if_ate.c revision 1.13 1 /*
2 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3 *
4 * This software may be used, modified, copied, distributed, and sold, in
5 * both source and binary form provided that the above copyright, these
6 * terms and the following disclaimer are retained. The name of the author
7 * and/or the contributor may not be used to endorse or promote products
8 * derived from this software without specific prior written permission.
9 *
10 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20 * SUCH DAMAGE.
21 */
22
23 /*
24 * Portions copyright (C) 1993, David Greenman. This software may be used,
25 * modified, copied, distributed, and sold, in both source and binary form
26 * provided that the above copyright and these terms are retained. Under no
27 * circumstances is the author responsible for the proper functioning of this
28 * software, nor does the author assume any responsibility for damages
29 * incurred with its use.
30 */
31
32 #define FE_VERSION "if_fe.c ver. 0.8"
33
34 /*
35 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
37 *
38 * This version is intended to be a generic template for various
39 * MB86960A/MB86965A based Ethernet cards. It currently supports
40 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41 * Telesis AT1700 series and RE2000 series. There are some
42 * unnecessary hooks embedded, which are primarily intended to support
43 * other types of Ethernet cards, but the author is not sure whether
44 * they are useful.
45 */
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80
81 #include <machine/cpu.h>
82 #include <machine/intr.h>
83 #include <machine/pio.h>
84
85 #include <dev/isa/isareg.h>
86 #include <dev/isa/isavar.h>
87 #include <dev/ic/mb86960reg.h>
88 #include <dev/isa/if_fereg.h>
89
90 /*
91 * Default settings for fe driver specific options.
92 * They can be set in config file by "options" statements.
93 */
94
95 /*
96 * Debug control.
97 * 0: No debug at all. All debug specific codes are stripped off.
98 * 1: Silent. No debug messages are logged except emergent ones.
99 * 2: Brief. Lair events and/or important information are logged.
100 * 3: Detailed. Logs all information which *may* be useful for debugging.
101 * 4: Trace. All actions in the driver is logged. Super verbose.
102 */
103 #ifndef FE_DEBUG
104 #define FE_DEBUG 1
105 #endif
106
107 /*
108 * Delay padding of short transmission packets to minimum Ethernet size.
109 * This may or may not gain performance. An EXPERIMENTAL option.
110 */
111 #ifndef FE_DELAYED_PADDING
112 #define FE_DELAYED_PADDING 0
113 #endif
114
115 /*
116 * Transmit just one packet per a "send" command to 86960.
117 * This option is intended for performance test. An EXPERIMENTAL option.
118 */
119 #ifndef FE_SINGLE_TRANSMISSION
120 #define FE_SINGLE_TRANSMISSION 0
121 #endif
122
123 /*
124 * Device configuration flags.
125 */
126
127 /* DLCR6 settings. */
128 #define FE_FLAGS_DLCR6_VALUE 0x007F
129
130 /* Force DLCR6 override. */
131 #define FE_FLAGS_OVERRIDE_DLCR6 0x0080
132
133 /* A cludge for PCMCIA support. */
134 #define FE_FLAGS_PCMCIA 0x8000
135
136 /* Identification of the driver version. */
137 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
138
139 /*
140 * Supported hardware (Ethernet card) types
141 * This information is currently used only for debugging
142 */
143 enum fe_type {
144 /* For cards which are successfully probed but not identified. */
145 FE_TYPE_UNKNOWN,
146
147 /* Fujitsu FMV-180 series. */
148 FE_TYPE_FMV181,
149 FE_TYPE_FMV182,
150
151 /* Allied-Telesis AT1700 series and RE2000 series. */
152 FE_TYPE_AT1700T,
153 FE_TYPE_AT1700BT,
154 FE_TYPE_AT1700FT,
155 FE_TYPE_AT1700AT,
156 FE_TYPE_RE2000,
157
158 /* PCMCIA by Fujitsu. */
159 FE_TYPE_MBH10302,
160 FE_TYPE_MBH10304,
161 };
162
163 /*
164 * fe_softc: per line info and status
165 */
166 struct fe_softc {
167 struct device sc_dev;
168 void *sc_ih;
169
170 struct arpcom sc_arpcom; /* ethernet common */
171
172 /* Set by probe() and not modified in later phases. */
173 enum fe_type type; /* interface type code */
174 char *typestr; /* printable name of the interface. */
175 int sc_iobase; /* MB86960A I/O base address */
176
177 u_char proto_dlcr4; /* DLCR4 prototype. */
178 u_char proto_dlcr5; /* DLCR5 prototype. */
179 u_char proto_dlcr6; /* DLCR6 prototype. */
180 u_char proto_dlcr7; /* DLCR7 prototype. */
181 u_char proto_bmpr13; /* BMPR13 prototype. */
182
183 /* Vendor specific hooks. */
184 void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
185 void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
186
187 /* Transmission buffer management. */
188 u_short txb_size; /* total bytes in TX buffer */
189 u_short txb_free; /* free bytes in TX buffer */
190 u_char txb_count; /* number of packets in TX buffer */
191 u_char txb_sched; /* number of scheduled packets */
192 u_char txb_padding; /* number of delayed padding bytes */
193
194 /* Multicast address filter management. */
195 u_char filter_change; /* MARs must be changed ASAP. */
196 u_char filter[FE_FILTER_LEN]; /* new filter value. */
197 };
198
199 /* Frequently accessed members in arpcom. */
200 #define sc_enaddr sc_arpcom.ac_enaddr
201
202 /* Standard driver entry points. These can be static. */
203 int feprobe __P((struct device *, void *, void *));
204 void feattach __P((struct device *, struct device *, void *));
205 int feintr __P((void *));
206 void fe_init __P((struct fe_softc *));
207 int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
208 void fe_start __P((struct ifnet *));
209 void fe_reset __P((struct fe_softc *));
210 void fe_watchdog __P((struct ifnet *));
211
212 /* Local functions. Order of declaration is confused. FIXME. */
213 int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
214 int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
215 int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
216 void fe_init_mbh __P((struct fe_softc *));
217 int fe_get_packet __P((struct fe_softc *, int));
218 void fe_stop __P((struct fe_softc *));
219 void fe_tint __P((/*struct fe_softc *, u_char*/));
220 void fe_rint __P((/*struct fe_softc *, u_char*/));
221 static inline
222 void fe_xmit __P((struct fe_softc *));
223 void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
224 void fe_getmcaf __P((struct arpcom *, u_char *));
225 void fe_setmode __P((struct fe_softc *));
226 void fe_loadmar __P((struct fe_softc *));
227 #if FE_DEBUG >= 1
228 void fe_dump __P((int, struct fe_softc *));
229 #endif
230
231 struct cfattach fe_ca = {
232 sizeof(struct fe_softc), feprobe, feattach
233 };
234
235 struct cfdriver fe_cd = {
236 NULL, "fe", DV_IFNET
237 };
238
239 /* Ethernet constants. To be defined in if_ehter.h? FIXME. */
240 #define ETHER_MIN_LEN 60 /* with header, without CRC. */
241 #define ETHER_MAX_LEN 1514 /* with header, without CRC. */
242 #define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
243 #define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
244
245 /*
246 * Fe driver specific constants which relate to 86960/86965.
247 */
248
249 /* Interrupt masks. */
250 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
251 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
252 FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
253
254 /* Maximum number of iterrations for a receive interrupt. */
255 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
256 /* Maximum size of SRAM is 65536,
257 * minimum size of transmission buffer in fe is 2x2KB,
258 * and minimum amount of received packet including headers
259 * added by the chip is 64 bytes.
260 * Hence FE_MAX_RECV_COUNT is the upper limit for number
261 * of packets in the receive buffer. */
262
263 /*
264 * Convenient routines to access contiguous I/O ports.
265 */
266
267 static inline void
268 inblk (int addr, u_char * mem, int len)
269 {
270 while (--len >= 0) {
271 *mem++ = inb(addr++);
272 }
273 }
274
275 static inline void
276 outblk (int addr, u_char const * mem, int len)
277 {
278 while (--len >= 0) {
279 outb(addr++, *mem++);
280 }
281 }
282
283 /*
284 * Hardware probe routines.
285 */
286
287 /*
288 * Determine if the device is present.
289 */
290 int
291 feprobe(parent, match, aux)
292 struct device *parent;
293 void *match, *aux;
294 {
295 struct fe_softc *sc = match;
296 struct isa_attach_args *ia = aux;
297
298 #if FE_DEBUG >= 2
299 log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
300 #endif
301
302 /* Probe an address. */
303 sc->sc_iobase = ia->ia_iobase;
304
305 if (fe_probe_fmv(sc, ia))
306 return (1);
307 if (fe_probe_ati(sc, ia))
308 return (1);
309 if (fe_probe_mbh(sc, ia))
310 return (1);
311 return (0);
312 }
313
314 /*
315 * Check for specific bits in specific registers have specific values.
316 */
317 struct fe_simple_probe_struct {
318 u_char port; /* Offset from the base I/O address. */
319 u_char mask; /* Bits to be checked. */
320 u_char bits; /* Values to be compared against. */
321 };
322
323 static inline int
324 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
325 {
326 struct fe_simple_probe_struct const * p;
327
328 for (p = sp; p->mask != 0; p++) {
329 if ((inb(addr + p->port) & p->mask) != p->bits) {
330 return (0);
331 }
332 }
333 return (1);
334 }
335
336 /*
337 * Routines to read all bytes from the config EEPROM through MB86965A.
338 * I'm not sure what exactly I'm doing here... I was told just to follow
339 * the steps, and it worked. Could someone tell me why the following
340 * code works? (Or, why all similar codes I tried previously doesn't
341 * work.) FIXME.
342 */
343
344 static inline void
345 strobe (int bmpr16)
346 {
347 /*
348 * Output same value twice. To speed-down execution?
349 */
350 outb(bmpr16, FE_B16_SELECT);
351 outb(bmpr16, FE_B16_SELECT);
352 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
353 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
354 outb(bmpr16, FE_B16_SELECT);
355 outb(bmpr16, FE_B16_SELECT);
356 }
357
358 void
359 fe_read_eeprom(sc, data)
360 struct fe_softc *sc;
361 u_char *data;
362 {
363 int iobase = sc->sc_iobase;
364 int bmpr16 = iobase + FE_BMPR16;
365 int bmpr17 = iobase + FE_BMPR17;
366 u_char n, val, bit;
367
368 /* Read bytes from EEPROM; two bytes per an iterration. */
369 for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
370 /* Reset the EEPROM interface. */
371 outb(bmpr16, 0x00);
372 outb(bmpr17, 0x00);
373 outb(bmpr16, FE_B16_SELECT);
374
375 /* Start EEPROM access. */
376 outb(bmpr17, FE_B17_DATA);
377 strobe(bmpr16);
378
379 /* Pass the iterration count to the chip. */
380 val = 0x80 | n;
381 for (bit = 0x80; bit != 0x00; bit >>= 1) {
382 outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
383 strobe(bmpr16);
384 }
385 outb(bmpr17, 0x00);
386
387 /* Read a byte. */
388 val = 0;
389 for (bit = 0x80; bit != 0x00; bit >>= 1) {
390 strobe(bmpr16);
391 if (inb(bmpr17) & FE_B17_DATA)
392 val |= bit;
393 }
394 *data++ = val;
395
396 /* Read one more byte. */
397 val = 0;
398 for (bit = 0x80; bit != 0x00; bit >>= 1) {
399 strobe(bmpr16);
400 if (inb(bmpr17) & FE_B17_DATA)
401 val |= bit;
402 }
403 *data++ = val;
404 }
405
406 #if FE_DEBUG >= 3
407 /* Report what we got. */
408 data -= FE_EEPROM_SIZE;
409 log(LOG_INFO, "%s: EEPROM at %04x:"
410 " %02x%02x%02x%02x %02x%02x%02x%02x -"
411 " %02x%02x%02x%02x %02x%02x%02x%02x -"
412 " %02x%02x%02x%02x %02x%02x%02x%02x -"
413 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
414 sc->sc_dev.dv_xname, iobase,
415 data[ 0], data[ 1], data[ 2], data[ 3],
416 data[ 4], data[ 5], data[ 6], data[ 7],
417 data[ 8], data[ 9], data[10], data[11],
418 data[12], data[13], data[14], data[15],
419 data[16], data[17], data[18], data[19],
420 data[20], data[21], data[22], data[23],
421 data[24], data[25], data[26], data[27],
422 data[28], data[29], data[30], data[31]);
423 #endif
424 }
425
426 /*
427 * Hardware (vendor) specific probe routines.
428 */
429
430 /*
431 * Probe and initialization for Fujitsu FMV-180 series boards
432 */
433 int
434 fe_probe_fmv(sc, ia)
435 struct fe_softc *sc;
436 struct isa_attach_args *ia;
437 {
438 int i, n;
439 int iobase = sc->sc_iobase;
440 int irq;
441
442 static int const iomap[8] =
443 { 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
444 static int const irqmap[4] =
445 { 3, 7, 10, 15 };
446
447 static struct fe_simple_probe_struct const probe_table[] = {
448 { FE_DLCR2, 0x70, 0x00 },
449 { FE_DLCR4, 0x08, 0x00 },
450 /* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
451
452 { FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
453 { FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
454 { FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
455 #if 1
456 /*
457 * Test *vendor* part of the station address for Fujitsu.
458 * The test will gain reliability of probe process, but
459 * it rejects FMV-180 clone boards manufactured by other vendors.
460 * We have to turn the test off when such cards are made available.
461 */
462 { FE_FMV4, 0xFF, 0x00 },
463 { FE_FMV5, 0xFF, 0x00 },
464 { FE_FMV6, 0xFF, 0x0E },
465 #else
466 /*
467 * We can always verify the *first* 2 bits (in Ehternet
468 * bit order) are "no multicast" and "no local" even for
469 * unknown vendors.
470 */
471 { FE_FMV4, 0x03, 0x00 },
472 #endif
473 { 0 }
474 };
475
476 #if 0
477 /*
478 * Dont probe at all if the config says we are PCMCIA...
479 */
480 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
481 return (0);
482 #endif
483
484 /*
485 * See if the sepcified address is possible for FMV-180 series.
486 */
487 for (i = 0; i < 8; i++) {
488 if (iomap[i] == iobase)
489 break;
490 }
491 if (i == 8)
492 return (0);
493
494 /* Simple probe. */
495 if (!fe_simple_probe(iobase, probe_table))
496 return (0);
497
498 /* Check if our I/O address matches config info on EEPROM. */
499 n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
500 if (iomap[n] != iobase)
501 return (0);
502
503 /* Determine the card type. */
504 switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
505 case FE_FMV0_MODEL_FMV181:
506 sc->type = FE_TYPE_FMV181;
507 sc->typestr = "FMV-181";
508 break;
509 case FE_FMV0_MODEL_FMV182:
510 sc->type = FE_TYPE_FMV182;
511 sc->typestr = "FMV-182";
512 break;
513 default:
514 /* Unknown card type: maybe a new model, but... */
515 return (0);
516 }
517
518 /*
519 * An FMV-180 has successfully been proved.
520 * Determine which IRQ to be used.
521 *
522 * In this version, we always get an IRQ assignment from the
523 * FMV-180's configuration EEPROM, ignoring that specified in
524 * config file.
525 */
526 n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
527 irq = irqmap[n];
528
529 if (ia->ia_irq != IRQUNK) {
530 if (ia->ia_irq != irq) {
531 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
532 sc->sc_dev.dv_xname, ia->ia_irq, irq);
533 return (0);
534 }
535 } else
536 ia->ia_irq = irq;
537
538 /*
539 * Initialize constants in the per-line structure.
540 */
541
542 /* Get our station address from EEPROM. */
543 inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
544
545 /* Make sure we got a valid station address. */
546 if ((sc->sc_enaddr[0] & 0x03) != 0x00
547 || (sc->sc_enaddr[0] == 0x00
548 && sc->sc_enaddr[1] == 0x00
549 && sc->sc_enaddr[2] == 0x00))
550 return (0);
551
552 /* Register values which depend on board design. */
553 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
554 sc->proto_dlcr5 = 0;
555 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
556 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
557
558 /*
559 * Program the 86960 as follows:
560 * SRAM: 32KB, 100ns, byte-wide access.
561 * Transmission buffer: 4KB x 2.
562 * System bus interface: 16 bits.
563 * We cannot change these values but TXBSIZE, because they
564 * are hard-wired on the board. Modifying TXBSIZE will affect
565 * the driver performance.
566 */
567 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
568 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
569
570 /*
571 * Minimum initialization of the hardware.
572 * We write into registers; hope I/O ports have no
573 * overlap with other boards.
574 */
575
576 /* Initialize ASIC. */
577 outb(iobase + FE_FMV3, 0);
578 outb(iobase + FE_FMV10, 0);
579
580 /* Wait for a while. I'm not sure this is necessary. FIXME. */
581 delay(200);
582
583 /* Initialize 86960. */
584 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
585 delay(200);
586
587 /* Disable all interrupts. */
588 outb(iobase + FE_DLCR2, 0);
589 outb(iobase + FE_DLCR3, 0);
590
591 /* Turn the "master interrupt control" flag of ASIC on. */
592 outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
593
594 /*
595 * That's all. FMV-180 occupies 32 I/O addresses, by the way.
596 */
597 ia->ia_iosize = 32;
598 ia->ia_msize = 0;
599 return (1);
600 }
601
602 /*
603 * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
604 */
605 int
606 fe_probe_ati(sc, ia)
607 struct fe_softc *sc;
608 struct isa_attach_args *ia;
609 {
610 int i, n;
611 int iobase = sc->sc_iobase;
612 u_char eeprom[FE_EEPROM_SIZE];
613 u_char save16, save17;
614 int irq;
615
616 static int const iomap[8] =
617 { 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
618 static int const irqmap[4][4] = {
619 { 3, 4, 5, 9 },
620 { 10, 11, 12, 15 },
621 { 3, 11, 5, 15 },
622 { 10, 11, 14, 15 },
623 };
624 static struct fe_simple_probe_struct const probe_table[] = {
625 { FE_DLCR2, 0x70, 0x00 },
626 { FE_DLCR4, 0x08, 0x00 },
627 { FE_DLCR5, 0x80, 0x00 },
628 #if 0
629 { FE_BMPR16, 0x1B, 0x00 },
630 { FE_BMPR17, 0x7F, 0x00 },
631 #endif
632 { 0 }
633 };
634
635 #if 0
636 /*
637 * Don't probe at all if the config says we are PCMCIA...
638 */
639 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
640 return (0);
641 #endif
642
643 #if FE_DEBUG >= 4
644 log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
645 fe_dump(LOG_INFO, sc);
646 #endif
647
648 /*
649 * See if the sepcified address is possible for MB86965A JLI mode.
650 */
651 for (i = 0; i < 8; i++) {
652 if (iomap[i] == iobase)
653 break;
654 }
655 if (i == 8)
656 return (0);
657
658 /*
659 * We should test if MB86965A is on the base address now.
660 * Unfortunately, it is very hard to probe it reliably, since
661 * we have no way to reset the chip under software control.
662 * On cold boot, we could check the "signature" bit patterns
663 * described in the Fujitsu document. On warm boot, however,
664 * we can predict almost nothing about register values.
665 */
666 if (!fe_simple_probe(iobase, probe_table))
667 return (0);
668
669 /* Save old values of the registers. */
670 save16 = inb(iobase + FE_BMPR16);
671 save17 = inb(iobase + FE_BMPR17);
672
673 /* Check if our I/O address matches config info on 86965. */
674 n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
675 if (iomap[n] != iobase)
676 goto fail;
677
678 /*
679 * We are now almost sure we have an AT1700 at the given
680 * address. So, read EEPROM through 86965. We have to write
681 * into LSI registers to read from EEPROM. I want to avoid it
682 * at this stage, but I cannot test the presense of the chip
683 * any further without reading EEPROM. FIXME.
684 */
685 fe_read_eeprom(sc, eeprom);
686
687 /* Make sure the EEPROM is turned off. */
688 outb(iobase + FE_BMPR16, 0);
689 outb(iobase + FE_BMPR17, 0);
690
691 /* Make sure that config info in EEPROM and 86965 agree. */
692 if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
693 goto fail;
694
695 /*
696 * Determine the card type.
697 */
698 switch (eeprom[FE_ATI_EEP_MODEL]) {
699 case FE_ATI_MODEL_AT1700T:
700 sc->type = FE_TYPE_AT1700T;
701 sc->typestr = "AT-1700T";
702 break;
703 case FE_ATI_MODEL_AT1700BT:
704 sc->type = FE_TYPE_AT1700BT;
705 sc->typestr = "AT-1700BT";
706 break;
707 case FE_ATI_MODEL_AT1700FT:
708 sc->type = FE_TYPE_AT1700FT;
709 sc->typestr = "AT-1700FT";
710 break;
711 case FE_ATI_MODEL_AT1700AT:
712 sc->type = FE_TYPE_AT1700AT;
713 sc->typestr = "AT-1700AT";
714 break;
715 default:
716 sc->type = FE_TYPE_RE2000;
717 sc->typestr = "unknown (RE-2000?)";
718 break;
719 }
720
721 /*
722 * Try to determine IRQ settings.
723 * Different models use different ranges of IRQs.
724 */
725 n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
726 switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
727 case 0x30:
728 irq = irqmap[3][n];
729 break;
730 case 0x10:
731 case 0x50:
732 irq = irqmap[2][n];
733 break;
734 case 0x40:
735 case 0x60:
736 if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
737 irq = irqmap[1][n];
738 break;
739 }
740 default:
741 irq = irqmap[0][n];
742 break;
743 }
744
745 if (ia->ia_irq != IRQUNK) {
746 if (ia->ia_irq != irq) {
747 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
748 sc->sc_dev.dv_xname, ia->ia_irq, irq);
749 return (0);
750 }
751 } else
752 ia->ia_irq = irq;
753
754 /*
755 * Initialize constants in the per-line structure.
756 */
757
758 /* Get our station address from EEPROM. */
759 bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
760
761 /* Make sure we got a valid station address. */
762 if ((sc->sc_enaddr[0] & 0x03) != 0x00
763 || (sc->sc_enaddr[0] == 0x00
764 && sc->sc_enaddr[1] == 0x00
765 && sc->sc_enaddr[2] == 0x00))
766 goto fail;
767
768 /* Should find all register prototypes here. FIXME. */
769 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
770 sc->proto_dlcr5 = 0;
771 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
772 #if 0 /* XXXX Should we use this? */
773 sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
774 #else
775 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
776 #endif
777
778 /*
779 * Program the 86965 as follows:
780 * SRAM: 32KB, 100ns, byte-wide access.
781 * Transmission buffer: 4KB x 2.
782 * System bus interface: 16 bits.
783 * We cannot change these values but TXBSIZE, because they
784 * are hard-wired on the board. Modifying TXBSIZE will affect
785 * the driver performance.
786 */
787 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
788 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
789
790 #if FE_DEBUG >= 3
791 log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
792 fe_dump(LOG_INFO, sc);
793 #endif
794
795 /* Initialize 86965. */
796 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
797 delay(200);
798
799 /* Disable all interrupts. */
800 outb(iobase + FE_DLCR2, 0);
801 outb(iobase + FE_DLCR3, 0);
802
803 #if FE_DEBUG >= 3
804 log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
805 fe_dump(LOG_INFO, sc);
806 #endif
807
808 /*
809 * That's all. AT1700 occupies 32 I/O addresses, by the way.
810 */
811 ia->ia_iosize = 32;
812 ia->ia_msize = 0;
813 return (1);
814
815 fail:
816 /* Restore register values, in the case we had no 86965. */
817 outb(iobase + FE_BMPR16, save16);
818 outb(iobase + FE_BMPR17, save17);
819 return (0);
820 }
821
822 /*
823 * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
824 */
825 int
826 fe_probe_mbh(sc, ia)
827 struct fe_softc *sc;
828 struct isa_attach_args *ia;
829 {
830 int iobase = sc->sc_iobase;
831
832 static struct fe_simple_probe_struct probe_table[] = {
833 { FE_DLCR2, 0x70, 0x00 },
834 { FE_DLCR4, 0x08, 0x00 },
835 /* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
836 #if 0
837 /*
838 * Test *vendor* part of the address for Fujitsu.
839 * The test will gain reliability of probe process, but
840 * it rejects clones by other vendors, or OEM product
841 * supplied by resalers other than Fujitsu.
842 */
843 { FE_MBH10, 0xFF, 0x00 },
844 { FE_MBH11, 0xFF, 0x00 },
845 { FE_MBH12, 0xFF, 0x0E },
846 #else
847 /*
848 * We can always verify the *first* 2 bits (in Ehternet
849 * bit order) are "global" and "unicast" even for
850 * unknown vendors.
851 */
852 { FE_MBH10, 0x03, 0x00 },
853 #endif
854 /* Just a gap? Seems reliable, anyway. */
855 { 0x12, 0xFF, 0x00 },
856 { 0x13, 0xFF, 0x00 },
857 { 0x14, 0xFF, 0x00 },
858 { 0x15, 0xFF, 0x00 },
859 { 0x16, 0xFF, 0x00 },
860 { 0x17, 0xFF, 0x00 },
861 { 0x18, 0xFF, 0xFF },
862 { 0x19, 0xFF, 0xFF },
863
864 { 0 }
865 };
866
867 #if 0
868 /*
869 * We need a PCMCIA flag.
870 */
871 if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
872 return (0);
873 #endif
874
875 /*
876 * We need explicit IRQ and supported address.
877 */
878 if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
879 return (0);
880
881 #if FE_DEBUG >= 3
882 log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
883 fe_dump(LOG_INFO, sc);
884 #endif
885
886 /*
887 * See if MBH10302 is on its address.
888 * I'm not sure the following probe code works. FIXME.
889 */
890 if (!fe_simple_probe(iobase, probe_table))
891 return (0);
892
893 /* Determine the card type. */
894 sc->type = FE_TYPE_MBH10302;
895 sc->typestr = "MBH10302 (PCMCIA)";
896
897 /*
898 * Initialize constants in the per-line structure.
899 */
900
901 /* Get our station address from EEPROM. */
902 inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
903
904 /* Make sure we got a valid station address. */
905 if ((sc->sc_enaddr[0] & 0x03) != 0x00
906 || (sc->sc_enaddr[0] == 0x00
907 && sc->sc_enaddr[1] == 0x00
908 && sc->sc_enaddr[2] == 0x00))
909 return (0);
910
911 /* Should find all register prototypes here. FIXME. */
912 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
913 sc->proto_dlcr5 = 0;
914 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
915 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
916
917 /*
918 * Program the 86960 as follows:
919 * SRAM: 32KB, 100ns, byte-wide access.
920 * Transmission buffer: 4KB x 2.
921 * System bus interface: 16 bits.
922 * We cannot change these values but TXBSIZE, because they
923 * are hard-wired on the board. Modifying TXBSIZE will affect
924 * the driver performance.
925 */
926 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
927 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
928
929 /* Setup hooks. We need a special initialization procedure. */
930 sc->init = fe_init_mbh;
931
932 /*
933 * Minimum initialization.
934 */
935
936 /* Wait for a while. I'm not sure this is necessary. FIXME. */
937 delay(200);
938
939 /* Minimul initialization of 86960. */
940 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
941 delay(200);
942
943 /* Disable all interrupts. */
944 outb(iobase + FE_DLCR2, 0);
945 outb(iobase + FE_DLCR3, 0);
946
947 #if 1 /* FIXME. */
948 /* Initialize system bus interface and encoder/decoder operation. */
949 outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
950 #endif
951
952 /*
953 * That's all. MBH10302 occupies 32 I/O addresses, by the way.
954 */
955 ia->ia_iosize = 32;
956 ia->ia_msize = 0;
957 return (1);
958 }
959
960 /* MBH specific initialization routine. */
961 void
962 fe_init_mbh(sc)
963 struct fe_softc *sc;
964 {
965
966 /* Probably required after hot-insertion... */
967
968 /* Wait for a while. I'm not sure this is necessary. FIXME. */
969 delay(200);
970
971 /* Minimul initialization of 86960. */
972 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
973 delay(200);
974
975 /* Disable all interrupts. */
976 outb(sc->sc_iobase + FE_DLCR2, 0);
977 outb(sc->sc_iobase + FE_DLCR3, 0);
978
979 /* Enable master interrupt flag. */
980 outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
981 }
982
983 /*
984 * Install interface into kernel networking data structures
985 */
986 void
987 feattach(parent, self, aux)
988 struct device *parent, *self;
989 void *aux;
990 {
991 struct fe_softc *sc = (void *)self;
992 struct isa_attach_args *ia = aux;
993 struct cfdata *cf = sc->sc_dev.dv_cfdata;
994 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
995
996 /* Stop the 86960. */
997 fe_stop(sc);
998
999 /* Initialize ifnet structure. */
1000 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1001 ifp->if_softc = sc;
1002 ifp->if_start = fe_start;
1003 ifp->if_ioctl = fe_ioctl;
1004 ifp->if_watchdog = fe_watchdog;
1005 ifp->if_flags =
1006 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1007
1008 /*
1009 * Set maximum size of output queue, if it has not been set.
1010 * It is done here as this driver may be started after the
1011 * system intialization (i.e., the interface is PCMCIA.)
1012 *
1013 * I'm not sure this is really necessary, but, even if it is,
1014 * it should be done somewhere else, e.g., in if_attach(),
1015 * since it must be a common workaround for all network drivers.
1016 * FIXME.
1017 */
1018 if (ifp->if_snd.ifq_maxlen == 0) {
1019 extern int ifqmaxlen; /* Don't be so shocked... */
1020 ifp->if_snd.ifq_maxlen = ifqmaxlen;
1021 }
1022
1023 #if FE_DEBUG >= 3
1024 log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1025 fe_dump(LOG_INFO, sc);
1026 #endif
1027
1028 #if FE_SINGLE_TRANSMISSION
1029 /* Override txb config to allocate minimum. */
1030 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1031 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1032 #endif
1033
1034 /* Modify hardware config if it is requested. */
1035 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1036 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1037
1038 /* Find TX buffer size, based on the hardware dependent proto. */
1039 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1040 case FE_D6_TXBSIZ_2x2KB:
1041 sc->txb_size = 2048;
1042 break;
1043 case FE_D6_TXBSIZ_2x4KB:
1044 sc->txb_size = 4096;
1045 break;
1046 case FE_D6_TXBSIZ_2x8KB:
1047 sc->txb_size = 8192;
1048 break;
1049 default:
1050 /* Oops, we can't work with single buffer configuration. */
1051 #if FE_DEBUG >= 2
1052 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1053 sc->sc_dev.dv_xname);
1054 #endif
1055 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1056 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1057 sc->txb_size = 2048;
1058 break;
1059 }
1060
1061 /* Attach the interface. */
1062 if_attach(ifp);
1063 ether_ifattach(ifp);
1064
1065 /* Print additional info when attached. */
1066 printf(": address %s, type %s\n",
1067 ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1068 #if FE_DEBUG >= 3
1069 {
1070 int buf, txb, bbw, sbw, ram;
1071
1072 buf = txb = bbw = sbw = ram = -1;
1073 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1074 case FE_D6_BUFSIZ_8KB:
1075 buf = 8;
1076 break;
1077 case FE_D6_BUFSIZ_16KB:
1078 buf = 16;
1079 break;
1080 case FE_D6_BUFSIZ_32KB:
1081 buf = 32;
1082 break;
1083 case FE_D6_BUFSIZ_64KB:
1084 buf = 64;
1085 break;
1086 }
1087 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1088 case FE_D6_TXBSIZ_2x2KB:
1089 txb = 2;
1090 break;
1091 case FE_D6_TXBSIZ_2x4KB:
1092 txb = 4;
1093 break;
1094 case FE_D6_TXBSIZ_2x8KB:
1095 txb = 8;
1096 break;
1097 }
1098 switch (sc->proto_dlcr6 & FE_D6_BBW) {
1099 case FE_D6_BBW_BYTE:
1100 bbw = 8;
1101 break;
1102 case FE_D6_BBW_WORD:
1103 bbw = 16;
1104 break;
1105 }
1106 switch (sc->proto_dlcr6 & FE_D6_SBW) {
1107 case FE_D6_SBW_BYTE:
1108 sbw = 8;
1109 break;
1110 case FE_D6_SBW_WORD:
1111 sbw = 16;
1112 break;
1113 }
1114 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1115 case FE_D6_SRAM_100ns:
1116 ram = 100;
1117 break;
1118 case FE_D6_SRAM_150ns:
1119 ram = 150;
1120 break;
1121 }
1122 printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1123 sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1124 }
1125 #endif
1126
1127 #if NBPFILTER > 0
1128 /* If BPF is in the kernel, call the attach for it. */
1129 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1130 #endif
1131
1132 sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1133 IPL_NET, feintr, sc);
1134 }
1135
1136 /*
1137 * Reset interface.
1138 */
1139 void
1140 fe_reset(sc)
1141 struct fe_softc *sc;
1142 {
1143 int s;
1144
1145 s = splnet();
1146 fe_stop(sc);
1147 fe_init(sc);
1148 splx(s);
1149 }
1150
1151 /*
1152 * Stop everything on the interface.
1153 *
1154 * All buffered packets, both transmitting and receiving,
1155 * if any, will be lost by stopping the interface.
1156 */
1157 void
1158 fe_stop(sc)
1159 struct fe_softc *sc;
1160 {
1161
1162 #if FE_DEBUG >= 3
1163 log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1164 fe_dump(LOG_INFO, sc);
1165 #endif
1166
1167 /* Disable interrupts. */
1168 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1169 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1170
1171 /* Stop interface hardware. */
1172 delay(200);
1173 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1174 delay(200);
1175
1176 /* Clear all interrupt status. */
1177 outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1178 outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1179
1180 /* Put the chip in stand-by mode. */
1181 delay(200);
1182 outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1183 delay(200);
1184
1185 /* MAR loading can be delayed. */
1186 sc->filter_change = 0;
1187
1188 /* Call a hook. */
1189 if (sc->stop)
1190 sc->stop(sc);
1191
1192 #if DEBUG >= 3
1193 log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1194 fe_dump(LOG_INFO, sc);
1195 #endif
1196 }
1197
1198 /*
1199 * Device timeout/watchdog routine. Entered if the device neglects to
1200 * generate an interrupt after a transmit has been started on it.
1201 */
1202 void
1203 fe_watchdog(ifp)
1204 struct ifnet *ifp;
1205 {
1206 struct fe_softc *sc = ifp->if_softc;
1207
1208 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1209 #if FE_DEBUG >= 3
1210 fe_dump(LOG_INFO, sc);
1211 #endif
1212
1213 /* Record how many packets are lost by this accident. */
1214 sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1215
1216 fe_reset(sc);
1217 }
1218
1219 /*
1220 * Drop (skip) a packet from receive buffer in 86960 memory.
1221 */
1222 static inline void
1223 fe_droppacket(sc)
1224 struct fe_softc *sc;
1225 {
1226
1227 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1228 }
1229
1230 /*
1231 * Initialize device.
1232 */
1233 void
1234 fe_init(sc)
1235 struct fe_softc *sc;
1236 {
1237 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1238 int i;
1239
1240 #if FE_DEBUG >= 3
1241 log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1242 fe_dump(LOG_INFO, sc);
1243 #endif
1244
1245 /* Reset transmitter flags. */
1246 ifp->if_flags &= ~IFF_OACTIVE;
1247 ifp->if_timer = 0;
1248
1249 sc->txb_free = sc->txb_size;
1250 sc->txb_count = 0;
1251 sc->txb_sched = 0;
1252
1253 /* Call a hook. */
1254 if (sc->init)
1255 sc->init(sc);
1256
1257 #if FE_DEBUG >= 3
1258 log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1259 fe_dump(LOG_INFO, sc);
1260 #endif
1261
1262 /*
1263 * Make sure to disable the chip, also.
1264 * This may also help re-programming the chip after
1265 * hot insertion of PCMCIAs.
1266 */
1267 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1268
1269 /* Power up the chip and select register bank for DLCRs. */
1270 delay(200);
1271 outb(sc->sc_iobase + FE_DLCR7,
1272 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1273 delay(200);
1274
1275 /* Feed the station address. */
1276 outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1277
1278 /* Select the BMPR bank for runtime register access. */
1279 outb(sc->sc_iobase + FE_DLCR7,
1280 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1281
1282 /* Initialize registers. */
1283 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1284 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1285 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1286 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1287 outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1288 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1289 outb(sc->sc_iobase + FE_BMPR10, 0x00);
1290 outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1291 outb(sc->sc_iobase + FE_BMPR12, 0x00);
1292 outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1293 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1294 outb(sc->sc_iobase + FE_BMPR15, 0x00);
1295
1296 #if FE_DEBUG >= 3
1297 log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1298 fe_dump(LOG_INFO, sc);
1299 #endif
1300
1301 /* Enable interrupts. */
1302 outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1303 outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1304
1305 /* Enable transmitter and receiver. */
1306 delay(200);
1307 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1308 delay(200);
1309
1310 #if FE_DEBUG >= 3
1311 log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1312 fe_dump(LOG_INFO, sc);
1313 #endif
1314
1315 /*
1316 * Make sure to empty the receive buffer.
1317 *
1318 * This may be redundant, but *if* the receive buffer were full
1319 * at this point, the driver would hang. I have experienced
1320 * some strange hangups just after UP. I hope the following
1321 * code solve the problem.
1322 *
1323 * I have changed the order of hardware initialization.
1324 * I think the receive buffer cannot have any packets at this
1325 * point in this version. The following code *must* be
1326 * redundant now. FIXME.
1327 */
1328 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1329 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1330 break;
1331 fe_droppacket(sc);
1332 }
1333 #if FE_DEBUG >= 1
1334 if (i >= FE_MAX_RECV_COUNT) {
1335 log(LOG_ERR, "%s: cannot empty receive buffer\n",
1336 sc->sc_dev.dv_xname);
1337 }
1338 #endif
1339 #if FE_DEBUG >= 3
1340 if (i < FE_MAX_RECV_COUNT) {
1341 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1342 sc->sc_dev.dv_xname, i);
1343 }
1344 #endif
1345
1346 #if FE_DEBUG >= 3
1347 log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1348 fe_dump(LOG_INFO, sc);
1349 #endif
1350
1351 /* Do we need this here? */
1352 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1353 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1354
1355 #if FE_DEBUG >= 3
1356 log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1357 fe_dump(LOG_INFO, sc);
1358 #endif
1359
1360 /* Set 'running' flag. */
1361 ifp->if_flags |= IFF_RUNNING;
1362
1363 /*
1364 * At this point, the interface is runnung properly,
1365 * except that it receives *no* packets. we then call
1366 * fe_setmode() to tell the chip what packets to be
1367 * received, based on the if_flags and multicast group
1368 * list. It completes the initialization process.
1369 */
1370 fe_setmode(sc);
1371
1372 #if FE_DEBUG >= 3
1373 log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1374 fe_dump(LOG_INFO, sc);
1375 #endif
1376
1377 /* ...and attempt to start output. */
1378 fe_start(ifp);
1379
1380 #if FE_DEBUG >= 3
1381 log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1382 fe_dump(LOG_INFO, sc);
1383 #endif
1384 }
1385
1386 /*
1387 * This routine actually starts the transmission on the interface
1388 */
1389 static inline void
1390 fe_xmit(sc)
1391 struct fe_softc *sc;
1392 {
1393
1394 /*
1395 * Set a timer just in case we never hear from the board again.
1396 * We use longer timeout for multiple packet transmission.
1397 * I'm not sure this timer value is appropriate. FIXME.
1398 */
1399 sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1400
1401 /* Update txb variables. */
1402 sc->txb_sched = sc->txb_count;
1403 sc->txb_count = 0;
1404 sc->txb_free = sc->txb_size;
1405
1406 #if FE_DELAYED_PADDING
1407 /* Omit the postponed padding process. */
1408 sc->txb_padding = 0;
1409 #endif
1410
1411 /* Start transmitter, passing packets in TX buffer. */
1412 outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1413 }
1414
1415 /*
1416 * Start output on interface.
1417 * We make two assumptions here:
1418 * 1) that the current priority is set to splnet _before_ this code
1419 * is called *and* is returned to the appropriate priority after
1420 * return
1421 * 2) that the IFF_OACTIVE flag is checked before this code is called
1422 * (i.e. that the output part of the interface is idle)
1423 */
1424 void
1425 fe_start(ifp)
1426 struct ifnet *ifp;
1427 {
1428 struct fe_softc *sc = ifp->if_softc;
1429 struct mbuf *m;
1430
1431 #if FE_DEBUG >= 1
1432 /* Just a sanity check. */
1433 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1434 /*
1435 * Txb_count and txb_free co-works to manage the
1436 * transmission buffer. Txb_count keeps track of the
1437 * used potion of the buffer, while txb_free does unused
1438 * potion. So, as long as the driver runs properly,
1439 * txb_count is zero if and only if txb_free is same
1440 * as txb_size (which represents whole buffer.)
1441 */
1442 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1443 sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1444 /*
1445 * So, what should I do, then?
1446 *
1447 * We now know txb_count and txb_free contradicts. We
1448 * cannot, however, tell which is wrong. More
1449 * over, we cannot peek 86960 transmission buffer or
1450 * reset the transmission buffer. (In fact, we can
1451 * reset the entire interface. I don't want to do it.)
1452 *
1453 * If txb_count is incorrect, leaving it as is will cause
1454 * sending of gabages after next interrupt. We have to
1455 * avoid it. Hence, we reset the txb_count here. If
1456 * txb_free was incorrect, resetting txb_count just loose
1457 * some packets. We can live with it.
1458 */
1459 sc->txb_count = 0;
1460 }
1461 #endif
1462
1463 #if FE_DEBUG >= 1
1464 /*
1465 * First, see if there are buffered packets and an idle
1466 * transmitter - should never happen at this point.
1467 */
1468 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1469 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1470 sc->sc_dev.dv_xname, sc->txb_count);
1471 fe_xmit(sc);
1472 }
1473 #endif
1474
1475 /*
1476 * Stop accepting more transmission packets temporarily, when
1477 * a filter change request is delayed. Updating the MARs on
1478 * 86960 flushes the transmisstion buffer, so it is delayed
1479 * until all buffered transmission packets have been sent
1480 * out.
1481 */
1482 if (sc->filter_change) {
1483 /*
1484 * Filter change requst is delayed only when the DLC is
1485 * working. DLC soon raise an interrupt after finishing
1486 * the work.
1487 */
1488 goto indicate_active;
1489 }
1490
1491 for (;;) {
1492 /*
1493 * See if there is room to put another packet in the buffer.
1494 * We *could* do better job by peeking the send queue to
1495 * know the length of the next packet. Current version just
1496 * tests against the worst case (i.e., longest packet). FIXME.
1497 *
1498 * When adding the packet-peek feature, don't forget adding a
1499 * test on txb_count against QUEUEING_MAX.
1500 * There is a little chance the packet count exceeds
1501 * the limit. Assume transmission buffer is 8KB (2x8KB
1502 * configuration) and an application sends a bunch of small
1503 * (i.e., minimum packet sized) packets rapidly. An 8KB
1504 * buffer can hold 130 blocks of 62 bytes long...
1505 */
1506 if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1507 /* No room. */
1508 goto indicate_active;
1509 }
1510
1511 #if FE_SINGLE_TRANSMISSION
1512 if (sc->txb_count > 0) {
1513 /* Just one packet per a transmission buffer. */
1514 goto indicate_active;
1515 }
1516 #endif
1517
1518 /*
1519 * Get the next mbuf chain for a packet to send.
1520 */
1521 IF_DEQUEUE(&ifp->if_snd, m);
1522 if (m == 0) {
1523 /* No more packets to send. */
1524 goto indicate_inactive;
1525 }
1526
1527 #if NBPFILTER > 0
1528 /* Tap off here if there is a BPF listener. */
1529 if (ifp->if_bpf)
1530 bpf_mtap(ifp->if_bpf, m);
1531 #endif
1532
1533 /*
1534 * Copy the mbuf chain into the transmission buffer.
1535 * txb_* variables are updated as necessary.
1536 */
1537 fe_write_mbufs(sc, m);
1538
1539 m_freem(m);
1540
1541 /* Start transmitter if it's idle. */
1542 if (sc->txb_sched == 0)
1543 fe_xmit(sc);
1544 }
1545
1546 indicate_inactive:
1547 /*
1548 * We are using the !OACTIVE flag to indicate to
1549 * the outside world that we can accept an
1550 * additional packet rather than that the
1551 * transmitter is _actually_ active. Indeed, the
1552 * transmitter may be active, but if we haven't
1553 * filled all the buffers with data then we still
1554 * want to accept more.
1555 */
1556 ifp->if_flags &= ~IFF_OACTIVE;
1557 return;
1558
1559 indicate_active:
1560 /*
1561 * The transmitter is active, and there are no room for
1562 * more outgoing packets in the transmission buffer.
1563 */
1564 ifp->if_flags |= IFF_OACTIVE;
1565 return;
1566 }
1567
1568 /*
1569 * Transmission interrupt handler
1570 * The control flow of this function looks silly. FIXME.
1571 */
1572 void
1573 fe_tint(sc, tstat)
1574 struct fe_softc *sc;
1575 u_char tstat;
1576 {
1577 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1578 int left;
1579 int col;
1580
1581 /*
1582 * Handle "excessive collision" interrupt.
1583 */
1584 if (tstat & FE_D0_COLL16) {
1585 /*
1586 * Find how many packets (including this collided one)
1587 * are left unsent in transmission buffer.
1588 */
1589 left = inb(sc->sc_iobase + FE_BMPR10);
1590
1591 #if FE_DEBUG >= 2
1592 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1593 sc->sc_dev.dv_xname, left, sc->txb_sched);
1594 #endif
1595 #if FE_DEBUG >= 3
1596 fe_dump(LOG_INFO, sc);
1597 #endif
1598
1599 /*
1600 * Update statistics.
1601 */
1602 ifp->if_collisions += 16;
1603 ifp->if_oerrors++;
1604 ifp->if_opackets += sc->txb_sched - left;
1605
1606 /*
1607 * Collision statistics has been updated.
1608 * Clear the collision flag on 86960 now to avoid confusion.
1609 */
1610 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1611
1612 /*
1613 * Restart transmitter, skipping the
1614 * collided packet.
1615 *
1616 * We *must* skip the packet to keep network running
1617 * properly. Excessive collision error is an
1618 * indication of the network overload. If we
1619 * tried sending the same packet after excessive
1620 * collision, the network would be filled with
1621 * out-of-time packets. Packets belonging
1622 * to reliable transport (such as TCP) are resent
1623 * by some upper layer.
1624 */
1625 outb(sc->sc_iobase + FE_BMPR11,
1626 FE_B11_CTRL_SKIP | FE_B11_MODE1);
1627 sc->txb_sched = left - 1;
1628 }
1629
1630 /*
1631 * Handle "transmission complete" interrupt.
1632 */
1633 if (tstat & FE_D0_TXDONE) {
1634 /*
1635 * Add in total number of collisions on last
1636 * transmission. We also clear "collision occurred" flag
1637 * here.
1638 *
1639 * 86960 has a design flow on collision count on multiple
1640 * packet transmission. When we send two or more packets
1641 * with one start command (that's what we do when the
1642 * transmission queue is clauded), 86960 informs us number
1643 * of collisions occured on the last packet on the
1644 * transmission only. Number of collisions on previous
1645 * packets are lost. I have told that the fact is clearly
1646 * stated in the Fujitsu document.
1647 *
1648 * I considered not to mind it seriously. Collision
1649 * count is not so important, anyway. Any comments? FIXME.
1650 */
1651
1652 if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1653 /* Clear collision flag. */
1654 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1655
1656 /* Extract collision count from 86960. */
1657 col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1658 if (col == 0) {
1659 /*
1660 * Status register indicates collisions,
1661 * while the collision count is zero.
1662 * This can happen after multiple packet
1663 * transmission, indicating that one or more
1664 * previous packet(s) had been collided.
1665 *
1666 * Since the accurate number of collisions
1667 * has been lost, we just guess it as 1;
1668 * Am I too optimistic? FIXME.
1669 */
1670 col = 1;
1671 } else
1672 col >>= FE_D4_COL_SHIFT;
1673 ifp->if_collisions += col;
1674 #if FE_DEBUG >= 4
1675 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1676 sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1677 sc->txb_sched);
1678 #endif
1679 }
1680
1681 /*
1682 * Update total number of successfully
1683 * transmitted packets.
1684 */
1685 ifp->if_opackets += sc->txb_sched;
1686 sc->txb_sched = 0;
1687 }
1688
1689 if (sc->txb_sched == 0) {
1690 /*
1691 * The transmitter is no more active.
1692 * Reset output active flag and watchdog timer.
1693 */
1694 ifp->if_flags &= ~IFF_OACTIVE;
1695 ifp->if_timer = 0;
1696
1697 /*
1698 * If more data is ready to transmit in the buffer, start
1699 * transmitting them. Otherwise keep transmitter idle,
1700 * even if more data is queued. This gives receive
1701 * process a slight priority.
1702 */
1703 if (sc->txb_count > 0)
1704 fe_xmit(sc);
1705 }
1706 }
1707
1708 /*
1709 * Ethernet interface receiver interrupt.
1710 */
1711 void
1712 fe_rint(sc, rstat)
1713 struct fe_softc *sc;
1714 u_char rstat;
1715 {
1716 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1717 int len;
1718 u_char status;
1719 int i;
1720
1721 /*
1722 * Update statistics if this interrupt is caused by an error.
1723 */
1724 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1725 FE_D1_ALGERR | FE_D1_SRTPKT)) {
1726 #if FE_DEBUG >= 3
1727 log(LOG_WARNING, "%s: receive error: %b\n",
1728 sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1729 #endif
1730 ifp->if_ierrors++;
1731 }
1732
1733 /*
1734 * MB86960 has a flag indicating "receive queue empty."
1735 * We just loop cheking the flag to pull out all received
1736 * packets.
1737 *
1738 * We limit the number of iterrations to avoid infinite loop.
1739 * It can be caused by a very slow CPU (some broken
1740 * peripheral may insert incredible number of wait cycles)
1741 * or, worse, by a broken MB86960 chip.
1742 */
1743 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1744 /* Stop the iterration if 86960 indicates no packets. */
1745 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1746 break;
1747
1748 /*
1749 * Extract A receive status byte.
1750 * As our 86960 is in 16 bit bus access mode, we have to
1751 * use inw() to get the status byte. The significant
1752 * value is returned in lower 8 bits.
1753 */
1754 status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1755 #if FE_DEBUG >= 4
1756 log(LOG_INFO, "%s: receive status = %02x\n",
1757 sc->sc_dev.dv_xname, status);
1758 #endif
1759
1760 /*
1761 * If there was an error, update statistics and drop
1762 * the packet, unless the interface is in promiscuous
1763 * mode.
1764 */
1765 if ((status & 0xF0) != 0x20) { /* XXXX ? */
1766 if ((ifp->if_flags & IFF_PROMISC) == 0) {
1767 ifp->if_ierrors++;
1768 fe_droppacket(sc);
1769 continue;
1770 }
1771 }
1772
1773 /*
1774 * Extract the packet length.
1775 * It is a sum of a header (14 bytes) and a payload.
1776 * CRC has been stripped off by the 86960.
1777 */
1778 len = inw(sc->sc_iobase + FE_BMPR8);
1779
1780 /*
1781 * MB86965 checks the packet length and drop big packet
1782 * before passing it to us. There are no chance we can
1783 * get [crufty] packets. Hence, if the length exceeds
1784 * the specified limit, it means some serious failure,
1785 * such as out-of-sync on receive buffer management.
1786 *
1787 * Is this statement true? FIXME.
1788 */
1789 if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1790 #if FE_DEBUG >= 2
1791 log(LOG_WARNING,
1792 "%s: received a %s packet? (%u bytes)\n",
1793 sc->sc_dev.dv_xname,
1794 len < ETHER_HDR_SIZE ? "partial" : "big", len);
1795 #endif
1796 ifp->if_ierrors++;
1797 fe_droppacket(sc);
1798 continue;
1799 }
1800
1801 /*
1802 * Check for a short (RUNT) packet. We *do* check
1803 * but do nothing other than print a message.
1804 * Short packets are illegal, but does nothing bad
1805 * if it carries data for upper layer.
1806 */
1807 #if FE_DEBUG >= 2
1808 if (len < ETHER_MIN_LEN) {
1809 log(LOG_WARNING,
1810 "%s: received a short packet? (%u bytes)\n",
1811 sc->sc_dev.dv_xname, len);
1812 }
1813 #endif
1814
1815 /*
1816 * Go get a packet.
1817 */
1818 if (!fe_get_packet(sc, len)) {
1819 /* Skip a packet, updating statistics. */
1820 #if FE_DEBUG >= 2
1821 log(LOG_WARNING,
1822 "%s: out of mbufs; dropping packet (%u bytes)\n",
1823 sc->sc_dev.dv_xname, len);
1824 #endif
1825 ifp->if_ierrors++;
1826 fe_droppacket(sc);
1827
1828 /*
1829 * We stop receiving packets, even if there are
1830 * more in the buffer. We hope we can get more
1831 * mbufs next time.
1832 */
1833 return;
1834 }
1835
1836 /* Successfully received a packet. Update stat. */
1837 ifp->if_ipackets++;
1838 }
1839 }
1840
1841 /*
1842 * Ethernet interface interrupt processor
1843 */
1844 int
1845 feintr(arg)
1846 void *arg;
1847 {
1848 struct fe_softc *sc = arg;
1849 u_char tstat, rstat;
1850
1851 #if FE_DEBUG >= 4
1852 log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1853 fe_dump(LOG_INFO, sc);
1854 #endif
1855
1856 /*
1857 * Get interrupt conditions, masking unneeded flags.
1858 */
1859 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1860 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1861 if (tstat == 0 && rstat == 0)
1862 return (0);
1863
1864 /*
1865 * Loop until there are no more new interrupt conditions.
1866 */
1867 for (;;) {
1868 /*
1869 * Reset the conditions we are acknowledging.
1870 */
1871 outb(sc->sc_iobase + FE_DLCR0, tstat);
1872 outb(sc->sc_iobase + FE_DLCR1, rstat);
1873
1874 /*
1875 * Handle transmitter interrupts. Handle these first because
1876 * the receiver will reset the board under some conditions.
1877 */
1878 if (tstat != 0)
1879 fe_tint(sc, tstat);
1880
1881 /*
1882 * Handle receiver interrupts.
1883 */
1884 if (rstat != 0)
1885 fe_rint(sc, rstat);
1886
1887 /*
1888 * Update the multicast address filter if it is
1889 * needed and possible. We do it now, because
1890 * we can make sure the transmission buffer is empty,
1891 * and there is a good chance that the receive queue
1892 * is empty. It will minimize the possibility of
1893 * packet lossage.
1894 */
1895 if (sc->filter_change &&
1896 sc->txb_count == 0 && sc->txb_sched == 0) {
1897 fe_loadmar(sc);
1898 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1899 }
1900
1901 /*
1902 * If it looks like the transmitter can take more data,
1903 * attempt to start output on the interface. This is done
1904 * after handling the receiver interrupt to give the
1905 * receive operation priority.
1906 */
1907 if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1908 fe_start(&sc->sc_arpcom.ac_if);
1909
1910 /*
1911 * Get interrupt conditions, masking unneeded flags.
1912 */
1913 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1914 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1915 if (tstat == 0 && rstat == 0)
1916 return (1);
1917 }
1918 }
1919
1920 /*
1921 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1922 */
1923 int
1924 fe_ioctl(ifp, command, data)
1925 register struct ifnet *ifp;
1926 u_long command;
1927 caddr_t data;
1928 {
1929 struct fe_softc *sc = ifp->if_softc;
1930 register struct ifaddr *ifa = (struct ifaddr *)data;
1931 struct ifreq *ifr = (struct ifreq *)data;
1932 int s, error = 0;
1933
1934 #if FE_DEBUG >= 3
1935 log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1936 #endif
1937
1938 s = splnet();
1939
1940 switch (command) {
1941
1942 case SIOCSIFADDR:
1943 ifp->if_flags |= IFF_UP;
1944
1945 switch (ifa->ifa_addr->sa_family) {
1946 #ifdef INET
1947 case AF_INET:
1948 fe_init(sc);
1949 arp_ifinit(&sc->sc_arpcom, ifa);
1950 break;
1951 #endif
1952 #ifdef NS
1953 case AF_NS:
1954 {
1955 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1956
1957 if (ns_nullhost(*ina))
1958 ina->x_host =
1959 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1960 else
1961 bcopy(ina->x_host.c_host,
1962 sc->sc_arpcom.ac_enaddr,
1963 sizeof(sc->sc_arpcom.ac_enaddr));
1964 /* Set new address. */
1965 fe_init(sc);
1966 break;
1967 }
1968 #endif
1969 default:
1970 fe_init(sc);
1971 break;
1972 }
1973 break;
1974
1975 case SIOCSIFFLAGS:
1976 if ((ifp->if_flags & IFF_UP) == 0 &&
1977 (ifp->if_flags & IFF_RUNNING) != 0) {
1978 /*
1979 * If interface is marked down and it is running, then
1980 * stop it.
1981 */
1982 fe_stop(sc);
1983 ifp->if_flags &= ~IFF_RUNNING;
1984 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1985 (ifp->if_flags & IFF_RUNNING) == 0) {
1986 /*
1987 * If interface is marked up and it is stopped, then
1988 * start it.
1989 */
1990 fe_init(sc);
1991 } else {
1992 /*
1993 * Reset the interface to pick up changes in any other
1994 * flags that affect hardware registers.
1995 */
1996 fe_setmode(sc);
1997 }
1998 #if DEBUG >= 1
1999 /* "ifconfig fe0 debug" to print register dump. */
2000 if (ifp->if_flags & IFF_DEBUG) {
2001 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2002 fe_dump(LOG_DEBUG, sc);
2003 }
2004 #endif
2005 break;
2006
2007 case SIOCADDMULTI:
2008 case SIOCDELMULTI:
2009 /* Update our multicast list. */
2010 error = (command == SIOCADDMULTI) ?
2011 ether_addmulti(ifr, &sc->sc_arpcom) :
2012 ether_delmulti(ifr, &sc->sc_arpcom);
2013
2014 if (error == ENETRESET) {
2015 /*
2016 * Multicast list has changed; set the hardware filter
2017 * accordingly.
2018 */
2019 fe_setmode(sc);
2020 error = 0;
2021 }
2022 break;
2023
2024 default:
2025 error = EINVAL;
2026 }
2027
2028 splx(s);
2029 return (error);
2030 }
2031
2032 /*
2033 * Retreive packet from receive buffer and send to the next level up via
2034 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2035 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2036 */
2037 int
2038 fe_get_packet(sc, len)
2039 struct fe_softc *sc;
2040 int len;
2041 {
2042 struct ether_header *eh;
2043 struct mbuf *m;
2044 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2045
2046 /* Allocate a header mbuf. */
2047 MGETHDR(m, M_DONTWAIT, MT_DATA);
2048 if (m == 0)
2049 return (0);
2050 m->m_pkthdr.rcvif = ifp;
2051 m->m_pkthdr.len = len;
2052
2053 /* The following silliness is to make NFS happy. */
2054 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
2055 #define EOFF (EROUND - sizeof(struct ether_header))
2056
2057 /*
2058 * Our strategy has one more problem. There is a policy on
2059 * mbuf cluster allocation. It says that we must have at
2060 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
2061 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2062 * our code violates the rule...
2063 * On the other hand, the current code is short, simle,
2064 * and fast, however. It does no harmful thing, just waists
2065 * some memory. Any comments? FIXME.
2066 */
2067
2068 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2069 if (len > MHLEN - EOFF) {
2070 MCLGET(m, M_DONTWAIT);
2071 if ((m->m_flags & M_EXT) == 0) {
2072 m_freem(m);
2073 return (0);
2074 }
2075 }
2076
2077 /*
2078 * The following assumes there is room for the ether header in the
2079 * header mbuf.
2080 */
2081 m->m_data += EOFF;
2082 eh = mtod(m, struct ether_header *);
2083
2084 /* Set the length of this packet. */
2085 m->m_len = len;
2086
2087 /* Get a packet. */
2088 insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2089
2090 #if NBPFILTER > 0
2091 /*
2092 * Check if there's a BPF listener on this interface. If so, hand off
2093 * the raw packet to bpf.
2094 */
2095 if (ifp->if_bpf) {
2096 bpf_mtap(ifp->if_bpf, m);
2097
2098 /*
2099 * Note that the interface cannot be in promiscuous mode if
2100 * there are no BPF listeners. And if we are in promiscuous
2101 * mode, we have to check if this packet is really ours.
2102 */
2103 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2104 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2105 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2106 sizeof(eh->ether_dhost)) != 0) {
2107 m_freem(m);
2108 return (1);
2109 }
2110 }
2111 #endif
2112
2113 /* Fix up data start offset in mbuf to point past ether header. */
2114 m_adj(m, sizeof(struct ether_header));
2115 ether_input(ifp, eh, m);
2116 return (1);
2117 }
2118
2119 /*
2120 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2121 * Returns number of bytes actually written, including length word.
2122 *
2123 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2124 * Packets shorter than Ethernet minimum are legal, and we pad them
2125 * before sending out. An exception is "partial" packets which are
2126 * shorter than mandatory Ethernet header.
2127 *
2128 * I wrote a code for an experimental "delayed padding" technique.
2129 * When employed, it postpones the padding process for short packets.
2130 * If xmit() occured at the moment, the padding process is omitted, and
2131 * garbages are sent as pad data. If next packet is stored in the
2132 * transmission buffer before xmit(), write_mbuf() pads the previous
2133 * packet before transmitting new packet. This *may* gain the
2134 * system performance (slightly).
2135 */
2136 void
2137 fe_write_mbufs(sc, m)
2138 struct fe_softc *sc;
2139 struct mbuf *m;
2140 {
2141 int bmpr8 = sc->sc_iobase + FE_BMPR8;
2142 struct mbuf *mp;
2143 u_char *data;
2144 u_short savebyte; /* WARNING: Architecture dependent! */
2145 int totlen, len, wantbyte;
2146
2147 #if FE_DELAYED_PADDING
2148 /* Do the "delayed padding." */
2149 len = sc->txb_padding >> 1;
2150 if (len > 0) {
2151 while (--len >= 0)
2152 outw(bmpr8, 0);
2153 sc->txb_padding = 0;
2154 }
2155 #endif
2156
2157 /* We need to use m->m_pkthdr.len, so require the header */
2158 if ((m->m_flags & M_PKTHDR) == 0)
2159 panic("fe_write_mbufs: no header mbuf");
2160
2161 #if FE_DEBUG >= 2
2162 /* First, count up the total number of bytes to copy. */
2163 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2164 totlen += mp->m_len;
2165 /* Check if this matches the one in the packet header. */
2166 if (totlen != m->m_pkthdr.len)
2167 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2168 sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2169 #else
2170 /* Just use the length value in the packet header. */
2171 totlen = m->m_pkthdr.len;
2172 #endif
2173
2174 #if FE_DEBUG >= 1
2175 /*
2176 * Should never send big packets. If such a packet is passed,
2177 * it should be a bug of upper layer. We just ignore it.
2178 * ... Partial (too short) packets, neither.
2179 */
2180 if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2181 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2182 sc->sc_dev.dv_xname,
2183 totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2184 sc->sc_arpcom.ac_if.if_oerrors++;
2185 return;
2186 }
2187 #endif
2188
2189 /*
2190 * Put the length word for this frame.
2191 * Does 86960 accept odd length? -- Yes.
2192 * Do we need to pad the length to minimum size by ourselves?
2193 * -- Generally yes. But for (or will be) the last
2194 * packet in the transmission buffer, we can skip the
2195 * padding process. It may gain performance slightly. FIXME.
2196 */
2197 outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2198
2199 /*
2200 * Update buffer status now.
2201 * Truncate the length up to an even number, since we use outw().
2202 */
2203 totlen = (totlen + 1) & ~1;
2204 sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2205 sc->txb_count++;
2206
2207 #if FE_DELAYED_PADDING
2208 /* Postpone the packet padding if necessary. */
2209 if (totlen < ETHER_MIN_LEN)
2210 sc->txb_padding = ETHER_MIN_LEN - totlen;
2211 #endif
2212
2213 /*
2214 * Transfer the data from mbuf chain to the transmission buffer.
2215 * MB86960 seems to require that data be transferred as words, and
2216 * only words. So that we require some extra code to patch
2217 * over odd-length mbufs.
2218 */
2219 wantbyte = 0;
2220 for (; m != 0; m = m->m_next) {
2221 /* Ignore empty mbuf. */
2222 len = m->m_len;
2223 if (len == 0)
2224 continue;
2225
2226 /* Find the actual data to send. */
2227 data = mtod(m, caddr_t);
2228
2229 /* Finish the last byte. */
2230 if (wantbyte) {
2231 outw(bmpr8, savebyte | (*data << 8));
2232 data++;
2233 len--;
2234 wantbyte = 0;
2235 }
2236
2237 /* Output contiguous words. */
2238 if (len > 1)
2239 outsw(bmpr8, data, len >> 1);
2240
2241 /* Save remaining byte, if there is one. */
2242 if (len & 1) {
2243 data += len & ~1;
2244 savebyte = *data;
2245 wantbyte = 1;
2246 }
2247 }
2248
2249 /* Spit the last byte, if the length is odd. */
2250 if (wantbyte)
2251 outw(bmpr8, savebyte);
2252
2253 #if ! FE_DELAYED_PADDING
2254 /*
2255 * Pad the packet to the minimum length if necessary.
2256 */
2257 len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2258 while (--len >= 0)
2259 outw(bmpr8, 0);
2260 #endif
2261 }
2262
2263 /*
2264 * Compute the multicast address filter from the
2265 * list of multicast addresses we need to listen to.
2266 */
2267 void
2268 fe_getmcaf(ac, af)
2269 struct arpcom *ac;
2270 u_char *af;
2271 {
2272 struct ifnet *ifp = &ac->ac_if;
2273 struct ether_multi *enm;
2274 register u_char *cp, c;
2275 register u_long crc;
2276 register int i, len;
2277 struct ether_multistep step;
2278
2279 /*
2280 * Set up multicast address filter by passing all multicast addresses
2281 * through a crc generator, and then using the high order 6 bits as an
2282 * index into the 64 bit logical address filter. The high order bit
2283 * selects the word, while the rest of the bits select the bit within
2284 * the word.
2285 */
2286
2287 if ((ifp->if_flags & IFF_PROMISC) != 0)
2288 goto allmulti;
2289
2290 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2291 ETHER_FIRST_MULTI(step, ac, enm);
2292 while (enm != NULL) {
2293 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2294 sizeof(enm->enm_addrlo)) != 0) {
2295 /*
2296 * We must listen to a range of multicast addresses.
2297 * For now, just accept all multicasts, rather than
2298 * trying to set only those filter bits needed to match
2299 * the range. (At this time, the only use of address
2300 * ranges is for IP multicast routing, for which the
2301 * range is big enough to require all bits set.)
2302 */
2303 goto allmulti;
2304 }
2305
2306 cp = enm->enm_addrlo;
2307 crc = 0xffffffff;
2308 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2309 c = *cp++;
2310 for (i = 8; --i >= 0;) {
2311 if ((crc & 0x01) ^ (c & 0x01)) {
2312 crc >>= 1;
2313 crc ^= 0xedb88320;
2314 } else
2315 crc >>= 1;
2316 c >>= 1;
2317 }
2318 }
2319 /* Just want the 6 most significant bits. */
2320 crc >>= 26;
2321
2322 /* Turn on the corresponding bit in the filter. */
2323 af[crc >> 3] |= 1 << (crc & 7);
2324
2325 ETHER_NEXT_MULTI(step, enm);
2326 }
2327 ifp->if_flags &= ~IFF_ALLMULTI;
2328 return;
2329
2330 allmulti:
2331 ifp->if_flags |= IFF_ALLMULTI;
2332 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2333 }
2334
2335 /*
2336 * Calculate a new "multicast packet filter" and put the 86960
2337 * receiver in appropriate mode.
2338 */
2339 void
2340 fe_setmode(sc)
2341 struct fe_softc *sc;
2342 {
2343 int flags = sc->sc_arpcom.ac_if.if_flags;
2344
2345 /*
2346 * If the interface is not running, we postpone the update
2347 * process for receive modes and multicast address filter
2348 * until the interface is restarted. It reduces some
2349 * complicated job on maintaining chip states. (Earlier versions
2350 * of this driver had a bug on that point...)
2351 *
2352 * To complete the trick, fe_init() calls fe_setmode() after
2353 * restarting the interface.
2354 */
2355 if ((flags & IFF_RUNNING) == 0)
2356 return;
2357
2358 /*
2359 * Promiscuous mode is handled separately.
2360 */
2361 if ((flags & IFF_PROMISC) != 0) {
2362 /*
2363 * Program 86960 to receive all packets on the segment
2364 * including those directed to other stations.
2365 * Multicast filter stored in MARs are ignored
2366 * under this setting, so we don't need to update it.
2367 *
2368 * Promiscuous mode is used solely by BPF, and BPF only
2369 * listens to valid (no error) packets. So, we ignore
2370 * errornous ones even in this mode.
2371 */
2372 outb(sc->sc_iobase + FE_DLCR5,
2373 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2374 sc->filter_change = 0;
2375
2376 #if FE_DEBUG >= 3
2377 log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2378 #endif
2379 return;
2380 }
2381
2382 /*
2383 * Turn the chip to the normal (non-promiscuous) mode.
2384 */
2385 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2386
2387 /*
2388 * Find the new multicast filter value.
2389 */
2390 fe_getmcaf(&sc->sc_arpcom, sc->filter);
2391 sc->filter_change = 1;
2392
2393 #if FE_DEBUG >= 3
2394 log(LOG_INFO,
2395 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2396 sc->sc_dev.dv_xname,
2397 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2398 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2399 #endif
2400
2401 /*
2402 * We have to update the multicast filter in the 86960, A.S.A.P.
2403 *
2404 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2405 * and receiver) must be stopped when feeding the filter, and
2406 * DLC trushes all packets in both transmission and receive
2407 * buffers when stopped.
2408 *
2409 * ... Are the above sentenses correct? I have to check the
2410 * manual of the MB86960A. FIXME.
2411 *
2412 * To reduce the packet lossage, we delay the filter update
2413 * process until buffers are empty.
2414 */
2415 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2416 (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2417 /*
2418 * Buffers are (apparently) empty. Load
2419 * the new filter value into MARs now.
2420 */
2421 fe_loadmar(sc);
2422 } else {
2423 /*
2424 * Buffers are not empty. Mark that we have to update
2425 * the MARs. The new filter will be loaded by feintr()
2426 * later.
2427 */
2428 #if FE_DEBUG >= 4
2429 log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2430 #endif
2431 }
2432 }
2433
2434 /*
2435 * Load a new multicast address filter into MARs.
2436 *
2437 * The caller must have splnet'ed befor fe_loadmar.
2438 * This function starts the DLC upon return. So it can be called only
2439 * when the chip is working, i.e., from the driver's point of view, when
2440 * a device is RUNNING. (I mistook the point in previous versions.)
2441 */
2442 void
2443 fe_loadmar(sc)
2444 struct fe_softc *sc;
2445 {
2446
2447 /* Stop the DLC (transmitter and receiver). */
2448 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2449
2450 /* Select register bank 1 for MARs. */
2451 outb(sc->sc_iobase + FE_DLCR7,
2452 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2453
2454 /* Copy filter value into the registers. */
2455 outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2456
2457 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
2458 outb(sc->sc_iobase + FE_DLCR7,
2459 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2460
2461 /* Restart the DLC. */
2462 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2463
2464 /* We have just updated the filter. */
2465 sc->filter_change = 0;
2466
2467 #if FE_DEBUG >= 3
2468 log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2469 #endif
2470 }
2471
2472 #if FE_DEBUG >= 1
2473 void
2474 fe_dump(level, sc)
2475 int level;
2476 struct fe_softc *sc;
2477 {
2478 int iobase = sc->sc_iobase;
2479 u_char save_dlcr7;
2480
2481 save_dlcr7 = inb(iobase + FE_DLCR7);
2482
2483 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2484 inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
2485 inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
2486 inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
2487 inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
2488
2489 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2490 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
2491 inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
2492 inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2493 inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2494 inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2495
2496 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2497 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
2498 inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
2499 inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
2500 inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
2501 inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
2502
2503 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2504 log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2505 inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2506 inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2507 inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2508 inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2509 inb(iobase + FE_BMPR19));
2510
2511 outb(iobase + FE_DLCR7, save_dlcr7);
2512 }
2513 #endif
2514