gus.c revision 1.68 1 /* $NetBSD: gus.c,v 1.68 2000/02/07 22:07:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Ken Hornstein and John Kohl.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 *
41 * TODO:
42 * . figure out why mixer activity while sound is playing causes problems
43 * (phantom interrupts?)
44 * . figure out a better deinterleave strategy that avoids sucking up
45 * CPU, memory and cache bandwidth. (Maybe a special encoding?
46 * Maybe use the double-speed sampling/hardware deinterleave trick
47 * from the GUS SDK?) A 486/33 isn't quite fast enough to keep
48 * up with 44.1kHz 16-bit stereo output without some drop-outs.
49 * . use CS4231 for 16-bit sampling, for a-law and mu-law playback.
50 * . actually test full-duplex sampling(recording) and playback.
51 */
52
53 /*
54 * Gravis UltraSound driver
55 *
56 * For more detailed information, see the GUS developers' kit
57 * available on the net at:
58 *
59 * http://www.gravis.com/Public/sdk/GUSDK222.ZIP
60 *
61 * See ultrawrd.doc inside--it's MS Word (ick), but it's the bible
62 *
63 */
64
65 /*
66 * The GUS Max has a slightly strange set of connections between the CS4231
67 * and the GF1 and the DMA interconnects. It's set up so that the CS4231 can
68 * be playing while the GF1 is loading patches from the system.
69 *
70 * Here's a recreation of the DMA interconnect diagram:
71 *
72 * GF1
73 * +---------+ digital
74 * | | record ASIC
75 * | |--------------+
76 * | | | +--------+
77 * | | play (dram) | +----+ | |
78 * | |--------------(------|-\ | | +-+ |
79 * +---------+ | | >-|----|---|C|--|------ dma chan 1
80 * | +---|-/ | | +-+ |
81 * | | +----+ | | |
82 * | | +----+ | | |
83 * +---------+ +-+ +--(---|-\ | | | |
84 * | | play |8| | | >-|----|----+---|------ dma chan 2
85 * | ---C----|--------|/|------(---|-/ | | |
86 * | ^ |record |1| | +----+ | |
87 * | | | /----|6|------+ +--------+
88 * | ---+----|--/ +-+
89 * +---------+
90 * CS4231 8-to-16 bit bus conversion, if needed
91 *
92 *
93 * "C" is an optional combiner.
94 *
95 */
96
97 #include "gus.h"
98 #if NGUS > 0
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/errno.h>
103 #include <sys/ioctl.h>
104 #include <sys/syslog.h>
105 #include <sys/device.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/fcntl.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111
112 #include <machine/cpu.h>
113 #include <machine/intr.h>
114 #include <machine/bus.h>
115 #include <machine/cpufunc.h>
116 #include <sys/audioio.h>
117 #include <dev/audio_if.h>
118 #include <dev/mulaw.h>
119 #include <dev/auconv.h>
120
121 #include <dev/isa/isavar.h>
122 #include <dev/isa/isadmavar.h>
123 #include <i386/isa/icu.h>
124
125 #include <dev/ic/ics2101reg.h>
126 #include <dev/ic/cs4231reg.h>
127 #include <dev/ic/ad1848reg.h>
128 #include <dev/isa/ics2101var.h>
129 #include <dev/isa/ad1848var.h>
130 #include <dev/isa/cs4231var.h>
131 #include "gusreg.h"
132
133 #ifdef AUDIO_DEBUG
134 #define STATIC /* empty; for debugging symbols */
135 #else
136 #define STATIC static
137 #endif
138
139 /*
140 * Software state of a single "voice" on the GUS
141 */
142
143 struct gus_voice {
144
145 /*
146 * Various control bits
147 */
148
149 unsigned char voccntl; /* State of voice control register */
150 unsigned char volcntl; /* State of volume control register */
151 unsigned char pan_pos; /* Position of volume panning (4 bits) */
152 int rate; /* Sample rate of voice being played back */
153
154 /*
155 * Address of the voice data into the GUS's DRAM. 20 bits each
156 */
157
158 u_long start_addr; /* Starting address of voice data loop area */
159 u_long end_addr; /* Ending address of voice data loop */
160 u_long current_addr; /* Beginning address of voice data
161 (start playing here) */
162
163 /*
164 * linear volume values for the GUS's volume ramp. 0-511 (9 bits).
165 * These values must be translated into the logarithmic values using
166 * gus_log_volumes[]
167 */
168
169 int start_volume; /* Starting position of volume ramp */
170 int current_volume; /* Current position of volume on volume ramp */
171 int end_volume; /* Ending position of volume on volume ramp */
172 };
173
174 /*
175 * Software state of GUS
176 */
177
178 struct gus_softc {
179 struct device sc_dev; /* base device */
180 void *sc_ih; /* interrupt vector */
181 bus_space_tag_t sc_iot; /* tag */
182 isa_chipset_tag_t sc_ic; /* ISA chipset info */
183 bus_space_handle_t sc_ioh1; /* handle */
184 bus_space_handle_t sc_ioh2; /* handle */
185 bus_space_handle_t sc_ioh3; /* ICS2101 handle */
186 bus_space_handle_t sc_ioh4; /* MIDI handle */
187
188 int sc_iobase; /* I/O base address */
189 int sc_irq; /* IRQ used */
190 int sc_playdrq; /* DMA channel for play */
191 bus_size_t sc_play_maxsize; /* DMA size for play */
192 int sc_recdrq; /* DMA channel for recording */
193 bus_size_t sc_req_maxsize; /* DMA size for recording */
194
195 int sc_flags; /* Various flags about the GUS */
196 #define GUS_MIXER_INSTALLED 0x01 /* An ICS mixer is installed */
197 #define GUS_LOCKED 0x02 /* GUS is busy doing multi-phase DMA */
198 #define GUS_CODEC_INSTALLED 0x04 /* CS4231 installed/MAX */
199 #define GUS_PLAYING 0x08 /* GUS is playing a voice */
200 #define GUS_DMAOUT_ACTIVE 0x10 /* GUS is busy doing audio DMA */
201 #define GUS_DMAIN_ACTIVE 0x20 /* GUS is busy sampling */
202 #define GUS_OPEN 0x100 /* GUS is open */
203 int sc_dsize; /* Size of GUS DRAM */
204 int sc_voices; /* Number of active voices */
205 u_char sc_revision; /* Board revision of GUS */
206 u_char sc_mixcontrol; /* Value of GUS_MIX_CONTROL register */
207
208 u_long sc_orate; /* Output sampling rate */
209 u_long sc_irate; /* Input sampling rate */
210
211 int sc_encoding; /* Current data encoding type */
212 int sc_precision; /* # of bits of precision */
213 int sc_channels; /* Number of active channels */
214 int sc_blocksize; /* Current blocksize */
215 int sc_chanblocksize; /* Current blocksize for each in-use
216 channel */
217 short sc_nbufs; /* how many on-GUS bufs per-channel */
218 short sc_bufcnt; /* how many need to be played */
219 void *sc_deintr_buf; /* deinterleave buffer for stereo */
220
221 int sc_ogain; /* Output gain control */
222 u_char sc_out_port; /* Current out port (generic only) */
223 u_char sc_in_port; /* keep track of it when no codec */
224
225 void (*sc_dmaoutintr) __P((void*)); /* DMA completion intr handler */
226 void *sc_outarg; /* argument for sc_dmaoutintr() */
227 u_char *sc_dmaoutaddr; /* for isa_dmadone */
228 u_long sc_gusaddr; /* where did we just put it? */
229 int sc_dmaoutcnt; /* for isa_dmadone */
230
231 void (*sc_dmainintr) __P((void*)); /* DMA completion intr handler */
232 void *sc_inarg; /* argument for sc_dmaoutintr() */
233 u_char *sc_dmainaddr; /* for isa_dmadone */
234 int sc_dmaincnt; /* for isa_dmadone */
235
236 struct stereo_dma_intr {
237 void (*intr)__P((void *));
238 void *arg;
239 u_char *buffer;
240 u_long dmabuf;
241 int size;
242 int flags;
243 } sc_stereo;
244
245 /*
246 * State information for linear audio layer
247 */
248
249 int sc_dmabuf; /* Which ring buffer we're DMA'ing to */
250 int sc_playbuf; /* Which ring buffer we're playing */
251
252 /*
253 * Voice information array. All voice-specific information is stored
254 * here
255 */
256
257 struct gus_voice sc_voc[32]; /* Voice data for each voice */
258 union {
259 struct ics2101_softc sc_mixer_u;
260 struct ad1848_isa_softc sc_codec_u;
261 } u;
262 #define sc_mixer u.sc_mixer_u
263 #define sc_codec u.sc_codec_u
264 };
265
266 struct ics2101_volume {
267 u_char left;
268 u_char right;
269 };
270
271 #define HAS_CODEC(sc) ((sc)->sc_flags & GUS_CODEC_INSTALLED)
272 #define HAS_MIXER(sc) ((sc)->sc_flags & GUS_MIXER_INSTALLED)
273
274 /*
275 * Mixer devices for ICS2101
276 */
277 /* MIC IN mute, line in mute, line out mute are first since they can be done
278 even if no ICS mixer. */
279 #define GUSICS_MIC_IN_MUTE 0
280 #define GUSICS_LINE_IN_MUTE 1
281 #define GUSICS_MASTER_MUTE 2
282 #define GUSICS_CD_MUTE 3
283 #define GUSICS_DAC_MUTE 4
284 #define GUSICS_MIC_IN_LVL 5
285 #define GUSICS_LINE_IN_LVL 6
286 #define GUSICS_CD_LVL 7
287 #define GUSICS_DAC_LVL 8
288 #define GUSICS_MASTER_LVL 9
289
290 #define GUSICS_RECORD_SOURCE 10
291
292 /* Classes */
293 #define GUSICS_INPUT_CLASS 11
294 #define GUSICS_OUTPUT_CLASS 12
295 #define GUSICS_RECORD_CLASS 13
296
297 /*
298 * Mixer & MUX devices for CS4231
299 */
300 #define GUSMAX_MONO_LVL 0 /* mic input to MUX;
301 also mono mixer input */
302 #define GUSMAX_DAC_LVL 1 /* input to MUX; also mixer input */
303 #define GUSMAX_LINE_IN_LVL 2 /* input to MUX; also mixer input */
304 #define GUSMAX_CD_LVL 3 /* mixer input only */
305 #define GUSMAX_MONITOR_LVL 4 /* digital mix (?) */
306 #define GUSMAX_OUT_LVL 5 /* output level. (?) */
307 #define GUSMAX_SPEAKER_LVL 6 /* pseudo-device for mute */
308 #define GUSMAX_LINE_IN_MUTE 7 /* pre-mixer */
309 #define GUSMAX_DAC_MUTE 8 /* pre-mixer */
310 #define GUSMAX_CD_MUTE 9 /* pre-mixer */
311 #define GUSMAX_MONO_MUTE 10 /* pre-mixer--microphone/mono */
312 #define GUSMAX_MONITOR_MUTE 11 /* post-mixer level/mute */
313 #define GUSMAX_SPEAKER_MUTE 12 /* speaker mute */
314
315 #define GUSMAX_REC_LVL 13 /* post-MUX gain */
316
317 #define GUSMAX_RECORD_SOURCE 14
318
319 /* Classes */
320 #define GUSMAX_INPUT_CLASS 15
321 #define GUSMAX_RECORD_CLASS 16
322 #define GUSMAX_MONITOR_CLASS 17
323 #define GUSMAX_OUTPUT_CLASS 18
324
325 #ifdef AUDIO_DEBUG
326 #define GUSPLAYDEBUG /*XXX*/
327 #define DPRINTF(x) if (gusdebug) printf x
328 #define DMAPRINTF(x) if (gusdmadebug) printf x
329 int gusdebug = 0;
330 int gusdmadebug = 0;
331 #else
332 #define DPRINTF(x)
333 #define DMAPRINTF(x)
334 #endif
335 int gus_dostereo = 1;
336
337 #define NDMARECS 2048
338 #ifdef GUSPLAYDEBUG
339 int gusstats = 0;
340 struct dma_record {
341 struct timeval tv;
342 u_long gusaddr;
343 caddr_t bsdaddr;
344 u_short count;
345 u_char channel;
346 u_char direction;
347 } dmarecords[NDMARECS];
348
349 int dmarecord_index = 0;
350 #endif
351
352 /*
353 * local routines
354 */
355
356 int gusopen __P((void *, int));
357 void gusclose __P((void *));
358 void gusmax_close __P((void *));
359 int gusintr __P((void *));
360 int gus_set_in_gain __P((caddr_t, u_int, u_char));
361 int gus_get_in_gain __P((caddr_t));
362 int gus_set_out_gain __P((caddr_t, u_int, u_char));
363 int gus_get_out_gain __P((caddr_t));
364 int gus_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
365 int gusmax_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
366 int gus_round_blocksize __P((void *, int));
367 int gus_commit_settings __P((void *));
368 int gus_dma_output __P((void *, void *, int, void (*)(void *), void *));
369 int gus_dma_input __P((void *, void *, int, void (*)(void *), void *));
370 int gus_halt_out_dma __P((void *));
371 int gus_halt_in_dma __P((void *));
372 int gus_speaker_ctl __P((void *, int));
373 int gusmaxopen __P((void *, int));
374 int gusmax_round_blocksize __P((void *, int));
375 int gusmax_commit_settings __P((void *));
376 int gusmax_dma_output __P((void *, void *, int, void (*)(void *), void *));
377 int gusmax_dma_input __P((void *, void *, int, void (*)(void *), void *));
378 int gusmax_halt_out_dma __P((void *));
379 int gusmax_halt_in_dma __P((void *));
380 int gusmax_speaker_ctl __P((void *, int));
381 int gus_getdev __P((void *, struct audio_device *));
382
383 STATIC void gus_deinterleave __P((struct gus_softc *, void *, int));
384
385 STATIC int gus_mic_ctl __P((void *, int));
386 STATIC int gus_linein_ctl __P((void *, int));
387 STATIC int gus_test_iobase __P((bus_space_tag_t, int));
388 STATIC void guspoke __P((bus_space_tag_t, bus_space_handle_t, long, u_char));
389 STATIC void gusdmaout __P((struct gus_softc *, int, u_long, caddr_t, int));
390 STATIC int gus_init_cs4231 __P((struct gus_softc *));
391 STATIC void gus_init_ics2101 __P((struct gus_softc *));
392
393 STATIC void gus_set_chan_addrs __P((struct gus_softc *));
394 STATIC void gusreset __P((struct gus_softc *, int));
395 STATIC void gus_set_voices __P((struct gus_softc *, int));
396 STATIC void gus_set_volume __P((struct gus_softc *, int, int));
397 STATIC void gus_set_samprate __P((struct gus_softc *, int, int));
398 STATIC void gus_set_recrate __P((struct gus_softc *, u_long));
399 STATIC void gus_start_voice __P((struct gus_softc *, int, int));
400 STATIC void gus_stop_voice __P((struct gus_softc *, int, int));
401 STATIC void gus_set_endaddr __P((struct gus_softc *, int, u_long));
402 #ifdef GUSPLAYDEBUG
403 STATIC void gus_set_curaddr __P((struct gus_softc *, int, u_long));
404 STATIC u_long gus_get_curaddr __P((struct gus_softc *, int));
405 #endif
406 STATIC int gus_dmaout_intr __P((struct gus_softc *));
407 STATIC void gus_dmaout_dointr __P((struct gus_softc *));
408 STATIC void gus_dmaout_timeout __P((void *));
409 STATIC int gus_dmain_intr __P((struct gus_softc *));
410 STATIC int gus_voice_intr __P((struct gus_softc *));
411 STATIC void gus_start_playing __P((struct gus_softc *, int));
412 STATIC int gus_continue_playing __P((struct gus_softc *, int));
413 STATIC u_char guspeek __P((bus_space_tag_t, bus_space_handle_t, u_long));
414 STATIC u_long convert_to_16bit __P((u_long));
415 STATIC int gus_mixer_set_port __P((void *, mixer_ctrl_t *));
416 STATIC int gus_mixer_get_port __P((void *, mixer_ctrl_t *));
417 STATIC int gusmax_mixer_set_port __P((void *, mixer_ctrl_t *));
418 STATIC int gusmax_mixer_get_port __P((void *, mixer_ctrl_t *));
419 STATIC int gus_mixer_query_devinfo __P((void *, mixer_devinfo_t *));
420 STATIC int gusmax_mixer_query_devinfo __P((void *, mixer_devinfo_t *));
421 STATIC int gus_query_encoding __P((void *, struct audio_encoding *));
422 STATIC int gus_get_props __P((void *));
423 STATIC int gusmax_get_props __P((void *));
424
425 STATIC void gusics_master_mute __P((struct ics2101_softc *, int));
426 STATIC void gusics_dac_mute __P((struct ics2101_softc *, int));
427 STATIC void gusics_mic_mute __P((struct ics2101_softc *, int));
428 STATIC void gusics_linein_mute __P((struct ics2101_softc *, int));
429 STATIC void gusics_cd_mute __P((struct ics2101_softc *, int));
430
431 void stereo_dmaintr __P((void *));
432
433 /*
434 * ISA bus driver routines
435 */
436
437 int gusprobe __P((struct device *, struct cfdata *, void *));
438 void gusattach __P((struct device *, struct device *, void *));
439
440 struct cfattach gus_ca = {
441 sizeof(struct gus_softc), gusprobe, gusattach,
442 };
443
444 /*
445 * A mapping from IRQ/DRQ values to the values used in the GUS's internal
446 * registers. A zero means that the referenced IRQ/DRQ is invalid
447 */
448
449 static int gus_irq_map[] = {
450 IRQUNK, IRQUNK, 1, 3, IRQUNK, 2, IRQUNK, 4, IRQUNK, 1, IRQUNK, 5, 6,
451 IRQUNK, IRQUNK, 7
452 };
453 static int gus_drq_map[] = {
454 DRQUNK, 1, DRQUNK, 2, DRQUNK, 3, 4, 5
455 };
456
457 /*
458 * A list of valid base addresses for the GUS
459 */
460
461 static int gus_base_addrs[] = {
462 0x210, 0x220, 0x230, 0x240, 0x250, 0x260
463 };
464 static int gus_addrs = sizeof(gus_base_addrs) / sizeof(gus_base_addrs[0]);
465
466 /*
467 * Maximum frequency values of the GUS based on the number of currently active
468 * voices. Since the GUS samples a voice every 1.6 us, the maximum frequency
469 * is dependent on the number of active voices. Yes, it is pretty weird.
470 */
471
472 static int gus_max_frequency[] = {
473 44100, /* 14 voices */
474 41160, /* 15 voices */
475 38587, /* 16 voices */
476 36317, /* 17 voices */
477 34300, /* 18 voices */
478 32494, /* 19 voices */
479 30870, /* 20 voices */
480 29400, /* 21 voices */
481 28063, /* 22 voices */
482 26843, /* 23 voices */
483 25725, /* 24 voices */
484 24696, /* 25 voices */
485 23746, /* 26 voices */
486 22866, /* 27 voices */
487 22050, /* 28 voices */
488 21289, /* 29 voices */
489 20580, /* 30 voices */
490 19916, /* 31 voices */
491 19293 /* 32 voices */
492 };
493 /*
494 * A mapping of linear volume levels to the logarithmic volume values used
495 * by the GF1 chip on the GUS. From GUS SDK vol1.c.
496 */
497
498 static unsigned short gus_log_volumes[512] = {
499 0x0000,
500 0x0700, 0x07ff, 0x0880, 0x08ff, 0x0940, 0x0980, 0x09c0, 0x09ff, 0x0a20,
501 0x0a40, 0x0a60, 0x0a80, 0x0aa0, 0x0ac0, 0x0ae0, 0x0aff, 0x0b10, 0x0b20,
502 0x0b30, 0x0b40, 0x0b50, 0x0b60, 0x0b70, 0x0b80, 0x0b90, 0x0ba0, 0x0bb0,
503 0x0bc0, 0x0bd0, 0x0be0, 0x0bf0, 0x0bff, 0x0c08, 0x0c10, 0x0c18, 0x0c20,
504 0x0c28, 0x0c30, 0x0c38, 0x0c40, 0x0c48, 0x0c50, 0x0c58, 0x0c60, 0x0c68,
505 0x0c70, 0x0c78, 0x0c80, 0x0c88, 0x0c90, 0x0c98, 0x0ca0, 0x0ca8, 0x0cb0,
506 0x0cb8, 0x0cc0, 0x0cc8, 0x0cd0, 0x0cd8, 0x0ce0, 0x0ce8, 0x0cf0, 0x0cf8,
507 0x0cff, 0x0d04, 0x0d08, 0x0d0c, 0x0d10, 0x0d14, 0x0d18, 0x0d1c, 0x0d20,
508 0x0d24, 0x0d28, 0x0d2c, 0x0d30, 0x0d34, 0x0d38, 0x0d3c, 0x0d40, 0x0d44,
509 0x0d48, 0x0d4c, 0x0d50, 0x0d54, 0x0d58, 0x0d5c, 0x0d60, 0x0d64, 0x0d68,
510 0x0d6c, 0x0d70, 0x0d74, 0x0d78, 0x0d7c, 0x0d80, 0x0d84, 0x0d88, 0x0d8c,
511 0x0d90, 0x0d94, 0x0d98, 0x0d9c, 0x0da0, 0x0da4, 0x0da8, 0x0dac, 0x0db0,
512 0x0db4, 0x0db8, 0x0dbc, 0x0dc0, 0x0dc4, 0x0dc8, 0x0dcc, 0x0dd0, 0x0dd4,
513 0x0dd8, 0x0ddc, 0x0de0, 0x0de4, 0x0de8, 0x0dec, 0x0df0, 0x0df4, 0x0df8,
514 0x0dfc, 0x0dff, 0x0e02, 0x0e04, 0x0e06, 0x0e08, 0x0e0a, 0x0e0c, 0x0e0e,
515 0x0e10, 0x0e12, 0x0e14, 0x0e16, 0x0e18, 0x0e1a, 0x0e1c, 0x0e1e, 0x0e20,
516 0x0e22, 0x0e24, 0x0e26, 0x0e28, 0x0e2a, 0x0e2c, 0x0e2e, 0x0e30, 0x0e32,
517 0x0e34, 0x0e36, 0x0e38, 0x0e3a, 0x0e3c, 0x0e3e, 0x0e40, 0x0e42, 0x0e44,
518 0x0e46, 0x0e48, 0x0e4a, 0x0e4c, 0x0e4e, 0x0e50, 0x0e52, 0x0e54, 0x0e56,
519 0x0e58, 0x0e5a, 0x0e5c, 0x0e5e, 0x0e60, 0x0e62, 0x0e64, 0x0e66, 0x0e68,
520 0x0e6a, 0x0e6c, 0x0e6e, 0x0e70, 0x0e72, 0x0e74, 0x0e76, 0x0e78, 0x0e7a,
521 0x0e7c, 0x0e7e, 0x0e80, 0x0e82, 0x0e84, 0x0e86, 0x0e88, 0x0e8a, 0x0e8c,
522 0x0e8e, 0x0e90, 0x0e92, 0x0e94, 0x0e96, 0x0e98, 0x0e9a, 0x0e9c, 0x0e9e,
523 0x0ea0, 0x0ea2, 0x0ea4, 0x0ea6, 0x0ea8, 0x0eaa, 0x0eac, 0x0eae, 0x0eb0,
524 0x0eb2, 0x0eb4, 0x0eb6, 0x0eb8, 0x0eba, 0x0ebc, 0x0ebe, 0x0ec0, 0x0ec2,
525 0x0ec4, 0x0ec6, 0x0ec8, 0x0eca, 0x0ecc, 0x0ece, 0x0ed0, 0x0ed2, 0x0ed4,
526 0x0ed6, 0x0ed8, 0x0eda, 0x0edc, 0x0ede, 0x0ee0, 0x0ee2, 0x0ee4, 0x0ee6,
527 0x0ee8, 0x0eea, 0x0eec, 0x0eee, 0x0ef0, 0x0ef2, 0x0ef4, 0x0ef6, 0x0ef8,
528 0x0efa, 0x0efc, 0x0efe, 0x0eff, 0x0f01, 0x0f02, 0x0f03, 0x0f04, 0x0f05,
529 0x0f06, 0x0f07, 0x0f08, 0x0f09, 0x0f0a, 0x0f0b, 0x0f0c, 0x0f0d, 0x0f0e,
530 0x0f0f, 0x0f10, 0x0f11, 0x0f12, 0x0f13, 0x0f14, 0x0f15, 0x0f16, 0x0f17,
531 0x0f18, 0x0f19, 0x0f1a, 0x0f1b, 0x0f1c, 0x0f1d, 0x0f1e, 0x0f1f, 0x0f20,
532 0x0f21, 0x0f22, 0x0f23, 0x0f24, 0x0f25, 0x0f26, 0x0f27, 0x0f28, 0x0f29,
533 0x0f2a, 0x0f2b, 0x0f2c, 0x0f2d, 0x0f2e, 0x0f2f, 0x0f30, 0x0f31, 0x0f32,
534 0x0f33, 0x0f34, 0x0f35, 0x0f36, 0x0f37, 0x0f38, 0x0f39, 0x0f3a, 0x0f3b,
535 0x0f3c, 0x0f3d, 0x0f3e, 0x0f3f, 0x0f40, 0x0f41, 0x0f42, 0x0f43, 0x0f44,
536 0x0f45, 0x0f46, 0x0f47, 0x0f48, 0x0f49, 0x0f4a, 0x0f4b, 0x0f4c, 0x0f4d,
537 0x0f4e, 0x0f4f, 0x0f50, 0x0f51, 0x0f52, 0x0f53, 0x0f54, 0x0f55, 0x0f56,
538 0x0f57, 0x0f58, 0x0f59, 0x0f5a, 0x0f5b, 0x0f5c, 0x0f5d, 0x0f5e, 0x0f5f,
539 0x0f60, 0x0f61, 0x0f62, 0x0f63, 0x0f64, 0x0f65, 0x0f66, 0x0f67, 0x0f68,
540 0x0f69, 0x0f6a, 0x0f6b, 0x0f6c, 0x0f6d, 0x0f6e, 0x0f6f, 0x0f70, 0x0f71,
541 0x0f72, 0x0f73, 0x0f74, 0x0f75, 0x0f76, 0x0f77, 0x0f78, 0x0f79, 0x0f7a,
542 0x0f7b, 0x0f7c, 0x0f7d, 0x0f7e, 0x0f7f, 0x0f80, 0x0f81, 0x0f82, 0x0f83,
543 0x0f84, 0x0f85, 0x0f86, 0x0f87, 0x0f88, 0x0f89, 0x0f8a, 0x0f8b, 0x0f8c,
544 0x0f8d, 0x0f8e, 0x0f8f, 0x0f90, 0x0f91, 0x0f92, 0x0f93, 0x0f94, 0x0f95,
545 0x0f96, 0x0f97, 0x0f98, 0x0f99, 0x0f9a, 0x0f9b, 0x0f9c, 0x0f9d, 0x0f9e,
546 0x0f9f, 0x0fa0, 0x0fa1, 0x0fa2, 0x0fa3, 0x0fa4, 0x0fa5, 0x0fa6, 0x0fa7,
547 0x0fa8, 0x0fa9, 0x0faa, 0x0fab, 0x0fac, 0x0fad, 0x0fae, 0x0faf, 0x0fb0,
548 0x0fb1, 0x0fb2, 0x0fb3, 0x0fb4, 0x0fb5, 0x0fb6, 0x0fb7, 0x0fb8, 0x0fb9,
549 0x0fba, 0x0fbb, 0x0fbc, 0x0fbd, 0x0fbe, 0x0fbf, 0x0fc0, 0x0fc1, 0x0fc2,
550 0x0fc3, 0x0fc4, 0x0fc5, 0x0fc6, 0x0fc7, 0x0fc8, 0x0fc9, 0x0fca, 0x0fcb,
551 0x0fcc, 0x0fcd, 0x0fce, 0x0fcf, 0x0fd0, 0x0fd1, 0x0fd2, 0x0fd3, 0x0fd4,
552 0x0fd5, 0x0fd6, 0x0fd7, 0x0fd8, 0x0fd9, 0x0fda, 0x0fdb, 0x0fdc, 0x0fdd,
553 0x0fde, 0x0fdf, 0x0fe0, 0x0fe1, 0x0fe2, 0x0fe3, 0x0fe4, 0x0fe5, 0x0fe6,
554 0x0fe7, 0x0fe8, 0x0fe9, 0x0fea, 0x0feb, 0x0fec, 0x0fed, 0x0fee, 0x0fef,
555 0x0ff0, 0x0ff1, 0x0ff2, 0x0ff3, 0x0ff4, 0x0ff5, 0x0ff6, 0x0ff7, 0x0ff8,
556 0x0ff9, 0x0ffa, 0x0ffb, 0x0ffc, 0x0ffd, 0x0ffe, 0x0fff};
557
558 #define SELECT_GUS_REG(iot,ioh1,x) bus_space_write_1(iot,ioh1,GUS_REG_SELECT,x)
559 #define ADDR_HIGH(x) (unsigned int) ((x >> 7L) & 0x1fffL)
560 #define ADDR_LOW(x) (unsigned int) ((x & 0x7fL) << 9L)
561
562 #define GUS_MIN_VOICES 14 /* Minimum possible number of voices */
563 #define GUS_MAX_VOICES 32 /* Maximum possible number of voices */
564 #define GUS_VOICE_LEFT 0 /* Voice used for left (and mono) playback */
565 #define GUS_VOICE_RIGHT 1 /* Voice used for right playback */
566 #define GUS_MEM_OFFSET 32 /* Offset into GUS memory to begin of buffer */
567 #define GUS_BUFFER_MULTIPLE 1024 /* Audio buffers are multiples of this */
568 #define GUS_MEM_FOR_BUFFERS 131072 /* use this many bytes on-GUS */
569 #define GUS_LEFT_RIGHT_OFFSET (sc->sc_nbufs * sc->sc_chanblocksize + GUS_MEM_OFFSET)
570
571 #define GUS_PREC_BYTES (sc->sc_precision >> 3) /* precision to bytes */
572
573 /* splgus() must be splaudio() */
574
575 #define splgus splaudio
576
577 /*
578 * Interface to higher level audio driver
579 */
580
581 struct audio_hw_if gus_hw_if = {
582 gusopen,
583 gusclose,
584 NULL, /* drain */
585
586 gus_query_encoding,
587
588 gus_set_params,
589
590 gus_round_blocksize,
591
592 gus_commit_settings,
593
594 NULL,
595 NULL,
596
597 gus_dma_output,
598 gus_dma_input,
599 gus_halt_out_dma,
600 gus_halt_in_dma,
601 gus_speaker_ctl,
602
603 gus_getdev,
604 NULL,
605 gus_mixer_set_port,
606 gus_mixer_get_port,
607 gus_mixer_query_devinfo,
608 ad1848_isa_malloc,
609 ad1848_isa_free,
610 ad1848_isa_round_buffersize,
611 ad1848_isa_mappage,
612 gus_get_props,
613 };
614
615 static struct audio_hw_if gusmax_hw_if = {
616 gusmaxopen,
617 gusmax_close,
618 NULL, /* drain */
619
620 gus_query_encoding, /* query encoding */
621
622 gusmax_set_params,
623
624 gusmax_round_blocksize,
625
626 gusmax_commit_settings,
627
628 NULL,
629 NULL,
630
631 gusmax_dma_output,
632 gusmax_dma_input,
633 gusmax_halt_out_dma,
634 gusmax_halt_in_dma,
635
636 gusmax_speaker_ctl,
637
638 gus_getdev,
639 NULL,
640 gusmax_mixer_set_port,
641 gusmax_mixer_get_port,
642 gusmax_mixer_query_devinfo,
643 ad1848_isa_malloc,
644 ad1848_isa_free,
645 ad1848_isa_round_buffersize,
646 ad1848_isa_mappage,
647 gusmax_get_props,
648 };
649
650 /*
651 * Some info about the current audio device
652 */
653
654 struct audio_device gus_device = {
655 "UltraSound",
656 "",
657 "gus",
658 };
659
660 #define FLIP_REV 5 /* This rev has flipped mixer chans */
661
662
663 int
664 gusprobe(parent, match, aux)
665 struct device *parent;
666 struct cfdata *match;
667 void *aux;
668 {
669 struct isa_attach_args *ia = aux;
670 int iobase = ia->ia_iobase;
671 int recdrq = ia->ia_drq2;
672
673 /*
674 * Before we do anything else, make sure requested IRQ and DRQ are
675 * valid for this card.
676 */
677
678 /* XXX range check before indexing!! */
679 if (ia->ia_irq == IRQUNK || gus_irq_map[ia->ia_irq] == IRQUNK) {
680 printf("gus: invalid irq %d, card not probed\n", ia->ia_irq);
681 return 0;
682 }
683
684 if (ia->ia_drq == DRQUNK || gus_drq_map[ia->ia_drq] == DRQUNK) {
685 printf("gus: invalid drq %d, card not probed\n", ia->ia_drq);
686 return 0;
687 }
688
689 if (recdrq != DRQUNK) {
690 if (recdrq > 7 || gus_drq_map[recdrq] == DRQUNK) {
691 printf("gus: invalid second DMA channel (%d), card not probed\n", recdrq);
692 return 0;
693 }
694 } else
695 recdrq = ia->ia_drq;
696
697 if (iobase == IOBASEUNK) {
698 int i;
699 for(i = 0; i < gus_addrs; i++)
700 if (gus_test_iobase(ia->ia_iot, gus_base_addrs[i])) {
701 iobase = gus_base_addrs[i];
702 goto done;
703 }
704 return 0;
705 } else if (!gus_test_iobase(ia->ia_iot, iobase))
706 return 0;
707
708 done:
709 if ((ia->ia_drq != -1 && !isa_drq_isfree(ia->ia_ic, ia->ia_drq)) ||
710 (recdrq != -1 && !isa_drq_isfree(ia->ia_ic, recdrq)))
711 return 0;
712
713 ia->ia_iobase = iobase;
714 ia->ia_iosize = GUS_NPORT1;
715 return 1;
716 }
717
718 /*
719 * Test to see if a particular I/O base is valid for the GUS. Return true
720 * if it is.
721 */
722
723 STATIC int
724 gus_test_iobase (iot, iobase)
725 bus_space_tag_t iot;
726 int iobase;
727 {
728 bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
729 u_char s1, s2;
730 int s, rv = 0;
731
732 /* Map i/o space */
733 if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
734 return 0;
735 if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
736 goto bad1;
737
738 /* XXX Maybe we shouldn't fail on mapping this, but just assume
739 * the card is of revision 0? */
740 if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
741 goto bad2;
742
743 if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
744 goto bad3;
745
746 /*
747 * Reset GUS to an initial state before we do anything.
748 */
749
750 s = splgus();
751 delay(500);
752
753 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
754 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
755
756 delay(500);
757
758 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
759 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
760
761 delay(500);
762
763 splx(s);
764
765 /*
766 * See if we can write to the board's memory
767 */
768
769 s1 = guspeek(iot, ioh2, 0L);
770 s2 = guspeek(iot, ioh2, 1L);
771
772 guspoke(iot, ioh2, 0L, 0xaa);
773 guspoke(iot, ioh2, 1L, 0x55);
774
775 if (guspeek(iot, ioh2, 0L) != 0xaa)
776 goto bad;
777
778 guspoke(iot, ioh2, 0L, s1);
779 guspoke(iot, ioh2, 1L, s2);
780
781 rv = 1;
782
783 bad:
784 bus_space_unmap(iot, ioh4, GUS_NPORT4);
785 bad3:
786 bus_space_unmap(iot, ioh3, GUS_NPORT3);
787 bad2:
788 bus_space_unmap(iot, ioh2, GUS_NPORT2);
789 bad1:
790 bus_space_unmap(iot, ioh1, GUS_NPORT1);
791 return rv;
792 }
793
794 /*
795 * Setup the GUS for use; called shortly after probe
796 */
797
798 void
799 gusattach(parent, self, aux)
800 struct device *parent, *self;
801 void *aux;
802 {
803 struct gus_softc *sc = (void *) self;
804 struct isa_attach_args *ia = aux;
805 bus_space_tag_t iot;
806 bus_space_handle_t ioh1, ioh2, ioh3, ioh4;
807 int iobase, i;
808 unsigned char c,d,m;
809
810 sc->sc_iot = iot = ia->ia_iot;
811 sc->sc_ic = ia->ia_ic;
812 iobase = ia->ia_iobase;
813
814 /* Map i/o space */
815 if (bus_space_map(iot, iobase, GUS_NPORT1, 0, &ioh1))
816 panic("%s: can't map io port range 1", self->dv_xname);
817 sc->sc_ioh1 = ioh1;
818 if (bus_space_map(iot, iobase+GUS_IOH2_OFFSET, GUS_NPORT2, 0, &ioh2))
819 panic("%s: can't map io port range 2", self->dv_xname);
820 sc->sc_ioh2 = ioh2;
821
822 /* XXX Maybe we shouldn't fail on mapping this, but just assume
823 * the card is of revision 0? */
824 if (bus_space_map(iot, iobase+GUS_IOH3_OFFSET, GUS_NPORT3, 0, &ioh3))
825 panic("%s: can't map io port range 3", self->dv_xname);
826 sc->sc_ioh3 = ioh3;
827
828 if (bus_space_map(iot, iobase+GUS_IOH4_OFFSET, GUS_NPORT4, 0, &ioh4))
829 panic("%s: can't map io port range 4", self->dv_xname);
830 sc->sc_ioh4 = ioh4;
831
832 sc->sc_iobase = iobase;
833 sc->sc_irq = ia->ia_irq;
834 sc->sc_playdrq = ia->ia_drq;
835 sc->sc_recdrq = ia->ia_drq2;
836
837 /*
838 * Figure out our board rev, and see if we need to initialize the
839 * mixer
840 */
841
842 sc->sc_ic = ia->ia_ic;
843
844 delay(500);
845
846 c = bus_space_read_1(iot, ioh3, GUS_BOARD_REV);
847 if (c != 0xff)
848 sc->sc_revision = c;
849 else
850 sc->sc_revision = 0;
851
852
853 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
854 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
855
856 gusreset(sc, GUS_MAX_VOICES); /* initialize all voices */
857 gusreset(sc, GUS_MIN_VOICES); /* then set to just the ones we use */
858
859 /*
860 * Setup the IRQ and DRQ lines in software, using values from
861 * config file
862 */
863
864 m = GUSMASK_LINE_IN|GUSMASK_LINE_OUT; /* disable all */
865
866 c = ((unsigned char) gus_irq_map[ia->ia_irq]) | GUSMASK_BOTH_RQ;
867
868 if (sc->sc_recdrq == sc->sc_playdrq)
869 d = (unsigned char) (gus_drq_map[sc->sc_playdrq] |
870 GUSMASK_BOTH_RQ);
871 else
872 d = (unsigned char) (gus_drq_map[sc->sc_playdrq] |
873 gus_drq_map[sc->sc_recdrq] << 3);
874
875 /*
876 * Program the IRQ and DMA channels on the GUS. Note that we hardwire
877 * the GUS to only use one IRQ channel, but we give the user the
878 * option of using two DMA channels (the other one given by the drq2
879 * option in the config file). Two DMA channels are needed for full-
880 * duplex operation.
881 *
882 * The order of these operations is very magical.
883 */
884
885 disable_intr(); /* XXX needed? */
886
887 bus_space_write_1(iot, ioh1, GUS_REG_CONTROL, GUS_REG_IRQCTL);
888 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
889 bus_space_write_1(iot, ioh1, GUS_IRQCTL_CONTROL, 0x00);
890 bus_space_write_1(iot, ioh1, 0x0f, 0x00);
891
892 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
893 bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d | 0x80); /* magic reset? */
894
895 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
896 bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
897
898 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m);
899 bus_space_write_1(iot, ioh1, GUS_DMA_CONTROL, d);
900
901 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, m | GUSMASK_CONTROL_SEL);
902 bus_space_write_1(iot, ioh1, GUS_IRQ_CONTROL, c);
903
904 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
905
906 /* enable line in, line out. leave mic disabled. */
907 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL,
908 (m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN));
909 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, 0x00);
910
911 enable_intr();
912
913 sc->sc_mixcontrol =
914 (m | GUSMASK_LATCHES) & ~(GUSMASK_LINE_OUT|GUSMASK_LINE_IN);
915
916 if (sc->sc_playdrq != -1) {
917 sc->sc_play_maxsize = isa_dmamaxsize(sc->sc_ic,
918 sc->sc_playdrq);
919 if (isa_dmamap_create(sc->sc_ic, sc->sc_playdrq,
920 sc->sc_play_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
921 printf("%s: can't create map for drq %d\n",
922 sc->sc_dev.dv_xname, sc->sc_playdrq);
923 return;
924 }
925 }
926 if (sc->sc_recdrq != -1 && sc->sc_recdrq != sc->sc_playdrq) {
927 sc->sc_req_maxsize = isa_dmamaxsize(sc->sc_ic,
928 sc->sc_recdrq);
929 if (isa_dmamap_create(sc->sc_ic, sc->sc_recdrq,
930 sc->sc_req_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
931 printf("%s: can't create map for drq %d\n",
932 sc->sc_dev.dv_xname, sc->sc_recdrq);
933 return;
934 }
935 }
936
937 /* XXX WILL THIS ALWAYS WORK THE WAY THEY'RE OVERLAYED?! */
938 sc->sc_codec.sc_ic = sc->sc_ic;
939
940 if (sc->sc_revision >= 5 && sc->sc_revision <= 9) {
941 sc->sc_flags |= GUS_MIXER_INSTALLED;
942 gus_init_ics2101(sc);
943 }
944 if (sc->sc_revision >= 10)
945 gus_init_cs4231(sc);
946
947 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
948 /*
949 * Check to see how much memory we have on this card; see if any
950 * "mirroring" occurs. We're assuming at least 256K already exists
951 * on the card; otherwise the initial probe would have failed
952 */
953
954 guspoke(iot, ioh2, 0L, 0x00);
955 for(i = 1; i < 1024; i++) {
956 u_long loc;
957
958 /*
959 * See if we've run into mirroring yet
960 */
961
962 if (guspeek(iot, ioh2, 0L) != 0)
963 break;
964
965 loc = i << 10;
966
967 guspoke(iot, ioh2, loc, 0xaa);
968 if (guspeek(iot, ioh2, loc) != 0xaa)
969 break;
970 }
971
972 sc->sc_dsize = i;
973
974 /* The "official" (3.x) version number cannot easily be obtained.
975 * The revision register does not correspond to the minor number
976 * of the board version. Simply use the revision register as
977 * identification.
978 */
979 sprintf(gus_device.version, "%d", sc->sc_revision);
980
981 printf("\n%s: Gravis UltraSound", sc->sc_dev.dv_xname);
982 if (sc->sc_revision >= 10)
983 printf(" MAX");
984 else {
985 if (HAS_MIXER(sc))
986 printf(", mixer");
987 if (HAS_CODEC(sc))
988 printf(" with CODEC module");
989 }
990 printf(", %dKB memory\n", sc->sc_dsize);
991
992 /* A GUS MAX should always have a CODEC installed */
993 if ((sc->sc_revision >= 10) & !(HAS_CODEC(sc)))
994 printf("%s: WARNING: did not attach CODEC on MAX\n",
995 sc->sc_dev.dv_xname);
996
997 /*
998 * Setup a default interrupt handler
999 */
1000
1001 /* XXX we shouldn't have to use splgus == splclock, nor should
1002 * we use IPL_CLOCK.
1003 */
1004 sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1005 IPL_AUDIO, gusintr, sc /* sc->sc_gusdsp */);
1006
1007 /*
1008 * Set some default values
1009 * XXX others start with 8kHz mono mulaw
1010 */
1011
1012 sc->sc_irate = sc->sc_orate = 44100;
1013 sc->sc_encoding = AUDIO_ENCODING_SLINEAR_LE;
1014 sc->sc_precision = 16;
1015 sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
1016 sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
1017 sc->sc_channels = 1;
1018 sc->sc_ogain = 340;
1019 gus_commit_settings(sc);
1020
1021 /*
1022 * We always put the left channel full left & right channel
1023 * full right.
1024 * For mono playback, we set up both voices playing the same buffer.
1025 */
1026 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) GUS_VOICE_LEFT);
1027 SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
1028 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_LEFT);
1029
1030 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) GUS_VOICE_RIGHT);
1031 SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
1032 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUS_PAN_FULL_RIGHT);
1033
1034 /*
1035 * Attach to the generic audio layer
1036 */
1037
1038 audio_attach_mi(&gus_hw_if, HAS_CODEC(sc) ? (void *)&sc->sc_codec : (void *)sc, &sc->sc_dev);
1039 }
1040
1041 int
1042 gusopen(addr, flags)
1043 void *addr;
1044 int flags;
1045 {
1046 struct gus_softc *sc = addr;
1047
1048 DPRINTF(("gusopen() called\n"));
1049
1050 if (sc->sc_flags & GUS_OPEN)
1051 return EBUSY;
1052
1053 /*
1054 * Some initialization
1055 */
1056
1057 sc->sc_flags |= GUS_OPEN;
1058 sc->sc_dmabuf = 0;
1059 sc->sc_playbuf = -1;
1060 sc->sc_bufcnt = 0;
1061 sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
1062 sc->sc_voc[GUS_VOICE_LEFT].current_addr = GUS_MEM_OFFSET;
1063
1064 if (HAS_CODEC(sc)) {
1065 ad1848_open(&sc->sc_codec.sc_ad1848, flags);
1066 sc->sc_codec.sc_ad1848.mute[AD1848_AUX1_CHANNEL] = 0;
1067
1068 /* turn on DAC output */
1069 ad1848_mute_channel(&sc->sc_codec.sc_ad1848,
1070 AD1848_AUX1_CHANNEL, 0);
1071 if (flags & FREAD) {
1072 sc->sc_codec.sc_ad1848.mute[AD1848_MONO_CHANNEL] = 0;
1073 ad1848_mute_channel(&sc->sc_codec.sc_ad1848,
1074 AD1848_MONO_CHANNEL, 0);
1075 }
1076 } else if (flags & FREAD) {
1077 /* enable/unmute the microphone */
1078 if (HAS_MIXER(sc)) {
1079 gusics_mic_mute(&sc->sc_mixer, 0);
1080 } else
1081 gus_mic_ctl(sc, SPKR_ON);
1082 }
1083 if (sc->sc_nbufs == 0)
1084 gus_round_blocksize(sc, GUS_BUFFER_MULTIPLE); /* default blksiz */
1085 return 0;
1086 }
1087
1088 int
1089 gusmaxopen(addr, flags)
1090 void *addr;
1091 int flags;
1092 {
1093 struct ad1848_isa_softc *ac = addr;
1094 return gusopen(ac->sc_ad1848.parent, flags);
1095 }
1096
1097 STATIC void
1098 gus_deinterleave(sc, buf, size)
1099 struct gus_softc *sc;
1100 void *buf;
1101 int size;
1102 {
1103 /* deinterleave the stereo data. We can use sc->sc_deintr_buf
1104 for scratch space. */
1105 int i;
1106
1107 if (size > sc->sc_blocksize) {
1108 printf("gus: deinterleave %d > %d\n", size, sc->sc_blocksize);
1109 return;
1110 } else if (size < sc->sc_blocksize) {
1111 DPRINTF(("gus: deinterleave %d < %d\n", size, sc->sc_blocksize));
1112 }
1113
1114 /*
1115 * size is in bytes.
1116 */
1117 if (sc->sc_precision == 16) {
1118 u_short *dei = sc->sc_deintr_buf;
1119 u_short *sbuf = buf;
1120 size >>= 1; /* bytecnt to shortcnt */
1121 /* copy 2nd of each pair of samples to the staging area, while
1122 compacting the 1st of each pair into the original area. */
1123 for (i = 0; i < size/2-1; i++) {
1124 dei[i] = sbuf[i*2+1];
1125 sbuf[i+1] = sbuf[i*2+2];
1126 }
1127 /*
1128 * this has copied one less sample than half of the
1129 * buffer. The first sample of the 1st stream was
1130 * already in place and didn't need copying.
1131 * Therefore, we've moved all of the 1st stream's
1132 * samples into place. We have one sample from 2nd
1133 * stream in the last slot of original area, not
1134 * copied to the staging area (But we don't need to!).
1135 * Copy the remainder of the original stream into place.
1136 */
1137 bcopy(dei, &sbuf[size/2], i * sizeof(short));
1138 } else {
1139 u_char *dei = sc->sc_deintr_buf;
1140 u_char *sbuf = buf;
1141 for (i = 0; i < size/2-1; i++) {
1142 dei[i] = sbuf[i*2+1];
1143 sbuf[i+1] = sbuf[i*2+2];
1144 }
1145 bcopy(dei, &sbuf[size/2], i);
1146 }
1147 }
1148
1149 /*
1150 * Actually output a buffer to the DSP chip
1151 */
1152
1153 int
1154 gusmax_dma_output(addr, buf, size, intr, arg)
1155 void * addr;
1156 void *buf;
1157 int size;
1158 void (*intr) __P((void *));
1159 void *arg;
1160 {
1161 struct ad1848_isa_softc *ac = addr;
1162 return gus_dma_output(ac->sc_ad1848.parent, buf, size, intr, arg);
1163 }
1164
1165 /*
1166 * called at splgus() from interrupt handler.
1167 */
1168 void
1169 stereo_dmaintr(arg)
1170 void *arg;
1171 {
1172 struct gus_softc *sc = arg;
1173 struct stereo_dma_intr *sa = &sc->sc_stereo;
1174
1175 DMAPRINTF(("stereo_dmaintr"));
1176
1177 /*
1178 * Put other half in its place, then call the real interrupt routine :)
1179 */
1180
1181 sc->sc_dmaoutintr = sa->intr;
1182 sc->sc_outarg = sa->arg;
1183
1184 #ifdef GUSPLAYDEBUG
1185 if (gusstats) {
1186 microtime(&dmarecords[dmarecord_index].tv);
1187 dmarecords[dmarecord_index].gusaddr = sa->dmabuf;
1188 dmarecords[dmarecord_index].bsdaddr = sa->buffer;
1189 dmarecords[dmarecord_index].count = sa->size;
1190 dmarecords[dmarecord_index].channel = 1;
1191 dmarecords[dmarecord_index].direction = 1;
1192 dmarecord_index = ++dmarecord_index % NDMARECS;
1193 }
1194 #endif
1195
1196 gusdmaout(sc, sa->flags, sa->dmabuf, (caddr_t) sa->buffer, sa->size);
1197
1198 sa->flags = 0;
1199 sa->dmabuf = 0;
1200 sa->buffer = 0;
1201 sa->size = 0;
1202 sa->intr = 0;
1203 sa->arg = 0;
1204 }
1205
1206 /*
1207 * Start up DMA output to the card.
1208 * Called at splgus/splaudio already, either from intr handler or from
1209 * generic audio code.
1210 */
1211 int
1212 gus_dma_output(addr, buf, size, intr, arg)
1213 void * addr;
1214 void *buf;
1215 int size;
1216 void (*intr) __P((void *));
1217 void *arg;
1218 {
1219 struct gus_softc *sc = addr;
1220 u_char *buffer = buf;
1221 u_long boarddma;
1222 int flags;
1223
1224 DMAPRINTF(("gus_dma_output %d @ %p\n", size, buf));
1225
1226 if (size != sc->sc_blocksize) {
1227 DPRINTF(("gus_dma_output reqsize %d not sc_blocksize %d\n",
1228 size, sc->sc_blocksize));
1229 return EINVAL;
1230 }
1231
1232 flags = GUSMASK_DMA_WRITE;
1233 if (sc->sc_precision == 16)
1234 flags |= GUSMASK_DMA_DATA_SIZE;
1235 if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
1236 sc->sc_encoding == AUDIO_ENCODING_ALAW ||
1237 sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE ||
1238 sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE)
1239 flags |= GUSMASK_DMA_INVBIT;
1240
1241 if (sc->sc_channels == 2) {
1242 if (sc->sc_precision == 16) {
1243 if (size & 3) {
1244 DPRINTF(("gus_dma_output: unpaired 16bit samples"));
1245 size &= 3;
1246 }
1247 } else if (size & 1) {
1248 DPRINTF(("gus_dma_output: unpaired samples"));
1249 size &= 1;
1250 }
1251 if (size == 0)
1252 return 0;
1253
1254 gus_deinterleave(sc, (void *)buffer, size);
1255
1256 size >>= 1;
1257
1258 boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
1259
1260 sc->sc_stereo.intr = intr;
1261 sc->sc_stereo.arg = arg;
1262 sc->sc_stereo.size = size;
1263 sc->sc_stereo.dmabuf = boarddma + GUS_LEFT_RIGHT_OFFSET;
1264 sc->sc_stereo.buffer = buffer + size;
1265 sc->sc_stereo.flags = flags;
1266 if (gus_dostereo) {
1267 intr = stereo_dmaintr;
1268 arg = sc;
1269 }
1270 } else
1271 boarddma = size * sc->sc_dmabuf + GUS_MEM_OFFSET;
1272
1273
1274 sc->sc_flags |= GUS_LOCKED;
1275 sc->sc_dmaoutintr = intr;
1276 sc->sc_outarg = arg;
1277
1278 #ifdef GUSPLAYDEBUG
1279 if (gusstats) {
1280 microtime(&dmarecords[dmarecord_index].tv);
1281 dmarecords[dmarecord_index].gusaddr = boarddma;
1282 dmarecords[dmarecord_index].bsdaddr = buffer;
1283 dmarecords[dmarecord_index].count = size;
1284 dmarecords[dmarecord_index].channel = 0;
1285 dmarecords[dmarecord_index].direction = 1;
1286 dmarecord_index = ++dmarecord_index % NDMARECS;
1287 }
1288 #endif
1289
1290 gusdmaout(sc, flags, boarddma, (caddr_t) buffer, size);
1291
1292 return 0;
1293 }
1294
1295 void
1296 gusmax_close(addr)
1297 void *addr;
1298 {
1299 struct ad1848_isa_softc *ac = addr;
1300 struct gus_softc *sc = ac->sc_ad1848.parent;
1301 #if 0
1302 ac->mute[AD1848_AUX1_CHANNEL] = MUTE_ALL;
1303 ad1848_mute_channel(ac, MUTE_ALL); /* turn off DAC output */
1304 #endif
1305 ad1848_close(&ac->sc_ad1848);
1306 gusclose(sc);
1307 }
1308
1309 /*
1310 * Close out device stuff. Called at splgus() from generic audio layer.
1311 */
1312 void
1313 gusclose(addr)
1314 void *addr;
1315 {
1316 struct gus_softc *sc = addr;
1317
1318 DPRINTF(("gus_close: sc=%p\n", sc));
1319
1320
1321 /* if (sc->sc_flags & GUS_DMAOUT_ACTIVE) */ {
1322 gus_halt_out_dma(sc);
1323 }
1324 /* if (sc->sc_flags & GUS_DMAIN_ACTIVE) */ {
1325 gus_halt_in_dma(sc);
1326 }
1327 sc->sc_flags &= ~(GUS_OPEN|GUS_LOCKED|GUS_DMAOUT_ACTIVE|GUS_DMAIN_ACTIVE);
1328
1329 if (sc->sc_deintr_buf) {
1330 FREE(sc->sc_deintr_buf, M_DEVBUF);
1331 sc->sc_deintr_buf = NULL;
1332 }
1333 /* turn off speaker, etc. */
1334
1335 /* make sure the voices shut up: */
1336 gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
1337 gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
1338 }
1339
1340 /*
1341 * Service interrupts. Farm them off to helper routines if we are using the
1342 * GUS for simple playback/record
1343 */
1344
1345 #ifdef DIAGNOSTIC
1346 int gusintrcnt;
1347 int gusdmaintrcnt;
1348 int gusvocintrcnt;
1349 #endif
1350
1351 int
1352 gusintr(arg)
1353 void *arg;
1354 {
1355 struct gus_softc *sc = arg;
1356 bus_space_tag_t iot = sc->sc_iot;
1357 bus_space_handle_t ioh1 = sc->sc_ioh1;
1358 bus_space_handle_t ioh2 = sc->sc_ioh2;
1359 unsigned char intr;
1360
1361 int retval = 0;
1362
1363 DPRINTF(("gusintr\n"));
1364 #ifdef DIAGNOSTIC
1365 gusintrcnt++;
1366 #endif
1367 if (HAS_CODEC(sc))
1368 retval = ad1848_isa_intr(&sc->sc_codec);
1369 if ((intr = bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS)) & GUSMASK_IRQ_DMATC) {
1370 DMAPRINTF(("gusintr dma flags=%x\n", sc->sc_flags));
1371 #ifdef DIAGNOSTIC
1372 gusdmaintrcnt++;
1373 #endif
1374 retval += gus_dmaout_intr(sc);
1375 if (sc->sc_flags & GUS_DMAIN_ACTIVE) {
1376 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
1377 intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
1378 if (intr & GUSMASK_SAMPLE_DMATC) {
1379 retval += gus_dmain_intr(sc);
1380 }
1381 }
1382 }
1383 if (intr & (GUSMASK_IRQ_VOICE | GUSMASK_IRQ_VOLUME)) {
1384 DMAPRINTF(("gusintr voice flags=%x\n", sc->sc_flags));
1385 #ifdef DIAGNOSTIC
1386 gusvocintrcnt++;
1387 #endif
1388 retval += gus_voice_intr(sc);
1389 }
1390 if (retval)
1391 return 1;
1392 return retval;
1393 }
1394
1395 int gus_bufcnt[GUS_MEM_FOR_BUFFERS / GUS_BUFFER_MULTIPLE];
1396 int gus_restart; /* how many restarts? */
1397 int gus_stops; /* how many times did voice stop? */
1398 int gus_falsestops; /* stopped but not done? */
1399 int gus_continues;
1400
1401 struct playcont {
1402 struct timeval tv;
1403 u_int playbuf;
1404 u_int dmabuf;
1405 u_char bufcnt;
1406 u_char vaction;
1407 u_char voccntl;
1408 u_char volcntl;
1409 u_long curaddr;
1410 u_long endaddr;
1411 } playstats[NDMARECS];
1412
1413 int playcntr;
1414
1415 STATIC void
1416 gus_dmaout_timeout(arg)
1417 void *arg;
1418 {
1419 struct gus_softc *sc = arg;
1420 bus_space_tag_t iot = sc->sc_iot;
1421 bus_space_handle_t ioh2 = sc->sc_ioh2;
1422 int s;
1423
1424 printf("%s: dmaout timeout\n", sc->sc_dev.dv_xname);
1425 /*
1426 * Stop any DMA.
1427 */
1428
1429 s = splgus();
1430 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
1431 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
1432
1433 #if 0
1434 /* XXX we will dmadone below? */
1435 isa_dmaabort(sc->sc_dev.dv_parent, sc->sc_playdrq);
1436 #endif
1437
1438 gus_dmaout_dointr(sc);
1439 splx(s);
1440 }
1441
1442
1443 /*
1444 * Service DMA interrupts. This routine will only get called if we're doing
1445 * a DMA transfer for playback/record requests from the audio layer.
1446 */
1447
1448 STATIC int
1449 gus_dmaout_intr(sc)
1450 struct gus_softc *sc;
1451 {
1452 bus_space_tag_t iot = sc->sc_iot;
1453 bus_space_handle_t ioh2 = sc->sc_ioh2;
1454
1455 /*
1456 * If we got a DMA transfer complete from the GUS DRAM, then deal
1457 * with it.
1458 */
1459
1460 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
1461 if (bus_space_read_1(iot, ioh2, GUS_DATA_HIGH) & GUSMASK_DMA_IRQPEND) {
1462 untimeout(gus_dmaout_timeout, sc);
1463 gus_dmaout_dointr(sc);
1464 return 1;
1465 }
1466 return 0;
1467 }
1468
1469 STATIC void
1470 gus_dmaout_dointr(sc)
1471 struct gus_softc *sc;
1472 {
1473 bus_space_tag_t iot = sc->sc_iot;
1474 bus_space_handle_t ioh2 = sc->sc_ioh2;
1475
1476 /* sc->sc_dmaoutcnt - 1 because DMA controller counts from zero?. */
1477 isa_dmadone(sc->sc_ic, sc->sc_playdrq);
1478 sc->sc_flags &= ~GUS_DMAOUT_ACTIVE; /* pending DMA is done */
1479 DMAPRINTF(("gus_dmaout_dointr %d @ %p\n", sc->sc_dmaoutcnt,
1480 sc->sc_dmaoutaddr));
1481
1482 /*
1483 * to prevent clicking, we need to copy last sample
1484 * from last buffer to scratch area just before beginning of
1485 * buffer. However, if we're doing formats that are converted by
1486 * the card during the DMA process, we need to pick up the converted
1487 * byte rather than the one we have in memory.
1488 */
1489 if (sc->sc_dmabuf == sc->sc_nbufs - 1) {
1490 int i;
1491 switch (sc->sc_encoding) {
1492 case AUDIO_ENCODING_SLINEAR_LE:
1493 case AUDIO_ENCODING_SLINEAR_BE:
1494 if (sc->sc_precision == 8)
1495 goto byte;
1496 /* we have the native format */
1497 for (i = 1; i <= 2; i++)
1498 guspoke(iot, ioh2, sc->sc_gusaddr -
1499 (sc->sc_nbufs - 1) * sc->sc_chanblocksize - i,
1500 sc->sc_dmaoutaddr[sc->sc_dmaoutcnt-i]);
1501 break;
1502 case AUDIO_ENCODING_ULINEAR_LE:
1503 case AUDIO_ENCODING_ULINEAR_BE:
1504 guspoke(iot, ioh2, sc->sc_gusaddr -
1505 (sc->sc_nbufs - 1) * sc->sc_chanblocksize - 2,
1506 guspeek(iot, ioh2,
1507 sc->sc_gusaddr + sc->sc_chanblocksize - 2));
1508 case AUDIO_ENCODING_ALAW:
1509 case AUDIO_ENCODING_ULAW:
1510 byte:
1511 /* we need to fetch the translated byte, then stuff it. */
1512 guspoke(iot, ioh2, sc->sc_gusaddr -
1513 (sc->sc_nbufs - 1) * sc->sc_chanblocksize - 1,
1514 guspeek(iot, ioh2,
1515 sc->sc_gusaddr + sc->sc_chanblocksize - 1));
1516 break;
1517 }
1518 }
1519 /*
1520 * If this is the first half of stereo, "ignore" this one
1521 * and copy out the second half.
1522 */
1523 if (sc->sc_dmaoutintr == stereo_dmaintr) {
1524 (*sc->sc_dmaoutintr)(sc->sc_outarg);
1525 return;
1526 }
1527 /*
1528 * If the voice is stopped, then start it. Reset the loop
1529 * and roll bits. Call the audio layer routine, since if
1530 * we're starting a stopped voice, that means that the next
1531 * buffer can be filled
1532 */
1533
1534 sc->sc_flags &= ~GUS_LOCKED;
1535 if (sc->sc_voc[GUS_VOICE_LEFT].voccntl &
1536 GUSMASK_VOICE_STOPPED) {
1537 if (sc->sc_flags & GUS_PLAYING) {
1538 printf("%s: playing yet stopped?\n", sc->sc_dev.dv_xname);
1539 }
1540 sc->sc_bufcnt++; /* another yet to be played */
1541 gus_start_playing(sc, sc->sc_dmabuf);
1542 gus_restart++;
1543 } else {
1544 /*
1545 * set the sound action based on which buffer we
1546 * just transferred. If we just transferred buffer 0
1547 * we want the sound to loop when it gets to the nth
1548 * buffer; if we just transferred
1549 * any other buffer, we want the sound to roll over
1550 * at least one more time. The voice interrupt
1551 * handlers will take care of accounting &
1552 * setting control bits if it's not caught up to us
1553 * yet.
1554 */
1555 if (++sc->sc_bufcnt == 2) {
1556 /*
1557 * XXX
1558 * If we're too slow in reaction here,
1559 * the voice could be just approaching the
1560 * end of its run. It should be set to stop,
1561 * so these adjustments might not DTRT.
1562 */
1563 if (sc->sc_dmabuf == 0 &&
1564 sc->sc_playbuf == sc->sc_nbufs - 1) {
1565 /* player is just at the last buf, we're at the
1566 first. Turn on looping, turn off rolling. */
1567 sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
1568 sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~GUSMASK_VOICE_ROLL;
1569 playstats[playcntr].vaction = 3;
1570 } else {
1571 /* player is at previous buf:
1572 turn on rolling, turn off looping */
1573 sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
1574 sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
1575 playstats[playcntr].vaction = 4;
1576 }
1577 #ifdef GUSPLAYDEBUG
1578 if (gusstats) {
1579 microtime(&playstats[playcntr].tv);
1580 playstats[playcntr].endaddr = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
1581 playstats[playcntr].voccntl = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
1582 playstats[playcntr].volcntl = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
1583 playstats[playcntr].playbuf = sc->sc_playbuf;
1584 playstats[playcntr].dmabuf = sc->sc_dmabuf;
1585 playstats[playcntr].bufcnt = sc->sc_bufcnt;
1586 playstats[playcntr].curaddr = gus_get_curaddr(sc, GUS_VOICE_LEFT);
1587 playcntr = ++playcntr % NDMARECS;
1588 }
1589 #endif
1590 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
1591 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
1592 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].voccntl);
1593 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
1594 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].volcntl);
1595 }
1596 }
1597 gus_bufcnt[sc->sc_bufcnt-1]++;
1598 /*
1599 * flip to the next DMA buffer
1600 */
1601
1602 sc->sc_dmabuf = ++sc->sc_dmabuf % sc->sc_nbufs;
1603 /*
1604 * See comments below about DMA admission control strategy.
1605 * We can call the upper level here if we have an
1606 * idle buffer (not currently playing) to DMA into.
1607 */
1608 if (sc->sc_dmaoutintr && sc->sc_bufcnt < sc->sc_nbufs) {
1609 /* clean out to prevent double calls */
1610 void (*pfunc) __P((void *)) = sc->sc_dmaoutintr;
1611 void *arg = sc->sc_outarg;
1612
1613 sc->sc_outarg = 0;
1614 sc->sc_dmaoutintr = 0;
1615 (*pfunc)(arg);
1616 }
1617 }
1618
1619 /*
1620 * Service voice interrupts
1621 */
1622
1623 STATIC int
1624 gus_voice_intr(sc)
1625 struct gus_softc *sc;
1626 {
1627 bus_space_tag_t iot = sc->sc_iot;
1628 bus_space_handle_t ioh2 = sc->sc_ioh2;
1629 int ignore = 0, voice, rval = 0;
1630 unsigned char intr, status;
1631
1632 /*
1633 * The point of this may not be obvious at first. A voice can
1634 * interrupt more than once; according to the GUS SDK we are supposed
1635 * to ignore multiple interrupts for the same voice.
1636 */
1637
1638 while(1) {
1639 SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
1640 intr = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
1641
1642 if ((intr & (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
1643 == (GUSMASK_WIRQ_VOLUME | GUSMASK_WIRQ_VOICE))
1644 /*
1645 * No more interrupts, time to return
1646 */
1647 return rval;
1648
1649 if ((intr & GUSMASK_WIRQ_VOICE) == 0) {
1650
1651 /*
1652 * We've got a voice interrupt. Ignore previous
1653 * interrupts by the same voice.
1654 */
1655
1656 rval = 1;
1657 voice = intr & GUSMASK_WIRQ_VOICEMASK;
1658
1659 if ((1 << voice) & ignore)
1660 break;
1661
1662 ignore |= 1 << voice;
1663
1664 /*
1665 * If the voice is stopped, then force it to stop
1666 * (this stops it from continuously generating IRQs)
1667 */
1668
1669 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL+0x80);
1670 status = bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
1671 if (status & GUSMASK_VOICE_STOPPED) {
1672 if (voice != GUS_VOICE_LEFT) {
1673 DMAPRINTF(("%s: spurious voice %d stop?\n",
1674 sc->sc_dev.dv_xname, voice));
1675 gus_stop_voice(sc, voice, 0);
1676 continue;
1677 }
1678 gus_stop_voice(sc, voice, 1);
1679 /* also kill right voice */
1680 gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
1681 sc->sc_bufcnt--; /* it finished a buffer */
1682 if (sc->sc_bufcnt > 0) {
1683 /*
1684 * probably a race to get here: the voice
1685 * stopped while the DMA code was just trying to
1686 * get the next buffer in place.
1687 * Start the voice again.
1688 */
1689 printf("%s: stopped voice not drained? (%x)\n",
1690 sc->sc_dev.dv_xname, sc->sc_bufcnt);
1691 gus_falsestops++;
1692
1693 sc->sc_playbuf = ++sc->sc_playbuf % sc->sc_nbufs;
1694 gus_start_playing(sc, sc->sc_playbuf);
1695 } else if (sc->sc_bufcnt < 0) {
1696 panic("%s: negative bufcnt in stopped voice",
1697 sc->sc_dev.dv_xname);
1698 } else {
1699 sc->sc_playbuf = -1; /* none are active */
1700 gus_stops++;
1701 }
1702 /* fall through to callback and admit another
1703 buffer.... */
1704 } else if (sc->sc_bufcnt != 0) {
1705 /*
1706 * This should always be taken if the voice
1707 * is not stopped.
1708 */
1709 gus_continues++;
1710 if (gus_continue_playing(sc, voice)) {
1711 /*
1712 * we shouldn't have continued--active DMA
1713 * is in the way in the ring, for
1714 * some as-yet undebugged reason.
1715 */
1716 gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
1717 /* also kill right voice */
1718 gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
1719 sc->sc_playbuf = -1;
1720 gus_stops++;
1721 }
1722 }
1723 /*
1724 * call the upper level to send on down another
1725 * block. We do admission rate control as follows:
1726 *
1727 * When starting up output (in the first N
1728 * blocks), call the upper layer after the DMA is
1729 * complete (see above in gus_dmaout_intr()).
1730 *
1731 * When output is already in progress and we have
1732 * no more GUS buffers to use for DMA, the DMA
1733 * output routines do not call the upper layer.
1734 * Instead, we call the DMA completion routine
1735 * here, after the voice interrupts indicating
1736 * that it's finished with a buffer.
1737 *
1738 * However, don't call anything here if the DMA
1739 * output flag is set, (which shouldn't happen)
1740 * because we'll squish somebody else's DMA if
1741 * that's the case. When DMA is done, it will
1742 * call back if there is a spare buffer.
1743 */
1744 if (sc->sc_dmaoutintr && !(sc->sc_flags & GUS_LOCKED)) {
1745 if (sc->sc_dmaoutintr == stereo_dmaintr)
1746 printf("gusdmaout botch?\n");
1747 else {
1748 /* clean out to avoid double calls */
1749 void (*pfunc) __P((void *)) = sc->sc_dmaoutintr;
1750 void *arg = sc->sc_outarg;
1751
1752 sc->sc_outarg = 0;
1753 sc->sc_dmaoutintr = 0;
1754 (*pfunc)(arg);
1755 }
1756 }
1757 }
1758
1759 /*
1760 * Ignore other interrupts for now
1761 */
1762 }
1763 return 0;
1764 }
1765
1766 STATIC void
1767 gus_start_playing(sc, bufno)
1768 struct gus_softc *sc;
1769 int bufno;
1770 {
1771 bus_space_tag_t iot = sc->sc_iot;
1772 bus_space_handle_t ioh2 = sc->sc_ioh2;
1773 /*
1774 * Start the voices playing, with buffer BUFNO.
1775 */
1776
1777 /*
1778 * Loop or roll if we have buffers ready.
1779 */
1780
1781 if (sc->sc_bufcnt == 1) {
1782 sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~(GUSMASK_LOOP_ENABLE);
1783 sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
1784 } else {
1785 if (bufno == sc->sc_nbufs - 1) {
1786 sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_LOOP_ENABLE;
1787 sc->sc_voc[GUS_VOICE_LEFT].volcntl &= ~(GUSMASK_VOICE_ROLL);
1788 } else {
1789 sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_LOOP_ENABLE;
1790 sc->sc_voc[GUS_VOICE_LEFT].volcntl |= GUSMASK_VOICE_ROLL;
1791 }
1792 }
1793
1794 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_LEFT);
1795
1796 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
1797 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].voccntl);
1798
1799 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
1800 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_LEFT].volcntl);
1801
1802 sc->sc_voc[GUS_VOICE_LEFT].current_addr =
1803 GUS_MEM_OFFSET + sc->sc_chanblocksize * bufno;
1804 sc->sc_voc[GUS_VOICE_LEFT].end_addr =
1805 sc->sc_voc[GUS_VOICE_LEFT].current_addr + sc->sc_chanblocksize - 1;
1806 sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
1807 sc->sc_voc[GUS_VOICE_LEFT].current_addr +
1808 (gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0);
1809 /*
1810 * set up right channel to just loop forever, no interrupts,
1811 * starting at the buffer we just filled. We'll feed it data
1812 * at the same time as left channel.
1813 */
1814 sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_LOOP_ENABLE;
1815 sc->sc_voc[GUS_VOICE_RIGHT].volcntl &= ~(GUSMASK_VOICE_ROLL);
1816
1817 #ifdef GUSPLAYDEBUG
1818 if (gusstats) {
1819 microtime(&playstats[playcntr].tv);
1820 playstats[playcntr].curaddr = sc->sc_voc[GUS_VOICE_LEFT].current_addr;
1821
1822 playstats[playcntr].voccntl = sc->sc_voc[GUS_VOICE_LEFT].voccntl;
1823 playstats[playcntr].volcntl = sc->sc_voc[GUS_VOICE_LEFT].volcntl;
1824 playstats[playcntr].endaddr = sc->sc_voc[GUS_VOICE_LEFT].end_addr;
1825 playstats[playcntr].playbuf = bufno;
1826 playstats[playcntr].dmabuf = sc->sc_dmabuf;
1827 playstats[playcntr].bufcnt = sc->sc_bufcnt;
1828 playstats[playcntr].vaction = 5;
1829 playcntr = ++playcntr % NDMARECS;
1830 }
1831 #endif
1832
1833 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, GUS_VOICE_RIGHT);
1834 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
1835 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].voccntl);
1836 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
1837 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[GUS_VOICE_RIGHT].volcntl);
1838
1839 gus_start_voice(sc, GUS_VOICE_RIGHT, 0);
1840 gus_start_voice(sc, GUS_VOICE_LEFT, 1);
1841 if (sc->sc_playbuf == -1)
1842 /* mark start of playing */
1843 sc->sc_playbuf = bufno;
1844 }
1845
1846 STATIC int
1847 gus_continue_playing(sc, voice)
1848 struct gus_softc *sc;
1849 int voice;
1850 {
1851 bus_space_tag_t iot = sc->sc_iot;
1852 bus_space_handle_t ioh2 = sc->sc_ioh2;
1853
1854 /*
1855 * stop this voice from interrupting while we work.
1856 */
1857
1858 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
1859 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl & ~(GUSMASK_VOICE_IRQ));
1860
1861 /*
1862 * update playbuf to point to the buffer the hardware just started
1863 * playing
1864 */
1865 sc->sc_playbuf = ++sc->sc_playbuf % sc->sc_nbufs;
1866
1867 /*
1868 * account for buffer just finished
1869 */
1870 if (--sc->sc_bufcnt == 0) {
1871 DPRINTF(("gus: bufcnt 0 on continuing voice?\n"));
1872 }
1873 if (sc->sc_playbuf == sc->sc_dmabuf && (sc->sc_flags & GUS_LOCKED)) {
1874 printf("%s: continue into active dmabuf?\n", sc->sc_dev.dv_xname);
1875 return 1;
1876 }
1877
1878 /*
1879 * Select the end of the buffer based on the currently active
1880 * buffer, [plus extra contiguous buffers (if ready)].
1881 */
1882
1883 /*
1884 * set endpoint at end of buffer we just started playing.
1885 *
1886 * The total gets -1 because end addrs are one less than you might
1887 * think (the end_addr is the address of the last sample to play)
1888 */
1889 gus_set_endaddr(sc, voice, GUS_MEM_OFFSET +
1890 sc->sc_chanblocksize * (sc->sc_playbuf + 1) - 1);
1891
1892 if (sc->sc_bufcnt < 2) {
1893 /*
1894 * Clear out the loop and roll flags, and rotate the currently
1895 * playing buffer. That way, if we don't manage to get more
1896 * data before this buffer finishes, we'll just stop.
1897 */
1898 sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
1899 sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
1900 playstats[playcntr].vaction = 0;
1901 } else {
1902 /*
1903 * We have some buffers to play. set LOOP if we're on the
1904 * last buffer in the ring, otherwise set ROLL.
1905 */
1906 if (sc->sc_playbuf == sc->sc_nbufs - 1) {
1907 sc->sc_voc[voice].voccntl |= GUSMASK_LOOP_ENABLE;
1908 sc->sc_voc[voice].volcntl &= ~GUSMASK_VOICE_ROLL;
1909 playstats[playcntr].vaction = 1;
1910 } else {
1911 sc->sc_voc[voice].voccntl &= ~GUSMASK_LOOP_ENABLE;
1912 sc->sc_voc[voice].volcntl |= GUSMASK_VOICE_ROLL;
1913 playstats[playcntr].vaction = 2;
1914 }
1915 }
1916 #ifdef GUSPLAYDEBUG
1917 if (gusstats) {
1918 microtime(&playstats[playcntr].tv);
1919 playstats[playcntr].curaddr = gus_get_curaddr(sc, voice);
1920
1921 playstats[playcntr].voccntl = sc->sc_voc[voice].voccntl;
1922 playstats[playcntr].volcntl = sc->sc_voc[voice].volcntl;
1923 playstats[playcntr].endaddr = sc->sc_voc[voice].end_addr;
1924 playstats[playcntr].playbuf = sc->sc_playbuf;
1925 playstats[playcntr].dmabuf = sc->sc_dmabuf;
1926 playstats[playcntr].bufcnt = sc->sc_bufcnt;
1927 playcntr = ++playcntr % NDMARECS;
1928 }
1929 #endif
1930
1931 /*
1932 * (re-)set voice parameters. This will reenable interrupts from this
1933 * voice.
1934 */
1935
1936 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
1937 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
1938 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
1939 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].volcntl);
1940 return 0;
1941 }
1942
1943 /*
1944 * Send/receive data into GUS's DRAM using DMA. Called at splgus()
1945 */
1946
1947 STATIC void
1948 gusdmaout(sc, flags, gusaddr, buffaddr, length)
1949 struct gus_softc *sc;
1950 int flags, length;
1951 u_long gusaddr;
1952 caddr_t buffaddr;
1953 {
1954 unsigned char c = (unsigned char) flags;
1955 bus_space_tag_t iot = sc->sc_iot;
1956 bus_space_handle_t ioh2 = sc->sc_ioh2;
1957
1958 DMAPRINTF(("gusdmaout flags=%x scflags=%x\n", flags, sc->sc_flags));
1959
1960 sc->sc_gusaddr = gusaddr;
1961
1962 /*
1963 * If we're using a 16 bit DMA channel, we have to jump through some
1964 * extra hoops; this includes translating the DRAM address a bit
1965 */
1966
1967 if (sc->sc_playdrq >= 4) {
1968 c |= GUSMASK_DMA_WIDTH;
1969 gusaddr = convert_to_16bit(gusaddr);
1970 }
1971
1972 /*
1973 * Add flag bits that we always set - fast DMA, enable IRQ
1974 */
1975
1976 c |= GUSMASK_DMA_ENABLE | GUSMASK_DMA_R0 | GUSMASK_DMA_IRQ;
1977
1978 /*
1979 * Make sure the GUS _isn't_ setup for DMA
1980 */
1981
1982 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
1983 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
1984
1985 /*
1986 * Tell the PC DMA controller to start doing DMA
1987 */
1988
1989 sc->sc_dmaoutaddr = (u_char *) buffaddr;
1990 sc->sc_dmaoutcnt = length;
1991 isa_dmastart(sc->sc_ic, sc->sc_playdrq, buffaddr, length,
1992 NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1993
1994 /*
1995 * Set up DMA address - use the upper 16 bits ONLY
1996 */
1997
1998 sc->sc_flags |= GUS_DMAOUT_ACTIVE;
1999
2000 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_START);
2001 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (int) (gusaddr >> 4));
2002
2003 /*
2004 * Tell the GUS to start doing DMA
2005 */
2006
2007 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
2008 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, c);
2009
2010 /*
2011 * XXX If we don't finish in one second, give up...
2012 */
2013 untimeout(gus_dmaout_timeout, sc); /* flush old one, if there is one */
2014 timeout(gus_dmaout_timeout, sc, hz);
2015 }
2016
2017 /*
2018 * Start a voice playing on the GUS. Called from interrupt handler at
2019 * splgus().
2020 */
2021
2022 STATIC void
2023 gus_start_voice(sc, voice, intrs)
2024 struct gus_softc *sc;
2025 int voice;
2026 int intrs;
2027 {
2028 bus_space_tag_t iot = sc->sc_iot;
2029 bus_space_handle_t ioh2 = sc->sc_ioh2;
2030 u_long start;
2031 u_long current;
2032 u_long end;
2033
2034 /*
2035 * Pick all the values for the voice out of the gus_voice struct
2036 * and use those to program the voice
2037 */
2038
2039 start = sc->sc_voc[voice].start_addr;
2040 current = sc->sc_voc[voice].current_addr;
2041 end = sc->sc_voc[voice].end_addr;
2042
2043 /*
2044 * If we're using 16 bit data, mangle the addresses a bit
2045 */
2046
2047 if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16) {
2048 /* -1 on start so that we get onto sample boundary--other
2049 code always sets it for 1-byte rollover protection */
2050 start = convert_to_16bit(start-1);
2051 current = convert_to_16bit(current);
2052 end = convert_to_16bit(end);
2053 }
2054
2055 /*
2056 * Select the voice we want to use, and program the data addresses
2057 */
2058
2059 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2060
2061 SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
2062 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(start));
2063 SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
2064 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(start));
2065
2066 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
2067 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(current));
2068 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
2069 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(current));
2070
2071 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
2072 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(end));
2073 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
2074 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(end));
2075
2076 /*
2077 * (maybe) enable interrupts, disable voice stopping
2078 */
2079
2080 if (intrs) {
2081 sc->sc_flags |= GUS_PLAYING; /* playing is about to start */
2082 sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_IRQ;
2083 DMAPRINTF(("gus voice playing=%x\n", sc->sc_flags));
2084 } else
2085 sc->sc_voc[voice].voccntl &= ~GUSMASK_VOICE_IRQ;
2086 sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_STOPPED |
2087 GUSMASK_STOP_VOICE);
2088
2089 /*
2090 * Tell the GUS about it. Note that we're doing volume ramping here
2091 * from 0 up to the set volume to help reduce clicks.
2092 */
2093
2094 SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
2095 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2096 SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
2097 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].current_volume >> 4);
2098 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
2099 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x00);
2100 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
2101 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 63);
2102
2103 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
2104 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
2105 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
2106 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2107 delay(50);
2108 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
2109 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
2110 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
2111 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2112
2113 }
2114
2115 /*
2116 * Stop a given voice. called at splgus()
2117 */
2118
2119 STATIC void
2120 gus_stop_voice(sc, voice, intrs_too)
2121 struct gus_softc *sc;
2122 int voice;
2123 int intrs_too;
2124 {
2125 bus_space_tag_t iot = sc->sc_iot;
2126 bus_space_handle_t ioh2 = sc->sc_ioh2;
2127
2128 sc->sc_voc[voice].voccntl |= GUSMASK_VOICE_STOPPED |
2129 GUSMASK_STOP_VOICE;
2130 if (intrs_too) {
2131 sc->sc_voc[voice].voccntl &= ~(GUSMASK_VOICE_IRQ);
2132 /* no more DMA to do */
2133 sc->sc_flags &= ~GUS_PLAYING;
2134 }
2135 DMAPRINTF(("gusintr voice notplaying=%x\n", sc->sc_flags));
2136
2137 guspoke(iot, ioh2, 0L, 0);
2138
2139 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2140
2141 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
2142 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2143 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
2144 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
2145 delay(100);
2146 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
2147 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2148 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
2149 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[voice].voccntl);
2150
2151 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
2152 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2153 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
2154 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2155
2156 }
2157
2158
2159 /*
2160 * Set the volume of a given voice. Called at splgus().
2161 */
2162 STATIC void
2163 gus_set_volume(sc, voice, volume)
2164 struct gus_softc *sc;
2165 int voice, volume;
2166 {
2167 bus_space_tag_t iot = sc->sc_iot;
2168 bus_space_handle_t ioh2 = sc->sc_ioh2;
2169 unsigned int gusvol;
2170
2171 gusvol = gus_log_volumes[volume < 512 ? volume : 511];
2172
2173 sc->sc_voc[voice].current_volume = gusvol;
2174
2175 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2176
2177 SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
2178 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) (gusvol >> 4));
2179
2180 SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
2181 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) (gusvol >> 4));
2182
2183 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
2184 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
2185 delay(500);
2186 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, gusvol << 4);
2187
2188 }
2189
2190 /*
2191 * Interface to the audio layer.
2192 */
2193
2194 int
2195 gusmax_set_params(addr, setmode, usemode, p, r)
2196 void *addr;
2197 int setmode, usemode;
2198 struct audio_params *p, *r;
2199 {
2200 struct ad1848_isa_softc *ac = addr;
2201 struct gus_softc *sc = ac->sc_ad1848.parent;
2202 int error;
2203
2204 error = ad1848_set_params(ac, setmode, usemode, p, r);
2205 if (error)
2206 return error;
2207 error = gus_set_params(sc, setmode, usemode, p, r);
2208 return error;
2209 }
2210
2211 int
2212 gus_set_params(addr, setmode, usemode, p, r)
2213 void *addr;
2214 int setmode, usemode;
2215 struct audio_params *p, *r;
2216 {
2217 struct gus_softc *sc = addr;
2218 int s;
2219
2220 switch (p->encoding) {
2221 case AUDIO_ENCODING_ULAW:
2222 case AUDIO_ENCODING_ALAW:
2223 case AUDIO_ENCODING_SLINEAR_LE:
2224 case AUDIO_ENCODING_ULINEAR_LE:
2225 case AUDIO_ENCODING_SLINEAR_BE:
2226 case AUDIO_ENCODING_ULINEAR_BE:
2227 break;
2228 default:
2229 return (EINVAL);
2230 }
2231
2232 s = splaudio();
2233
2234 if (p->precision == 8) {
2235 sc->sc_voc[GUS_VOICE_LEFT].voccntl &= ~GUSMASK_DATA_SIZE16;
2236 sc->sc_voc[GUS_VOICE_RIGHT].voccntl &= ~GUSMASK_DATA_SIZE16;
2237 } else {
2238 sc->sc_voc[GUS_VOICE_LEFT].voccntl |= GUSMASK_DATA_SIZE16;
2239 sc->sc_voc[GUS_VOICE_RIGHT].voccntl |= GUSMASK_DATA_SIZE16;
2240 }
2241
2242 sc->sc_encoding = p->encoding;
2243 sc->sc_precision = p->precision;
2244 sc->sc_channels = p->channels;
2245
2246 splx(s);
2247
2248 if (p->sample_rate > gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES])
2249 p->sample_rate = gus_max_frequency[sc->sc_voices - GUS_MIN_VOICES];
2250 if (setmode & AUMODE_RECORD)
2251 sc->sc_irate = p->sample_rate;
2252 if (setmode & AUMODE_PLAY)
2253 sc->sc_orate = p->sample_rate;
2254
2255 switch (p->encoding) {
2256 case AUDIO_ENCODING_ULAW:
2257 p->sw_code = mulaw_to_ulinear8;
2258 r->sw_code = ulinear8_to_mulaw;
2259 break;
2260 case AUDIO_ENCODING_ALAW:
2261 p->sw_code = alaw_to_ulinear8;
2262 r->sw_code = ulinear8_to_alaw;
2263 break;
2264 case AUDIO_ENCODING_ULINEAR_BE:
2265 case AUDIO_ENCODING_SLINEAR_BE:
2266 r->sw_code = p->sw_code = swap_bytes;
2267 break;
2268 }
2269
2270 return 0;
2271 }
2272
2273 /*
2274 * Interface to the audio layer - set the blocksize to the correct number
2275 * of units
2276 */
2277
2278 int
2279 gusmax_round_blocksize(addr, blocksize)
2280 void * addr;
2281 int blocksize;
2282 {
2283 struct ad1848_isa_softc *ac = addr;
2284 struct gus_softc *sc = ac->sc_ad1848.parent;
2285
2286 /* blocksize = ad1848_round_blocksize(ac, blocksize);*/
2287 return gus_round_blocksize(sc, blocksize);
2288 }
2289
2290 int
2291 gus_round_blocksize(addr, blocksize)
2292 void * addr;
2293 int blocksize;
2294 {
2295 struct gus_softc *sc = addr;
2296
2297 DPRINTF(("gus_round_blocksize called\n"));
2298
2299 if ((sc->sc_encoding == AUDIO_ENCODING_ULAW ||
2300 sc->sc_encoding == AUDIO_ENCODING_ALAW) && blocksize > 32768)
2301 blocksize = 32768;
2302 else if (blocksize > 65536)
2303 blocksize = 65536;
2304
2305 if ((blocksize % GUS_BUFFER_MULTIPLE) != 0)
2306 blocksize = (blocksize / GUS_BUFFER_MULTIPLE + 1) *
2307 GUS_BUFFER_MULTIPLE;
2308
2309 /* set up temporary buffer to hold the deinterleave, if necessary
2310 for stereo output */
2311 if (sc->sc_deintr_buf) {
2312 FREE(sc->sc_deintr_buf, M_DEVBUF);
2313 sc->sc_deintr_buf = NULL;
2314 }
2315 MALLOC(sc->sc_deintr_buf, void *, blocksize>>1, M_DEVBUF, M_WAITOK);
2316
2317 sc->sc_blocksize = blocksize;
2318 /* multi-buffering not quite working yet. */
2319 sc->sc_nbufs = /*GUS_MEM_FOR_BUFFERS / blocksize*/ 2;
2320
2321 gus_set_chan_addrs(sc);
2322
2323 return blocksize;
2324 }
2325
2326 int
2327 gus_get_out_gain(addr)
2328 caddr_t addr;
2329 {
2330 struct gus_softc *sc = (struct gus_softc *) addr;
2331
2332 DPRINTF(("gus_get_out_gain called\n"));
2333 return sc->sc_ogain / 2;
2334 }
2335
2336 STATIC inline void gus_set_voices(sc, voices)
2337 struct gus_softc *sc;
2338 int voices;
2339 {
2340 bus_space_tag_t iot = sc->sc_iot;
2341 bus_space_handle_t ioh2 = sc->sc_ioh2;
2342 /*
2343 * Select the active number of voices
2344 */
2345
2346 SELECT_GUS_REG(iot, ioh2, GUSREG_ACTIVE_VOICES);
2347 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (voices-1) | 0xc0);
2348
2349 sc->sc_voices = voices;
2350 }
2351
2352 /*
2353 * Actually set the settings of various values on the card
2354 */
2355
2356 int
2357 gusmax_commit_settings(addr)
2358 void * addr;
2359 {
2360 struct ad1848_isa_softc *ac = addr;
2361 struct gus_softc *sc = ac->sc_ad1848.parent;
2362 int error;
2363
2364 error = ad1848_commit_settings(ac);
2365 if (error)
2366 return error;
2367 return gus_commit_settings(sc);
2368 }
2369
2370 /*
2371 * Commit the settings. Called at normal IPL.
2372 */
2373 int
2374 gus_commit_settings(addr)
2375 void * addr;
2376 {
2377 struct gus_softc *sc = addr;
2378 int s;
2379
2380 DPRINTF(("gus_commit_settings called (gain = %d)\n",sc->sc_ogain));
2381
2382
2383 s = splgus();
2384
2385 gus_set_recrate(sc, sc->sc_irate);
2386 gus_set_volume(sc, GUS_VOICE_LEFT, sc->sc_ogain);
2387 gus_set_volume(sc, GUS_VOICE_RIGHT, sc->sc_ogain);
2388 gus_set_samprate(sc, GUS_VOICE_LEFT, sc->sc_orate);
2389 gus_set_samprate(sc, GUS_VOICE_RIGHT, sc->sc_orate);
2390 splx(s);
2391 gus_set_chan_addrs(sc);
2392
2393 return 0;
2394 }
2395
2396 STATIC void
2397 gus_set_chan_addrs(sc)
2398 struct gus_softc *sc;
2399 {
2400 /*
2401 * We use sc_nbufs * blocksize bytes of storage in the on-board GUS
2402 * ram.
2403 * For mono, each of the sc_nbufs buffers is DMA'd to in one chunk,
2404 * and both left & right channels play the same buffer.
2405 *
2406 * For stereo, each channel gets a contiguous half of the memory,
2407 * and each has sc_nbufs buffers of size blocksize/2.
2408 * Stereo data are deinterleaved in main memory before the DMA out
2409 * routines are called to queue the output.
2410 *
2411 * The blocksize per channel is kept in sc_chanblocksize.
2412 */
2413 if (sc->sc_channels == 2)
2414 sc->sc_chanblocksize = sc->sc_blocksize/2;
2415 else
2416 sc->sc_chanblocksize = sc->sc_blocksize;
2417
2418 sc->sc_voc[GUS_VOICE_LEFT].start_addr = GUS_MEM_OFFSET - 1;
2419 sc->sc_voc[GUS_VOICE_RIGHT].start_addr =
2420 (gus_dostereo && sc->sc_channels == 2 ? GUS_LEFT_RIGHT_OFFSET : 0)
2421 + GUS_MEM_OFFSET - 1;
2422 sc->sc_voc[GUS_VOICE_RIGHT].current_addr =
2423 sc->sc_voc[GUS_VOICE_RIGHT].start_addr + 1;
2424 sc->sc_voc[GUS_VOICE_RIGHT].end_addr =
2425 sc->sc_voc[GUS_VOICE_RIGHT].start_addr +
2426 sc->sc_nbufs * sc->sc_chanblocksize;
2427
2428 }
2429
2430 /*
2431 * Set the sample rate of the given voice. Called at splgus().
2432 */
2433
2434 STATIC void
2435 gus_set_samprate(sc, voice, freq)
2436 struct gus_softc *sc;
2437 int voice, freq;
2438 {
2439 bus_space_tag_t iot = sc->sc_iot;
2440 bus_space_handle_t ioh2 = sc->sc_ioh2;
2441 unsigned int fc;
2442 u_long temp, f = (u_long) freq;
2443
2444 /*
2445 * calculate fc based on the number of active voices;
2446 * we need to use longs to preserve enough bits
2447 */
2448
2449 temp = (u_long) gus_max_frequency[sc->sc_voices-GUS_MIN_VOICES];
2450
2451 fc = (unsigned int)(((f << 9L) + (temp >> 1L)) / temp);
2452
2453 fc <<= 1;
2454
2455
2456 /*
2457 * Program the voice frequency, and set it in the voice data record
2458 */
2459
2460 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2461 SELECT_GUS_REG(iot, ioh2, GUSREG_FREQ_CONTROL);
2462 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, fc);
2463
2464 sc->sc_voc[voice].rate = freq;
2465
2466 }
2467
2468 /*
2469 * Set the sample rate of the recording frequency. Formula is from the GUS
2470 * SDK. Called at splgus().
2471 */
2472
2473 STATIC void
2474 gus_set_recrate(sc, rate)
2475 struct gus_softc *sc;
2476 u_long rate;
2477 {
2478 bus_space_tag_t iot = sc->sc_iot;
2479 bus_space_handle_t ioh2 = sc->sc_ioh2;
2480 u_char realrate;
2481 DPRINTF(("gus_set_recrate %lu\n", rate));
2482
2483 #if 0
2484 realrate = 9878400/(16*(rate+2)); /* formula from GUS docs */
2485 #endif
2486 realrate = (9878400 >> 4)/rate - 2; /* formula from code, sigh. */
2487
2488 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_FREQ);
2489 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, realrate);
2490 }
2491
2492 /*
2493 * Interface to the audio layer - turn the output on or off. Note that some
2494 * of these bits are flipped in the register
2495 */
2496
2497 int
2498 gusmax_speaker_ctl(addr, newstate)
2499 void * addr;
2500 int newstate;
2501 {
2502 struct ad1848_isa_softc *sc = addr;
2503 return gus_speaker_ctl(sc->sc_ad1848.parent, newstate);
2504 }
2505
2506 int
2507 gus_speaker_ctl(addr, newstate)
2508 void * addr;
2509 int newstate;
2510 {
2511 struct gus_softc *sc = (struct gus_softc *) addr;
2512 bus_space_tag_t iot = sc->sc_iot;
2513 bus_space_handle_t ioh1 = sc->sc_ioh1;
2514
2515 /* Line out bit is flipped: 0 enables, 1 disables */
2516 if ((newstate == SPKR_ON) &&
2517 (sc->sc_mixcontrol & GUSMASK_LINE_OUT)) {
2518 sc->sc_mixcontrol &= ~GUSMASK_LINE_OUT;
2519 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2520 }
2521 if ((newstate == SPKR_OFF) &&
2522 (sc->sc_mixcontrol & GUSMASK_LINE_OUT) == 0) {
2523 sc->sc_mixcontrol |= GUSMASK_LINE_OUT;
2524 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2525 }
2526
2527 return 0;
2528 }
2529
2530 STATIC int
2531 gus_linein_ctl(addr, newstate)
2532 void * addr;
2533 int newstate;
2534 {
2535 struct gus_softc *sc = (struct gus_softc *) addr;
2536 bus_space_tag_t iot = sc->sc_iot;
2537 bus_space_handle_t ioh1 = sc->sc_ioh1;
2538
2539 /* Line in bit is flipped: 0 enables, 1 disables */
2540 if ((newstate == SPKR_ON) &&
2541 (sc->sc_mixcontrol & GUSMASK_LINE_IN)) {
2542 sc->sc_mixcontrol &= ~GUSMASK_LINE_IN;
2543 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2544 }
2545 if ((newstate == SPKR_OFF) &&
2546 (sc->sc_mixcontrol & GUSMASK_LINE_IN) == 0) {
2547 sc->sc_mixcontrol |= GUSMASK_LINE_IN;
2548 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2549 }
2550
2551 return 0;
2552 }
2553
2554 STATIC int
2555 gus_mic_ctl(addr, newstate)
2556 void * addr;
2557 int newstate;
2558 {
2559 struct gus_softc *sc = (struct gus_softc *) addr;
2560 bus_space_tag_t iot = sc->sc_iot;
2561 bus_space_handle_t ioh1 = sc->sc_ioh1;
2562
2563 /* Mic bit is normal: 1 enables, 0 disables */
2564 if ((newstate == SPKR_ON) &&
2565 (sc->sc_mixcontrol & GUSMASK_MIC_IN) == 0) {
2566 sc->sc_mixcontrol |= GUSMASK_MIC_IN;
2567 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2568 }
2569 if ((newstate == SPKR_OFF) &&
2570 (sc->sc_mixcontrol & GUSMASK_MIC_IN)) {
2571 sc->sc_mixcontrol &= ~GUSMASK_MIC_IN;
2572 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2573 }
2574
2575 return 0;
2576 }
2577
2578 /*
2579 * Set the end address of a give voice. Called at splgus()
2580 */
2581
2582 STATIC void
2583 gus_set_endaddr(sc, voice, addr)
2584 struct gus_softc *sc;
2585 int voice;
2586 u_long addr;
2587 {
2588 bus_space_tag_t iot = sc->sc_iot;
2589 bus_space_handle_t ioh2 = sc->sc_ioh2;
2590
2591 sc->sc_voc[voice].end_addr = addr;
2592
2593 if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
2594 addr = convert_to_16bit(addr);
2595
2596 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
2597 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
2598 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
2599 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
2600
2601 }
2602
2603 #ifdef GUSPLAYDEBUG
2604 /*
2605 * Set current address. called at splgus()
2606 */
2607 STATIC void
2608 gus_set_curaddr(sc, voice, addr)
2609 struct gus_softc *sc;
2610 int voice;
2611 u_long addr;
2612 {
2613 bus_space_tag_t iot = sc->sc_iot;
2614 bus_space_handle_t ioh2 = sc->sc_ioh2;
2615
2616 sc->sc_voc[voice].current_addr = addr;
2617
2618 if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
2619 addr = convert_to_16bit(addr);
2620
2621 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2622
2623 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
2624 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_HIGH(addr));
2625 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
2626 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, ADDR_LOW(addr));
2627
2628 }
2629
2630 /*
2631 * Get current GUS playback address. Called at splgus().
2632 */
2633 STATIC u_long
2634 gus_get_curaddr(sc, voice)
2635 struct gus_softc *sc;
2636 int voice;
2637 {
2638 bus_space_tag_t iot = sc->sc_iot;
2639 bus_space_handle_t ioh2 = sc->sc_ioh2;
2640 u_long addr;
2641
2642 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) voice);
2643 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH|GUSREG_READ);
2644 addr = (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) & 0x1fff) << 7;
2645 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW|GUSREG_READ);
2646 addr |= (bus_space_read_2(iot, ioh2, GUS_DATA_LOW) >> 9L) & 0x7f;
2647
2648 if (sc->sc_voc[voice].voccntl & GUSMASK_DATA_SIZE16)
2649 addr = (addr & 0xc0000) | ((addr & 0x1ffff) << 1); /* undo 16-bit change */
2650 DPRINTF(("gus voice %d curaddr %ld end_addr %ld\n",
2651 voice, addr, sc->sc_voc[voice].end_addr));
2652 /* XXX sanity check the address? */
2653
2654 return(addr);
2655 }
2656 #endif
2657
2658 /*
2659 * Convert an address value to a "16 bit" value - why this is necessary I
2660 * have NO idea
2661 */
2662
2663 STATIC u_long
2664 convert_to_16bit(address)
2665 u_long address;
2666 {
2667 u_long old_address;
2668
2669 old_address = address;
2670 address >>= 1;
2671 address &= 0x0001ffffL;
2672 address |= (old_address & 0x000c0000L);
2673
2674 return (address);
2675 }
2676
2677 /*
2678 * Write a value into the GUS's DRAM
2679 */
2680
2681 STATIC void
2682 guspoke(iot, ioh2, address, value)
2683 bus_space_tag_t iot;
2684 bus_space_handle_t ioh2;
2685 long address;
2686 unsigned char value;
2687 {
2688
2689 /*
2690 * Select the DRAM address
2691 */
2692
2693 SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
2694 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (unsigned int) (address & 0xffff));
2695 SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
2696 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) ((address >> 16) & 0xff));
2697
2698 /*
2699 * Actually write the data
2700 */
2701
2702 bus_space_write_1(iot, ioh2, GUS_DRAM_DATA, value);
2703 }
2704
2705 /*
2706 * Read a value from the GUS's DRAM
2707 */
2708
2709 STATIC unsigned char
2710 guspeek(iot, ioh2, address)
2711 bus_space_tag_t iot;
2712 bus_space_handle_t ioh2;
2713 u_long address;
2714 {
2715
2716 /*
2717 * Select the DRAM address
2718 */
2719
2720 SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_LOW);
2721 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, (unsigned int) (address & 0xffff));
2722 SELECT_GUS_REG(iot, ioh2, GUSREG_DRAM_ADDR_HIGH);
2723 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, (unsigned char) ((address >> 16) & 0xff));
2724
2725 /*
2726 * Read in the data from the board
2727 */
2728
2729 return (unsigned char) bus_space_read_1(iot, ioh2, GUS_DRAM_DATA);
2730 }
2731
2732 /*
2733 * Reset the Gravis UltraSound card, completely
2734 */
2735
2736 STATIC void
2737 gusreset(sc, voices)
2738 struct gus_softc *sc;
2739 int voices;
2740 {
2741 bus_space_tag_t iot = sc->sc_iot;
2742 bus_space_handle_t ioh1 = sc->sc_ioh1;
2743 bus_space_handle_t ioh2 = sc->sc_ioh2;
2744 bus_space_handle_t ioh4 = sc->sc_ioh4;
2745 int i,s;
2746
2747 s = splgus();
2748
2749 /*
2750 * Reset the GF1 chip
2751 */
2752
2753 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
2754 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2755
2756 delay(500);
2757
2758 /*
2759 * Release reset
2760 */
2761
2762 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
2763 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET);
2764
2765 delay(500);
2766
2767 /*
2768 * Reset MIDI port as well
2769 */
2770
2771 bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, MIDI_RESET);
2772
2773 delay(500);
2774
2775 bus_space_write_1(iot, ioh4, GUS_MIDI_CONTROL, 0x00);
2776
2777 /*
2778 * Clear interrupts
2779 */
2780
2781 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
2782 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2783 SELECT_GUS_REG(iot, ioh2, GUSREG_TIMER_CONTROL);
2784 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2785 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
2786 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x00);
2787
2788 gus_set_voices(sc, voices);
2789
2790 bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
2791 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
2792 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2793 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
2794 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2795 SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
2796 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2797
2798 /*
2799 * Reset voice specific information
2800 */
2801
2802 for(i = 0; i < voices; i++) {
2803 bus_space_write_1(iot, ioh2, GUS_VOICE_SELECT, (unsigned char) i);
2804
2805 SELECT_GUS_REG(iot, ioh2, GUSREG_VOICE_CNTL);
2806
2807 sc->sc_voc[i].voccntl = GUSMASK_VOICE_STOPPED |
2808 GUSMASK_STOP_VOICE;
2809
2810 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].voccntl);
2811
2812 sc->sc_voc[i].volcntl = GUSMASK_VOLUME_STOPPED |
2813 GUSMASK_STOP_VOLUME;
2814
2815 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_CONTROL);
2816 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, sc->sc_voc[i].volcntl);
2817
2818 delay(100);
2819
2820 gus_set_samprate(sc, i, 8000);
2821 SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_HIGH);
2822 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2823 SELECT_GUS_REG(iot, ioh2, GUSREG_START_ADDR_LOW);
2824 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2825 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_HIGH);
2826 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2827 SELECT_GUS_REG(iot, ioh2, GUSREG_END_ADDR_LOW);
2828 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2829 SELECT_GUS_REG(iot, ioh2, GUSREG_VOLUME_RATE);
2830 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x01);
2831 SELECT_GUS_REG(iot, ioh2, GUSREG_START_VOLUME);
2832 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x10);
2833 SELECT_GUS_REG(iot, ioh2, GUSREG_END_VOLUME);
2834 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0xe0);
2835 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_VOLUME);
2836 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2837
2838 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_HIGH);
2839 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2840 SELECT_GUS_REG(iot, ioh2, GUSREG_CUR_ADDR_LOW);
2841 bus_space_write_2(iot, ioh2, GUS_DATA_LOW, 0x0000);
2842 SELECT_GUS_REG(iot, ioh2, GUSREG_PAN_POS);
2843 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0x07);
2844 }
2845
2846 /*
2847 * Clear out any pending IRQs
2848 */
2849
2850 bus_space_read_1(iot, ioh1, GUS_IRQ_STATUS);
2851 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
2852 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2853 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
2854 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2855 SELECT_GUS_REG(iot, ioh2, GUSREG_IRQ_STATUS);
2856 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH);
2857
2858 SELECT_GUS_REG(iot, ioh2, GUSREG_RESET);
2859 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, GUSMASK_MASTER_RESET | GUSMASK_DAC_ENABLE |
2860 GUSMASK_IRQ_ENABLE);
2861
2862 splx(s);
2863 }
2864
2865
2866 STATIC int
2867 gus_init_cs4231(sc)
2868 struct gus_softc *sc;
2869 {
2870 bus_space_tag_t iot = sc->sc_iot;
2871 bus_space_handle_t ioh1 = sc->sc_ioh1;
2872 int port = sc->sc_iobase;
2873 u_char ctrl;
2874
2875 ctrl = (port & 0xf0) >> 4; /* set port address middle nibble */
2876 /*
2877 * The codec is a bit weird--swapped dma channels.
2878 */
2879 ctrl |= GUS_MAX_CODEC_ENABLE;
2880 if (sc->sc_playdrq >= 4)
2881 ctrl |= GUS_MAX_RECCHAN16;
2882 if (sc->sc_recdrq >= 4)
2883 ctrl |= GUS_MAX_PLAYCHAN16;
2884
2885 bus_space_write_1(iot, ioh1, GUS_MAX_CTRL, ctrl);
2886
2887 sc->sc_codec.sc_ad1848.sc_iot = sc->sc_iot;
2888 sc->sc_codec.sc_iobase = port+GUS_MAX_CODEC_BASE;
2889
2890 if (ad1848_isa_mapprobe(&sc->sc_codec, sc->sc_codec.sc_iobase) == 0) {
2891 sc->sc_flags &= ~GUS_CODEC_INSTALLED;
2892 return (0);
2893 } else {
2894 struct ad1848_volume vol = {AUDIO_MAX_GAIN, AUDIO_MAX_GAIN};
2895 sc->sc_flags |= GUS_CODEC_INSTALLED;
2896 sc->sc_codec.sc_ad1848.parent = sc;
2897 sc->sc_codec.sc_playdrq = sc->sc_recdrq;
2898 sc->sc_codec.sc_play_maxsize = sc->sc_req_maxsize;
2899 sc->sc_codec.sc_recdrq = sc->sc_playdrq;
2900 sc->sc_codec.sc_rec_maxsize = sc->sc_play_maxsize;
2901 gus_hw_if = gusmax_hw_if;
2902 /* enable line in and mic in the GUS mixer; the codec chip
2903 will do the real mixing for them. */
2904 sc->sc_mixcontrol &= ~GUSMASK_LINE_IN; /* 0 enables. */
2905 sc->sc_mixcontrol |= GUSMASK_MIC_IN; /* 1 enables. */
2906 bus_space_write_1(iot, ioh1, GUS_MIX_CONTROL, sc->sc_mixcontrol);
2907
2908 ad1848_isa_attach(&sc->sc_codec);
2909 /* turn on pre-MUX microphone gain. */
2910 ad1848_set_mic_gain(&sc->sc_codec.sc_ad1848, &vol);
2911
2912 return (1);
2913 }
2914 }
2915
2916
2917 /*
2918 * Return info about the audio device, for the AUDIO_GETINFO ioctl
2919 */
2920
2921 int
2922 gus_getdev(addr, dev)
2923 void * addr;
2924 struct audio_device *dev;
2925 {
2926 *dev = gus_device;
2927 return 0;
2928 }
2929
2930 /*
2931 * stubs (XXX)
2932 */
2933
2934 int
2935 gus_set_in_gain(addr, gain, balance)
2936 caddr_t addr;
2937 u_int gain;
2938 u_char balance;
2939 {
2940 DPRINTF(("gus_set_in_gain called\n"));
2941 return 0;
2942 }
2943
2944 int
2945 gus_get_in_gain(addr)
2946 caddr_t addr;
2947 {
2948 DPRINTF(("gus_get_in_gain called\n"));
2949 return 0;
2950 }
2951
2952 int
2953 gusmax_dma_input(addr, buf, size, callback, arg)
2954 void * addr;
2955 void *buf;
2956 int size;
2957 void (*callback) __P((void *));
2958 void *arg;
2959 {
2960 struct ad1848_isa_softc *sc = addr;
2961 return gus_dma_input(sc->sc_ad1848.parent, buf, size, callback, arg);
2962 }
2963
2964 /*
2965 * Start sampling the input source into the requested DMA buffer.
2966 * Called at splgus(), either from top-half or from interrupt handler.
2967 */
2968 int
2969 gus_dma_input(addr, buf, size, callback, arg)
2970 void * addr;
2971 void *buf;
2972 int size;
2973 void (*callback) __P((void *));
2974 void *arg;
2975 {
2976 struct gus_softc *sc = addr;
2977 bus_space_tag_t iot = sc->sc_iot;
2978 bus_space_handle_t ioh2 = sc->sc_ioh2;
2979 u_char dmac;
2980 DMAPRINTF(("gus_dma_input called\n"));
2981
2982 /*
2983 * Sample SIZE bytes of data from the card, into buffer at BUF.
2984 */
2985
2986 if (sc->sc_precision == 16)
2987 return EINVAL; /* XXX */
2988
2989 /* set DMA modes */
2990 dmac = GUSMASK_SAMPLE_IRQ|GUSMASK_SAMPLE_START;
2991 if (sc->sc_recdrq >= 4)
2992 dmac |= GUSMASK_SAMPLE_DATA16;
2993 if (sc->sc_encoding == AUDIO_ENCODING_ULAW ||
2994 sc->sc_encoding == AUDIO_ENCODING_ALAW ||
2995 sc->sc_encoding == AUDIO_ENCODING_ULINEAR_LE ||
2996 sc->sc_encoding == AUDIO_ENCODING_ULINEAR_BE)
2997 dmac |= GUSMASK_SAMPLE_INVBIT;
2998 if (sc->sc_channels == 2)
2999 dmac |= GUSMASK_SAMPLE_STEREO;
3000 isa_dmastart(sc->sc_ic, sc->sc_recdrq, buf, size,
3001 NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
3002
3003 DMAPRINTF(("gus_dma_input isa_dmastarted\n"));
3004 sc->sc_flags |= GUS_DMAIN_ACTIVE;
3005 sc->sc_dmainintr = callback;
3006 sc->sc_inarg = arg;
3007 sc->sc_dmaincnt = size;
3008 sc->sc_dmainaddr = buf;
3009
3010 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
3011 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, dmac); /* Go! */
3012
3013
3014 DMAPRINTF(("gus_dma_input returning\n"));
3015
3016 return 0;
3017 }
3018
3019 STATIC int
3020 gus_dmain_intr(sc)
3021 struct gus_softc *sc;
3022 {
3023 void (*callback) __P((void *));
3024 void *arg;
3025
3026 DMAPRINTF(("gus_dmain_intr called\n"));
3027 if (sc->sc_dmainintr) {
3028 isa_dmadone(sc->sc_ic, sc->sc_recdrq);
3029 callback = sc->sc_dmainintr;
3030 arg = sc->sc_inarg;
3031
3032 sc->sc_dmainaddr = 0;
3033 sc->sc_dmaincnt = 0;
3034 sc->sc_dmainintr = 0;
3035 sc->sc_inarg = 0;
3036
3037 sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
3038 DMAPRINTF(("calling dmain_intr callback %p(%p)\n", callback, arg));
3039 (*callback)(arg);
3040 return 1;
3041 } else {
3042 DMAPRINTF(("gus_dmain_intr false?\n"));
3043 return 0; /* XXX ??? */
3044 }
3045 }
3046
3047 int
3048 gusmax_halt_out_dma(addr)
3049 void * addr;
3050 {
3051 struct ad1848_isa_softc *sc = addr;
3052 return gus_halt_out_dma(sc->sc_ad1848.parent);
3053 }
3054
3055
3056 int
3057 gusmax_halt_in_dma(addr)
3058 void * addr;
3059 {
3060 struct ad1848_isa_softc *sc = addr;
3061 return gus_halt_in_dma(sc->sc_ad1848.parent);
3062 }
3063
3064 /*
3065 * Stop any DMA output. Called at splgus().
3066 */
3067 int
3068 gus_halt_out_dma(addr)
3069 void * addr;
3070 {
3071 struct gus_softc *sc = addr;
3072 bus_space_tag_t iot = sc->sc_iot;
3073 bus_space_handle_t ioh2 = sc->sc_ioh2;
3074
3075 DMAPRINTF(("gus_halt_out_dma called\n"));
3076 /*
3077 * Make sure the GUS _isn't_ setup for DMA
3078 */
3079
3080 SELECT_GUS_REG(iot, ioh2, GUSREG_DMA_CONTROL);
3081 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH, 0);
3082
3083 untimeout(gus_dmaout_timeout, sc);
3084 isa_dmaabort(sc->sc_ic, sc->sc_playdrq);
3085 sc->sc_flags &= ~(GUS_DMAOUT_ACTIVE|GUS_LOCKED);
3086 sc->sc_dmaoutintr = 0;
3087 sc->sc_outarg = 0;
3088 sc->sc_dmaoutaddr = 0;
3089 sc->sc_dmaoutcnt = 0;
3090 sc->sc_dmabuf = 0;
3091 sc->sc_bufcnt = 0;
3092 sc->sc_playbuf = -1;
3093 /* also stop playing */
3094 gus_stop_voice(sc, GUS_VOICE_LEFT, 1);
3095 gus_stop_voice(sc, GUS_VOICE_RIGHT, 0);
3096
3097 return 0;
3098 }
3099
3100 /*
3101 * Stop any DMA output. Called at splgus().
3102 */
3103 int
3104 gus_halt_in_dma(addr)
3105 void * addr;
3106 {
3107 struct gus_softc *sc = addr;
3108 bus_space_tag_t iot = sc->sc_iot;
3109 bus_space_handle_t ioh2 = sc->sc_ioh2;
3110 DMAPRINTF(("gus_halt_in_dma called\n"));
3111
3112 /*
3113 * Make sure the GUS _isn't_ setup for DMA
3114 */
3115
3116 SELECT_GUS_REG(iot, ioh2, GUSREG_SAMPLE_CONTROL);
3117 bus_space_write_1(iot, ioh2, GUS_DATA_HIGH,
3118 bus_space_read_1(iot, ioh2, GUS_DATA_HIGH) & ~(GUSMASK_SAMPLE_START|GUSMASK_SAMPLE_IRQ));
3119
3120 isa_dmaabort(sc->sc_ic, sc->sc_recdrq);
3121 sc->sc_flags &= ~GUS_DMAIN_ACTIVE;
3122 sc->sc_dmainintr = 0;
3123 sc->sc_inarg = 0;
3124 sc->sc_dmainaddr = 0;
3125 sc->sc_dmaincnt = 0;
3126
3127 return 0;
3128 }
3129
3130
3131 static ad1848_devmap_t gusmapping[] = {
3132 { GUSMAX_DAC_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
3133 { GUSMAX_LINE_IN_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
3134 { GUSMAX_MONO_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
3135 { GUSMAX_CD_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
3136 { GUSMAX_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
3137 { GUSMAX_OUT_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
3138 { GUSMAX_DAC_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
3139 { GUSMAX_LINE_IN_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
3140 { GUSMAX_MONO_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
3141 { GUSMAX_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
3142 { GUSMAX_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
3143 { GUSMAX_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
3144 { GUSMAX_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1 }
3145 };
3146
3147 static int nummap = sizeof(gusmapping) / sizeof(gusmapping[0]);
3148
3149 STATIC int
3150 gusmax_mixer_get_port(addr, cp)
3151 void *addr;
3152 mixer_ctrl_t *cp;
3153 {
3154 struct ad1848_isa_softc *ac = addr;
3155 struct gus_softc *sc = ac->sc_ad1848.parent;
3156 struct ad1848_volume vol;
3157 int error = ad1848_mixer_get_port(&ac->sc_ad1848, gusmapping,
3158 nummap, cp);
3159
3160 if (error != ENXIO)
3161 return (error);
3162
3163 error = EINVAL;
3164
3165 switch (cp->dev) {
3166 case GUSMAX_SPEAKER_LVL: /* fake speaker for mute naming */
3167 if (cp->type == AUDIO_MIXER_VALUE) {
3168 if (sc->sc_mixcontrol & GUSMASK_LINE_OUT)
3169 vol.left = vol.right = AUDIO_MAX_GAIN;
3170 else
3171 vol.left = vol.right = AUDIO_MIN_GAIN;
3172 error = 0;
3173 ad1848_from_vol(cp, &vol);
3174 }
3175 break;
3176
3177 case GUSMAX_SPEAKER_MUTE:
3178 if (cp->type == AUDIO_MIXER_ENUM) {
3179 cp->un.ord = sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
3180 error = 0;
3181 }
3182 break;
3183 default:
3184 error = ENXIO;
3185 break;
3186 }
3187
3188 return(error);
3189 }
3190
3191 STATIC int
3192 gus_mixer_get_port(addr, cp)
3193 void *addr;
3194 mixer_ctrl_t *cp;
3195 {
3196 struct gus_softc *sc = addr;
3197 struct ics2101_softc *ic = &sc->sc_mixer;
3198 struct ad1848_volume vol;
3199 int error = EINVAL;
3200
3201 DPRINTF(("gus_mixer_get_port: dev=%d type=%d\n", cp->dev, cp->type));
3202
3203 if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
3204 return ENXIO;
3205
3206 switch (cp->dev) {
3207
3208 case GUSICS_MIC_IN_MUTE: /* Microphone */
3209 if (cp->type == AUDIO_MIXER_ENUM) {
3210 if (HAS_MIXER(sc))
3211 cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
3212 else
3213 cp->un.ord =
3214 sc->sc_mixcontrol & GUSMASK_MIC_IN ? 0 : 1;
3215 error = 0;
3216 }
3217 break;
3218
3219 case GUSICS_LINE_IN_MUTE:
3220 if (cp->type == AUDIO_MIXER_ENUM) {
3221 if (HAS_MIXER(sc))
3222 cp->un.ord = ic->sc_mute[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
3223 else
3224 cp->un.ord =
3225 sc->sc_mixcontrol & GUSMASK_LINE_IN ? 1 : 0;
3226 error = 0;
3227 }
3228 break;
3229
3230 case GUSICS_MASTER_MUTE:
3231 if (cp->type == AUDIO_MIXER_ENUM) {
3232 if (HAS_MIXER(sc))
3233 cp->un.ord = ic->sc_mute[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
3234 else
3235 cp->un.ord =
3236 sc->sc_mixcontrol & GUSMASK_LINE_OUT ? 1 : 0;
3237 error = 0;
3238 }
3239 break;
3240
3241 case GUSICS_DAC_MUTE:
3242 if (cp->type == AUDIO_MIXER_ENUM) {
3243 cp->un.ord = ic->sc_mute[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
3244 error = 0;
3245 }
3246 break;
3247
3248 case GUSICS_CD_MUTE:
3249 if (cp->type == AUDIO_MIXER_ENUM) {
3250 cp->un.ord = ic->sc_mute[GUSMIX_CHAN_CD][ICSMIX_LEFT];
3251 error = 0;
3252 }
3253 break;
3254
3255 case GUSICS_MASTER_LVL:
3256 if (cp->type == AUDIO_MIXER_VALUE) {
3257 vol.left = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_LEFT];
3258 vol.right = ic->sc_setting[GUSMIX_CHAN_MASTER][ICSMIX_RIGHT];
3259 if (ad1848_from_vol(cp, &vol))
3260 error = 0;
3261 }
3262 break;
3263
3264 case GUSICS_MIC_IN_LVL: /* Microphone */
3265 if (cp->type == AUDIO_MIXER_VALUE) {
3266 vol.left = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_LEFT];
3267 vol.right = ic->sc_setting[GUSMIX_CHAN_MIC][ICSMIX_RIGHT];
3268 if (ad1848_from_vol(cp, &vol))
3269 error = 0;
3270 }
3271 break;
3272
3273 case GUSICS_LINE_IN_LVL: /* line in */
3274 if (cp->type == AUDIO_MIXER_VALUE) {
3275 vol.left = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_LEFT];
3276 vol.right = ic->sc_setting[GUSMIX_CHAN_LINE][ICSMIX_RIGHT];
3277 if (ad1848_from_vol(cp, &vol))
3278 error = 0;
3279 }
3280 break;
3281
3282
3283 case GUSICS_CD_LVL:
3284 if (cp->type == AUDIO_MIXER_VALUE) {
3285 vol.left = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_LEFT];
3286 vol.right = ic->sc_setting[GUSMIX_CHAN_CD][ICSMIX_RIGHT];
3287 if (ad1848_from_vol(cp, &vol))
3288 error = 0;
3289 }
3290 break;
3291
3292 case GUSICS_DAC_LVL: /* dac out */
3293 if (cp->type == AUDIO_MIXER_VALUE) {
3294 vol.left = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_LEFT];
3295 vol.right = ic->sc_setting[GUSMIX_CHAN_DAC][ICSMIX_RIGHT];
3296 if (ad1848_from_vol(cp, &vol))
3297 error = 0;
3298 }
3299 break;
3300
3301
3302 case GUSICS_RECORD_SOURCE:
3303 if (cp->type == AUDIO_MIXER_ENUM) {
3304 /* Can't set anything else useful, sigh. */
3305 cp->un.ord = 0;
3306 }
3307 break;
3308
3309 default:
3310 return ENXIO;
3311 /*NOTREACHED*/
3312 }
3313 return error;
3314 }
3315
3316 STATIC void
3317 gusics_master_mute(ic, mute)
3318 struct ics2101_softc *ic;
3319 int mute;
3320 {
3321 ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_LEFT, mute);
3322 ics2101_mix_mute(ic, GUSMIX_CHAN_MASTER, ICSMIX_RIGHT, mute);
3323 }
3324
3325 STATIC void
3326 gusics_mic_mute(ic, mute)
3327 struct ics2101_softc *ic;
3328 int mute;
3329 {
3330 ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_LEFT, mute);
3331 ics2101_mix_mute(ic, GUSMIX_CHAN_MIC, ICSMIX_RIGHT, mute);
3332 }
3333
3334 STATIC void
3335 gusics_linein_mute(ic, mute)
3336 struct ics2101_softc *ic;
3337 int mute;
3338 {
3339 ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_LEFT, mute);
3340 ics2101_mix_mute(ic, GUSMIX_CHAN_LINE, ICSMIX_RIGHT, mute);
3341 }
3342
3343 STATIC void
3344 gusics_cd_mute(ic, mute)
3345 struct ics2101_softc *ic;
3346 int mute;
3347 {
3348 ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_LEFT, mute);
3349 ics2101_mix_mute(ic, GUSMIX_CHAN_CD, ICSMIX_RIGHT, mute);
3350 }
3351
3352 STATIC void
3353 gusics_dac_mute(ic, mute)
3354 struct ics2101_softc *ic;
3355 int mute;
3356 {
3357 ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_LEFT, mute);
3358 ics2101_mix_mute(ic, GUSMIX_CHAN_DAC, ICSMIX_RIGHT, mute);
3359 }
3360
3361 STATIC int
3362 gusmax_mixer_set_port(addr, cp)
3363 void *addr;
3364 mixer_ctrl_t *cp;
3365 {
3366 struct ad1848_isa_softc *ac = addr;
3367 struct gus_softc *sc = ac->sc_ad1848.parent;
3368 struct ad1848_volume vol;
3369 int error = ad1848_mixer_set_port(&ac->sc_ad1848, gusmapping,
3370 nummap, cp);
3371
3372 if (error != ENXIO)
3373 return (error);
3374
3375 DPRINTF(("gusmax_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
3376
3377 switch (cp->dev) {
3378 case GUSMAX_SPEAKER_LVL:
3379 if (cp->type == AUDIO_MIXER_VALUE &&
3380 cp->un.value.num_channels == 1) {
3381 if (ad1848_to_vol(cp, &vol)) {
3382 gus_speaker_ctl(sc, vol.left > AUDIO_MIN_GAIN ?
3383 SPKR_ON : SPKR_OFF);
3384 error = 0;
3385 }
3386 }
3387 break;
3388
3389 case GUSMAX_SPEAKER_MUTE:
3390 if (cp->type == AUDIO_MIXER_ENUM) {
3391 gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
3392 error = 0;
3393 }
3394 break;
3395
3396 default:
3397 return ENXIO;
3398 /*NOTREACHED*/
3399 }
3400 return error;
3401 }
3402
3403 STATIC int
3404 gus_mixer_set_port(addr, cp)
3405 void *addr;
3406 mixer_ctrl_t *cp;
3407 {
3408 struct gus_softc *sc = addr;
3409 struct ics2101_softc *ic = &sc->sc_mixer;
3410 struct ad1848_volume vol;
3411 int error = EINVAL;
3412
3413 DPRINTF(("gus_mixer_set_port: dev=%d type=%d\n", cp->dev, cp->type));
3414
3415 if (!HAS_MIXER(sc) && cp->dev > GUSICS_MASTER_MUTE)
3416 return ENXIO;
3417
3418 switch (cp->dev) {
3419
3420 case GUSICS_MIC_IN_MUTE: /* Microphone */
3421 if (cp->type == AUDIO_MIXER_ENUM) {
3422 DPRINTF(("mic mute %d\n", cp->un.ord));
3423 if (HAS_MIXER(sc)) {
3424 gusics_mic_mute(ic, cp->un.ord);
3425 }
3426 gus_mic_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
3427 error = 0;
3428 }
3429 break;
3430
3431 case GUSICS_LINE_IN_MUTE:
3432 if (cp->type == AUDIO_MIXER_ENUM) {
3433 DPRINTF(("linein mute %d\n", cp->un.ord));
3434 if (HAS_MIXER(sc)) {
3435 gusics_linein_mute(ic, cp->un.ord);
3436 }
3437 gus_linein_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
3438 error = 0;
3439 }
3440 break;
3441
3442 case GUSICS_MASTER_MUTE:
3443 if (cp->type == AUDIO_MIXER_ENUM) {
3444 DPRINTF(("master mute %d\n", cp->un.ord));
3445 if (HAS_MIXER(sc)) {
3446 gusics_master_mute(ic, cp->un.ord);
3447 }
3448 gus_speaker_ctl(sc, cp->un.ord ? SPKR_OFF : SPKR_ON);
3449 error = 0;
3450 }
3451 break;
3452
3453 case GUSICS_DAC_MUTE:
3454 if (cp->type == AUDIO_MIXER_ENUM) {
3455 gusics_dac_mute(ic, cp->un.ord);
3456 error = 0;
3457 }
3458 break;
3459
3460 case GUSICS_CD_MUTE:
3461 if (cp->type == AUDIO_MIXER_ENUM) {
3462 gusics_cd_mute(ic, cp->un.ord);
3463 error = 0;
3464 }
3465 break;
3466
3467 case GUSICS_MASTER_LVL:
3468 if (cp->type == AUDIO_MIXER_VALUE) {
3469 if (ad1848_to_vol(cp, &vol)) {
3470 ics2101_mix_attenuate(ic,
3471 GUSMIX_CHAN_MASTER,
3472 ICSMIX_LEFT,
3473 vol.left);
3474 ics2101_mix_attenuate(ic,
3475 GUSMIX_CHAN_MASTER,
3476 ICSMIX_RIGHT,
3477 vol.right);
3478 error = 0;
3479 }
3480 }
3481 break;
3482
3483 case GUSICS_MIC_IN_LVL: /* Microphone */
3484 if (cp->type == AUDIO_MIXER_VALUE) {
3485 if (ad1848_to_vol(cp, &vol)) {
3486 ics2101_mix_attenuate(ic,
3487 GUSMIX_CHAN_MIC,
3488 ICSMIX_LEFT,
3489 vol.left);
3490 ics2101_mix_attenuate(ic,
3491 GUSMIX_CHAN_MIC,
3492 ICSMIX_RIGHT,
3493 vol.right);
3494 error = 0;
3495 }
3496 }
3497 break;
3498
3499 case GUSICS_LINE_IN_LVL: /* line in */
3500 if (cp->type == AUDIO_MIXER_VALUE) {
3501 if (ad1848_to_vol(cp, &vol)) {
3502 ics2101_mix_attenuate(ic,
3503 GUSMIX_CHAN_LINE,
3504 ICSMIX_LEFT,
3505 vol.left);
3506 ics2101_mix_attenuate(ic,
3507 GUSMIX_CHAN_LINE,
3508 ICSMIX_RIGHT,
3509 vol.right);
3510 error = 0;
3511 }
3512 }
3513 break;
3514
3515
3516 case GUSICS_CD_LVL:
3517 if (cp->type == AUDIO_MIXER_VALUE) {
3518 if (ad1848_to_vol(cp, &vol)) {
3519 ics2101_mix_attenuate(ic,
3520 GUSMIX_CHAN_CD,
3521 ICSMIX_LEFT,
3522 vol.left);
3523 ics2101_mix_attenuate(ic,
3524 GUSMIX_CHAN_CD,
3525 ICSMIX_RIGHT,
3526 vol.right);
3527 error = 0;
3528 }
3529 }
3530 break;
3531
3532 case GUSICS_DAC_LVL: /* dac out */
3533 if (cp->type == AUDIO_MIXER_VALUE) {
3534 if (ad1848_to_vol(cp, &vol)) {
3535 ics2101_mix_attenuate(ic,
3536 GUSMIX_CHAN_DAC,
3537 ICSMIX_LEFT,
3538 vol.left);
3539 ics2101_mix_attenuate(ic,
3540 GUSMIX_CHAN_DAC,
3541 ICSMIX_RIGHT,
3542 vol.right);
3543 error = 0;
3544 }
3545 }
3546 break;
3547
3548
3549 case GUSICS_RECORD_SOURCE:
3550 if (cp->type == AUDIO_MIXER_ENUM && cp->un.ord == 0) {
3551 /* Can't set anything else useful, sigh. */
3552 error = 0;
3553 }
3554 break;
3555
3556 default:
3557 return ENXIO;
3558 /*NOTREACHED*/
3559 }
3560 return error;
3561 }
3562
3563 STATIC int
3564 gus_get_props(addr)
3565 void *addr;
3566 {
3567 struct gus_softc *sc = addr;
3568 return (AUDIO_PROP_MMAP |
3569 (sc->sc_recdrq == sc->sc_playdrq ? 0 : AUDIO_PROP_FULLDUPLEX));
3570 }
3571
3572 STATIC int
3573 gusmax_get_props(addr)
3574 void *addr;
3575 {
3576 struct ad1848_isa_softc *ac = addr;
3577 return gus_get_props(ac->sc_ad1848.parent);
3578 }
3579
3580 STATIC int
3581 gusmax_mixer_query_devinfo(addr, dip)
3582 void *addr;
3583 mixer_devinfo_t *dip;
3584 {
3585 DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
3586
3587 switch(dip->index) {
3588 #if 0
3589 case GUSMAX_MIC_IN_LVL: /* Microphone */
3590 dip->type = AUDIO_MIXER_VALUE;
3591 dip->mixer_class = GUSMAX_INPUT_CLASS;
3592 dip->prev = AUDIO_MIXER_LAST;
3593 dip->next = GUSMAX_MIC_IN_MUTE;
3594 strcpy(dip->label.name, AudioNmicrophone);
3595 dip->un.v.num_channels = 2;
3596 strcpy(dip->un.v.units.name, AudioNvolume);
3597 break;
3598 #endif
3599
3600 case GUSMAX_MONO_LVL: /* mono/microphone mixer */
3601 dip->type = AUDIO_MIXER_VALUE;
3602 dip->mixer_class = GUSMAX_INPUT_CLASS;
3603 dip->prev = AUDIO_MIXER_LAST;
3604 dip->next = GUSMAX_MONO_MUTE;
3605 strcpy(dip->label.name, AudioNmicrophone);
3606 dip->un.v.num_channels = 1;
3607 strcpy(dip->un.v.units.name, AudioNvolume);
3608 break;
3609
3610 case GUSMAX_DAC_LVL: /* dacout */
3611 dip->type = AUDIO_MIXER_VALUE;
3612 dip->mixer_class = GUSMAX_INPUT_CLASS;
3613 dip->prev = AUDIO_MIXER_LAST;
3614 dip->next = GUSMAX_DAC_MUTE;
3615 strcpy(dip->label.name, AudioNdac);
3616 dip->un.v.num_channels = 2;
3617 strcpy(dip->un.v.units.name, AudioNvolume);
3618 break;
3619
3620 case GUSMAX_LINE_IN_LVL: /* line */
3621 dip->type = AUDIO_MIXER_VALUE;
3622 dip->mixer_class = GUSMAX_INPUT_CLASS;
3623 dip->prev = AUDIO_MIXER_LAST;
3624 dip->next = GUSMAX_LINE_IN_MUTE;
3625 strcpy(dip->label.name, AudioNline);
3626 dip->un.v.num_channels = 2;
3627 strcpy(dip->un.v.units.name, AudioNvolume);
3628 break;
3629
3630 case GUSMAX_CD_LVL: /* cd */
3631 dip->type = AUDIO_MIXER_VALUE;
3632 dip->mixer_class = GUSMAX_INPUT_CLASS;
3633 dip->prev = AUDIO_MIXER_LAST;
3634 dip->next = GUSMAX_CD_MUTE;
3635 strcpy(dip->label.name, AudioNcd);
3636 dip->un.v.num_channels = 2;
3637 strcpy(dip->un.v.units.name, AudioNvolume);
3638 break;
3639
3640
3641 case GUSMAX_MONITOR_LVL: /* monitor level */
3642 dip->type = AUDIO_MIXER_VALUE;
3643 dip->mixer_class = GUSMAX_MONITOR_CLASS;
3644 dip->next = GUSMAX_MONITOR_MUTE;
3645 dip->prev = AUDIO_MIXER_LAST;
3646 strcpy(dip->label.name, AudioNmonitor);
3647 dip->un.v.num_channels = 1;
3648 strcpy(dip->un.v.units.name, AudioNvolume);
3649 break;
3650
3651 case GUSMAX_OUT_LVL: /* cs4231 output volume: not useful? */
3652 dip->type = AUDIO_MIXER_VALUE;
3653 dip->mixer_class = GUSMAX_MONITOR_CLASS;
3654 dip->prev = dip->next = AUDIO_MIXER_LAST;
3655 strcpy(dip->label.name, AudioNoutput);
3656 dip->un.v.num_channels = 2;
3657 strcpy(dip->un.v.units.name, AudioNvolume);
3658 break;
3659
3660 case GUSMAX_SPEAKER_LVL: /* fake speaker volume */
3661 dip->type = AUDIO_MIXER_VALUE;
3662 dip->mixer_class = GUSMAX_MONITOR_CLASS;
3663 dip->prev = AUDIO_MIXER_LAST;
3664 dip->next = GUSMAX_SPEAKER_MUTE;
3665 strcpy(dip->label.name, AudioNmaster);
3666 dip->un.v.num_channels = 2;
3667 strcpy(dip->un.v.units.name, AudioNvolume);
3668 break;
3669
3670 case GUSMAX_LINE_IN_MUTE:
3671 dip->mixer_class = GUSMAX_INPUT_CLASS;
3672 dip->type = AUDIO_MIXER_ENUM;
3673 dip->prev = GUSMAX_LINE_IN_LVL;
3674 dip->next = AUDIO_MIXER_LAST;
3675 goto mute;
3676
3677 case GUSMAX_DAC_MUTE:
3678 dip->mixer_class = GUSMAX_INPUT_CLASS;
3679 dip->type = AUDIO_MIXER_ENUM;
3680 dip->prev = GUSMAX_DAC_LVL;
3681 dip->next = AUDIO_MIXER_LAST;
3682 goto mute;
3683
3684 case GUSMAX_CD_MUTE:
3685 dip->mixer_class = GUSMAX_INPUT_CLASS;
3686 dip->type = AUDIO_MIXER_ENUM;
3687 dip->prev = GUSMAX_CD_LVL;
3688 dip->next = AUDIO_MIXER_LAST;
3689 goto mute;
3690
3691 case GUSMAX_MONO_MUTE:
3692 dip->mixer_class = GUSMAX_INPUT_CLASS;
3693 dip->type = AUDIO_MIXER_ENUM;
3694 dip->prev = GUSMAX_MONO_LVL;
3695 dip->next = AUDIO_MIXER_LAST;
3696 goto mute;
3697
3698 case GUSMAX_MONITOR_MUTE:
3699 dip->mixer_class = GUSMAX_OUTPUT_CLASS;
3700 dip->type = AUDIO_MIXER_ENUM;
3701 dip->prev = GUSMAX_MONITOR_LVL;
3702 dip->next = AUDIO_MIXER_LAST;
3703 goto mute;
3704
3705 case GUSMAX_SPEAKER_MUTE:
3706 dip->mixer_class = GUSMAX_OUTPUT_CLASS;
3707 dip->type = AUDIO_MIXER_ENUM;
3708 dip->prev = GUSMAX_SPEAKER_LVL;
3709 dip->next = AUDIO_MIXER_LAST;
3710 mute:
3711 strcpy(dip->label.name, AudioNmute);
3712 dip->un.e.num_mem = 2;
3713 strcpy(dip->un.e.member[0].label.name, AudioNoff);
3714 dip->un.e.member[0].ord = 0;
3715 strcpy(dip->un.e.member[1].label.name, AudioNon);
3716 dip->un.e.member[1].ord = 1;
3717 break;
3718
3719 case GUSMAX_REC_LVL: /* record level */
3720 dip->type = AUDIO_MIXER_VALUE;
3721 dip->mixer_class = GUSMAX_RECORD_CLASS;
3722 dip->prev = AUDIO_MIXER_LAST;
3723 dip->next = GUSMAX_RECORD_SOURCE;
3724 strcpy(dip->label.name, AudioNrecord);
3725 dip->un.v.num_channels = 2;
3726 strcpy(dip->un.v.units.name, AudioNvolume);
3727 break;
3728
3729 case GUSMAX_RECORD_SOURCE:
3730 dip->mixer_class = GUSMAX_RECORD_CLASS;
3731 dip->type = AUDIO_MIXER_ENUM;
3732 dip->prev = GUSMAX_REC_LVL;
3733 dip->next = AUDIO_MIXER_LAST;
3734 strcpy(dip->label.name, AudioNsource);
3735 dip->un.e.num_mem = 4;
3736 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
3737 dip->un.e.member[0].ord = DAC_IN_PORT;
3738 strcpy(dip->un.e.member[1].label.name, AudioNmicrophone);
3739 dip->un.e.member[1].ord = MIC_IN_PORT;
3740 strcpy(dip->un.e.member[2].label.name, AudioNdac);
3741 dip->un.e.member[2].ord = AUX1_IN_PORT;
3742 strcpy(dip->un.e.member[3].label.name, AudioNline);
3743 dip->un.e.member[3].ord = LINE_IN_PORT;
3744 break;
3745
3746 case GUSMAX_INPUT_CLASS: /* input class descriptor */
3747 dip->type = AUDIO_MIXER_CLASS;
3748 dip->mixer_class = GUSMAX_INPUT_CLASS;
3749 dip->next = dip->prev = AUDIO_MIXER_LAST;
3750 strcpy(dip->label.name, AudioCinputs);
3751 break;
3752
3753 case GUSMAX_OUTPUT_CLASS: /* output class descriptor */
3754 dip->type = AUDIO_MIXER_CLASS;
3755 dip->mixer_class = GUSMAX_OUTPUT_CLASS;
3756 dip->next = dip->prev = AUDIO_MIXER_LAST;
3757 strcpy(dip->label.name, AudioCoutputs);
3758 break;
3759
3760 case GUSMAX_MONITOR_CLASS: /* monitor class descriptor */
3761 dip->type = AUDIO_MIXER_CLASS;
3762 dip->mixer_class = GUSMAX_MONITOR_CLASS;
3763 dip->next = dip->prev = AUDIO_MIXER_LAST;
3764 strcpy(dip->label.name, AudioCmonitor);
3765 break;
3766
3767 case GUSMAX_RECORD_CLASS: /* record source class */
3768 dip->type = AUDIO_MIXER_CLASS;
3769 dip->mixer_class = GUSMAX_RECORD_CLASS;
3770 dip->next = dip->prev = AUDIO_MIXER_LAST;
3771 strcpy(dip->label.name, AudioCrecord);
3772 break;
3773
3774 default:
3775 return ENXIO;
3776 /*NOTREACHED*/
3777 }
3778 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
3779 return 0;
3780 }
3781
3782 STATIC int
3783 gus_mixer_query_devinfo(addr, dip)
3784 void *addr;
3785 mixer_devinfo_t *dip;
3786 {
3787 struct gus_softc *sc = addr;
3788
3789 DPRINTF(("gusmax_query_devinfo: index=%d\n", dip->index));
3790
3791 if (!HAS_MIXER(sc) && dip->index > GUSICS_MASTER_MUTE)
3792 return ENXIO;
3793
3794 switch(dip->index) {
3795
3796 case GUSICS_MIC_IN_LVL: /* Microphone */
3797 dip->type = AUDIO_MIXER_VALUE;
3798 dip->mixer_class = GUSICS_INPUT_CLASS;
3799 dip->prev = AUDIO_MIXER_LAST;
3800 dip->next = GUSICS_MIC_IN_MUTE;
3801 strcpy(dip->label.name, AudioNmicrophone);
3802 dip->un.v.num_channels = 2;
3803 strcpy(dip->un.v.units.name, AudioNvolume);
3804 break;
3805
3806 case GUSICS_LINE_IN_LVL: /* line */
3807 dip->type = AUDIO_MIXER_VALUE;
3808 dip->mixer_class = GUSICS_INPUT_CLASS;
3809 dip->prev = AUDIO_MIXER_LAST;
3810 dip->next = GUSICS_LINE_IN_MUTE;
3811 strcpy(dip->label.name, AudioNline);
3812 dip->un.v.num_channels = 2;
3813 strcpy(dip->un.v.units.name, AudioNvolume);
3814 break;
3815
3816 case GUSICS_CD_LVL: /* cd */
3817 dip->type = AUDIO_MIXER_VALUE;
3818 dip->mixer_class = GUSICS_INPUT_CLASS;
3819 dip->prev = AUDIO_MIXER_LAST;
3820 dip->next = GUSICS_CD_MUTE;
3821 strcpy(dip->label.name, AudioNcd);
3822 dip->un.v.num_channels = 2;
3823 strcpy(dip->un.v.units.name, AudioNvolume);
3824 break;
3825
3826 case GUSICS_DAC_LVL: /* dacout */
3827 dip->type = AUDIO_MIXER_VALUE;
3828 dip->mixer_class = GUSICS_INPUT_CLASS;
3829 dip->prev = AUDIO_MIXER_LAST;
3830 dip->next = GUSICS_DAC_MUTE;
3831 strcpy(dip->label.name, AudioNdac);
3832 dip->un.v.num_channels = 2;
3833 strcpy(dip->un.v.units.name, AudioNvolume);
3834 break;
3835
3836 case GUSICS_MASTER_LVL: /* master output */
3837 dip->type = AUDIO_MIXER_VALUE;
3838 dip->mixer_class = GUSICS_OUTPUT_CLASS;
3839 dip->prev = AUDIO_MIXER_LAST;
3840 dip->next = GUSICS_MASTER_MUTE;
3841 strcpy(dip->label.name, AudioNmaster);
3842 dip->un.v.num_channels = 2;
3843 strcpy(dip->un.v.units.name, AudioNvolume);
3844 break;
3845
3846
3847 case GUSICS_LINE_IN_MUTE:
3848 dip->mixer_class = GUSICS_INPUT_CLASS;
3849 dip->type = AUDIO_MIXER_ENUM;
3850 dip->prev = GUSICS_LINE_IN_LVL;
3851 dip->next = AUDIO_MIXER_LAST;
3852 goto mute;
3853
3854 case GUSICS_DAC_MUTE:
3855 dip->mixer_class = GUSICS_INPUT_CLASS;
3856 dip->type = AUDIO_MIXER_ENUM;
3857 dip->prev = GUSICS_DAC_LVL;
3858 dip->next = AUDIO_MIXER_LAST;
3859 goto mute;
3860
3861 case GUSICS_CD_MUTE:
3862 dip->mixer_class = GUSICS_INPUT_CLASS;
3863 dip->type = AUDIO_MIXER_ENUM;
3864 dip->prev = GUSICS_CD_LVL;
3865 dip->next = AUDIO_MIXER_LAST;
3866 goto mute;
3867
3868 case GUSICS_MIC_IN_MUTE:
3869 dip->mixer_class = GUSICS_INPUT_CLASS;
3870 dip->type = AUDIO_MIXER_ENUM;
3871 dip->prev = GUSICS_MIC_IN_LVL;
3872 dip->next = AUDIO_MIXER_LAST;
3873 goto mute;
3874
3875 case GUSICS_MASTER_MUTE:
3876 dip->mixer_class = GUSICS_OUTPUT_CLASS;
3877 dip->type = AUDIO_MIXER_ENUM;
3878 dip->prev = GUSICS_MASTER_LVL;
3879 dip->next = AUDIO_MIXER_LAST;
3880 mute:
3881 strcpy(dip->label.name, AudioNmute);
3882 dip->un.e.num_mem = 2;
3883 strcpy(dip->un.e.member[0].label.name, AudioNoff);
3884 dip->un.e.member[0].ord = 0;
3885 strcpy(dip->un.e.member[1].label.name, AudioNon);
3886 dip->un.e.member[1].ord = 1;
3887 break;
3888
3889 case GUSICS_RECORD_SOURCE:
3890 dip->mixer_class = GUSICS_RECORD_CLASS;
3891 dip->type = AUDIO_MIXER_ENUM;
3892 dip->prev = dip->next = AUDIO_MIXER_LAST;
3893 strcpy(dip->label.name, AudioNsource);
3894 dip->un.e.num_mem = 1;
3895 strcpy(dip->un.e.member[0].label.name, AudioNoutput);
3896 dip->un.e.member[0].ord = GUSICS_MASTER_LVL;
3897 break;
3898
3899 case GUSICS_INPUT_CLASS:
3900 dip->type = AUDIO_MIXER_CLASS;
3901 dip->mixer_class = GUSICS_INPUT_CLASS;
3902 dip->next = dip->prev = AUDIO_MIXER_LAST;
3903 strcpy(dip->label.name, AudioCinputs);
3904 break;
3905
3906 case GUSICS_OUTPUT_CLASS:
3907 dip->type = AUDIO_MIXER_CLASS;
3908 dip->mixer_class = GUSICS_OUTPUT_CLASS;
3909 dip->next = dip->prev = AUDIO_MIXER_LAST;
3910 strcpy(dip->label.name, AudioCoutputs);
3911 break;
3912
3913 case GUSICS_RECORD_CLASS:
3914 dip->type = AUDIO_MIXER_CLASS;
3915 dip->mixer_class = GUSICS_RECORD_CLASS;
3916 dip->next = dip->prev = AUDIO_MIXER_LAST;
3917 strcpy(dip->label.name, AudioCrecord);
3918 break;
3919
3920 default:
3921 return ENXIO;
3922 /*NOTREACHED*/
3923 }
3924 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
3925 return 0;
3926 }
3927
3928 STATIC int
3929 gus_query_encoding(addr, fp)
3930 void *addr;
3931 struct audio_encoding *fp;
3932 {
3933 switch (fp->index) {
3934 case 0:
3935 strcpy(fp->name, AudioEmulaw);
3936 fp->encoding = AUDIO_ENCODING_ULAW;
3937 fp->precision = 8;
3938 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
3939 break;
3940 case 1:
3941 strcpy(fp->name, AudioEslinear);
3942 fp->encoding = AUDIO_ENCODING_SLINEAR;
3943 fp->precision = 8;
3944 fp->flags = 0;
3945 break;
3946 case 2:
3947 strcpy(fp->name, AudioEslinear_le);
3948 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
3949 fp->precision = 16;
3950 fp->flags = 0;
3951 break;
3952 case 3:
3953 strcpy(fp->name, AudioEulinear);
3954 fp->encoding = AUDIO_ENCODING_ULINEAR;
3955 fp->precision = 8;
3956 fp->flags = 0;
3957 break;
3958 case 4:
3959 strcpy(fp->name, AudioEulinear_le);
3960 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
3961 fp->precision = 16;
3962 fp->flags = 0;
3963 break;
3964 case 5:
3965 strcpy(fp->name, AudioEslinear_be);
3966 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
3967 fp->precision = 16;
3968 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
3969 break;
3970 case 6:
3971 strcpy(fp->name, AudioEulinear_be);
3972 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
3973 fp->precision = 16;
3974 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
3975 break;
3976 case 7:
3977 strcpy(fp->name, AudioEalaw);
3978 fp->encoding = AUDIO_ENCODING_ALAW;
3979 fp->precision = 8;
3980 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
3981 break;
3982
3983 default:
3984 return(EINVAL);
3985 /*NOTREACHED*/
3986 }
3987 return (0);
3988 }
3989
3990 /*
3991 * Setup the ICS mixer in "transparent" mode: reset everything to a sensible
3992 * level. Levels as suggested by GUS SDK code.
3993 */
3994
3995 STATIC void
3996 gus_init_ics2101(sc)
3997 struct gus_softc *sc;
3998 {
3999 struct ics2101_softc *ic = &sc->sc_mixer;
4000 sc->sc_mixer.sc_iot = sc->sc_iot;
4001 sc->sc_mixer.sc_selio = GUS_MIXER_SELECT;
4002 sc->sc_mixer.sc_selio_ioh = sc->sc_ioh3;
4003 sc->sc_mixer.sc_dataio = GUS_MIXER_DATA;
4004 sc->sc_mixer.sc_dataio_ioh = sc->sc_ioh2;
4005 sc->sc_mixer.sc_flags = (sc->sc_revision == 5) ? ICS_FLIP : 0;
4006
4007 ics2101_mix_attenuate(ic,
4008 GUSMIX_CHAN_MIC,
4009 ICSMIX_LEFT,
4010 ICSMIX_MIN_ATTN);
4011 ics2101_mix_attenuate(ic,
4012 GUSMIX_CHAN_MIC,
4013 ICSMIX_RIGHT,
4014 ICSMIX_MIN_ATTN);
4015 /*
4016 * Start with microphone muted by the mixer...
4017 */
4018 gusics_mic_mute(ic, 1);
4019
4020 /* ... and enabled by the GUS master mix control */
4021 gus_mic_ctl(sc, SPKR_ON);
4022
4023 ics2101_mix_attenuate(ic,
4024 GUSMIX_CHAN_LINE,
4025 ICSMIX_LEFT,
4026 ICSMIX_MIN_ATTN);
4027 ics2101_mix_attenuate(ic,
4028 GUSMIX_CHAN_LINE,
4029 ICSMIX_RIGHT,
4030 ICSMIX_MIN_ATTN);
4031
4032 ics2101_mix_attenuate(ic,
4033 GUSMIX_CHAN_CD,
4034 ICSMIX_LEFT,
4035 ICSMIX_MIN_ATTN);
4036 ics2101_mix_attenuate(ic,
4037 GUSMIX_CHAN_CD,
4038 ICSMIX_RIGHT,
4039 ICSMIX_MIN_ATTN);
4040
4041 ics2101_mix_attenuate(ic,
4042 GUSMIX_CHAN_DAC,
4043 ICSMIX_LEFT,
4044 ICSMIX_MIN_ATTN);
4045 ics2101_mix_attenuate(ic,
4046 GUSMIX_CHAN_DAC,
4047 ICSMIX_RIGHT,
4048 ICSMIX_MIN_ATTN);
4049
4050 ics2101_mix_attenuate(ic,
4051 ICSMIX_CHAN_4,
4052 ICSMIX_LEFT,
4053 ICSMIX_MAX_ATTN);
4054 ics2101_mix_attenuate(ic,
4055 ICSMIX_CHAN_4,
4056 ICSMIX_RIGHT,
4057 ICSMIX_MAX_ATTN);
4058
4059 ics2101_mix_attenuate(ic,
4060 GUSMIX_CHAN_MASTER,
4061 ICSMIX_LEFT,
4062 ICSMIX_MIN_ATTN);
4063 ics2101_mix_attenuate(ic,
4064 GUSMIX_CHAN_MASTER,
4065 ICSMIX_RIGHT,
4066 ICSMIX_MIN_ATTN);
4067 /* unmute other stuff: */
4068 gusics_cd_mute(ic, 0);
4069 gusics_dac_mute(ic, 0);
4070 gusics_linein_mute(ic, 0);
4071 return;
4072 }
4073
4074
4075 #endif /* NGUS */
4076