 0x0f14, 0x0f15, 0x0f16, 0x0f17,
    537  0x0f18, 0x0f19, 0x0f1a, 0x0f1b, 0x0f1c, 0x0f1d, 0x0f1e, 0x0f1f, 0x0f20,
    538  0x0f21, 0x0f22, 0x0f23, 0x0f24, 0x0f25, 0x0f26, 0x0f27, 0x0f28, 0x0f29,
    539  0x0f2a, 0x0f2b, 0x0f2c, 0x0f2d, 0x0f2e, 0x0f2f, 0x0f30, 0x0f31, 0x0f32,
    540  0x0f33, 0x0f34, 0x0f35, 0x0f36, 0x0f37, 0x0f38, 0x0f39, 0x0f3a, 0x0f3b,
    541  0x0f3c, 0x0f3d, 0x0f3e, 0x0f3f, 0x0f40, 0x0f41, 0x0f42, 0x0f43, 0x0f44,
    542  0x0f45, 0x0f46, 0x0f47, 0x0f48, 0x0f49, 0x0f4a, 0x0f4b, 0x0f4c, 0x0f4d,
    543  0x0f4e, 0x0f4f, 0x0f50, 0x0f51, 0x0f52, 0x0f53, 0x0f54, 0x0f55, 0x0f56,
    544  0x0f57, 0x0f58, 0x0f59, 0x0f5a, 0x0f5b, 0x0f5c, 0x0f5d, 0x0f5e, 0x0f5f,
    545  0x0f60, 0x0f61, 0x0f62, 0x0f63, 0x0f64, 0x0f65, 0x0f66, 0x0f67, 0x0f68,
    546  0x0f69, 0x0f6a, 0x0f6b, 0x0f6c, 0x0f6d, 0x0f6e, 0x0f6f, 0x0f70, 0x0f71,
    547  0x0f72, 0x0f73, 0x0f74, 0x0f75, 0x0f76, 0x0f77, 0x0f78, 0x0f79, 0x0f7a,
    548  0x0f7b, 0x0f7c, 0x0f7d, 0x0f7e, 0x0f7f, 0x0f80, 0x0f81, 0x0f82, 0x0f83,
    549  0x0f84, 0x0f85, 0x0f86, 0x0f87, 0x0f88, 0x0f89, 0x0f8a, 0x0f8b, 0x0f8c,
    550  0x0f8d, 0x0f8e, 0x0f8f, 0x0f90, 0x0f91, 0x0f92, 0x0f93, 0x0f94, 0x0f95,
    551  0x0f96, 0x0f97, 0x0f98, 0x0f99, 0x0f9a, 0x0f9b, 0x0f9c, 0x0f9d, 0x0f9e,
    552  0x0f9f, 0x0fa0, 0x0fa1, 0x0fa2, 0x0fa3, 0x0fa4, 0x0fa5, 0x0fa6, 0x0fa7,
    553  0x0fa8, 0x0fa9, 0x0faa, 0x0fab, 0x0fac, 0x0fad, 0x0fae, 0x0faf, 0x0fb0,
    554  0x0fb1, 0x0fb2, 0x0fb3, 0x0fb4, 0x0fb5, 0x0fb6, 0x0fb7, 0x0fb8, 0x0fb9,
    555  0x0fba, 0x0fbb, 0x0fbc, 0x0fbd, 0x0fbe, 0x0fbf, 0x0fc0, 0x0fc1, 0x0fc2,
    556  0x0fc3, 0x0fc4, 0x0fc5, 0x0fc6, 0x0fc7, 0x0fc8, 0x0fc9, 0x0fca, 0x0fcb,
    557  0x0fcc, 0x0fcd, 0x0fce, 0x0fcf, 0x0fd0, 0x0fd1, 0x0fd2, 0x0fd3, 0x0fd4,
    558  0x0fd5, 0x0fd6, 0x0fd7, 0x0fd8, 0x0fd9, 0x0fda, 0x0fdb, 0x0fdc, 0x0fdd,
    559  0x0fde, 0x0fdf, 0x0fe0, 0x0fe1, 0x0fe2, 0x0fe3, 0x0fe4, 0x0fe5, 0x0fe6,
    560  0x0fe7, 0x0fe8, 0x0fe9, 0x0fea, 0x0feb, 0x0fec, 0x0fed, 0x0fee, 0x0fef,
    561  0x0ff0, 0x0ff1, 0x0ff2, 0x0ff3, 0x0ff4, 0x0ff5, 0x0ff6, 0x0ff7, 0x0ff8,
    562  0x0ff9, 0x0ffa, 0x0ffb, 0x0ffc, 0x0ffd, 0x0ffe, 0x0fff};
    563 
    564 #define SELECT_GUS_REG(iot,ioh1,x) bus_space_write_1(iot,ioh1,GUS_REG_SELECT,x)
    565 #define ADDR_HIGH(x) (unsigned int) ((x >> 7L) & 0x1fffL)
    566 #define ADDR_LOW(x) (unsigned int) ((x & 0x7fL) << 9L)
    567 
    568 #define GUS_MIN_VOICES 14	/* Minimum possible number of voices */
    569 #define GUS_MAX_VOICES 32	/* Maximum possible number of voices */
    570 #define GUS_VOICE_LEFT 0	/* Voice used for left (and mono) playback */
    571 #define GUS_VOICE_RIGHT 1	/* Voice used for right playback */
    572 #define GUS_MEM_OFFSET 32	/* Offset into GUS memory to begin of buffer */
    573 #define GUS_BUFFER_MULTIPLE 1024	/* Audio buffers are multiples of this */
    574 #define	GUS_MEM_FOR_BUFFERS	131072	/* use this many bytes on-GUS */
    575 #define	GUS_LEFT_RIGHT_OFFSET	(sc->sc_nbufs * sc->sc_chanblocksize + GUS_MEM_OFFSET)
    576 
    577 #define GUS_PREC_BYTES (sc->sc_precision >> 3) /* precision to bytes */
    578 
    579 /* splgus() must be splaudio() */
    580 
    581 #define splgus splaudio
    582 
    583 /*
    584  * Interface to higher level audio driver
    585  */
    586 
    587 struct audio_hw_if gus_hw_if = {
    588 	gusopen,
    589 	gusclose,
    590 	NULL,				/* drain */
    591 
    592 	gus_query_encoding,
    593 
    594 	gus_set_params,
    595 
    596 	gus_round_blocksize,
    597 
    598 	gus_commit_settings,
    599 
    600 	NULL,
    601 	NULL,
    602 
    603 	gus_dma_output,
    604 	gus_dma_input,
    605 	gus_halt_out_dma,
    606 	gus_halt_in_dma,
    607 	gus_speaker_ctl,
    608 
    609 	gus_getdev,
    610 	NULL,
    611 	gus_mixer_set_port,
    612 	gus_mixer_get_port,
    613 	gus_mixer_query_devinfo,
    614 	NULL,
    615 	NULL,
    616 	NULL,
    617         NULL,
    618 	gus_get_props,
    619 };
    620 
    621 static struct audio_hw_if gusmax_hw_if = {
    622 	gusmaxopen,
    623 	gusmax_close,
    624 	NULL,				/* drain */
    625 
    626 	gus_query_encoding, /* query encoding */
    627 
    628 	gusmax_set_params,
    629 
    630 	gusmax_round_blocksize,
    631 
    632 	gusmax_commit_settings,
    633 
    634 	NULL,
    635 	NULL,
    636 
    637 	gusmax_dma_output,
    638 	gusmax_dma_input,
    639 	gusmax_halt_out_dma,
    640 	gusmax_halt_in_dma,
    641 
    642 	gusmax_speaker_ctl,
    643 
    644 	gus_getdev,
    645 	NULL,
    646 	gusmax_mixer_set_port,
    647 	gusmax_mixer_get_port,
    648 	gusmax_mixer_query_devinfo,
    649 	NULL,
    650 	NULL,
    651 	NULL,
    652 	NULL,
    653 	gusmax_get_props,
    654 };
    655 
    656 /*
    657  * Some info about the current audio device
    658  */
    659 
    660 struct audio_device gus_device = {
    661 	"UltraSound",
    662 	"",
    663 	"gus",
    664 };
    665 
    666 #define FLIP_REV	5		/* This rev has flipped mixer chans */
    667 
    668 
    669 int
    670 gusprobe(parent, match, aux)
    671 	struct device *parent;
    672 #ifdef __BROKEN_INDIRECT_CONFIG
    673 	void *match;
    674 #else
    675 	struct cfdata *match;
    676 #endif
    677 	void *aux;
    678 {
    679 	struct isa_attach_args *ia = aux;
    680 	int iobase = ia->ia_iobase;
    681 	int recdrq = ia->ia_drq2;
    682 
    683 	/*
    684 	 * Before we do anything else, make sure requested IRQ and DRQ are
    685 	 * valid for this card.
    686 	 */
    687 
    688 	/* XXX range check before indexing!! */
    689 	if (ia->ia_irq == IRQUNK || gus_irq_map[ia->ia_irq] == IRQUNK) {
    690 		printf("gus: invalid irq %d, card not probed\n", ia->ia_irq);
    691 		return 0;
    692 	}
    693 
    694 	if (ia->ia_drq == DRQUNK || gus_drq_map[ia->ia_drq] == DRQUNK) {
    695 		printf("gus: invalid drq %d, card not probed\n", ia->ia_drq);
    696 		return 0;
    697 	}
    698 
    699 	if (recdrq != DRQUNK) {
    700 		if (recdrq > 7 || gus_drq_map[recdrq] == DRQUNK) {
    701 		   printf("gus: invalid second DMA channel (%d), card not probed\n", recdrq);
    702 		   return 0;
    703 	        }
    704 	} else
    705 		recdrq = ia->ia_drq;
    706 
    707 	if (iobase == IOBASEUNK) {
    708 		int i;
    709 		for(i = 0; i < gus_addrs; i++)
    710 			if (gus_test_iobase(ia->ia_iot, gus_base_addrs[i])) {
    711 				iobase = gus_base_addrs[i];
    712 				goto done;
    713 			}
    714 		return 0;
    715 	} else if (!gus_test_iobase(ia->ia_iot, iobase))
    716 			return 0;
    717 
    718 done:
    719 	if ((ia->ia_drq    != -1 && !isa_drq_isfree(parent, ia->ia_drq)) ||
    720 	    (recdrq != -1 && !isa_drq_isfree(parent, recdrq)))
    721 		return 0;
    722 
    723 	ia->ia_iobase = iobase;
    724 	ia->ia_iosize = GUS_NPORT1;
    725 	return 1;
    726 }
    727 
    728 /*
    729  * Test to see if a particular I/O base is valid for the GUS.  Return true
    730  * if it is.
    731  */
    732 
    733 STATIC int
    734 gus_test_iobase (iot, iobase)
    735 	bus_space_tag_t iot;
    736 	int iobase;
    737 {
    738 	bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
    739 	u_char s1, s2;
    740 	int s, rv = 0;
    741 
    742 	/* Map i/o space */
    743 	if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
    744 		return 0;
    745 	if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
    746 		goto bad1;
    747 
    748 	/* XXX Maybe we shouldn't fail on mapping this, but just assume
    749 	 * the card is of revision 0? */
    750 	if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
    751 		goto bad2;
    752 
    753 	if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
    754 		goto bad3;
    755 
    756 	/*
    757 	 * Reset GUS to an initial state before we do anything.
    758 	 */
    759 
    760 	s = splgus();
    761 	delay(500);
    762 
    763  	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    764  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
    765 
    766  	delay(500);
    767 
    768 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    769  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
    770 
    771  	delay(500);
    772 
    773 	splx(s);
    774 
    775 	/*
    776 	 * See if we can write to the board's memory
    777 	 */
    778 
    779  	s1 = guspeek(iot, ioh2, 0L);
    780  	s2 = guspeek(iot, ioh2, 1L);
    781 
    782  	guspoke(iot, ioh2, 0L, 0xaa);
    783  	guspoke(iot, ioh2, 1L, 0x55);
    784 
    785  	if (guspeek(iot, ioh2, 0L) != 0xaa)
    786 		goto bad;
    787 
    788 	guspoke(iot, ioh2, 0L, s1);
    789 	guspoke(iot, ioh2, 1L, s2);
    790 
    791 	rv = 1;
    792 
    793 bad:
    794 	bus_space_unmap(iot, ioh4, GUS_NPORT4);
    795 bad3:
    796 	bus_space_unmap(iot, ioh3, GUS_NPORT3);
    797 bad2:
    798 	bus_space_unmap(iot, ioh2, GUS_NPORT2);
    799 bad1:
    800 	bus_space_unmap(iot, ioh1, GUS_NPORT1);
    801 	return rv;
    802 }
    803 
    804 /*
    805  * Setup the GUS for use; called shortly after probe
    806  */
    807 
    808 void
    809 gusattach(parent, self, aux)
    810 	struct device *parent, *self;
    811 	void *aux;
    812 {
    813 	struct gus_softc *sc = (void *) self;
    814 	struct isa_attach_args *ia = aux;
    815 	bus_space_tag_t iot;
    816 	bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
    817  	int		iobase, i;
    818 	unsigned char	c,d,m;
    819 
    820 	sc->sc_iot = iot = ia->ia_iot;
    821 	iobase = ia->ia_iobase;
    822 
    823 	/* Map i/o space */
    824 	if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
    825 		panic("%s: can't map io port range 1", self->dv_xname);
    826 	sc->sc_ioh1 = ioh1;
    827 	if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
    828 		panic("%s: can't map io port range 2", self->dv_xname);
    829 	sc->sc_ioh2 = ioh2;
    830 
    831 	/* XXX Maybe we shouldn't fail on mapping this, but just assume
    832 	 * the card is of revision 0? */
    833 	if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
    834 		panic("%s: can't map io port range 3", self->dv_xname);
    835 	sc->sc_ioh3 = ioh3;
    836 
    837 	if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
    838 		panic("%s: can't map io port range 4", self->dv_xname);
    839 	sc->sc_ioh4 = ioh4;
    840 
    841 	sc->sc_iobase = iobase;
    842 	sc->sc_irq = ia->ia_irq;
    843 	sc->sc_drq = ia->ia_drq;
    844 	sc->sc_recdrq = ia->ia_drq2;
    845 
    846 	/*
    847 	 * Figure out our board rev, and see if we need to initialize the
    848 	 * mixer
    849 	 */
    850 
    851 	sc->sc_isa = parent;
    852 
    853  	delay(500);
    854 
    855  	c = bus_space_read_1(iot, ioh3, GUS_BOARD_REV);
    856 	if (c != 0xff)
    857 		sc->sc_revision = c;
    858 	else
    859 		sc->sc_revision = 0;
    860 
    861 
    862  	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    863  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
    864 
    865 	gusreset(sc, GUS_MAX_VOICES); /* initialize all voices */
    866 	gusreset(sc, GUS_MIN_VOICES); /* then set to just the ones we use */
    867 
    868 	/*
    869 	 * Setup the IRQ and DRQ lines in software, using values from
    870 	 * config file
    871 	 */
    872 
    873 	m = GUSMASK_LINE_IN|GUSMASK_LINE_OUT;		/* disable all */
    874 
    875 	c = ((unsigned char) gus_irq_map[ia->ia_irq]) | GUSMASK_BOTH_RQ;
    876 
    877 	if (sc->sc_recdrq == sc->sc_drq)
    878 		d = (unsigned char) (gus_drq_map[sc->sc_drq] |
    879 				GUSMASK_BOTH_RQ);
    880 	else
    881 		d = (unsigned char) (gus_drq_map[sc->sc_drq] |
    882 				gus_drq_map[sc->sc_recdrq] << 3);
    883 
    884 	/*
    885 	 * Program the IRQ and DMA channels on the GUS.  Note that we hardwire
    886 	 * the GUS to only use one IRQ channel, but we give the user the
    887 	 * option of using two DMA channels (the other one given by the flags
    888 	 * option in the config file).  Two DMA channels are needed for full-
    889 	 * duplex operation.
    890 	 *
    891 	 * The order of these operations is very magical.
    892 	 */
    893 
    894 	disable_intr();		/* XXX needed? */
    895 
    896 	bus_space_write_1(iot, ioh1, GUS_REG_CONTROL, GUS_REG_IRQCTL);
    897 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    898 	bus_space_write_1(iot, ioh1, GUS_IRQCTL_CONTROL, 0x00);
    899 	bus_space_write_1(iot, ioh1, 0x0f, 0x00);
    900 
    901 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    902 	bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d | 0x80); /* magic reset? */
    903 
    904 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
    905 	bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
    906 
    907 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
    908 	bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d);
    909 
    910 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
    911 	bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
    912 
    913 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
    914 
    915 	/* enable line in, line out.  leave mic disabled. */
    916 	bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL,
    917 	     (m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN));
    918 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
    919 
    920 	enable_intr();
    921 
    922 	sc->sc_mixcontrol =
    923 		(m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN);
    924 
    925 	/* XXX WILL THIS ALWAYS WORK THE WAY THEY'RE OVERLAYED?! */
    926 	sc->sc_codec.sc_isa = sc->sc_dev.dv_parent;
    927 
    928  	if (sc->sc_revision >= 5 && sc->sc_revision <= 9) {
    929  		sc->sc_flags |= GUS_MIXER_INSTALLED;
    930  		gus_init_ics2101(sc);
    931 	}
    932 	if (sc->sc_revision >= 0xa) {
    933 		gus_init_cs4231(sc);
    934 	} else {
    935 		/* Not using the CS4231, so create our DMA maps. */
    936 		if (sc->sc_drq != -1) {
    937 			if (isa_dmamap_create(sc->sc_isa, sc->sc_drq,
    938 			    MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
    939 				printf("%s: can't create map for drq %d\n",
    940 				       sc->sc_dev.dv_xname, sc->sc_drq);
    941 				return;
    942 			}
    943 		}
    944 		if (sc->sc_recdrq != -1 && sc->sc_recdrq != sc->sc_drq) {
    945 			if (isa_dmamap_create(sc->sc_isa, sc->sc_recdrq,
    946 			    MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
    947 				printf("%s: can't create map for drq %d\n",
    948 				       sc->sc_dev.dv_xname, sc->sc_recdrq);
    949 				return;
    950 			}
    951 		}
    952 	}
    953 
    954  	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
    955  	/*
    956  	 * Check to see how much memory we have on this card; see if any
    957  	 * "mirroring" occurs.  We're assuming at least 256K already exists
    958  	 * on the card; otherwise the initial probe would have failed
    959  	 */
    960 
    961 	guspoke(iot, ioh2, 0L, 0x00);
    962 	for(i = 1; i < 1024; i++) {
    963 		u_long loc;
    964 
    965 		/*
    966 		 * See if we've run into mirroring yet
    967 		 */
    968 
    969 		if (guspeek(iot, ioh2, 0L) != 0)
    970 			break;
    971 
    972 		loc = i << 10;
    973 
    974 		guspoke(iot, ioh2, loc, 0xaa);
    975 		if (guspeek(iot, ioh2, loc) != 0xaa)
    976 			break;
    977 	}
    978 
    979 	sc->sc_dsize = i;
    980 	sprintf(gus_device.version, "3.%d", sc->sc_revision);
    981 
    982 	printf("\n <Gravis UltraSound version 3.%d, %dKB DRAM, ",
    983 	       sc->sc_revision, sc->sc_dsize);
    984 	if (HAS_MIXER(sc))
    985 		printf("ICS2101 mixer, ");
    986 	if (HAS_CODEC(sc))
    987 		printf("%s codec/mixer, ", sc->sc_codec.chip_name);
    988 	if (sc->sc_recdrq == sc->sc_drq) {
    989 		printf("half-duplex");
    990 	} else {
    991 		printf("full-duplex, record drq %d", sc->sc_recdrq);
    992 	}
    993 
    994 	printf(">\n");
    995 
    996 	/*
    997 	 * Setup a default interrupt handler
    998 	 */
    999 
   1000 	/* XXX we shouldn't have to use splgus == splclock, nor should
   1001 	 * we use IPL_CLOCK.
   1002 	 */
   1003 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
   1004 	    IPL_AUDIO, gusintr, sc /* sc->sc_gusdsp */);
   1005 
   1006 	/*
   1007 	 * Set some default values
   1008 	 * XXX others start with 8kHz mono mulaw
   1009 	 */
   1010 
   1011 	sc->sc_irate = sc->sc_orate = 44100;
   1012 	sc->sc_encoding = AUDIO_ENCODING_SLINEAR_LE;
   1013 	sc->sc_precision = 16;
   1014 	sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
   1015 	sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
   1016 	sc->sc_channels = 1;
   1017 	sc->sc_ogain = 340;
   1018 	gus_commit_settings(sc);
   1019 
   1020 	/*
   1021 	 * We always put the left channel full left & right channel
   1022 	 * full right.
   1023 	 * For mono playback, we set up both voices playing the same buffer.
   1024 	 */
   1025 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) GUS_VOICE_LEFT);
   1026 	SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   1027 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_LEFT);
   1028 
   1029 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) GUS_VOICE_RIGHT);
   1030 	SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   1031 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_RIGHT);
   1032 
   1033 	/*
   1034 	 * Attach to the generic audio layer
   1035 	 */
   1036 
   1037 	audio_attach_mi(&gus_hw_if, 0, HAS_CODEC(sc) ? (void *)&sc->sc_codec : (void *)sc, &sc->sc_dev);
   1038 }
   1039 
   1040 int
   1041 gusopen(addr, flags)
   1042 	void *addr;
   1043 	int flags;
   1044 {
   1045 	struct gus_softc *sc = addr;
   1046 
   1047 	DPRINTF(("gusopen() called\n"));
   1048 
   1049 	if (sc->sc_flags & GUS_OPEN)
   1050 		return EBUSY;
   1051 
   1052 	/*
   1053 	 * Some initialization
   1054 	 */
   1055 
   1056 	sc->sc_flags |= GUS_OPEN;
   1057 	sc->sc_dmabuf = 0;
   1058 	sc->sc_playbuf = -1;
   1059 	sc->sc_bufcnt = 0;
   1060 	sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
   1061 	sc->sc_voc[GUS_VOICE_LEFT].current_addr = GUS_MEM_OFFSET;
   1062 
   1063 	if (HAS_CODEC(sc)) {
   1064 		ad1848_open(&sc->sc_codec, flags);
   1065 		sc->sc_codec.aux1_mute = 0;
   1066 		ad1848_mute_aux1(&sc->sc_codec, 0); /* turn on DAC output */
   1067 		if (flags & FREAD) {
   1068 			sc->sc_codec.mono_mute = 0;
   1069 			cs4231_mute_mono(&sc->sc_codec, 0);
   1070 		}
   1071 	} else if (flags & FREAD) {
   1072 		/* enable/unmute the microphone */
   1073 		if (HAS_MIXER(sc)) {
   1074 			gusics_mic_mute(&sc->sc_mixer, 0);
   1075 		} else
   1076 			gus_mic_ctl(sc, SPKR_ON);
   1077 	}
   1078 	if (sc->sc_nbufs == 0)
   1079 	    gus_round_blocksize(sc, GUS_BUFFER_MULTIPLE); /* default blksiz */
   1080 	return 0;
   1081 }
   1082 
   1083 int
   1084 gusmaxopen(addr, flags)
   1085 	void *addr;
   1086 	int flags;
   1087 {
   1088 	struct ad1848_softc *ac = addr;
   1089 	return gusopen(ac->parent, flags);
   1090 }
   1091 
   1092 STATIC void
   1093 gus_deinterleave(sc, buf, size)
   1094 	struct gus_softc *sc;
   1095 	void *buf;
   1096 	int size;
   1097 {
   1098 	/* deinterleave the stereo data.  We can use sc->sc_deintr_buf
   1099 	   for scratch space. */
   1100 	int i;
   1101 
   1102 	if (size > sc->sc_blocksize) {
   1103 		printf("gus: deinterleave %d > %d\n", size, sc->sc_blocksize);
   1104 		return;
   1105 	} else if (size < sc->sc_blocksize) {
   1106 		DPRINTF(("gus: deinterleave %d < %d\n", size, sc->sc_blocksize));
   1107 	}
   1108 
   1109 	/*
   1110 	 * size is in bytes.
   1111 	 */
   1112 	if (sc->sc_precision == 16) {
   1113 		u_short *dei = sc->sc_deintr_buf;
   1114 		u_short *sbuf = buf;
   1115 		size >>= 1;		/* bytecnt to shortcnt */
   1116 		/* copy 2nd of each pair of samples to the staging area, while
   1117 		   compacting the 1st of each pair into the original area. */
   1118 		for (i = 0; i < size/2-1; i++)  {
   1119 			dei[i] = sbuf[i*2+1];
   1120 			sbuf[i+1] = sbuf[i*2+2];
   1121 		}
   1122 		/*
   1123 		 * this has copied one less sample than half of the
   1124 		 * buffer.  The first sample of the 1st stream was
   1125 		 * already in place and didn't need copying.
   1126 		 * Therefore, we've moved all of the 1st stream's
   1127 		 * samples into place.  We have one sample from 2nd
   1128 		 * stream in the last slot of original area, not
   1129 		 * copied to the staging area (But we don't need to!).
   1130 		 * Copy the remainder of the original stream into place.
   1131 		 */
   1132 		bcopy(dei, &sbuf[size/2], i * sizeof(short));
   1133 	} else {
   1134 		u_char *dei = sc->sc_deintr_buf;
   1135 		u_char *sbuf = buf;
   1136 		for (i = 0; i < size/2-1; i++)  {
   1137 			dei[i] = sbuf[i*2+1];
   1138 			sbuf[i+1] = sbuf[i*2+2];
   1139 		}
   1140 		bcopy(dei, &sbuf[size/2], i);
   1141 	}
   1142 }
   1143 
   1144 /*
   1145  * Actually output a buffer to the DSP chip
   1146  */
   1147 
   1148 int
   1149 gusmax_dma_output(addr, buf, size, intr, arg)
   1150 	void * addr;
   1151 	void *buf;
   1152 	int size;
   1153 	void (*intr) __P((void *));
   1154 	void *arg;
   1155 {
   1156 	struct ad1848_softc *ac = addr;
   1157 	return gus_dma_output(ac->parent, buf, size, intr, arg);
   1158 }
   1159 
   1160 /*
   1161  * called at splgus() from interrupt handler.
   1162  */
   1163 void
   1164 stereo_dmaintr(arg)
   1165 	void *arg;
   1166 {
   1167     struct gus_softc *sc = arg;
   1168     struct stereo_dma_intr *sa = &sc->sc_stereo;
   1169 
   1170     DMAPRINTF(("stereo_dmaintr"));
   1171 
   1172     /*
   1173      * Put other half in its place, then call the real interrupt routine :)
   1174      */
   1175 
   1176     sc->sc_dmaoutintr = sa->intr;
   1177     sc->sc_outarg = sa->arg;
   1178 
   1179 #ifdef GUSPLAYDEBUG
   1180     if (gusstats) {
   1181       microtime(&dmarecords[dmarecord_index].tv);
   1182       dmarecords[dmarecord_index].gusaddr = sa->dmabuf;
   1183       dmarecords[dmarecord_index].bsdaddr = sa->buffer;
   1184       dmarecords[dmarecord_index].count = sa->size;
   1185       dmarecords[dmarecord_index].channel = 1;
   1186       dmarecords[dmarecord_index].direction = 1;
   1187       dmarecord_index = ++dmarecord_index % NDMARECS;
   1188     }
   1189 #endif
   1190 
   1191     gusdmaout(sc, sa->flags, sa->dmabuf, (caddr_t) sa->buffer, sa->size);
   1192 
   1193     sa->flags = 0;
   1194     sa->dmabuf = 0;
   1195     sa->buffer = 0;
   1196     sa->size = 0;
   1197     sa->intr = 0;
   1198     sa->arg = 0;
   1199 }
   1200 
   1201 /*
   1202  * Start up DMA output to the card.
   1203  * Called at splgus/splaudio already, either from intr handler or from
   1204  * generic audio code.
   1205  */
   1206 int
   1207 gus_dma_output(addr, buf, size, intr, arg)
   1208 	void * addr;
   1209 	void *buf;
   1210 	int size;
   1211 	void (*intr) __P((void *));
   1212 	void *arg;
   1213 {
   1214 	struct gus_softc *sc = addr;
   1215 	u_char *buffer = buf;
   1216 	u_long boarddma;
   1217 	int flags;
   1218 
   1219 	DMAPRINTF(("gus_dma_output %d @ %p\n", size, buf));
   1220 
   1221 	if (size != sc->sc_blocksize) {
   1222 	    DPRINTF(("gus_dma_output reqsize %d not sc_blocksize %d\n",
   1223 		     size, sc->sc_blocksize));
   1224 	    return EINVAL;
   1225 	}
   1226 
   1227 	flags = GUSMASK_DMA_WRITE;
   1228 	if (sc->sc_precision == 16)
   1229 	    flags |= GUSMASK_DMA_DATA_SIZE;
   1230 	if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   1231 	    sc->sc_encoding == AUDIO_ENCODING_ALAW ||
   1232 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE ||
   1233 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE)
   1234 	    flags |= GUSMASK_DMA_INVBIT;
   1235 
   1236 	if (sc->sc_channels == 2) {
   1237 		if (sc->sc_precision == 16) {
   1238 			if (size & 3) {
   1239 				DPRINTF(("gus_dma_output: unpaired 16bit samples"));
   1240 				size &= 3;
   1241 			}
   1242 		} else if (size & 1) {
   1243 			DPRINTF(("gus_dma_output: unpaired samples"));
   1244 			size &= 1;
   1245 		}
   1246 		if (size == 0)
   1247 			return 0;
   1248 
   1249 		gus_deinterleave(sc, (void *)buffer, size);
   1250 
   1251 		size >>= 1;
   1252 
   1253  		boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
   1254 
   1255 		sc->sc_stereo.intr = intr;
   1256 		sc->sc_stereo.arg = arg;
   1257 		sc->sc_stereo.size = size;
   1258 		sc->sc_stereo.dmabuf = boarddma + GUS_LEFT_RIGHT_OFFSET;
   1259 		sc->sc_stereo.buffer = buffer + size;
   1260 		sc->sc_stereo.flags = flags;
   1261 		if (gus_dostereo) {
   1262 		  intr = stereo_dmaintr;
   1263 		  arg = sc;
   1264 		}
   1265 	} else
   1266 		boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
   1267 
   1268 
   1269 	sc->sc_flags |= GUS_LOCKED;
   1270 	sc->sc_dmaoutintr = intr;
   1271 	sc->sc_outarg = arg;
   1272 
   1273 #ifdef GUSPLAYDEBUG
   1274 	if (gusstats) {
   1275 	  microtime(&dmarecords[dmarecord_index].tv);
   1276 	  dmarecords[dmarecord_index].gusaddr = boarddma;
   1277 	  dmarecords[dmarecord_index].bsdaddr = buffer;
   1278 	  dmarecords[dmarecord_index].count = size;
   1279 	  dmarecords[dmarecord_index].channel = 0;
   1280 	  dmarecords[dmarecord_index].direction = 1;
   1281 	  dmarecord_index = ++dmarecord_index % NDMARECS;
   1282 	}
   1283 #endif
   1284 
   1285 	gusdmaout(sc, flags, boarddma, (caddr_t) buffer, size);
   1286 
   1287 	return 0;
   1288 }
   1289 
   1290 void
   1291 gusmax_close(addr)
   1292 	void *addr;
   1293 {
   1294 	struct ad1848_softc *ac = addr;
   1295 	struct gus_softc *sc = ac->parent;
   1296 #if 0
   1297 	ac->aux1_mute = 1;
   1298 	ad1848_mute_aux1(ac, 1);	/* turn off DAC output */
   1299 #endif
   1300 	ad1848_close(ac);
   1301 	gusclose(sc);
   1302 }
   1303 
   1304 /*
   1305  * Close out device stuff.  Called at splgus() from generic audio layer.
   1306  */
   1307 void
   1308 gusclose(addr)
   1309 	void *addr;
   1310 {
   1311 	struct gus_softc *sc = addr;
   1312 
   1313         DPRINTF(("gus_close: sc=%p\n", sc));
   1314 
   1315 
   1316 /*	if (sc->sc_flags & GUS_DMAOUT_ACTIVE) */ {
   1317 		gus_halt_out_dma(sc);
   1318 	}
   1319 /*	if (sc->sc_flags & GUS_DMAIN_ACTIVE) */ {
   1320 		gus_halt_in_dma(sc);
   1321 	}
   1322 	sc->sc_flags &= ~(GUS_OPEN|GUS_LOCKED|GUS_DMAOUT_ACTIVE|GUS_DMAIN_ACTIVE);
   1323 
   1324 	if (sc->sc_deintr_buf) {
   1325 		FREE(sc->sc_deintr_buf, M_DEVBUF);
   1326 		sc->sc_deintr_buf = NULL;
   1327 	}
   1328 	/* turn off speaker, etc. */
   1329 
   1330 	/* make sure the voices shut up: */
   1331 	gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   1332 	gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1333 }
   1334 
   1335 /*
   1336  * Service interrupts.  Farm them off to helper routines if we are using the
   1337  * GUS for simple playback/record
   1338  */
   1339 
   1340 #ifdef DIAGNOSTIC
   1341 int gusintrcnt;
   1342 int gusdmaintrcnt;
   1343 int gusvocintrcnt;
   1344 #endif
   1345 
   1346 int
   1347 gusintr(arg)
   1348 	void *arg;
   1349 {
   1350 	struct gus_softc *sc = arg;
   1351 	bus_space_tag_t iot = sc->sc_iot;
   1352 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   1353 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1354 	unsigned char intr;
   1355 
   1356 	int retval = 0;
   1357 
   1358 	DPRINTF(("gusintr\n"));
   1359 #ifdef DIAGNOSTIC
   1360 	gusintrcnt++;
   1361 #endif
   1362 	if (HAS_CODEC(sc))
   1363 		retval = ad1848_intr(&sc->sc_codec);
   1364 	if ((intr = bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS)) & GUSMASK_IRQ_DMATC) {
   1365 		DMAPRINTF(("gusintr dma flags=%x\n", sc->sc_flags));
   1366 #ifdef DIAGNOSTIC
   1367 		gusdmaintrcnt++;
   1368 #endif
   1369 		retval += gus_dmaout_intr(sc);
   1370 		if (sc->sc_flags & GUS_DMAIN_ACTIVE) {
   1371 		    SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   1372 		    intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1373 		    if (intr & GUSMASK_SAMPLE_DMATC) {
   1374 			retval += gus_dmain_intr(sc);
   1375 		    }
   1376 		}
   1377 	}
   1378 	if (intr & (GUSMASK_IRQ_VOICE | GUSMASK_IRQ_VOLUME)) {
   1379 		DMAPRINTF(("gusintr voice flags=%x\n", sc->sc_flags));
   1380 #ifdef DIAGNOSTIC
   1381 		gusvocintrcnt++;
   1382 #endif
   1383 		retval += gus_voice_intr(sc);
   1384 	}
   1385 	if (retval)
   1386 		return 1;
   1387 	return retval;
   1388 }
   1389 
   1390 int gus_bufcnt[GUS_MEM_FOR_BUFFERS / GUS_BUFFER_MULTIPLE];
   1391 int gus_restart;				/* how many restarts? */
   1392 int gus_stops;				/* how many times did voice stop? */
   1393 int gus_falsestops;			/* stopped but not done? */
   1394 int gus_continues;
   1395 
   1396 struct playcont {
   1397 	struct timeval tv;
   1398 	u_int playbuf;
   1399 	u_int dmabuf;
   1400 	u_char bufcnt;
   1401 	u_char vaction;
   1402 	u_char voccntl;
   1403 	u_char volcntl;
   1404 	u_long curaddr;
   1405 	u_long endaddr;
   1406 } playstats[NDMARECS];
   1407 
   1408 int playcntr;
   1409 
   1410 STATIC void
   1411 gus_dmaout_timeout(arg)
   1412 	void *arg;
   1413 {
   1414 	struct gus_softc *sc = arg;
   1415 	bus_space_tag_t iot = sc->sc_iot;
   1416 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1417 	int s;
   1418 
   1419 	printf("%s: dmaout timeout\n", sc->sc_dev.dv_xname);
   1420 	/*
   1421 	 * Stop any DMA.
   1422 	 */
   1423 
   1424 	s = splgus();
   1425 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   1426 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   1427 
   1428 #if 0
   1429 	/* XXX we will dmadone below? */
   1430 	isa_dmaabort(sc->sc_dev.dv_parent, sc->sc_drq);
   1431 #endif
   1432 
   1433 	gus_dmaout_dointr(sc);
   1434 	splx(s);
   1435 }
   1436 
   1437 
   1438 /*
   1439  * Service DMA interrupts.  This routine will only get called if we're doing
   1440  * a DMA transfer for playback/record requests from the audio layer.
   1441  */
   1442 
   1443 STATIC int
   1444 gus_dmaout_intr(sc)
   1445 	struct gus_softc *sc;
   1446 {
   1447 	bus_space_tag_t iot = sc->sc_iot;
   1448 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1449 
   1450 	/*
   1451 	 * If we got a DMA transfer complete from the GUS DRAM, then deal
   1452 	 * with it.
   1453 	 */
   1454 
   1455 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   1456  	if (bus_space_read_1(iot, ioh2, GUS_DATA_HIGH) & GUSMASK_DMA_IRQPEND) {
   1457 	    untimeout(gus_dmaout_timeout, sc);
   1458 	    gus_dmaout_dointr(sc);
   1459 	    return 1;
   1460 	}
   1461 	return 0;
   1462 }
   1463 
   1464 STATIC void
   1465 gus_dmaout_dointr(sc)
   1466 	struct gus_softc *sc;
   1467 {
   1468 	bus_space_tag_t iot = sc->sc_iot;
   1469 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1470 
   1471 	/* sc->sc_dmaoutcnt - 1 because DMA controller counts from zero?. */
   1472 	isa_dmadone(sc->sc_dev.dv_parent, sc->sc_drq);
   1473 	sc->sc_flags &= ~GUS_DMAOUT_ACTIVE;  /* pending DMA is done */
   1474 	DMAPRINTF(("gus_dmaout_dointr %d @ %p\n", sc->sc_dmaoutcnt,
   1475 		   sc->sc_dmaoutaddr));
   1476 
   1477 	/*
   1478 	 * to prevent clicking, we need to copy last sample
   1479 	 * from last buffer to scratch area just before beginning of
   1480 	 * buffer.  However, if we're doing formats that are converted by
   1481 	 * the card during the DMA process, we need to pick up the converted
   1482 	 * byte rather than the one we have in memory.
   1483 	 */
   1484 	if (sc->sc_dmabuf == sc->sc_nbufs - 1) {
   1485 	  int i;
   1486 	  switch (sc->sc_encoding) {
   1487 	  case AUDIO_ENCODING_SLINEAR_LE:
   1488 	  case AUDIO_ENCODING_SLINEAR_BE:
   1489 	    if (sc->sc_precision == 8)
   1490 	      goto byte;
   1491 	    /* we have the native format */
   1492 	    for (i = 1; i <= 2; i++)
   1493 	      guspoke(iot, ioh2, sc->sc_gusaddr -
   1494 		      (sc->sc_nbufs - 1) * sc->sc_chanblocksize - i,
   1495 		      sc->sc_dmaoutaddr[sc->sc_dmaoutcnt-i]);
   1496 	    break;
   1497 	  case AUDIO_ENCODING_ULINEAR_LE:
   1498 	  case AUDIO_ENCODING_ULINEAR_BE:
   1499 	    guspoke(iot, ioh2, sc->sc_gusaddr -
   1500 		    (sc->sc_nbufs - 1) * sc->sc_chanblocksize - 2,
   1501 		    guspeek(iot, ioh2,
   1502 			    sc->sc_gusaddr + sc->sc_chanblocksize - 2));
   1503 	  case AUDIO_ENCODING_ALAW:
   1504 	  case AUDIO_ENCODING_ULAW:
   1505 	  byte:
   1506 	    /* we need to fetch the translated byte, then stuff it. */
   1507 	    guspoke(iot, ioh2, sc->sc_gusaddr -
   1508 		    (sc->sc_nbufs - 1) * sc->sc_chanblocksize - 1,
   1509 		    guspeek(iot, ioh2,
   1510 			    sc->sc_gusaddr + sc->sc_chanblocksize - 1));
   1511 	    break;
   1512 	  }
   1513 	}
   1514 	/*
   1515 	 * If this is the first half of stereo, "ignore" this one
   1516 	 * and copy out the second half.
   1517 	 */
   1518 	if (sc->sc_dmaoutintr == stereo_dmaintr) {
   1519 	    (*sc->sc_dmaoutintr)(sc->sc_outarg);
   1520 	    return;
   1521 	}
   1522 	/*
   1523 	 * If the voice is stopped, then start it.  Reset the loop
   1524 	 * and roll bits.  Call the audio layer routine, since if
   1525 	 * we're starting a stopped voice, that means that the next
   1526 	 * buffer can be filled
   1527 	 */
   1528 
   1529 	sc->sc_flags &= ~GUS_LOCKED;
   1530 	if (sc->sc_voc[GUS_VOICE_LEFT].voccntl &
   1531 	    GUSMASK_VOICE_STOPPED) {
   1532 	    if (sc->sc_flags & GUS_PLAYING) {
   1533 		printf("%s: playing yet stopped?\n", sc->sc_dev.dv_xname);
   1534 	    }
   1535 	    sc->sc_bufcnt++; /* another yet to be played */
   1536 	    gus_start_playing(sc, sc->sc_dmabuf);
   1537 	    gus_restart++;
   1538 	} else {
   1539 	    /*
   1540 	     * set the sound action based on which buffer we
   1541 	     * just transferred.  If we just transferred buffer 0
   1542 	     * we want the sound to loop when it gets to the nth
   1543 	     * buffer; if we just transferred
   1544 	     * any other buffer, we want the sound to roll over
   1545 	     * at least one more time.  The voice interrupt
   1546 	     * handlers will take care of accounting &
   1547 	     * setting control bits if it's not caught up to us
   1548 	     * yet.
   1549 	     */
   1550 	    if (++sc->sc_bufcnt == 2) {
   1551 		/*
   1552 		 * XXX
   1553 		 * If we're too slow in reaction here,
   1554 		 * the voice could be just approaching the
   1555 		 * end of its run.  It should be set to stop,
   1556 		 * so these adjustments might not DTRT.
   1557 		 */
   1558 		if (sc->sc_dmabuf == 0 &&
   1559 		    sc->sc_playbuf == sc->sc_nbufs - 1) {
   1560 		    /* player is just at the last buf, we're at the
   1561 		       first.  Turn on looping, turn off rolling. */
   1562 		    sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
   1563 		    sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~GUSMASK_VOICE_ROLL;
   1564 		    playstats[playcntr].vaction = 3;
   1565 		} else {
   1566 		    /* player is at previous buf:
   1567 		       turn on rolling, turn off looping */
   1568 		    sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1569 		    sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
   1570 		    playstats[playcntr].vaction = 4;
   1571 		}
   1572 #ifdef GUSPLAYDEBUG
   1573 		if (gusstats) {
   1574 		  microtime(&playstats[playcntr].tv);
   1575 		  playstats[playcntr].endaddr = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
   1576 		  playstats[playcntr].voccntl = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
   1577 		  playstats[playcntr].volcntl = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
   1578 		  playstats[playcntr].playbuf = sc->sc_playbuf;
   1579 		  playstats[playcntr].dmabuf = sc->sc_dmabuf;
   1580 		  playstats[playcntr].bufcnt = sc->sc_bufcnt;
   1581 		  playstats[playcntr].curaddr = gus_get_curaddr(sc, GUS_VOICE_LEFT);
   1582 		  playcntr = ++playcntr % NDMARECS;
   1583 		}
   1584 #endif
   1585 		bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
   1586 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1587 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].voccntl);
   1588 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1589 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].volcntl);
   1590 	    }
   1591 	}
   1592 	gus_bufcnt[sc->sc_bufcnt-1]++;
   1593 	/*
   1594 	 * flip to the next DMA buffer
   1595 	 */
   1596 
   1597 	sc->sc_dmabuf = ++sc->sc_dmabuf % sc->sc_nbufs;
   1598 	/*
   1599 	 * See comments below about DMA admission control strategy.
   1600 	 * We can call the upper level here if we have an
   1601 	 * idle buffer (not currently playing) to DMA into.
   1602 	 */
   1603 	if (sc->sc_dmaoutintr && sc->sc_bufcnt < sc->sc_nbufs) {
   1604 	    /* clean out to prevent double calls */
   1605 	    void (*pfunc) __P((void *)) = sc->sc_dmaoutintr;
   1606 	    void *arg = sc->sc_outarg;
   1607 
   1608 	    sc->sc_outarg = 0;
   1609 	    sc->sc_dmaoutintr = 0;
   1610 	    (*pfunc)(arg);
   1611 	}
   1612 }
   1613 
   1614 /*
   1615  * Service voice interrupts
   1616  */
   1617 
   1618 STATIC int
   1619 gus_voice_intr(sc)
   1620 	struct gus_softc *sc;
   1621 {
   1622 	bus_space_tag_t iot = sc->sc_iot;
   1623 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1624 	int ignore = 0, voice, rval = 0;
   1625 	unsigned char intr, status;
   1626 
   1627 	/*
   1628 	 * The point of this may not be obvious at first.  A voice can
   1629 	 * interrupt more than once; according to the GUS SDK we are supposed
   1630 	 * to ignore multiple interrupts for the same voice.
   1631 	 */
   1632 
   1633 	while(1) {
   1634 		SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   1635 		intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1636 
   1637 		if ((intr & (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
   1638 			== (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
   1639 			/*
   1640 			 * No more interrupts, time to return
   1641 			 */
   1642 		 	return rval;
   1643 
   1644 		if ((intr & GUSMASK_WIRQ_VOICE) == 0) {
   1645 
   1646 		    /*
   1647 		     * We've got a voice interrupt.  Ignore previous
   1648 		     * interrupts by the same voice.
   1649 		     */
   1650 
   1651 		    rval = 1;
   1652 		    voice = intr & GUSMASK_WIRQ_VOICEMASK;
   1653 
   1654 		    if ((1 << voice) & ignore)
   1655 			break;
   1656 
   1657 		    ignore |= 1 << voice;
   1658 
   1659 		    /*
   1660 		     * If the voice is stopped, then force it to stop
   1661 		     * (this stops it from continuously generating IRQs)
   1662 		     */
   1663 
   1664 		    SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL+0x80);
   1665 		    status = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   1666 		    if (status & GUSMASK_VOICE_STOPPED) {
   1667 			if (voice != GUS_VOICE_LEFT) {
   1668 			    DMAPRINTF(("%s: spurious voice %d stop?\n",
   1669 				       sc->sc_dev.dv_xname, voice));
   1670 			    gus_stop_voice(sc, voice, 0);
   1671 			    continue;
   1672 			}
   1673 			gus_stop_voice(sc, voice, 1);
   1674 			/* also kill right voice */
   1675 			gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1676 			sc->sc_bufcnt--; /* it finished a buffer */
   1677 			if (sc->sc_bufcnt > 0) {
   1678 			    /*
   1679 			     * probably a race to get here: the voice
   1680 			     * stopped while the DMA code was just trying to
   1681 			     * get the next buffer in place.
   1682 			     * Start the voice again.
   1683 			     */
   1684 			    printf("%s: stopped voice not drained? (%x)\n",
   1685 				   sc->sc_dev.dv_xname, sc->sc_bufcnt);
   1686 			    gus_falsestops++;
   1687 
   1688 			    sc->sc_playbuf = ++sc->sc_playbuf % sc->sc_nbufs;
   1689 			    gus_start_playing(sc, sc->sc_playbuf);
   1690 			} else if (sc->sc_bufcnt < 0) {
   1691 #ifdef DDB
   1692 			    printf("%s: negative bufcnt in stopped voice\n",
   1693 				   sc->sc_dev.dv_xname);
   1694 			    Debugger();
   1695 #else
   1696 			    panic("%s: negative bufcnt in stopped voice",
   1697 				  sc->sc_dev.dv_xname);
   1698 #endif
   1699 			} else {
   1700 			    sc->sc_playbuf = -1; /* none are active */
   1701 			    gus_stops++;
   1702 			}
   1703 			/* fall through to callback and admit another
   1704 			   buffer.... */
   1705 		    } else if (sc->sc_bufcnt != 0) {
   1706 			/*
   1707 			 * This should always be taken if the voice
   1708 			 * is not stopped.
   1709 			 */
   1710 			gus_continues++;
   1711 			if (gus_continue_playing(sc, voice)) {
   1712 				/*
   1713 				 * we shouldn't have continued--active DMA
   1714 				 * is in the way in the ring, for
   1715 				 * some as-yet undebugged reason.
   1716 				 */
   1717 				gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   1718 				/* also kill right voice */
   1719 				gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   1720 				sc->sc_playbuf = -1;
   1721 				gus_stops++;
   1722 			}
   1723 		    }
   1724 		    /*
   1725 		     * call the upper level to send on down another
   1726 		     * block. We do admission rate control as follows:
   1727 		     *
   1728 		     * When starting up output (in the first N
   1729 		     * blocks), call the upper layer after the DMA is
   1730 		     * complete (see above in gus_dmaout_intr()).
   1731 		     *
   1732 		     * When output is already in progress and we have
   1733 		     * no more GUS buffers to use for DMA, the DMA
   1734 		     * output routines do not call the upper layer.
   1735 		     * Instead, we call the DMA completion routine
   1736 		     * here, after the voice interrupts indicating
   1737 		     * that it's finished with a buffer.
   1738 		     *
   1739 		     * However, don't call anything here if the DMA
   1740 		     * output flag is set, (which shouldn't happen)
   1741 		     * because we'll squish somebody else's DMA if
   1742 		     * that's the case.  When DMA is done, it will
   1743 		     * call back if there is a spare buffer.
   1744 		     */
   1745 		    if (sc->sc_dmaoutintr && !(sc->sc_flags & GUS_LOCKED)) {
   1746 			if (sc->sc_dmaoutintr == stereo_dmaintr)
   1747 			    printf("gusdmaout botch?\n");
   1748 			else {
   1749 			    /* clean out to avoid double calls */
   1750 			    void (*pfunc) __P((void *)) = sc->sc_dmaoutintr;
   1751 			    void *arg = sc->sc_outarg;
   1752 
   1753 			    sc->sc_outarg = 0;
   1754 			    sc->sc_dmaoutintr = 0;
   1755 			    (*pfunc)(arg);
   1756 			}
   1757 		    }
   1758 		}
   1759 
   1760 		/*
   1761 		 * Ignore other interrupts for now
   1762 		 */
   1763 	}
   1764 	return 0;
   1765 }
   1766 
   1767 STATIC void
   1768 gus_start_playing(sc, bufno)
   1769 	struct gus_softc *sc;
   1770 	int bufno;
   1771 {
   1772 	bus_space_tag_t iot = sc->sc_iot;
   1773 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1774 	/*
   1775 	 * Start the voices playing, with buffer BUFNO.
   1776 	 */
   1777 
   1778 	/*
   1779 	 * Loop or roll if we have buffers ready.
   1780 	 */
   1781 
   1782 	if (sc->sc_bufcnt == 1) {
   1783 		sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~(GUSMASK_LOOP_ENABLE);
   1784 		sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1785 	} else {
   1786 		if (bufno == sc->sc_nbufs - 1) {
   1787 			sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
   1788 			sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1789 		} else {
   1790 			sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1791 			sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
   1792 		}
   1793 	}
   1794 
   1795 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
   1796 
   1797 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1798 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].voccntl);
   1799 
   1800 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1801 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].volcntl);
   1802 
   1803 	sc->sc_voc[GUS_VOICE_LEFT].current_addr =
   1804 		GUS_MEM_OFFSET + sc->sc_chanblocksize * bufno;
   1805 	sc->sc_voc[GUS_VOICE_LEFT].end_addr =
   1806 		sc->sc_voc[GUS_VOICE_LEFT].current_addr + sc->sc_chanblocksize - 1;
   1807 	sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
   1808 		sc->sc_voc[GUS_VOICE_LEFT].current_addr +
   1809 		(gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0);
   1810 	/*
   1811 	 * set up right channel to just loop forever, no interrupts,
   1812 	 * starting at the buffer we just filled.  We'll feed it data
   1813 	 * at the same time as left channel.
   1814 	 */
   1815 	sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_LOOP_ENABLE;
   1816 	sc->sc_voc[GUS_VOICE_RIGHT].volcntl &= ~(GUSMASK_VOICE_ROLL);
   1817 
   1818 #ifdef GUSPLAYDEBUG
   1819 	if (gusstats) {
   1820 		microtime(&playstats[playcntr].tv);
   1821 		playstats[playcntr].curaddr = sc->sc_voc[GUS_VOICE_LEFT].current_addr;
   1822 
   1823 		playstats[playcntr].voccntl = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
   1824 		playstats[playcntr].volcntl = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
   1825 		playstats[playcntr].endaddr = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
   1826 		playstats[playcntr].playbuf = bufno;
   1827 		playstats[playcntr].dmabuf = sc->sc_dmabuf;
   1828 		playstats[playcntr].bufcnt = sc->sc_bufcnt;
   1829 		playstats[playcntr].vaction = 5;
   1830 		playcntr = ++playcntr % NDMARECS;
   1831 	}
   1832 #endif
   1833 
   1834 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_RIGHT);
   1835 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1836 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].voccntl);
   1837 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1838 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].volcntl);
   1839 
   1840 	gus_start_voice(sc, GUS_VOICE_RIGHT, 0);
   1841 	gus_start_voice(sc, GUS_VOICE_LEFT, 1);
   1842 	if (sc->sc_playbuf == -1)
   1843 		/* mark start of playing */
   1844 		sc->sc_playbuf = bufno;
   1845 }
   1846 
   1847 STATIC int
   1848 gus_continue_playing(sc, voice)
   1849 	struct gus_softc *sc;
   1850 	int voice;
   1851 {
   1852 	bus_space_tag_t iot = sc->sc_iot;
   1853 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1854 
   1855 	/*
   1856 	 * stop this voice from interrupting while we work.
   1857 	 */
   1858 
   1859 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1860 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl & ~(GUSMASK_VOICE_IRQ));
   1861 
   1862 	/*
   1863 	 * update playbuf to point to the buffer the hardware just started
   1864 	 * playing
   1865 	 */
   1866 	sc->sc_playbuf = ++sc->sc_playbuf % sc->sc_nbufs;
   1867 
   1868 	/*
   1869 	 * account for buffer just finished
   1870 	 */
   1871 	if (--sc->sc_bufcnt == 0) {
   1872 		DPRINTF(("gus: bufcnt 0 on continuing voice?\n"));
   1873 	}
   1874 	if (sc->sc_playbuf == sc->sc_dmabuf && (sc->sc_flags & GUS_LOCKED)) {
   1875 		printf("%s: continue into active dmabuf?\n", sc->sc_dev.dv_xname);
   1876 		return 1;
   1877 	}
   1878 
   1879 	/*
   1880 	 * Select the end of the buffer based on the currently active
   1881 	 * buffer, [plus extra contiguous buffers (if ready)].
   1882 	 */
   1883 
   1884 	/*
   1885 	 * set endpoint at end of buffer we just started playing.
   1886 	 *
   1887 	 * The total gets -1 because end addrs are one less than you might
   1888 	 * think (the end_addr is the address of the last sample to play)
   1889 	 */
   1890 	gus_set_endaddr(sc, voice, GUS_MEM_OFFSET +
   1891 			sc->sc_chanblocksize * (sc->sc_playbuf + 1) - 1);
   1892 
   1893 	if (sc->sc_bufcnt < 2) {
   1894 		/*
   1895 		 * Clear out the loop and roll flags, and rotate the currently
   1896 		 * playing buffer.  That way, if we don't manage to get more
   1897 		 * data before this buffer finishes, we'll just stop.
   1898 		 */
   1899 		sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1900 		sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
   1901 		playstats[playcntr].vaction = 0;
   1902 	} else {
   1903 		/*
   1904 		 * We have some buffers to play.  set LOOP if we're on the
   1905 		 * last buffer in the ring, otherwise set ROLL.
   1906 		 */
   1907 		if (sc->sc_playbuf == sc->sc_nbufs - 1) {
   1908 			sc->sc_voc[voice].voccntl |= GUSMASK_LOOP_ENABLE;
   1909 			sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
   1910 			playstats[playcntr].vaction = 1;
   1911 		} else {
   1912 			sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
   1913 			sc->sc_voc[voice].volcntl |= GUSMASK_VOICE_ROLL;
   1914 			playstats[playcntr].vaction = 2;
   1915 		}
   1916 	}
   1917 #ifdef GUSPLAYDEBUG
   1918 	if (gusstats) {
   1919 		microtime(&playstats[playcntr].tv);
   1920 		playstats[playcntr].curaddr = gus_get_curaddr(sc, voice);
   1921 
   1922 		playstats[playcntr].voccntl = sc->sc_voc[voice].voccntl;
   1923 		playstats[playcntr].volcntl = sc->sc_voc[voice].volcntl;
   1924 		playstats[playcntr].endaddr = sc->sc_voc[voice].end_addr;
   1925 		playstats[playcntr].playbuf = sc->sc_playbuf;
   1926 		playstats[playcntr].dmabuf = sc->sc_dmabuf;
   1927 		playstats[playcntr].bufcnt = sc->sc_bufcnt;
   1928 		playcntr = ++playcntr % NDMARECS;
   1929 	}
   1930 #endif
   1931 
   1932 	/*
   1933 	 * (re-)set voice parameters.  This will reenable interrupts from this
   1934 	 * voice.
   1935 	 */
   1936 
   1937 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   1938 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   1939 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   1940 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].volcntl);
   1941 	return 0;
   1942 }
   1943 
   1944 /*
   1945  * Send/receive data into GUS's DRAM using DMA.  Called at splgus()
   1946  */
   1947 
   1948 STATIC void
   1949 gusdmaout(sc, flags, gusaddr, buffaddr, length)
   1950 	struct gus_softc *sc;
   1951 	int flags, length;
   1952 	u_long gusaddr;
   1953 	caddr_t buffaddr;
   1954 {
   1955 	unsigned char c = (unsigned char) flags;
   1956 	bus_space_tag_t iot = sc->sc_iot;
   1957 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   1958 
   1959 	DMAPRINTF(("gusdmaout flags=%x scflags=%x\n", flags, sc->sc_flags));
   1960 
   1961 	sc->sc_gusaddr = gusaddr;
   1962 
   1963 	/*
   1964 	 * If we're using a 16 bit DMA channel, we have to jump through some
   1965 	 * extra hoops; this includes translating the DRAM address a bit
   1966 	 */
   1967 
   1968 	if (sc->sc_drq >= 4) {
   1969 		c |= GUSMASK_DMA_WIDTH;
   1970 		gusaddr = convert_to_16bit(gusaddr);
   1971 	}
   1972 
   1973 	/*
   1974 	 * Add flag bits that we always set - fast DMA, enable IRQ
   1975 	 */
   1976 
   1977 	c |= GUSMASK_DMA_ENABLE | GUSMASK_DMA_R0 | GUSMASK_DMA_IRQ;
   1978 
   1979 	/*
   1980 	 * Make sure the GUS _isn't_ setup for DMA
   1981 	 */
   1982 
   1983  	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   1984 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   1985 
   1986 	/*
   1987 	 * Tell the PC DMA controller to start doing DMA
   1988 	 */
   1989 
   1990 	sc->sc_dmaoutaddr = (u_char *) buffaddr;
   1991 	sc->sc_dmaoutcnt = length;
   1992 	isa_dmastart(sc->sc_dev.dv_parent, sc->sc_drq, buffaddr, length,
   1993 	    NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
   1994 
   1995 	/*
   1996 	 * Set up DMA address - use the upper 16 bits ONLY
   1997 	 */
   1998 
   1999 	sc->sc_flags |= GUS_DMAOUT_ACTIVE;
   2000 
   2001  	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_START);
   2002  	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (int) (gusaddr >> 4));
   2003 
   2004  	/*
   2005  	 * Tell the GUS to start doing DMA
   2006  	 */
   2007 
   2008  	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2009 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, c);
   2010 
   2011 	/*
   2012 	 * XXX If we don't finish in one second, give up...
   2013 	 */
   2014 	untimeout(gus_dmaout_timeout, sc); /* flush old one, if there is one */
   2015 	timeout(gus_dmaout_timeout, sc, hz);
   2016 }
   2017 
   2018 /*
   2019  * Start a voice playing on the GUS.  Called from interrupt handler at
   2020  * splgus().
   2021  */
   2022 
   2023 STATIC void
   2024 gus_start_voice(sc, voice, intrs)
   2025 	struct gus_softc *sc;
   2026 	int voice;
   2027 	int intrs;
   2028 {
   2029 	bus_space_tag_t iot = sc->sc_iot;
   2030 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2031 	u_long start;
   2032 	u_long current;
   2033 	u_long end;
   2034 
   2035 	/*
   2036 	 * Pick all the values for the voice out of the gus_voice struct
   2037 	 * and use those to program the voice
   2038 	 */
   2039 
   2040  	start = sc->sc_voc[voice].start_addr;
   2041  	current = sc->sc_voc[voice].current_addr;
   2042  	end = sc->sc_voc[voice].end_addr;
   2043 
   2044  	/*
   2045 	 * If we're using 16 bit data, mangle the addresses a bit
   2046 	 */
   2047 
   2048 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16) {
   2049 	        /* -1 on start so that we get onto sample boundary--other
   2050 		   code always sets it for 1-byte rollover protection */
   2051 		start = convert_to_16bit(start-1);
   2052 		current = convert_to_16bit(current);
   2053 		end = convert_to_16bit(end);
   2054 	}
   2055 
   2056 	/*
   2057 	 * Select the voice we want to use, and program the data addresses
   2058 	 */
   2059 
   2060 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2061 
   2062 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
   2063 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(start));
   2064 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
   2065 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(start));
   2066 
   2067 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2068 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(current));
   2069 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2070 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(current));
   2071 
   2072 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2073 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(end));
   2074 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2075 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(end));
   2076 
   2077 	/*
   2078 	 * (maybe) enable interrupts, disable voice stopping
   2079 	 */
   2080 
   2081 	if (intrs) {
   2082 		sc->sc_flags |= GUS_PLAYING; /* playing is about to start */
   2083 		sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_IRQ;
   2084 		DMAPRINTF(("gus voice playing=%x\n", sc->sc_flags));
   2085 	} else
   2086 		sc->sc_voc[voice].voccntl &= ~GUSMASK_VOICE_IRQ;
   2087 	sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_STOPPED |
   2088 		GUSMASK_STOP_VOICE);
   2089 
   2090 	/*
   2091 	 * Tell the GUS about it.  Note that we're doing volume ramping here
   2092 	 * from 0 up to the set volume to help reduce clicks.
   2093 	 */
   2094 
   2095 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2096 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2097 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2098 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].current_volume >> 4);
   2099 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2100 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x00);
   2101 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
   2102 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 63);
   2103 
   2104 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2105 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2106 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2107 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2108 	delay(50);
   2109 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2110 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2111 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2112 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2113 
   2114 }
   2115 
   2116 /*
   2117  * Stop a given voice.  called at splgus()
   2118  */
   2119 
   2120 STATIC void
   2121 gus_stop_voice(sc, voice, intrs_too)
   2122 	struct gus_softc *sc;
   2123 	int voice;
   2124 	int intrs_too;
   2125 {
   2126 	bus_space_tag_t iot = sc->sc_iot;
   2127 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2128 
   2129 	sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_STOPPED |
   2130 		GUSMASK_STOP_VOICE;
   2131 	if (intrs_too) {
   2132 	  sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_IRQ);
   2133 	  /* no more DMA to do */
   2134 	  sc->sc_flags &= ~GUS_PLAYING;
   2135 	}
   2136 	DMAPRINTF(("gusintr voice notplaying=%x\n", sc->sc_flags));
   2137 
   2138 	guspoke(iot, ioh2, 0L, 0);
   2139 
   2140 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2141 
   2142 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2143 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2144 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2145 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2146 	delay(100);
   2147 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2148 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2149 	SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2150 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
   2151 
   2152 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2153 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2154 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2155 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2156 
   2157 }
   2158 
   2159 
   2160 /*
   2161  * Set the volume of a given voice.  Called at splgus().
   2162  */
   2163 STATIC void
   2164 gus_set_volume(sc, voice, volume)
   2165 	struct gus_softc *sc;
   2166 	int voice, volume;
   2167 {
   2168 	bus_space_tag_t iot = sc->sc_iot;
   2169 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2170 	unsigned int gusvol;
   2171 
   2172 	gusvol = gus_log_volumes[volume < 512 ? volume : 511];
   2173 
   2174 	sc->sc_voc[voice].current_volume = gusvol;
   2175 
   2176 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2177 
   2178 	SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2179 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) (gusvol >> 4));
   2180 
   2181 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2182 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) (gusvol >> 4));
   2183 
   2184 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2185 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
   2186 	delay(500);
   2187 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
   2188 
   2189 }
   2190 
   2191 /*
   2192  * Interface to the audio layer.
   2193  */
   2194 
   2195 int
   2196 gusmax_set_params(addr, setmode, usemode, p, r)
   2197 	void *addr;
   2198 	int setmode, usemode;
   2199 	struct audio_params *p, *r;
   2200 {
   2201 	struct ad1848_softc *ac = addr;
   2202 	struct gus_softc *sc = ac->parent;
   2203 	int error;
   2204 
   2205 	error = ad1848_set_params(ac, setmode, usemode, p, r);
   2206 	if (error)
   2207 		return error;
   2208 	error = gus_set_params(sc, setmode, usemode, p, r);
   2209 	return error;
   2210 }
   2211 
   2212 int
   2213 gus_set_params(addr, setmode, usemode, p, r)
   2214 	void *addr;
   2215 	int setmode, usemode;
   2216 	struct audio_params *p, *r;
   2217 {
   2218 	struct gus_softc *sc = addr;
   2219 	int s;
   2220 
   2221 	switch (p->encoding) {
   2222 	case AUDIO_ENCODING_ULAW:
   2223 	case AUDIO_ENCODING_ALAW:
   2224 	case AUDIO_ENCODING_SLINEAR_LE:
   2225 	case AUDIO_ENCODING_ULINEAR_LE:
   2226 	case AUDIO_ENCODING_SLINEAR_BE:
   2227 	case AUDIO_ENCODING_ULINEAR_BE:
   2228 		break;
   2229 	default:
   2230 		return (EINVAL);
   2231 	}
   2232 
   2233 	s = splaudio();
   2234 
   2235 	if (p->precision == 8) {
   2236 		sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_DATA_SIZE16;
   2237 		sc->sc_voc[GUS_VOICE_RIGHT].voccntl &= ~GUSMASK_DATA_SIZE16;
   2238 	} else {
   2239 		sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
   2240 		sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
   2241 	}
   2242 
   2243 	sc->sc_encoding = p->encoding;
   2244 	sc->sc_precision = p->precision;
   2245 	sc->sc_channels = p->channels;
   2246 
   2247 	splx(s);
   2248 
   2249 	if (p->sample_rate > gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES])
   2250 		p->sample_rate = gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES];
   2251 	if (setmode & AUMODE_RECORD)
   2252 		sc->sc_irate = p->sample_rate;
   2253 	if (setmode & AUMODE_PLAY)
   2254 		sc->sc_orate = p->sample_rate;
   2255 
   2256 	switch (p->encoding) {
   2257 	case AUDIO_ENCODING_ULAW:
   2258 		p->sw_code = mulaw_to_ulinear8;
   2259 		r->sw_code = ulinear8_to_mulaw;
   2260 		break;
   2261 	case AUDIO_ENCODING_ALAW:
   2262 		p->sw_code = alaw_to_ulinear8;
   2263 		r->sw_code = ulinear8_to_alaw;
   2264 		break;
   2265 	case AUDIO_ENCODING_ULINEAR_BE:
   2266 	case AUDIO_ENCODING_SLINEAR_BE:
   2267 		r->sw_code = p->sw_code = swap_bytes;
   2268 		break;
   2269 	}
   2270 
   2271 	return 0;
   2272 }
   2273 
   2274 /*
   2275  * Interface to the audio layer - set the blocksize to the correct number
   2276  * of units
   2277  */
   2278 
   2279 int
   2280 gusmax_round_blocksize(addr, blocksize)
   2281 	void * addr;
   2282 	int blocksize;
   2283 {
   2284 	struct ad1848_softc *ac = addr;
   2285 	struct gus_softc *sc = ac->parent;
   2286 
   2287 /*	blocksize = ad1848_round_blocksize(ac, blocksize);*/
   2288 	return gus_round_blocksize(sc, blocksize);
   2289 }
   2290 
   2291 int
   2292 gus_round_blocksize(addr, blocksize)
   2293 	void * addr;
   2294 	int blocksize;
   2295 {
   2296 	struct gus_softc *sc = addr;
   2297 
   2298 	DPRINTF(("gus_round_blocksize called\n"));
   2299 
   2300 	if ((sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   2301 	     sc->sc_encoding == AUDIO_ENCODING_ALAW) && blocksize > 32768)
   2302 		blocksize = 32768;
   2303 	else if (blocksize > 65536)
   2304 		blocksize = 65536;
   2305 
   2306 	if ((blocksize % GUS_BUFFER_MULTIPLE) != 0)
   2307 		blocksize = (blocksize / GUS_BUFFER_MULTIPLE + 1) *
   2308 			GUS_BUFFER_MULTIPLE;
   2309 
   2310 	/* set up temporary buffer to hold the deinterleave, if necessary
   2311 	   for stereo output */
   2312 	if (sc->sc_deintr_buf) {
   2313 		FREE(sc->sc_deintr_buf, M_DEVBUF);
   2314 		sc->sc_deintr_buf = NULL;
   2315 	}
   2316 	MALLOC(sc->sc_deintr_buf, void *, blocksize>>1, M_DEVBUF, M_WAITOK);
   2317 
   2318 	sc->sc_blocksize = blocksize;
   2319 	/* multi-buffering not quite working yet. */
   2320 	sc->sc_nbufs = /*GUS_MEM_FOR_BUFFERS / blocksize*/ 2;
   2321 
   2322 	gus_set_chan_addrs(sc);
   2323 
   2324 	return blocksize;
   2325 }
   2326 
   2327 int
   2328 gus_get_out_gain(addr)
   2329 	caddr_t addr;
   2330 {
   2331 	struct gus_softc *sc = (struct gus_softc *) addr;
   2332 
   2333 	DPRINTF(("gus_get_out_gain called\n"));
   2334 	return sc->sc_ogain / 2;
   2335 }
   2336 
   2337 STATIC inline void gus_set_voices(sc, voices)
   2338 struct gus_softc *sc;
   2339 int voices;
   2340 {
   2341 	bus_space_tag_t iot = sc->sc_iot;
   2342 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2343 	/*
   2344 	 * Select the active number of voices
   2345 	 */
   2346 
   2347 	SELECT_GUS_REG(iot, ioh2, GUSREG_ACTIVE_VOICES);
   2348 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (voices-1) | 0xc0);
   2349 
   2350 	sc->sc_voices = voices;
   2351 }
   2352 
   2353 /*
   2354  * Actually set the settings of various values on the card
   2355  */
   2356 
   2357 int
   2358 gusmax_commit_settings(addr)
   2359 	void * addr;
   2360 {
   2361 	struct ad1848_softc *ac = addr;
   2362 	struct gus_softc *sc = ac->parent;
   2363 	int error;
   2364 
   2365 	error = ad1848_commit_settings(ac);
   2366 	if (error)
   2367 		return error;
   2368 	return gus_commit_settings(sc);
   2369 }
   2370 
   2371 /*
   2372  * Commit the settings.  Called at normal IPL.
   2373  */
   2374 int
   2375 gus_commit_settings(addr)
   2376 	void * addr;
   2377 {
   2378 	struct gus_softc *sc = addr;
   2379 	int s;
   2380 
   2381 	DPRINTF(("gus_commit_settings called (gain = %d)\n",sc->sc_ogain));
   2382 
   2383 
   2384 	s = splgus();
   2385 
   2386 	gus_set_recrate(sc, sc->sc_irate);
   2387 	gus_set_volume(sc, GUS_VOICE_LEFT, sc->sc_ogain);
   2388 	gus_set_volume(sc, GUS_VOICE_RIGHT, sc->sc_ogain);
   2389 	gus_set_samprate(sc, GUS_VOICE_LEFT, sc->sc_orate);
   2390 	gus_set_samprate(sc, GUS_VOICE_RIGHT, sc->sc_orate);
   2391 	splx(s);
   2392 	gus_set_chan_addrs(sc);
   2393 
   2394 	return 0;
   2395 }
   2396 
   2397 STATIC void
   2398 gus_set_chan_addrs(sc)
   2399 struct gus_softc *sc;
   2400 {
   2401 	/*
   2402 	 * We use sc_nbufs * blocksize bytes of storage in the on-board GUS
   2403 	 * ram.
   2404 	 * For mono, each of the sc_nbufs buffers is DMA'd to in one chunk,
   2405 	 * and both left & right channels play the same buffer.
   2406 	 *
   2407 	 * For stereo, each channel gets a contiguous half of the memory,
   2408 	 * and each has sc_nbufs buffers of size blocksize/2.
   2409 	 * Stereo data are deinterleaved in main memory before the DMA out
   2410 	 * routines are called to queue the output.
   2411 	 *
   2412 	 * The blocksize per channel is kept in sc_chanblocksize.
   2413 	 */
   2414 	if (sc->sc_channels == 2)
   2415 	    sc->sc_chanblocksize = sc->sc_blocksize/2;
   2416 	else
   2417 	    sc->sc_chanblocksize = sc->sc_blocksize;
   2418 
   2419 	sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
   2420 	sc->sc_voc[GUS_VOICE_RIGHT].start_addr =
   2421 	    (gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0)
   2422 	      + GUS_MEM_OFFSET - 1;
   2423 	sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
   2424 	    sc->sc_voc[GUS_VOICE_RIGHT].start_addr + 1;
   2425 	sc->sc_voc[GUS_VOICE_RIGHT].end_addr =
   2426 	    sc->sc_voc[GUS_VOICE_RIGHT].start_addr +
   2427 	    sc->sc_nbufs * sc->sc_chanblocksize;
   2428 
   2429 }
   2430 
   2431 /*
   2432  * Set the sample rate of the given voice.  Called at splgus().
   2433  */
   2434 
   2435 STATIC void
   2436 gus_set_samprate(sc, voice, freq)
   2437 	struct gus_softc *sc;
   2438 	int voice, freq;
   2439 {
   2440 	bus_space_tag_t iot = sc->sc_iot;
   2441 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2442 	unsigned int fc;
   2443 	u_long temp, f = (u_long) freq;
   2444 
   2445 	/*
   2446 	 * calculate fc based on the number of active voices;
   2447 	 * we need to use longs to preserve enough bits
   2448 	 */
   2449 
   2450 	temp = (u_long) gus_max_frequency[sc->sc_voices-GUS_MIN_VOICES];
   2451 
   2452  	fc = (unsigned int)(((f << 9L) + (temp >> 1L)) / temp);
   2453 
   2454  	fc <<= 1;
   2455 
   2456 
   2457 	/*
   2458 	 * Program the voice frequency, and set it in the voice data record
   2459 	 */
   2460 
   2461 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2462 	SELECT_GUS_REG(iot, ioh2, GUSREG_FREQ_CONTROL);
   2463 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, fc);
   2464 
   2465 	sc->sc_voc[voice].rate = freq;
   2466 
   2467 }
   2468 
   2469 /*
   2470  * Set the sample rate of the recording frequency.  Formula is from the GUS
   2471  * SDK.  Called at splgus().
   2472  */
   2473 
   2474 STATIC void
   2475 gus_set_recrate(sc, rate)
   2476 	struct gus_softc *sc;
   2477 	u_long rate;
   2478 {
   2479 	bus_space_tag_t iot = sc->sc_iot;
   2480 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2481 	u_char realrate;
   2482 	DPRINTF(("gus_set_recrate %lu\n", rate));
   2483 
   2484 #if 0
   2485 	realrate = 9878400/(16*(rate+2)); /* formula from GUS docs */
   2486 #endif
   2487 	realrate = (9878400 >> 4)/rate - 2; /* formula from code, sigh. */
   2488 
   2489 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_FREQ);
   2490  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, realrate);
   2491 }
   2492 
   2493 /*
   2494  * Interface to the audio layer - turn the output on or off.  Note that some
   2495  * of these bits are flipped in the register
   2496  */
   2497 
   2498 int
   2499 gusmax_speaker_ctl(addr, newstate)
   2500 	void * addr;
   2501 	int newstate;
   2502 {
   2503 	struct ad1848_softc *sc = addr;
   2504 	return gus_speaker_ctl(sc->parent, newstate);
   2505 }
   2506 
   2507 int
   2508 gus_speaker_ctl(addr, newstate)
   2509 	void * addr;
   2510 	int newstate;
   2511 {
   2512 	struct gus_softc *sc = (struct gus_softc *) addr;
   2513 	bus_space_tag_t iot = sc->sc_iot;
   2514 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   2515 
   2516 	/* Line out bit is flipped: 0 enables, 1 disables */
   2517 	if ((newstate == SPKR_ON) &&
   2518 	    (sc->sc_mixcontrol & GUSMASK_LINE_OUT)) {
   2519 		sc->sc_mixcontrol &= ~GUSMASK_LINE_OUT;
   2520 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2521 	}
   2522 	if ((newstate == SPKR_OFF) &&
   2523 	    (sc->sc_mixcontrol & GUSMASK_LINE_OUT) == 0) {
   2524 		sc->sc_mixcontrol |= GUSMASK_LINE_OUT;
   2525 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2526 	}
   2527 
   2528 	return 0;
   2529 }
   2530 
   2531 STATIC int
   2532 gus_linein_ctl(addr, newstate)
   2533 	void * addr;
   2534 	int newstate;
   2535 {
   2536 	struct gus_softc *sc = (struct gus_softc *) addr;
   2537 	bus_space_tag_t iot = sc->sc_iot;
   2538 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   2539 
   2540 	/* Line in bit is flipped: 0 enables, 1 disables */
   2541 	if ((newstate == SPKR_ON) &&
   2542 	    (sc->sc_mixcontrol & GUSMASK_LINE_IN)) {
   2543 		sc->sc_mixcontrol &= ~GUSMASK_LINE_IN;
   2544 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2545 	}
   2546 	if ((newstate == SPKR_OFF) &&
   2547 	    (sc->sc_mixcontrol & GUSMASK_LINE_IN) == 0) {
   2548 		sc->sc_mixcontrol |= GUSMASK_LINE_IN;
   2549 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2550 	}
   2551 
   2552 	return 0;
   2553 }
   2554 
   2555 STATIC int
   2556 gus_mic_ctl(addr, newstate)
   2557 	void * addr;
   2558 	int newstate;
   2559 {
   2560 	struct gus_softc *sc = (struct gus_softc *) addr;
   2561 	bus_space_tag_t iot = sc->sc_iot;
   2562 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   2563 
   2564 	/* Mic bit is normal: 1 enables, 0 disables */
   2565 	if ((newstate == SPKR_ON) &&
   2566 	    (sc->sc_mixcontrol & GUSMASK_MIC_IN) == 0) {
   2567 		sc->sc_mixcontrol |= GUSMASK_MIC_IN;
   2568 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2569 	}
   2570 	if ((newstate == SPKR_OFF) &&
   2571 	    (sc->sc_mixcontrol & GUSMASK_MIC_IN)) {
   2572 		sc->sc_mixcontrol &= ~GUSMASK_MIC_IN;
   2573 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2574 	}
   2575 
   2576 	return 0;
   2577 }
   2578 
   2579 /*
   2580  * Set the end address of a give voice.  Called at splgus()
   2581  */
   2582 
   2583 STATIC void
   2584 gus_set_endaddr(sc, voice, addr)
   2585 	struct gus_softc *sc;
   2586 	int voice;
   2587 	u_long addr;
   2588 {
   2589 	bus_space_tag_t iot = sc->sc_iot;
   2590 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2591 
   2592 	sc->sc_voc[voice].end_addr = addr;
   2593 
   2594 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2595 		addr = convert_to_16bit(addr);
   2596 
   2597 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2598 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
   2599 	SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2600 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
   2601 
   2602 }
   2603 
   2604 #ifdef GUSPLAYDEBUG
   2605 /*
   2606  * Set current address.  called at splgus()
   2607  */
   2608 STATIC void
   2609 gus_set_curaddr(sc, voice, addr)
   2610 	struct gus_softc *sc;
   2611 	int voice;
   2612 	u_long addr;
   2613 {
   2614 	bus_space_tag_t iot = sc->sc_iot;
   2615 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2616 
   2617 	sc->sc_voc[voice].current_addr = addr;
   2618 
   2619 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2620 		addr = convert_to_16bit(addr);
   2621 
   2622 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2623 
   2624 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2625 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
   2626 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2627 	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
   2628 
   2629 }
   2630 
   2631 /*
   2632  * Get current GUS playback address.  Called at splgus().
   2633  */
   2634 STATIC u_long
   2635 gus_get_curaddr(sc, voice)
   2636 	struct gus_softc *sc;
   2637 	int voice;
   2638 {
   2639 	bus_space_tag_t iot = sc->sc_iot;
   2640 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2641 	u_long addr;
   2642 
   2643 	bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
   2644 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH|GUSREG_READ);
   2645 	addr = (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) & 0x1fff) << 7;
   2646 	SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW|GUSREG_READ);
   2647 	addr |= (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) >> 9L) & 0x7f;
   2648 
   2649 	if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
   2650 	    addr = (addr & 0xc0000) | ((addr & 0x1ffff) << 1); /* undo 16-bit change */
   2651 	DPRINTF(("gus voice %d curaddr %ld end_addr %ld\n",
   2652 		 voice, addr, sc->sc_voc[voice].end_addr));
   2653 	/* XXX sanity check the address? */
   2654 
   2655 	return(addr);
   2656 }
   2657 #endif
   2658 
   2659 /*
   2660  * Convert an address value to a "16 bit" value - why this is necessary I
   2661  * have NO idea
   2662  */
   2663 
   2664 STATIC u_long
   2665 convert_to_16bit(address)
   2666 	u_long address;
   2667 {
   2668 	u_long old_address;
   2669 
   2670 	old_address = address;
   2671 	address >>= 1;
   2672 	address &= 0x0001ffffL;
   2673 	address |= (old_address & 0x000c0000L);
   2674 
   2675 	return (address);
   2676 }
   2677 
   2678 /*
   2679  * Write a value into the GUS's DRAM
   2680  */
   2681 
   2682 STATIC void
   2683 guspoke(iot, ioh2, address, value)
   2684 	bus_space_tag_t iot;
   2685 	bus_space_handle_t ioh2;
   2686 	long address;
   2687 	unsigned char value;
   2688 {
   2689 
   2690 	/*
   2691 	 * Select the DRAM address
   2692 	 */
   2693 
   2694  	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
   2695  	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (unsigned int) (address & 0xffff));
   2696  	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
   2697  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) ((address >> 16) & 0xff));
   2698 
   2699 	/*
   2700 	 * Actually write the data
   2701 	 */
   2702 
   2703 	bus_space_write_1(iot, ioh2, GUS_DRAM_DATA, value);
   2704 }
   2705 
   2706 /*
   2707  * Read a value from the GUS's DRAM
   2708  */
   2709 
   2710 STATIC unsigned char
   2711 guspeek(iot, ioh2, address)
   2712 	bus_space_tag_t iot;
   2713 	bus_space_handle_t ioh2;
   2714 	u_long address;
   2715 {
   2716 
   2717 	/*
   2718 	 * Select the DRAM address
   2719 	 */
   2720 
   2721  	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
   2722  	bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (unsigned int) (address & 0xffff));
   2723  	SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
   2724  	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) ((address >> 16) & 0xff));
   2725 
   2726 	/*
   2727 	 * Read in the data from the board
   2728 	 */
   2729 
   2730 	return (unsigned char) bus_space_read_1(iot, ioh2, GUS_DRAM_DATA);
   2731 }
   2732 
   2733 /*
   2734  * Reset the Gravis UltraSound card, completely
   2735  */
   2736 
   2737 STATIC void
   2738 gusreset(sc, voices)
   2739 	struct gus_softc *sc;
   2740 	int voices;
   2741 {
   2742 	bus_space_tag_t iot = sc->sc_iot;
   2743 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   2744 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2745 	bus_space_handle_t ioh4 = sc->sc_ioh4;
   2746 	int i,s;
   2747 
   2748 	s = splgus();
   2749 
   2750 	/*
   2751 	 * Reset the GF1 chip
   2752 	 */
   2753 
   2754 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2755 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2756 
   2757 	delay(500);
   2758 
   2759 	/*
   2760 	 * Release reset
   2761 	 */
   2762 
   2763 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2764 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
   2765 
   2766 	delay(500);
   2767 
   2768 	/*
   2769 	 * Reset MIDI port as well
   2770 	 */
   2771 
   2772 	bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, MIDI_RESET);
   2773 
   2774 	delay(500);
   2775 
   2776 	bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, 0x00);
   2777 
   2778 	/*
   2779 	 * Clear interrupts
   2780 	 */
   2781 
   2782 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2783 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2784 	SELECT_GUS_REG(iot, ioh2, GUSREG_TIMER_CONTROL);
   2785 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2786 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2787 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
   2788 
   2789 	gus_set_voices(sc, voices);
   2790 
   2791 	bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
   2792 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2793 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2794 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2795 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2796 	SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   2797 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2798 
   2799 	/*
   2800 	 * Reset voice specific information
   2801 	 */
   2802 
   2803 	for(i = 0; i < voices; i++) {
   2804 		bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) i);
   2805 
   2806 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
   2807 
   2808 		sc->sc_voc[i].voccntl = GUSMASK_VOICE_STOPPED |
   2809 			GUSMASK_STOP_VOICE;
   2810 
   2811 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].voccntl);
   2812 
   2813 		sc->sc_voc[i].volcntl = GUSMASK_VOLUME_STOPPED |
   2814 				GUSMASK_STOP_VOLUME;
   2815 
   2816 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
   2817 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].volcntl);
   2818 
   2819 		delay(100);
   2820 
   2821 		gus_set_samprate(sc, i, 8000);
   2822 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
   2823 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2824 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
   2825 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2826 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
   2827 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2828 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
   2829 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2830 		SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
   2831 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x01);
   2832 		SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
   2833 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x10);
   2834 		SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
   2835 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0xe0);
   2836 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
   2837 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2838 
   2839 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
   2840 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2841 		SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
   2842 		bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
   2843 		SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
   2844 		bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x07);
   2845 	}
   2846 
   2847 	/*
   2848 	 * Clear out any pending IRQs
   2849 	 */
   2850 
   2851 	bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
   2852 	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   2853 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2854 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   2855 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2856 	SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
   2857 	bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
   2858 
   2859 	SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
   2860 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET | GUSMASK_DAC_ENABLE |
   2861 		GUSMASK_IRQ_ENABLE);
   2862 
   2863 	splx(s);
   2864 }
   2865 
   2866 
   2867 STATIC void
   2868 gus_init_cs4231(sc)
   2869 	struct gus_softc *sc;
   2870 {
   2871 	bus_space_tag_t iot = sc->sc_iot;
   2872 	bus_space_handle_t ioh1 = sc->sc_ioh1;
   2873 	int port = sc->sc_iobase;
   2874 	u_char ctrl;
   2875 
   2876 	ctrl = (port & 0xf0) >> 4;	/* set port address middle nibble */
   2877 	/*
   2878 	 * The codec is a bit weird--swapped dma channels.
   2879 	 */
   2880 	ctrl |= GUS_MAX_CODEC_ENABLE;
   2881 	if (sc->sc_drq >= 4)
   2882 		ctrl |= GUS_MAX_RECCHAN16;
   2883 	if (sc->sc_recdrq >= 4)
   2884 		ctrl |= GUS_MAX_PLAYCHAN16;
   2885 
   2886 	bus_space_write_1(iot, ioh1, GUS_MAX_CTRL, ctrl);
   2887 
   2888 	sc->sc_codec.sc_iot = sc->sc_iot;
   2889 	sc->sc_codec.sc_iobase = port+GUS_MAX_CODEC_BASE;
   2890 
   2891 	if (ad1848_probe(&sc->sc_codec) == 0) {
   2892 		sc->sc_flags &= ~GUS_CODEC_INSTALLED;
   2893 	} else {
   2894 		struct ad1848_volume vol = {AUDIO_MAX_GAIN, AUDIO_MAX_GAIN};
   2895 		sc->sc_flags |= GUS_CODEC_INSTALLED;
   2896 		sc->sc_codec.parent = sc;
   2897 		sc->sc_codec.sc_drq = sc->sc_recdrq;
   2898 		sc->sc_codec.sc_recdrq = sc->sc_drq;
   2899 		gus_hw_if = gusmax_hw_if;
   2900 		/* enable line in and mic in the GUS mixer; the codec chip
   2901 		   will do the real mixing for them. */
   2902 		sc->sc_mixcontrol &= ~GUSMASK_LINE_IN; /* 0 enables. */
   2903 		sc->sc_mixcontrol |= GUSMASK_MIC_IN; /* 1 enables. */
   2904 		bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
   2905 
   2906 		ad1848_attach(&sc->sc_codec);
   2907 		/* turn on pre-MUX microphone gain. */
   2908 		ad1848_set_mic_gain(&sc->sc_codec, &vol);
   2909 	}
   2910 }
   2911 
   2912 
   2913 /*
   2914  * Return info about the audio device, for the AUDIO_GETINFO ioctl
   2915  */
   2916 
   2917 int
   2918 gus_getdev(addr, dev)
   2919 	void * addr;
   2920 	struct audio_device *dev;
   2921 {
   2922 	*dev = gus_device;
   2923 	return 0;
   2924 }
   2925 
   2926 /*
   2927  * stubs (XXX)
   2928  */
   2929 
   2930 int
   2931 gus_set_in_gain(addr, gain, balance)
   2932 	caddr_t addr;
   2933 	u_int gain;
   2934 	u_char balance;
   2935 {
   2936 	DPRINTF(("gus_set_in_gain called\n"));
   2937 	return 0;
   2938 }
   2939 
   2940 int
   2941 gus_get_in_gain(addr)
   2942 	caddr_t addr;
   2943 {
   2944 	DPRINTF(("gus_get_in_gain called\n"));
   2945 	return 0;
   2946 }
   2947 
   2948 int
   2949 gusmax_dma_input(addr, buf, size, callback, arg)
   2950 	void * addr;
   2951 	void *buf;
   2952 	int size;
   2953 	void (*callback) __P((void *));
   2954 	void *arg;
   2955 {
   2956 	struct ad1848_softc *sc = addr;
   2957 	return gus_dma_input(sc->parent, buf, size, callback, arg);
   2958 }
   2959 
   2960 /*
   2961  * Start sampling the input source into the requested DMA buffer.
   2962  * Called at splgus(), either from top-half or from interrupt handler.
   2963  */
   2964 int
   2965 gus_dma_input(addr, buf, size, callback, arg)
   2966 	void * addr;
   2967 	void *buf;
   2968 	int size;
   2969 	void (*callback) __P((void *));
   2970 	void *arg;
   2971 {
   2972 	struct gus_softc *sc = addr;
   2973 	bus_space_tag_t iot = sc->sc_iot;
   2974 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   2975 	u_char dmac;
   2976 	DMAPRINTF(("gus_dma_input called\n"));
   2977 
   2978 	/*
   2979 	 * Sample SIZE bytes of data from the card, into buffer at BUF.
   2980 	 */
   2981 
   2982 	if (sc->sc_precision == 16)
   2983 	    return EINVAL;		/* XXX */
   2984 
   2985 	/* set DMA modes */
   2986 	dmac = GUSMASK_SAMPLE_IRQ|GUSMASK_SAMPLE_START;
   2987 	if (sc->sc_recdrq >= 4)
   2988 		dmac |= GUSMASK_SAMPLE_DATA16;
   2989 	if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
   2990 	    sc->sc_encoding == AUDIO_ENCODING_ALAW ||
   2991 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE ||
   2992 	    sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE)
   2993 	    dmac |= GUSMASK_SAMPLE_INVBIT;
   2994 	if (sc->sc_channels == 2)
   2995 	    dmac |= GUSMASK_SAMPLE_STEREO;
   2996 	isa_dmastart(sc->sc_dev.dv_parent, sc->sc_recdrq, buf, size,
   2997 	    NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
   2998 
   2999 	DMAPRINTF(("gus_dma_input isa_dmastarted\n"));
   3000 	sc->sc_flags |= GUS_DMAIN_ACTIVE;
   3001 	sc->sc_dmainintr = callback;
   3002 	sc->sc_inarg = arg;
   3003 	sc->sc_dmaincnt = size;
   3004 	sc->sc_dmainaddr = buf;
   3005 
   3006 	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   3007 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, dmac);	/* Go! */
   3008 
   3009 
   3010 	DMAPRINTF(("gus_dma_input returning\n"));
   3011 
   3012 	return 0;
   3013 }
   3014 
   3015 STATIC int
   3016 gus_dmain_intr(sc)
   3017 	struct gus_softc *sc;
   3018 {
   3019         void (*callback) __P((void *));
   3020 	void *arg;
   3021 
   3022 	DMAPRINTF(("gus_dmain_intr called\n"));
   3023 	if (sc->sc_dmainintr) {
   3024 	    isa_dmadone(sc->sc_dev.dv_parent, sc->sc_recdrq);
   3025 	    callback = sc->sc_dmainintr;
   3026 	    arg = sc->sc_inarg;
   3027 
   3028 	    sc->sc_dmainaddr = 0;
   3029 	    sc->sc_dmaincnt = 0;
   3030 	    sc->sc_dmainintr = 0;
   3031 	    sc->sc_inarg = 0;
   3032 
   3033 	    sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
   3034 	    DMAPRINTF(("calling dmain_intr callback %p(%p)\n", callback, arg));
   3035 	    (*callback)(arg);
   3036 	    return 1;
   3037 	} else {
   3038 	    DMAPRINTF(("gus_dmain_intr false?\n"));
   3039 	    return 0;			/* XXX ??? */
   3040 	}
   3041 }
   3042 
   3043 int
   3044 gusmax_halt_out_dma(addr)
   3045 	void * addr;
   3046 {
   3047 	struct ad1848_softc *sc = addr;
   3048 	return gus_halt_out_dma(sc->parent);
   3049 }
   3050 
   3051 
   3052 int
   3053 gusmax_halt_in_dma(addr)
   3054 	void * addr;
   3055 {
   3056 	struct ad1848_softc *sc = addr;
   3057 	return gus_halt_in_dma(sc->parent);
   3058 }
   3059 
   3060 /*
   3061  * Stop any DMA output.  Called at splgus().
   3062  */
   3063 int
   3064 gus_halt_out_dma(addr)
   3065 	void * addr;
   3066 {
   3067 	struct gus_softc *sc = addr;
   3068 	bus_space_tag_t iot = sc->sc_iot;
   3069 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   3070 
   3071 	DMAPRINTF(("gus_halt_out_dma called\n"));
   3072 	/*
   3073 	 * Make sure the GUS _isn't_ setup for DMA
   3074 	 */
   3075 
   3076  	SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
   3077 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
   3078 
   3079 	untimeout(gus_dmaout_timeout, sc);
   3080 	isa_dmaabort(sc->sc_dev.dv_parent, sc->sc_drq);
   3081 	sc->sc_flags &= ~(GUS_DMAOUT_ACTIVE|GUS_LOCKED);
   3082 	sc->sc_dmaoutintr = 0;
   3083 	sc->sc_outarg = 0;
   3084 	sc->sc_dmaoutaddr = 0;
   3085 	sc->sc_dmaoutcnt = 0;
   3086 	sc->sc_dmabuf = 0;
   3087 	sc->sc_bufcnt = 0;
   3088 	sc->sc_playbuf = -1;
   3089 	/* also stop playing */
   3090 	gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
   3091 	gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
   3092 
   3093 	return 0;
   3094 }
   3095 
   3096 /*
   3097  * Stop any DMA output.  Called at splgus().
   3098  */
   3099 int
   3100 gus_halt_in_dma(addr)
   3101 	void * addr;
   3102 {
   3103 	struct gus_softc *sc = addr;
   3104 	bus_space_tag_t iot = sc->sc_iot;
   3105 	bus_space_handle_t ioh2 = sc->sc_ioh2;
   3106 	DMAPRINTF(("gus_halt_in_dma called\n"));
   3107 
   3108 	/*
   3109 	 * Make sure the GUS _isn't_ setup for DMA
   3110 	 */
   3111 
   3112  	SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
   3113 	bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
   3114 	     bus_space_read_1(iot, ioh2, GUS_DATA_HIGH) & ~(GUSMASK_SAMPLE_START|GUSMASK_SAMPLE_IRQ));
   3115 
   3116 	isa_dmaabort(sc->sc_dev.dv_parent, sc->sc_recdrq);
   3117 	sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
   3118 	sc->sc_dmainintr = 0;
   3119 	sc->sc_inarg = 0;
   3120 	sc->sc_dmainaddr = 0;
   3121 	sc->sc_dmaincnt = 0;
   3122 
   3123 	return 0;
   3124 }
   3125 
   3126 STATIC __inline int
   3127 gus_to_vol(cp, vol)
   3128 	mixer_ctrl_t *cp;
   3129 	struct ad1848_volume *vol;
   3130 {
   3131 	if (cp->un.value.num_channels == 1) {
   3132 		vol->left = vol->right = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   3133 		return(1);
   3134 	}
   3135 	else if (cp->un.value.num_channels == 2) {
   3136 		vol->left  = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   3137 		vol->right = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   3138 		return(1);
   3139 	}
   3140 	return(0);
   3141 }
   3142 
   3143 STATIC __inline int
   3144 gus_from_vol(cp, vol)
   3145 	mixer_ctrl_t *cp;
   3146 	struct ad1848_volume *vol;
   3147 {
   3148 	if (cp->un.value.num_channels == 1) {
   3149 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = vol->left;
   3150 		return(1);
   3151 	}
   3152 	else if (cp->un.value.num_channels == 2) {
   3153 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = vol->left;
   3154 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = vol->right;
   3155 		return(1);
   3156 	}
   3157 	return(0);
   3158 }
   3159 
   3160 STATIC int
   3161 gusmax_mixer_get_port(addr, cp)
   3162 	void *addr;
   3163 	mixer_ctrl_t *cp;
   3164 {
   3165 	struct ad1848_softc *ac = addr;
   3166 	struct gus_softc *sc = ac->parent;
   3167 	struct ad1848_volume vol;
   3168 	int error = EINVAL;
   3169 
   3170 	DPRINTF(("gusmax_mixer_get_port: port=%d\n", cp->dev));
   3171 
   3172 	switch (cp->dev) {
   3173 #if 0 /* use mono level instead */
   3174 	case GUSMAX_MIC_IN_LVL:	/* Microphone */
   3175 		if (cp->type == AUDIO_MIXER_VALUE) {
   3176 			error = ad1848_get_mic_gain(ac, &vol);
   3177 			if (!error)
   3178 				gus_from_vol(cp, &vol);
   3179 		}
   3180 		break;
   3181 #endif
   3182 
   3183 	case GUSMAX_DAC_LVL:		/* dac out */
   3184 		if (cp->type == AUDIO_MIXER_VALUE) {
   3185 			error = ad1848_get_aux1_gain(ac, &vol);
   3186 			if (!error)
   3187 				gus_from_vol(cp, &vol);
   3188 		}
   3189 		break;
   3190 
   3191 	case GUSMAX_LINE_IN_LVL:	/* line in */
   3192 		if (cp->type == AUDIO_MIXER_VALUE) {
   3193 			error = cs4231_get_linein_gain(ac, &vol);
   3194 			if (!error)
   3195 				gus_from_vol(cp, &vol);
   3196 		}
   3197 		break;
   3198 
   3199 	case GUSMAX_MONO_LVL:	/* mono */
   3200 		if (cp->type == AUDIO_MIXER_VALUE &&
   3201 		    cp->un.value.num_channels == 1) {
   3202 			error = cs4231_get_mono_gain(ac, &vol);
   3203 			if (!error)
   3204 				gus_from_vol(cp, &vol);
   3205 		}
   3206 		break;
   3207 
   3208 	case GUSMAX_CD_LVL:	/* CD */
   3209 		if (cp->type == AUDIO_MIXER_VALUE) {
   3210 			error = ad1848_get_aux2_gain(ac, &vol);
   3211 			if (!error)
   3212 				gus_from_vol(cp, &vol);
   3213 		}
   3214 		break;
   3215 
   3216 	case GUSMAX_MONITOR_LVL:	/* monitor level */
   3217 		if (cp->type == AUDIO_MIXER_VALUE &&
   3218 		    cp->un.value.num_channels == 1) {
   3219 			error = ad1848_get_mon_gain(ac, &vol);
   3220 			if (!error)
   3221 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   3222 					vol.left;
   3223 		}
   3224 		break;
   3225 
   3226 	case GUSMAX_OUT_LVL:	/* output level */
   3227 		if (cp->type == AUDIO_MIXER_VALUE) {
   3228 			error = ad1848_get_out_gain(ac, &vol);
   3229 			if (!error)
   3230 				gus_from_vol(cp, &vol);
   3231 		}
   3232 		break;
   3233 
   3234 	case GUSMAX_SPEAKER_LVL:	/* fake speaker for mute naming */
   3235 		if (cp->type == AUDIO_MIXER_VALUE) {
   3236 			if (sc->sc_mixcontrol & GUSMASK_LINE_OUT)
   3237 				vol.left = vol.right = AUDIO_MAX_GAIN;
   3238 			else
   3239 				vol.left = vol.right = AUDIO_MIN_GAIN;
   3240 			error = 0;
   3241 			gus_from_vol(cp, &vol);
   3242 		}
   3243 		break;
   3244 
   3245 	case GUSMAX_LINE_IN_MUTE:
   3246 		if (cp->type == AUDIO_MIXER_ENUM) {
   3247 			cp->un.ord = ac->line_mute;
   3248 			error = 0;
   3249 		}
   3250 		break;
   3251 
   3252 
   3253 	case GUSMAX_DAC_MUTE:
   3254 		if (cp->type == AUDIO_MIXER_ENUM) {
   3255 			cp->un.ord = ac->aux1_mute;
   3256 			error = 0;
   3257 		}
   3258 		break;
   3259 
   3260 	case GUSMAX_CD_MUTE:
   3261 		if (cp->type == AUDIO_MIXER_ENUM) {
   3262 			cp->un.ord = ac->aux2_mute;
   3263 			error = 0;
   3264 		}
   3265 		break;
   3266 
   3267 	case GUSMAX_MONO_MUTE:
   3268 		if (cp->type == AUDIO_MIXER_ENUM) {
   3269 			cp->un.ord = ac->mono_mute;
   3270 			error = 0;
   3271 		}
   3272 		break;
   3273 
   3274 	case GUSMAX_MONITOR_MUTE:
   3275 		if (cp->type == AUDIO_MIXER_ENUM) {
   3276 			cp->un.ord = ac->mon_mute;
   3277 			error = 0;
   3278 		}
   3279 		break;
   3280 
   3281 	case GUSMAX_SPEAKER_MUTE:
   3282 		if (cp->type == AUDIO_MIXER_ENUM) {
   3283 			cp->un.ord = sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
   3284 			error = 0;
   3285 		}
   3286 		break;
   3287 
   3288 	case GUSMAX_REC_LVL:		/* record level */
   3289 		if (cp->type == AUDIO_MIXER_VALUE) {
   3290 			error = ad1848_get_rec_gain(ac, &vol);
   3291 			if (!error)
   3292 				gus_from_vol(cp, &vol);
   3293 		}
   3294 		break;
   3295 
   3296 	case GUSMAX_RECORD_SOURCE:
   3297 		if (cp->type == AUDIO_MIXER_ENUM) {
   3298 			cp->un.ord = ad1848_get_rec_port(ac);
   3299 			error = 0;
   3300 		}
   3301 		break;
   3302 
   3303 	default:
   3304 		error = ENXIO;
   3305 		break;
   3306 	}
   3307 
   3308 	return(error);
   3309 }
   3310 
   3311 STATIC int
   3312 gus_mixer_get_port(addr, cp)
   3313 	void *addr;
   3314 	mixer_ctrl_t *cp;
   3315 {
   3316 	struct gus_softc *sc = addr;
   3317 	struct ics2101_softc *ic = &sc->sc_mixer;
   3318 	struct ad1848_volume vol;
   3319 	int error = EINVAL;
   3320 
   3321 	DPRINTF(("gus_mixer_get_port: dev=%d type=%d\n", cp->dev, cp->type));
   3322 
   3323 	if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
   3324 		return ENXIO;
   3325 
   3326 	switch (cp->dev) {
   3327 
   3328 	case GUSICS_MIC_IN_MUTE:	/* Microphone */
   3329 		if (cp->type == AUDIO_MIXER_ENUM) {
   3330 			if (HAS_MIXER(sc))
   3331 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
   3332 			else
   3333 				cp->un.ord =
   3334 				    sc->sc_mixcontrol & GUSMASK_MIC_IN ? 0 : 1;
   3335 			error = 0;
   3336 		}
   3337 		break;
   3338 
   3339 	case GUSICS_LINE_IN_MUTE:
   3340 		if (cp->type == AUDIO_MIXER_ENUM) {
   3341 			if (HAS_MIXER(sc))
   3342 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
   3343 			else
   3344 				cp->un.ord =
   3345 				    sc->sc_mixcontrol & GUSMASK_LINE_IN ? 1 : 0;
   3346 			error = 0;
   3347 		}
   3348 		break;
   3349 
   3350 	case GUSICS_MASTER_MUTE:
   3351 		if (cp->type == AUDIO_MIXER_ENUM) {
   3352 			if (HAS_MIXER(sc))
   3353 				cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
   3354 			else
   3355 				cp->un.ord =
   3356 				    sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
   3357 			error = 0;
   3358 		}
   3359 		break;
   3360 
   3361 	case GUSICS_DAC_MUTE:
   3362 		if (cp->type == AUDIO_MIXER_ENUM) {
   3363 			cp->un.ord = ic->sc_mute[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
   3364 			error = 0;
   3365 		}
   3366 		break;
   3367 
   3368 	case GUSICS_CD_MUTE:
   3369 		if (cp->type == AUDIO_MIXER_ENUM) {
   3370 			cp->un.ord = ic->sc_mute[GUSMIX_CHAN_CD][ICSMIX_LEFT];
   3371 			error = 0;
   3372 		}
   3373 		break;
   3374 
   3375 	case GUSICS_MASTER_LVL:
   3376 		if (cp->type == AUDIO_MIXER_VALUE) {
   3377 			vol.left = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
   3378 			vol.right = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_RIGHT];
   3379 			if (gus_from_vol(cp, &vol))
   3380 				error = 0;
   3381 		}
   3382 		break;
   3383 
   3384 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   3385 		if (cp->type == AUDIO_MIXER_VALUE) {
   3386 			vol.left = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
   3387 			vol.right = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_RIGHT];
   3388 			if (gus_from_vol(cp, &vol))
   3389 				error = 0;
   3390 		}
   3391 		break;
   3392 
   3393 	case GUSICS_LINE_IN_LVL:	/* line in */
   3394 		if (cp->type == AUDIO_MIXER_VALUE) {
   3395 			vol.left = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
   3396 			vol.right = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_RIGHT];
   3397 			if (gus_from_vol(cp, &vol))
   3398 				error = 0;
   3399 		}
   3400 		break;
   3401 
   3402 
   3403 	case GUSICS_CD_LVL:
   3404 		if (cp->type == AUDIO_MIXER_VALUE) {
   3405 			vol.left = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_LEFT];
   3406 			vol.right = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_RIGHT];
   3407 			if (gus_from_vol(cp, &vol))
   3408 				error = 0;
   3409 		}
   3410 		break;
   3411 
   3412 	case GUSICS_DAC_LVL:		/* dac out */
   3413 		if (cp->type == AUDIO_MIXER_VALUE) {
   3414 			vol.left = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
   3415 			vol.right = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_RIGHT];
   3416 			if (gus_from_vol(cp, &vol))
   3417 				error = 0;
   3418 		}
   3419 		break;
   3420 
   3421 
   3422 	case GUSICS_RECORD_SOURCE:
   3423 		if (cp->type == AUDIO_MIXER_ENUM) {
   3424 			/* Can't set anything else useful, sigh. */
   3425 			 cp->un.ord = 0;
   3426 		}
   3427 		break;
   3428 
   3429 	default:
   3430 		return ENXIO;
   3431 	    /*NOTREACHED*/
   3432 	}
   3433 	return error;
   3434 }
   3435 
   3436 STATIC void
   3437 gusics_master_mute(ic, mute)
   3438 	struct ics2101_softc *ic;
   3439 	int mute;
   3440 {
   3441 	ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_LEFT, mute);
   3442 	ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_RIGHT, mute);
   3443 }
   3444 
   3445 STATIC void
   3446 gusics_mic_mute(ic, mute)
   3447 	struct ics2101_softc *ic;
   3448 	int mute;
   3449 {
   3450 	ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_LEFT, mute);
   3451 	ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_RIGHT, mute);
   3452 }
   3453 
   3454 STATIC void
   3455 gusics_linein_mute(ic, mute)
   3456 	struct ics2101_softc *ic;
   3457 	int mute;
   3458 {
   3459 	ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_LEFT, mute);
   3460 	ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_RIGHT, mute);
   3461 }
   3462 
   3463 STATIC void
   3464 gusics_cd_mute(ic, mute)
   3465 	struct ics2101_softc *ic;
   3466 	int mute;
   3467 {
   3468 	ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_LEFT, mute);
   3469 	ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_RIGHT, mute);
   3470 }
   3471 
   3472 STATIC void
   3473 gusics_dac_mute(ic, mute)
   3474 	struct ics2101_softc *ic;
   3475 	int mute;
   3476 {
   3477 	ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_LEFT, mute);
   3478 	ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_RIGHT, mute);
   3479 }
   3480 
   3481 STATIC int
   3482 gusmax_mixer_set_port(addr, cp)
   3483 	void *addr;
   3484 	mixer_ctrl_t *cp;
   3485 {
   3486 	struct ad1848_softc *ac = addr;
   3487 	struct gus_softc *sc = ac->parent;
   3488 	struct ad1848_volume vol;
   3489 	int error = EINVAL;
   3490 
   3491 	DPRINTF(("gusmax_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
   3492 
   3493 	switch (cp->dev) {
   3494 #if 0
   3495 	case GUSMAX_MIC_IN_LVL:	/* Microphone */
   3496 		if (cp->type == AUDIO_MIXER_VALUE &&
   3497 		    cp->un.value.num_channels == 1) {
   3498 			/* XXX enable/disable pre-MUX fixed gain */
   3499 			if (gus_to_vol(cp, &vol))
   3500 				error = ad1848_set_mic_gain(ac, &vol);
   3501 		}
   3502 		break;
   3503 #endif
   3504 
   3505 	case GUSMAX_DAC_LVL:		/* dac out */
   3506 		if (cp->type == AUDIO_MIXER_VALUE) {
   3507 			if (gus_to_vol(cp, &vol))
   3508 				error = ad1848_set_aux1_gain(ac, &vol);
   3509 		}
   3510 		break;
   3511 
   3512 	case GUSMAX_LINE_IN_LVL:	/* line in */
   3513 		if (cp->type == AUDIO_MIXER_VALUE) {
   3514 			if (gus_to_vol(cp, &vol))
   3515 				error = cs4231_set_linein_gain(ac, &vol);
   3516 		}
   3517 		break;
   3518 
   3519 	case GUSMAX_MONO_LVL:	/* mic/mono in */
   3520 		if (cp->type == AUDIO_MIXER_VALUE &&
   3521 		    cp->un.value.num_channels == 1) {
   3522 			if (gus_to_vol(cp, &vol))
   3523 				error = cs4231_set_mono_gain(ac, &vol);
   3524 		}
   3525 		break;
   3526 
   3527 	case GUSMAX_CD_LVL:	/* CD: AUX2 */
   3528 		if (cp->type == AUDIO_MIXER_VALUE) {
   3529 			if (gus_to_vol(cp, &vol))
   3530 				error = ad1848_set_aux2_gain(ac, &vol);
   3531 		}
   3532 		break;
   3533 
   3534 	case GUSMAX_MONITOR_LVL:
   3535 		if (cp->type == AUDIO_MIXER_VALUE &&
   3536 		    cp->un.value.num_channels == 1) {
   3537 			vol.left  = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   3538 			error = ad1848_set_mon_gain(ac, &vol);
   3539 		}
   3540 		break;
   3541 
   3542 	case GUSMAX_OUT_LVL:	/* output volume */
   3543 		if (cp->type == AUDIO_MIXER_VALUE) {
   3544 			if (gus_to_vol(cp, &vol))
   3545 				error = ad1848_set_out_gain(ac, &vol);
   3546 		}
   3547 		break;
   3548 
   3549 	case GUSMAX_SPEAKER_LVL:
   3550 		if (cp->type == AUDIO_MIXER_VALUE &&
   3551 		    cp->un.value.num_channels == 1) {
   3552 			if (gus_to_vol(cp, &vol)) {
   3553 				gus_speaker_ctl(sc, vol.left > AUDIO_MIN_GAIN ?
   3554 						SPKR_ON : SPKR_OFF);
   3555 				error = 0;
   3556 			}
   3557 		}
   3558 		break;
   3559 
   3560 	case GUSMAX_LINE_IN_MUTE:
   3561 		if (cp->type == AUDIO_MIXER_ENUM) {
   3562 			ac->line_mute = cp->un.ord ? 1 : 0;
   3563 			DPRINTF(("line mute %d\n", cp->un.ord));
   3564 			cs4231_mute_line(ac, ac->line_mute);
   3565 			gus_linein_ctl(sc, ac->line_mute ? SPKR_OFF : SPKR_ON);
   3566 			error = 0;
   3567 		}
   3568 		break;
   3569 
   3570 	case GUSMAX_DAC_MUTE:
   3571 		if (cp->type == AUDIO_MIXER_ENUM) {
   3572 			ac->aux1_mute = cp->un.ord ? 1 : 0;
   3573 			DPRINTF(("dac mute %d\n", cp->un.ord));
   3574 			ad1848_mute_aux1(ac, ac->aux1_mute);
   3575 			error = 0;
   3576 		}
   3577 		break;
   3578 
   3579 	case GUSMAX_CD_MUTE:
   3580 		if (cp->type == AUDIO_MIXER_ENUM) {
   3581 			ac->aux2_mute = cp->un.ord ? 1 : 0;
   3582 			DPRINTF(("cd mute %d\n", cp->un.ord));
   3583 			ad1848_mute_aux2(ac, ac->aux2_mute);
   3584 			error = 0;
   3585 		}
   3586 		break;
   3587 
   3588 	case GUSMAX_MONO_MUTE:	/* Microphone */
   3589 		if (cp->type == AUDIO_MIXER_ENUM) {
   3590 			ac->mono_mute = cp->un.ord ? 1 : 0;
   3591 			DPRINTF(("mono mute %d\n", cp->un.ord));
   3592 			cs4231_mute_mono(ac, ac->mono_mute);
   3593 			gus_mic_ctl(sc, ac->mono_mute ? SPKR_OFF : SPKR_ON);
   3594 			error = 0;
   3595 		}
   3596 		break;
   3597 
   3598 	case GUSMAX_MONITOR_MUTE:
   3599 		if (cp->type == AUDIO_MIXER_ENUM) {
   3600 			ac->mon_mute = cp->un.ord ? 1 : 0;
   3601 			DPRINTF(("mono mute %d\n", cp->un.ord));
   3602 			cs4231_mute_monitor(ac, ac->mon_mute);
   3603 			error = 0;
   3604 		}
   3605 		break;
   3606 
   3607 	case GUSMAX_SPEAKER_MUTE:
   3608 		if (cp->type == AUDIO_MIXER_ENUM) {
   3609 			gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3610 			error = 0;
   3611 		}
   3612 		break;
   3613 
   3614 	case GUSMAX_REC_LVL:		/* record level */
   3615 		if (cp->type == AUDIO_MIXER_VALUE) {
   3616 			if (gus_to_vol(cp, &vol))
   3617 				error = ad1848_set_rec_gain(ac, &vol);
   3618 		}
   3619 		break;
   3620 
   3621 	case GUSMAX_RECORD_SOURCE:
   3622 		if (cp->type == AUDIO_MIXER_ENUM) {
   3623 			error = ad1848_set_rec_port(ac, cp->un.ord);
   3624 		}
   3625 		break;
   3626 
   3627 	default:
   3628 		return ENXIO;
   3629 	    /*NOTREACHED*/
   3630     }
   3631     return error;
   3632 }
   3633 
   3634 STATIC int
   3635 gus_mixer_set_port(addr, cp)
   3636 	void *addr;
   3637 	mixer_ctrl_t *cp;
   3638 {
   3639 	struct gus_softc *sc = addr;
   3640 	struct ics2101_softc *ic = &sc->sc_mixer;
   3641 	struct ad1848_volume vol;
   3642 	int error = EINVAL;
   3643 
   3644 	DPRINTF(("gus_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
   3645 
   3646 	if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
   3647 		return ENXIO;
   3648 
   3649 	switch (cp->dev) {
   3650 
   3651 	case GUSICS_MIC_IN_MUTE:	/* Microphone */
   3652 		if (cp->type == AUDIO_MIXER_ENUM) {
   3653 			DPRINTF(("mic mute %d\n", cp->un.ord));
   3654 			if (HAS_MIXER(sc)) {
   3655 				gusics_mic_mute(ic, cp->un.ord);
   3656 			}
   3657 			gus_mic_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3658 			error = 0;
   3659 		}
   3660 		break;
   3661 
   3662 	case GUSICS_LINE_IN_MUTE:
   3663 		if (cp->type == AUDIO_MIXER_ENUM) {
   3664 			DPRINTF(("linein mute %d\n", cp->un.ord));
   3665 			if (HAS_MIXER(sc)) {
   3666 				gusics_linein_mute(ic, cp->un.ord);
   3667 			}
   3668 			gus_linein_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3669 			error = 0;
   3670 		}
   3671 		break;
   3672 
   3673 	case GUSICS_MASTER_MUTE:
   3674 		if (cp->type == AUDIO_MIXER_ENUM) {
   3675 			DPRINTF(("master mute %d\n", cp->un.ord));
   3676 			if (HAS_MIXER(sc)) {
   3677 				gusics_master_mute(ic, cp->un.ord);
   3678 			}
   3679 			gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
   3680 			error = 0;
   3681 		}
   3682 		break;
   3683 
   3684 	case GUSICS_DAC_MUTE:
   3685 		if (cp->type == AUDIO_MIXER_ENUM) {
   3686 			gusics_dac_mute(ic, cp->un.ord);
   3687 			error = 0;
   3688 		}
   3689 		break;
   3690 
   3691 	case GUSICS_CD_MUTE:
   3692 		if (cp->type == AUDIO_MIXER_ENUM) {
   3693 			gusics_cd_mute(ic, cp->un.ord);
   3694 			error = 0;
   3695 		}
   3696 		break;
   3697 
   3698 	case GUSICS_MASTER_LVL:
   3699 		if (cp->type == AUDIO_MIXER_VALUE) {
   3700 			if (gus_to_vol(cp, &vol)) {
   3701 				ics2101_mix_attenuate(ic,
   3702 						      GUSMIX_CHAN_MASTER,
   3703 						      ICSMIX_LEFT,
   3704 						      vol.left);
   3705 				ics2101_mix_attenuate(ic,
   3706 						      GUSMIX_CHAN_MASTER,
   3707 						      ICSMIX_RIGHT,
   3708 						      vol.right);
   3709 				error = 0;
   3710 			}
   3711 		}
   3712 		break;
   3713 
   3714 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   3715 		if (cp->type == AUDIO_MIXER_VALUE) {
   3716 			if (gus_to_vol(cp, &vol)) {
   3717 				ics2101_mix_attenuate(ic,
   3718 						      GUSMIX_CHAN_MIC,
   3719 						      ICSMIX_LEFT,
   3720 						      vol.left);
   3721 				ics2101_mix_attenuate(ic,
   3722 						      GUSMIX_CHAN_MIC,
   3723 						      ICSMIX_RIGHT,
   3724 						      vol.right);
   3725 				error = 0;
   3726 			}
   3727 		}
   3728 		break;
   3729 
   3730 	case GUSICS_LINE_IN_LVL:	/* line in */
   3731 		if (cp->type == AUDIO_MIXER_VALUE) {
   3732 			if (gus_to_vol(cp, &vol)) {
   3733 				ics2101_mix_attenuate(ic,
   3734 						      GUSMIX_CHAN_LINE,
   3735 						      ICSMIX_LEFT,
   3736 						      vol.left);
   3737 				ics2101_mix_attenuate(ic,
   3738 						      GUSMIX_CHAN_LINE,
   3739 						      ICSMIX_RIGHT,
   3740 						      vol.right);
   3741 				error = 0;
   3742 			}
   3743 		}
   3744 		break;
   3745 
   3746 
   3747 	case GUSICS_CD_LVL:
   3748 		if (cp->type == AUDIO_MIXER_VALUE) {
   3749 			if (gus_to_vol(cp, &vol)) {
   3750 				ics2101_mix_attenuate(ic,
   3751 						      GUSMIX_CHAN_CD,
   3752 						      ICSMIX_LEFT,
   3753 						      vol.left);
   3754 				ics2101_mix_attenuate(ic,
   3755 						      GUSMIX_CHAN_CD,
   3756 						      ICSMIX_RIGHT,
   3757 						      vol.right);
   3758 				error = 0;
   3759 			}
   3760 		}
   3761 		break;
   3762 
   3763 	case GUSICS_DAC_LVL:		/* dac out */
   3764 		if (cp->type == AUDIO_MIXER_VALUE) {
   3765 			if (gus_to_vol(cp, &vol)) {
   3766 				ics2101_mix_attenuate(ic,
   3767 						      GUSMIX_CHAN_DAC,
   3768 						      ICSMIX_LEFT,
   3769 						      vol.left);
   3770 				ics2101_mix_attenuate(ic,
   3771 						      GUSMIX_CHAN_DAC,
   3772 						      ICSMIX_RIGHT,
   3773 						      vol.right);
   3774 				error = 0;
   3775 			}
   3776 		}
   3777 		break;
   3778 
   3779 
   3780 	case GUSICS_RECORD_SOURCE:
   3781 		if (cp->type == AUDIO_MIXER_ENUM && cp->un.ord == 0) {
   3782 			/* Can't set anything else useful, sigh. */
   3783 			error = 0;
   3784 		}
   3785 		break;
   3786 
   3787 	default:
   3788 		return ENXIO;
   3789 	    /*NOTREACHED*/
   3790 	}
   3791 	return error;
   3792 }
   3793 
   3794 STATIC int
   3795 gus_get_props(addr)
   3796 	void *addr;
   3797 {
   3798 	struct gus_softc *sc = addr;
   3799 	return sc->sc_recdrq == sc->sc_drq ? 0 : AUDIO_PROP_FULLDUPLEX;
   3800 }
   3801 
   3802 STATIC int
   3803 gusmax_get_props(addr)
   3804 	void *addr;
   3805 {
   3806 	struct ad1848_softc *ac = addr;
   3807 	return gus_get_props(ac->parent);
   3808 }
   3809 
   3810 STATIC int
   3811 gusmax_mixer_query_devinfo(addr, dip)
   3812 	void *addr;
   3813 	mixer_devinfo_t *dip;
   3814 {
   3815 	DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
   3816 
   3817 	switch(dip->index) {
   3818 #if 0
   3819     case GUSMAX_MIC_IN_LVL:	/* Microphone */
   3820 	dip->type = AUDIO_MIXER_VALUE;
   3821 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3822 	dip->prev = AUDIO_MIXER_LAST;
   3823 	dip->next = GUSMAX_MIC_IN_MUTE;
   3824 	strcpy(dip->label.name, AudioNmicrophone);
   3825 	dip->un.v.num_channels = 2;
   3826 	strcpy(dip->un.v.units.name, AudioNvolume);
   3827 	break;
   3828 #endif
   3829 
   3830     case GUSMAX_MONO_LVL:	/* mono/microphone mixer */
   3831 	dip->type = AUDIO_MIXER_VALUE;
   3832 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3833 	dip->prev = AUDIO_MIXER_LAST;
   3834 	dip->next = GUSMAX_MONO_MUTE;
   3835 	strcpy(dip->label.name, AudioNmicrophone);
   3836 	dip->un.v.num_channels = 1;
   3837 	strcpy(dip->un.v.units.name, AudioNvolume);
   3838 	break;
   3839 
   3840     case GUSMAX_DAC_LVL:		/*  dacout */
   3841 	dip->type = AUDIO_MIXER_VALUE;
   3842 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3843 	dip->prev = AUDIO_MIXER_LAST;
   3844 	dip->next = GUSMAX_DAC_MUTE;
   3845 	strcpy(dip->label.name, AudioNdac);
   3846 	dip->un.v.num_channels = 2;
   3847 	strcpy(dip->un.v.units.name, AudioNvolume);
   3848 	break;
   3849 
   3850     case GUSMAX_LINE_IN_LVL:	/* line */
   3851 	dip->type = AUDIO_MIXER_VALUE;
   3852 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3853 	dip->prev = AUDIO_MIXER_LAST;
   3854 	dip->next = GUSMAX_LINE_IN_MUTE;
   3855 	strcpy(dip->label.name, AudioNline);
   3856 	dip->un.v.num_channels = 2;
   3857 	strcpy(dip->un.v.units.name, AudioNvolume);
   3858 	break;
   3859 
   3860     case GUSMAX_CD_LVL:		/* cd */
   3861 	dip->type = AUDIO_MIXER_VALUE;
   3862 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3863 	dip->prev = AUDIO_MIXER_LAST;
   3864 	dip->next = GUSMAX_CD_MUTE;
   3865 	strcpy(dip->label.name, AudioNcd);
   3866 	dip->un.v.num_channels = 2;
   3867 	strcpy(dip->un.v.units.name, AudioNvolume);
   3868 	break;
   3869 
   3870 
   3871     case GUSMAX_MONITOR_LVL:	/* monitor level */
   3872 	dip->type = AUDIO_MIXER_VALUE;
   3873 	dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3874 	dip->next = GUSMAX_MONITOR_MUTE;
   3875 	dip->prev = AUDIO_MIXER_LAST;
   3876 	strcpy(dip->label.name, AudioNmonitor);
   3877 	dip->un.v.num_channels = 1;
   3878 	strcpy(dip->un.v.units.name, AudioNvolume);
   3879 	break;
   3880 
   3881     case GUSMAX_OUT_LVL:		/* cs4231 output volume: not useful? */
   3882 	dip->type = AUDIO_MIXER_VALUE;
   3883 	dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3884 	dip->prev = dip->next = AUDIO_MIXER_LAST;
   3885 	strcpy(dip->label.name, AudioNoutput);
   3886 	dip->un.v.num_channels = 2;
   3887 	strcpy(dip->un.v.units.name, AudioNvolume);
   3888 	break;
   3889 
   3890     case GUSMAX_SPEAKER_LVL:		/* fake speaker volume */
   3891 	dip->type = AUDIO_MIXER_VALUE;
   3892 	dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3893 	dip->prev = AUDIO_MIXER_LAST;
   3894 	dip->next = GUSMAX_SPEAKER_MUTE;
   3895 	strcpy(dip->label.name, AudioNmaster);
   3896 	dip->un.v.num_channels = 2;
   3897 	strcpy(dip->un.v.units.name, AudioNvolume);
   3898 	break;
   3899 
   3900     case GUSMAX_LINE_IN_MUTE:
   3901 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3902 	dip->type = AUDIO_MIXER_ENUM;
   3903 	dip->prev = GUSMAX_LINE_IN_LVL;
   3904 	dip->next = AUDIO_MIXER_LAST;
   3905 	goto mute;
   3906 
   3907     case GUSMAX_DAC_MUTE:
   3908 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3909 	dip->type = AUDIO_MIXER_ENUM;
   3910 	dip->prev = GUSMAX_DAC_LVL;
   3911 	dip->next = AUDIO_MIXER_LAST;
   3912 	goto mute;
   3913 
   3914     case GUSMAX_CD_MUTE:
   3915 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3916 	dip->type = AUDIO_MIXER_ENUM;
   3917 	dip->prev = GUSMAX_CD_LVL;
   3918 	dip->next = AUDIO_MIXER_LAST;
   3919 	goto mute;
   3920 
   3921     case GUSMAX_MONO_MUTE:
   3922 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3923 	dip->type = AUDIO_MIXER_ENUM;
   3924 	dip->prev = GUSMAX_MONO_LVL;
   3925 	dip->next = AUDIO_MIXER_LAST;
   3926 	goto mute;
   3927 
   3928     case GUSMAX_MONITOR_MUTE:
   3929 	dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3930 	dip->type = AUDIO_MIXER_ENUM;
   3931 	dip->prev = GUSMAX_MONITOR_LVL;
   3932 	dip->next = AUDIO_MIXER_LAST;
   3933 	goto mute;
   3934 
   3935     case GUSMAX_SPEAKER_MUTE:
   3936 	dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3937 	dip->type = AUDIO_MIXER_ENUM;
   3938 	dip->prev = GUSMAX_SPEAKER_LVL;
   3939 	dip->next = AUDIO_MIXER_LAST;
   3940     mute:
   3941 	strcpy(dip->label.name, AudioNmute);
   3942 	dip->un.e.num_mem = 2;
   3943 	strcpy(dip->un.e.member[0].label.name, AudioNoff);
   3944 	dip->un.e.member[0].ord = 0;
   3945 	strcpy(dip->un.e.member[1].label.name, AudioNon);
   3946 	dip->un.e.member[1].ord = 1;
   3947 	break;
   3948 
   3949     case GUSMAX_REC_LVL:	/* record level */
   3950 	dip->type = AUDIO_MIXER_VALUE;
   3951 	dip->mixer_class = GUSMAX_RECORD_CLASS;
   3952 	dip->prev = AUDIO_MIXER_LAST;
   3953 	dip->next = GUSMAX_RECORD_SOURCE;
   3954 	strcpy(dip->label.name, AudioNrecord);
   3955 	dip->un.v.num_channels = 2;
   3956 	strcpy(dip->un.v.units.name, AudioNvolume);
   3957 	break;
   3958 
   3959     case GUSMAX_RECORD_SOURCE:
   3960 	dip->mixer_class = GUSMAX_RECORD_CLASS;
   3961 	dip->type = AUDIO_MIXER_ENUM;
   3962 	dip->prev = GUSMAX_REC_LVL;
   3963 	dip->next = AUDIO_MIXER_LAST;
   3964 	strcpy(dip->label.name, AudioNsource);
   3965 	dip->un.e.num_mem = 4;
   3966 	strcpy(dip->un.e.member[0].label.name, AudioNoutput);
   3967 	dip->un.e.member[0].ord = DAC_IN_PORT;
   3968 	strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
   3969 	dip->un.e.member[1].ord = MIC_IN_PORT;
   3970 	strcpy(dip->un.e.member[2].label.name, AudioNdac);
   3971 	dip->un.e.member[2].ord = AUX1_IN_PORT;
   3972 	strcpy(dip->un.e.member[3].label.name, AudioNline);
   3973 	dip->un.e.member[3].ord = LINE_IN_PORT;
   3974 	break;
   3975 
   3976     case GUSMAX_INPUT_CLASS:			/* input class descriptor */
   3977 	dip->type = AUDIO_MIXER_CLASS;
   3978 	dip->mixer_class = GUSMAX_INPUT_CLASS;
   3979 	dip->next = dip->prev = AUDIO_MIXER_LAST;
   3980 	strcpy(dip->label.name, AudioCinputs);
   3981 	break;
   3982 
   3983     case GUSMAX_OUTPUT_CLASS:			/* output class descriptor */
   3984 	dip->type = AUDIO_MIXER_CLASS;
   3985 	dip->mixer_class = GUSMAX_OUTPUT_CLASS;
   3986 	dip->next = dip->prev = AUDIO_MIXER_LAST;
   3987 	strcpy(dip->label.name, AudioCoutputs);
   3988 	break;
   3989 
   3990     case GUSMAX_MONITOR_CLASS:			/* monitor class descriptor */
   3991 	dip->type = AUDIO_MIXER_CLASS;
   3992 	dip->mixer_class = GUSMAX_MONITOR_CLASS;
   3993 	dip->next = dip->prev = AUDIO_MIXER_LAST;
   3994 	strcpy(dip->label.name, AudioCmonitor);
   3995 	break;
   3996 
   3997     case GUSMAX_RECORD_CLASS:			/* record source class */
   3998 	dip->type = AUDIO_MIXER_CLASS;
   3999 	dip->mixer_class = GUSMAX_RECORD_CLASS;
   4000 	dip->next = dip->prev = AUDIO_MIXER_LAST;
   4001 	strcpy(dip->label.name, AudioCrecord);
   4002 	break;
   4003 
   4004     default:
   4005 	return ENXIO;
   4006 	/*NOTREACHED*/
   4007     }
   4008     DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
   4009 	return 0;
   4010 }
   4011 
   4012 STATIC int
   4013 gus_mixer_query_devinfo(addr, dip)
   4014 	void *addr;
   4015 	mixer_devinfo_t *dip;
   4016 {
   4017 	struct gus_softc *sc = addr;
   4018 
   4019 	DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
   4020 
   4021 	if (!HAS_MIXER(sc) && dip->index > GUSICS_MASTER_MUTE)
   4022 		return ENXIO;
   4023 
   4024 	switch(dip->index) {
   4025 
   4026 	case GUSICS_MIC_IN_LVL:	/* Microphone */
   4027 		dip->type = AUDIO_MIXER_VALUE;
   4028 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4029 		dip->prev = AUDIO_MIXER_LAST;
   4030 		dip->next = GUSICS_MIC_IN_MUTE;
   4031 		strcpy(dip->label.name, AudioNmicrophone);
   4032 		dip->un.v.num_channels = 2;
   4033 		strcpy(dip->un.v.units.name, AudioNvolume);
   4034 		break;
   4035 
   4036 	case GUSICS_LINE_IN_LVL:	/* line */
   4037 		dip->type = AUDIO_MIXER_VALUE;
   4038 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4039 		dip->prev = AUDIO_MIXER_LAST;
   4040 		dip->next = GUSICS_LINE_IN_MUTE;
   4041 		strcpy(dip->label.name, AudioNline);
   4042 		dip->un.v.num_channels = 2;
   4043 		strcpy(dip->un.v.units.name, AudioNvolume);
   4044 		break;
   4045 
   4046 	case GUSICS_CD_LVL:		/* cd */
   4047 		dip->type = AUDIO_MIXER_VALUE;
   4048 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4049 		dip->prev = AUDIO_MIXER_LAST;
   4050 		dip->next = GUSICS_CD_MUTE;
   4051 		strcpy(dip->label.name, AudioNcd);
   4052 		dip->un.v.num_channels = 2;
   4053 		strcpy(dip->un.v.units.name, AudioNvolume);
   4054 		break;
   4055 
   4056 	case GUSICS_DAC_LVL:		/*  dacout */
   4057 		dip->type = AUDIO_MIXER_VALUE;
   4058 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4059 		dip->prev = AUDIO_MIXER_LAST;
   4060 		dip->next = GUSICS_DAC_MUTE;
   4061 		strcpy(dip->label.name, AudioNdac);
   4062 		dip->un.v.num_channels = 2;
   4063 		strcpy(dip->un.v.units.name, AudioNvolume);
   4064 		break;
   4065 
   4066 	case GUSICS_MASTER_LVL:		/*  master output */
   4067 		dip->type = AUDIO_MIXER_VALUE;
   4068 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   4069 		dip->prev = AUDIO_MIXER_LAST;
   4070 		dip->next = GUSICS_MASTER_MUTE;
   4071 		strcpy(dip->label.name, AudioNmaster);
   4072 		dip->un.v.num_channels = 2;
   4073 		strcpy(dip->un.v.units.name, AudioNvolume);
   4074 		break;
   4075 
   4076 
   4077 	case GUSICS_LINE_IN_MUTE:
   4078 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4079 		dip->type = AUDIO_MIXER_ENUM;
   4080 		dip->prev = GUSICS_LINE_IN_LVL;
   4081 		dip->next = AUDIO_MIXER_LAST;
   4082 		goto mute;
   4083 
   4084 	case GUSICS_DAC_MUTE:
   4085 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4086 		dip->type = AUDIO_MIXER_ENUM;
   4087 		dip->prev = GUSICS_DAC_LVL;
   4088 		dip->next = AUDIO_MIXER_LAST;
   4089 		goto mute;
   4090 
   4091 	case GUSICS_CD_MUTE:
   4092 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4093 		dip->type = AUDIO_MIXER_ENUM;
   4094 		dip->prev = GUSICS_CD_LVL;
   4095 		dip->next = AUDIO_MIXER_LAST;
   4096 		goto mute;
   4097 
   4098 	case GUSICS_MIC_IN_MUTE:
   4099 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4100 		dip->type = AUDIO_MIXER_ENUM;
   4101 		dip->prev = GUSICS_MIC_IN_LVL;
   4102 		dip->next = AUDIO_MIXER_LAST;
   4103 		goto mute;
   4104 
   4105 	case GUSICS_MASTER_MUTE:
   4106 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   4107 		dip->type = AUDIO_MIXER_ENUM;
   4108 		dip->prev = GUSICS_MASTER_LVL;
   4109 		dip->next = AUDIO_MIXER_LAST;
   4110 mute:
   4111 		strcpy(dip->label.name, AudioNmute);
   4112 		dip->un.e.num_mem = 2;
   4113 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   4114 		dip->un.e.member[0].ord = 0;
   4115 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   4116 		dip->un.e.member[1].ord = 1;
   4117 		break;
   4118 
   4119 	case GUSICS_RECORD_SOURCE:
   4120 		dip->mixer_class = GUSICS_RECORD_CLASS;
   4121 		dip->type = AUDIO_MIXER_ENUM;
   4122 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   4123 		strcpy(dip->label.name, AudioNsource);
   4124 		dip->un.e.num_mem = 1;
   4125 		strcpy(dip->un.e.member[0].label.name, AudioNoutput);
   4126 		dip->un.e.member[0].ord = GUSICS_MASTER_LVL;
   4127 		break;
   4128 
   4129 	case GUSICS_INPUT_CLASS:
   4130 		dip->type = AUDIO_MIXER_CLASS;
   4131 		dip->mixer_class = GUSICS_INPUT_CLASS;
   4132 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4133 		strcpy(dip->label.name, AudioCinputs);
   4134 		break;
   4135 
   4136 	case GUSICS_OUTPUT_CLASS:
   4137 		dip->type = AUDIO_MIXER_CLASS;
   4138 		dip->mixer_class = GUSICS_OUTPUT_CLASS;
   4139 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4140 		strcpy(dip->label.name, AudioCoutputs);
   4141 		break;
   4142 
   4143 	case GUSICS_RECORD_CLASS:
   4144 		dip->type = AUDIO_MIXER_CLASS;
   4145 		dip->mixer_class = GUSICS_RECORD_CLASS;
   4146 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   4147 		strcpy(dip->label.name, AudioCrecord);
   4148 		break;
   4149 
   4150 	default:
   4151 		return ENXIO;
   4152 	/*NOTREACHED*/
   4153 	}
   4154 	DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
   4155 	return 0;
   4156 }
   4157 
   4158 STATIC int
   4159 gus_query_encoding(addr, fp)
   4160 	void *addr;
   4161 	struct audio_encoding *fp;
   4162 {
   4163 	switch (fp->index) {
   4164 	case 0:
   4165 		strcpy(fp->name, AudioEmulaw);
   4166 		fp->encoding = AUDIO_ENCODING_ULAW;
   4167 		fp->precision = 8;
   4168 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4169 		break;
   4170 	case 1:
   4171 		strcpy(fp->name, AudioEslinear);
   4172 		fp->encoding = AUDIO_ENCODING_SLINEAR;
   4173 		fp->precision = 8;
   4174 		fp->flags = 0;
   4175 		break;
   4176 	case 2:
   4177 		strcpy(fp->name, AudioEslinear_le);
   4178 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
   4179 		fp->precision = 16;
   4180 		fp->flags = 0;
   4181 		break;
   4182 	case 3:
   4183 		strcpy(fp->name, AudioEulinear);
   4184 		fp->encoding = AUDIO_ENCODING_ULINEAR;
   4185 		fp->precision = 8;
   4186 		fp->flags = 0;
   4187 		break;
   4188 	case 4:
   4189 		strcpy(fp->name, AudioEulinear_le);
   4190 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
   4191 		fp->precision = 16;
   4192 		fp->flags = 0;
   4193 		break;
   4194 	case 5:
   4195 		strcpy(fp->name, AudioEslinear_be);
   4196 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
   4197 		fp->precision = 16;
   4198 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4199 		break;
   4200 	case 6:
   4201 		strcpy(fp->name, AudioEulinear_be);
   4202 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
   4203 		fp->precision = 16;
   4204 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4205 		break;
   4206 	case 7:
   4207 		strcpy(fp->name, AudioEalaw);
   4208 		fp->encoding = AUDIO_ENCODING_ALAW;
   4209 		fp->precision = 8;
   4210 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
   4211 		break;
   4212 
   4213 	default:
   4214 		return(EINVAL);
   4215 		/*NOTREACHED*/
   4216 	}
   4217 	return (0);
   4218 }
   4219 
   4220 /*
   4221  * Setup the ICS mixer in "transparent" mode: reset everything to a sensible
   4222  * level.  Levels as suggested by GUS SDK code.
   4223  */
   4224 
   4225 STATIC void
   4226 gus_init_ics2101(sc)
   4227 	struct gus_softc *sc;
   4228 {
   4229 	struct ics2101_softc *ic = &sc->sc_mixer;
   4230 	sc->sc_mixer.sc_iot = sc->sc_iot;
   4231 	sc->sc_mixer.sc_selio = GUS_MIXER_SELECT;
   4232 	sc->sc_mixer.sc_selio_ioh = sc->sc_ioh3;
   4233 	sc->sc_mixer.sc_dataio = GUS_MIXER_DATA;
   4234 	sc->sc_mixer.sc_dataio_ioh = sc->sc_ioh2;
   4235 	sc->sc_mixer.sc_flags = (sc->sc_revision == 5) ? ICS_FLIP : 0;
   4236 
   4237 	ics2101_mix_attenuate(ic,
   4238 			      GUSMIX_CHAN_MIC,
   4239 			      ICSMIX_LEFT,
   4240 			      ICSMIX_MIN_ATTN);
   4241 	ics2101_mix_attenuate(ic,
   4242 			      GUSMIX_CHAN_MIC,
   4243 			      ICSMIX_RIGHT,
   4244 			      ICSMIX_MIN_ATTN);
   4245 	/*
   4246 	 * Start with microphone muted by the mixer...
   4247 	 */
   4248 	gusics_mic_mute(ic, 1);
   4249 
   4250 	/* ... and enabled by the GUS master mix control */
   4251 	gus_mic_ctl(sc, SPKR_ON);
   4252 
   4253 	ics2101_mix_attenuate(ic,
   4254 			      GUSMIX_CHAN_LINE,
   4255 			      ICSMIX_LEFT,
   4256 			      ICSMIX_MIN_ATTN);
   4257 	ics2101_mix_attenuate(ic,
   4258 			      GUSMIX_CHAN_LINE,
   4259 			      ICSMIX_RIGHT,
   4260 			      ICSMIX_MIN_ATTN);
   4261 
   4262 	ics2101_mix_attenuate(ic,
   4263 			      GUSMIX_CHAN_CD,
   4264 			      ICSMIX_LEFT,
   4265 			      ICSMIX_MIN_ATTN);
   4266 	ics2101_mix_attenuate(ic,
   4267 			      GUSMIX_CHAN_CD,
   4268 			      ICSMIX_RIGHT,
   4269 			      ICSMIX_MIN_ATTN);
   4270 
   4271 	ics2101_mix_attenuate(ic,
   4272 			      GUSMIX_CHAN_DAC,
   4273 			      ICSMIX_LEFT,
   4274 			      ICSMIX_MIN_ATTN);
   4275 	ics2101_mix_attenuate(ic,
   4276 			      GUSMIX_CHAN_DAC,
   4277 			      ICSMIX_RIGHT,
   4278 			      ICSMIX_MIN_ATTN);
   4279 
   4280 	ics2101_mix_attenuate(ic,
   4281 			      ICSMIX_CHAN_4,
   4282 			      ICSMIX_LEFT,
   4283 			      ICSMIX_MAX_ATTN);
   4284 	ics2101_mix_attenuate(ic,
   4285 			      ICSMIX_CHAN_4,
   4286 			      ICSMIX_RIGHT,
   4287 			      ICSMIX_MAX_ATTN);
   4288 
   4289 	ics2101_mix_attenuate(ic,
   4290 			      GUSMIX_CHAN_MASTER,
   4291 			      ICSMIX_LEFT,
   4292 			      ICSMIX_MIN_ATTN);
   4293 	ics2101_mix_attenuate(ic,
   4294 			      GUSMIX_CHAN_MASTER,
   4295 			      ICSMIX_RIGHT,
   4296 			      ICSMIX_MIN_ATTN);
   4297 	/* unmute other stuff: */
   4298 	gusics_cd_mute(ic, 0);
   4299 	gusics_dac_mute(ic, 0);
   4300 	gusics_linein_mute(ic, 0);
   4301 	return;
   4302 }
   4303 
   4304 
   4305 #endif /* NGUS */
   4306