if_ate.c revision 1.16 1 /*
2 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3 *
4 * This software may be used, modified, copied, distributed, and sold, in
5 * both source and binary form provided that the above copyright, these
6 * terms and the following disclaimer are retained. The name of the author
7 * and/or the contributor may not be used to endorse or promote products
8 * derived from this software without specific prior written permission.
9 *
10 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20 * SUCH DAMAGE.
21 */
22
23 /*
24 * Portions copyright (C) 1993, David Greenman. This software may be used,
25 * modified, copied, distributed, and sold, in both source and binary form
26 * provided that the above copyright and these terms are retained. Under no
27 * circumstances is the author responsible for the proper functioning of this
28 * software, nor does the author assume any responsibility for damages
29 * incurred with its use.
30 */
31
32 #define FE_VERSION "if_fe.c ver. 0.8"
33
34 /*
35 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
37 *
38 * This version is intended to be a generic template for various
39 * MB86960A/MB86965A based Ethernet cards. It currently supports
40 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41 * Telesis AT1700 series and RE2000 series. There are some
42 * unnecessary hooks embedded, which are primarily intended to support
43 * other types of Ethernet cards, but the author is not sure whether
44 * they are useful.
45 */
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80
81 #include <machine/cpu.h>
82 #include <machine/intr.h>
83 #include <machine/pio.h>
84
85 #include <dev/isa/isareg.h>
86 #include <dev/isa/isavar.h>
87 #include <dev/ic/mb86960reg.h>
88 #include <dev/isa/if_fereg.h>
89
90 /*
91 * Default settings for fe driver specific options.
92 * They can be set in config file by "options" statements.
93 */
94
95 /*
96 * Debug control.
97 * 0: No debug at all. All debug specific codes are stripped off.
98 * 1: Silent. No debug messages are logged except emergent ones.
99 * 2: Brief. Lair events and/or important information are logged.
100 * 3: Detailed. Logs all information which *may* be useful for debugging.
101 * 4: Trace. All actions in the driver is logged. Super verbose.
102 */
103 #ifndef FE_DEBUG
104 #define FE_DEBUG 1
105 #endif
106
107 /*
108 * Delay padding of short transmission packets to minimum Ethernet size.
109 * This may or may not gain performance. An EXPERIMENTAL option.
110 */
111 #ifndef FE_DELAYED_PADDING
112 #define FE_DELAYED_PADDING 0
113 #endif
114
115 /*
116 * Transmit just one packet per a "send" command to 86960.
117 * This option is intended for performance test. An EXPERIMENTAL option.
118 */
119 #ifndef FE_SINGLE_TRANSMISSION
120 #define FE_SINGLE_TRANSMISSION 0
121 #endif
122
123 /*
124 * Device configuration flags.
125 */
126
127 /* DLCR6 settings. */
128 #define FE_FLAGS_DLCR6_VALUE 0x007F
129
130 /* Force DLCR6 override. */
131 #define FE_FLAGS_OVERRIDE_DLCR6 0x0080
132
133 /* A cludge for PCMCIA support. */
134 #define FE_FLAGS_PCMCIA 0x8000
135
136 /* Identification of the driver version. */
137 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
138
139 /*
140 * Supported hardware (Ethernet card) types
141 * This information is currently used only for debugging
142 */
143 enum fe_type {
144 /* For cards which are successfully probed but not identified. */
145 FE_TYPE_UNKNOWN,
146
147 /* Fujitsu FMV-180 series. */
148 FE_TYPE_FMV181,
149 FE_TYPE_FMV182,
150
151 /* Allied-Telesis AT1700 series and RE2000 series. */
152 FE_TYPE_AT1700T,
153 FE_TYPE_AT1700BT,
154 FE_TYPE_AT1700FT,
155 FE_TYPE_AT1700AT,
156 FE_TYPE_RE2000,
157
158 /* PCMCIA by Fujitsu. */
159 FE_TYPE_MBH10302,
160 FE_TYPE_MBH10304,
161 };
162
163 /*
164 * fe_softc: per line info and status
165 */
166 struct fe_softc {
167 struct device sc_dev;
168 void *sc_ih;
169
170 struct arpcom sc_arpcom; /* ethernet common */
171
172 /* Set by probe() and not modified in later phases. */
173 enum fe_type type; /* interface type code */
174 char *typestr; /* printable name of the interface. */
175 int sc_iobase; /* MB86960A I/O base address */
176
177 u_char proto_dlcr4; /* DLCR4 prototype. */
178 u_char proto_dlcr5; /* DLCR5 prototype. */
179 u_char proto_dlcr6; /* DLCR6 prototype. */
180 u_char proto_dlcr7; /* DLCR7 prototype. */
181 u_char proto_bmpr13; /* BMPR13 prototype. */
182
183 /* Vendor specific hooks. */
184 void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
185 void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
186
187 /* Transmission buffer management. */
188 u_short txb_size; /* total bytes in TX buffer */
189 u_short txb_free; /* free bytes in TX buffer */
190 u_char txb_count; /* number of packets in TX buffer */
191 u_char txb_sched; /* number of scheduled packets */
192 u_char txb_padding; /* number of delayed padding bytes */
193
194 /* Multicast address filter management. */
195 u_char filter_change; /* MARs must be changed ASAP. */
196 u_char filter[FE_FILTER_LEN]; /* new filter value. */
197 };
198
199 /* Frequently accessed members in arpcom. */
200 #define sc_enaddr sc_arpcom.ac_enaddr
201
202 /* Standard driver entry points. These can be static. */
203 int feprobe __P((struct device *, void *, void *));
204 void feattach __P((struct device *, struct device *, void *));
205 int feintr __P((void *));
206 void fe_init __P((struct fe_softc *));
207 int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
208 void fe_start __P((struct ifnet *));
209 void fe_reset __P((struct fe_softc *));
210 void fe_watchdog __P((struct ifnet *));
211
212 /* Local functions. Order of declaration is confused. FIXME. */
213 int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
214 int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
215 int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
216 void fe_read_eeprom __P((struct fe_softc *, u_char *));
217 void fe_init_mbh __P((struct fe_softc *));
218 int fe_get_packet __P((struct fe_softc *, int));
219 void fe_stop __P((struct fe_softc *));
220 void fe_tint __P((struct fe_softc *, u_char));
221 void fe_rint __P((struct fe_softc *, u_char));
222 static inline
223 void fe_xmit __P((struct fe_softc *));
224 void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
225 static inline
226 void fe_droppacket __P((struct fe_softc *));
227 void fe_getmcaf __P((struct arpcom *, u_char *));
228 void fe_setmode __P((struct fe_softc *));
229 void fe_loadmar __P((struct fe_softc *));
230 #if FE_DEBUG >= 1
231 void fe_dump __P((int, struct fe_softc *));
232 #endif
233
234 struct cfattach fe_ca = {
235 sizeof(struct fe_softc), feprobe, feattach
236 };
237
238 struct cfdriver fe_cd = {
239 NULL, "fe", DV_IFNET
240 };
241
242 /* Ethernet constants. To be defined in if_ehter.h? FIXME. */
243 #define ETHER_MIN_LEN 60 /* with header, without CRC. */
244 #define ETHER_MAX_LEN 1514 /* with header, without CRC. */
245 #define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
246 #define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
247
248 /*
249 * Fe driver specific constants which relate to 86960/86965.
250 */
251
252 /* Interrupt masks. */
253 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
254 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
255 FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
256
257 /* Maximum number of iterrations for a receive interrupt. */
258 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
259 /* Maximum size of SRAM is 65536,
260 * minimum size of transmission buffer in fe is 2x2KB,
261 * and minimum amount of received packet including headers
262 * added by the chip is 64 bytes.
263 * Hence FE_MAX_RECV_COUNT is the upper limit for number
264 * of packets in the receive buffer. */
265
266 /*
267 * Convenient routines to access contiguous I/O ports.
268 */
269
270 static inline void
271 inblk (int addr, u_char * mem, int len)
272 {
273 while (--len >= 0) {
274 *mem++ = inb(addr++);
275 }
276 }
277
278 static inline void
279 outblk (int addr, u_char const * mem, int len)
280 {
281 while (--len >= 0) {
282 outb(addr++, *mem++);
283 }
284 }
285
286 /*
287 * Hardware probe routines.
288 */
289
290 /*
291 * Determine if the device is present.
292 */
293 int
294 feprobe(parent, match, aux)
295 struct device *parent;
296 void *match, *aux;
297 {
298 struct fe_softc *sc = match;
299 struct isa_attach_args *ia = aux;
300
301 #if FE_DEBUG >= 2
302 log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
303 #endif
304
305 /* Probe an address. */
306 sc->sc_iobase = ia->ia_iobase;
307
308 if (fe_probe_fmv(sc, ia))
309 return (1);
310 if (fe_probe_ati(sc, ia))
311 return (1);
312 if (fe_probe_mbh(sc, ia))
313 return (1);
314 return (0);
315 }
316
317 /*
318 * Check for specific bits in specific registers have specific values.
319 */
320 struct fe_simple_probe_struct {
321 u_char port; /* Offset from the base I/O address. */
322 u_char mask; /* Bits to be checked. */
323 u_char bits; /* Values to be compared against. */
324 };
325
326 static inline int
327 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
328 {
329 struct fe_simple_probe_struct const * p;
330
331 for (p = sp; p->mask != 0; p++) {
332 if ((inb(addr + p->port) & p->mask) != p->bits) {
333 return (0);
334 }
335 }
336 return (1);
337 }
338
339 /*
340 * Routines to read all bytes from the config EEPROM through MB86965A.
341 * I'm not sure what exactly I'm doing here... I was told just to follow
342 * the steps, and it worked. Could someone tell me why the following
343 * code works? (Or, why all similar codes I tried previously doesn't
344 * work.) FIXME.
345 */
346
347 static inline void
348 strobe (int bmpr16)
349 {
350 /*
351 * Output same value twice. To speed-down execution?
352 */
353 outb(bmpr16, FE_B16_SELECT);
354 outb(bmpr16, FE_B16_SELECT);
355 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
356 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
357 outb(bmpr16, FE_B16_SELECT);
358 outb(bmpr16, FE_B16_SELECT);
359 }
360
361 void
362 fe_read_eeprom(sc, data)
363 struct fe_softc *sc;
364 u_char *data;
365 {
366 int iobase = sc->sc_iobase;
367 int bmpr16 = iobase + FE_BMPR16;
368 int bmpr17 = iobase + FE_BMPR17;
369 u_char n, val, bit;
370
371 /* Read bytes from EEPROM; two bytes per an iterration. */
372 for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
373 /* Reset the EEPROM interface. */
374 outb(bmpr16, 0x00);
375 outb(bmpr17, 0x00);
376 outb(bmpr16, FE_B16_SELECT);
377
378 /* Start EEPROM access. */
379 outb(bmpr17, FE_B17_DATA);
380 strobe(bmpr16);
381
382 /* Pass the iterration count to the chip. */
383 val = 0x80 | n;
384 for (bit = 0x80; bit != 0x00; bit >>= 1) {
385 outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
386 strobe(bmpr16);
387 }
388 outb(bmpr17, 0x00);
389
390 /* Read a byte. */
391 val = 0;
392 for (bit = 0x80; bit != 0x00; bit >>= 1) {
393 strobe(bmpr16);
394 if (inb(bmpr17) & FE_B17_DATA)
395 val |= bit;
396 }
397 *data++ = val;
398
399 /* Read one more byte. */
400 val = 0;
401 for (bit = 0x80; bit != 0x00; bit >>= 1) {
402 strobe(bmpr16);
403 if (inb(bmpr17) & FE_B17_DATA)
404 val |= bit;
405 }
406 *data++ = val;
407 }
408
409 #if FE_DEBUG >= 3
410 /* Report what we got. */
411 data -= FE_EEPROM_SIZE;
412 log(LOG_INFO, "%s: EEPROM at %04x:"
413 " %02x%02x%02x%02x %02x%02x%02x%02x -"
414 " %02x%02x%02x%02x %02x%02x%02x%02x -"
415 " %02x%02x%02x%02x %02x%02x%02x%02x -"
416 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
417 sc->sc_dev.dv_xname, iobase,
418 data[ 0], data[ 1], data[ 2], data[ 3],
419 data[ 4], data[ 5], data[ 6], data[ 7],
420 data[ 8], data[ 9], data[10], data[11],
421 data[12], data[13], data[14], data[15],
422 data[16], data[17], data[18], data[19],
423 data[20], data[21], data[22], data[23],
424 data[24], data[25], data[26], data[27],
425 data[28], data[29], data[30], data[31]);
426 #endif
427 }
428
429 /*
430 * Hardware (vendor) specific probe routines.
431 */
432
433 /*
434 * Probe and initialization for Fujitsu FMV-180 series boards
435 */
436 int
437 fe_probe_fmv(sc, ia)
438 struct fe_softc *sc;
439 struct isa_attach_args *ia;
440 {
441 int i, n;
442 int iobase = sc->sc_iobase;
443 int irq;
444
445 static int const iomap[8] =
446 { 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
447 static int const irqmap[4] =
448 { 3, 7, 10, 15 };
449
450 static struct fe_simple_probe_struct const probe_table[] = {
451 { FE_DLCR2, 0x70, 0x00 },
452 { FE_DLCR4, 0x08, 0x00 },
453 /* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
454
455 { FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
456 { FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
457 { FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
458 #if 1
459 /*
460 * Test *vendor* part of the station address for Fujitsu.
461 * The test will gain reliability of probe process, but
462 * it rejects FMV-180 clone boards manufactured by other vendors.
463 * We have to turn the test off when such cards are made available.
464 */
465 { FE_FMV4, 0xFF, 0x00 },
466 { FE_FMV5, 0xFF, 0x00 },
467 { FE_FMV6, 0xFF, 0x0E },
468 #else
469 /*
470 * We can always verify the *first* 2 bits (in Ehternet
471 * bit order) are "no multicast" and "no local" even for
472 * unknown vendors.
473 */
474 { FE_FMV4, 0x03, 0x00 },
475 #endif
476 { 0 }
477 };
478
479 #if 0
480 /*
481 * Dont probe at all if the config says we are PCMCIA...
482 */
483 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
484 return (0);
485 #endif
486
487 /*
488 * See if the sepcified address is possible for FMV-180 series.
489 */
490 for (i = 0; i < 8; i++) {
491 if (iomap[i] == iobase)
492 break;
493 }
494 if (i == 8)
495 return (0);
496
497 /* Simple probe. */
498 if (!fe_simple_probe(iobase, probe_table))
499 return (0);
500
501 /* Check if our I/O address matches config info on EEPROM. */
502 n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
503 if (iomap[n] != iobase)
504 return (0);
505
506 /* Determine the card type. */
507 switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
508 case FE_FMV0_MODEL_FMV181:
509 sc->type = FE_TYPE_FMV181;
510 sc->typestr = "FMV-181";
511 break;
512 case FE_FMV0_MODEL_FMV182:
513 sc->type = FE_TYPE_FMV182;
514 sc->typestr = "FMV-182";
515 break;
516 default:
517 /* Unknown card type: maybe a new model, but... */
518 return (0);
519 }
520
521 /*
522 * An FMV-180 has successfully been proved.
523 * Determine which IRQ to be used.
524 *
525 * In this version, we always get an IRQ assignment from the
526 * FMV-180's configuration EEPROM, ignoring that specified in
527 * config file.
528 */
529 n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
530 irq = irqmap[n];
531
532 if (ia->ia_irq != IRQUNK) {
533 if (ia->ia_irq != irq) {
534 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
535 sc->sc_dev.dv_xname, ia->ia_irq, irq);
536 return (0);
537 }
538 } else
539 ia->ia_irq = irq;
540
541 /*
542 * Initialize constants in the per-line structure.
543 */
544
545 /* Get our station address from EEPROM. */
546 inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
547
548 /* Make sure we got a valid station address. */
549 if ((sc->sc_enaddr[0] & 0x03) != 0x00
550 || (sc->sc_enaddr[0] == 0x00
551 && sc->sc_enaddr[1] == 0x00
552 && sc->sc_enaddr[2] == 0x00))
553 return (0);
554
555 /* Register values which depend on board design. */
556 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
557 sc->proto_dlcr5 = 0;
558 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
559 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
560
561 /*
562 * Program the 86960 as follows:
563 * SRAM: 32KB, 100ns, byte-wide access.
564 * Transmission buffer: 4KB x 2.
565 * System bus interface: 16 bits.
566 * We cannot change these values but TXBSIZE, because they
567 * are hard-wired on the board. Modifying TXBSIZE will affect
568 * the driver performance.
569 */
570 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
571 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
572
573 /*
574 * Minimum initialization of the hardware.
575 * We write into registers; hope I/O ports have no
576 * overlap with other boards.
577 */
578
579 /* Initialize ASIC. */
580 outb(iobase + FE_FMV3, 0);
581 outb(iobase + FE_FMV10, 0);
582
583 /* Wait for a while. I'm not sure this is necessary. FIXME. */
584 delay(200);
585
586 /* Initialize 86960. */
587 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
588 delay(200);
589
590 /* Disable all interrupts. */
591 outb(iobase + FE_DLCR2, 0);
592 outb(iobase + FE_DLCR3, 0);
593
594 /* Turn the "master interrupt control" flag of ASIC on. */
595 outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
596
597 /*
598 * That's all. FMV-180 occupies 32 I/O addresses, by the way.
599 */
600 ia->ia_iosize = 32;
601 ia->ia_msize = 0;
602 return (1);
603 }
604
605 /*
606 * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
607 */
608 int
609 fe_probe_ati(sc, ia)
610 struct fe_softc *sc;
611 struct isa_attach_args *ia;
612 {
613 int i, n;
614 int iobase = sc->sc_iobase;
615 u_char eeprom[FE_EEPROM_SIZE];
616 u_char save16, save17;
617 int irq;
618
619 static int const iomap[8] =
620 { 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
621 static int const irqmap[4][4] = {
622 { 3, 4, 5, 9 },
623 { 10, 11, 12, 15 },
624 { 3, 11, 5, 15 },
625 { 10, 11, 14, 15 },
626 };
627 static struct fe_simple_probe_struct const probe_table[] = {
628 { FE_DLCR2, 0x70, 0x00 },
629 { FE_DLCR4, 0x08, 0x00 },
630 { FE_DLCR5, 0x80, 0x00 },
631 #if 0
632 { FE_BMPR16, 0x1B, 0x00 },
633 { FE_BMPR17, 0x7F, 0x00 },
634 #endif
635 { 0 }
636 };
637
638 #if 0
639 /*
640 * Don't probe at all if the config says we are PCMCIA...
641 */
642 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
643 return (0);
644 #endif
645
646 #if FE_DEBUG >= 4
647 log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
648 fe_dump(LOG_INFO, sc);
649 #endif
650
651 /*
652 * See if the sepcified address is possible for MB86965A JLI mode.
653 */
654 for (i = 0; i < 8; i++) {
655 if (iomap[i] == iobase)
656 break;
657 }
658 if (i == 8)
659 return (0);
660
661 /*
662 * We should test if MB86965A is on the base address now.
663 * Unfortunately, it is very hard to probe it reliably, since
664 * we have no way to reset the chip under software control.
665 * On cold boot, we could check the "signature" bit patterns
666 * described in the Fujitsu document. On warm boot, however,
667 * we can predict almost nothing about register values.
668 */
669 if (!fe_simple_probe(iobase, probe_table))
670 return (0);
671
672 /* Save old values of the registers. */
673 save16 = inb(iobase + FE_BMPR16);
674 save17 = inb(iobase + FE_BMPR17);
675
676 /* Check if our I/O address matches config info on 86965. */
677 n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
678 if (iomap[n] != iobase)
679 goto fail;
680
681 /*
682 * We are now almost sure we have an AT1700 at the given
683 * address. So, read EEPROM through 86965. We have to write
684 * into LSI registers to read from EEPROM. I want to avoid it
685 * at this stage, but I cannot test the presense of the chip
686 * any further without reading EEPROM. FIXME.
687 */
688 fe_read_eeprom(sc, eeprom);
689
690 /* Make sure the EEPROM is turned off. */
691 outb(iobase + FE_BMPR16, 0);
692 outb(iobase + FE_BMPR17, 0);
693
694 /* Make sure that config info in EEPROM and 86965 agree. */
695 if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
696 goto fail;
697
698 /*
699 * Determine the card type.
700 */
701 switch (eeprom[FE_ATI_EEP_MODEL]) {
702 case FE_ATI_MODEL_AT1700T:
703 sc->type = FE_TYPE_AT1700T;
704 sc->typestr = "AT-1700T";
705 break;
706 case FE_ATI_MODEL_AT1700BT:
707 sc->type = FE_TYPE_AT1700BT;
708 sc->typestr = "AT-1700BT";
709 break;
710 case FE_ATI_MODEL_AT1700FT:
711 sc->type = FE_TYPE_AT1700FT;
712 sc->typestr = "AT-1700FT";
713 break;
714 case FE_ATI_MODEL_AT1700AT:
715 sc->type = FE_TYPE_AT1700AT;
716 sc->typestr = "AT-1700AT";
717 break;
718 default:
719 sc->type = FE_TYPE_RE2000;
720 sc->typestr = "unknown (RE-2000?)";
721 break;
722 }
723
724 /*
725 * Try to determine IRQ settings.
726 * Different models use different ranges of IRQs.
727 */
728 n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
729 switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
730 case 0x30:
731 irq = irqmap[3][n];
732 break;
733 case 0x10:
734 case 0x50:
735 irq = irqmap[2][n];
736 break;
737 case 0x40:
738 case 0x60:
739 if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
740 irq = irqmap[1][n];
741 break;
742 }
743 default:
744 irq = irqmap[0][n];
745 break;
746 }
747
748 if (ia->ia_irq != IRQUNK) {
749 if (ia->ia_irq != irq) {
750 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
751 sc->sc_dev.dv_xname, ia->ia_irq, irq);
752 return (0);
753 }
754 } else
755 ia->ia_irq = irq;
756
757 /*
758 * Initialize constants in the per-line structure.
759 */
760
761 /* Get our station address from EEPROM. */
762 bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
763
764 /* Make sure we got a valid station address. */
765 if ((sc->sc_enaddr[0] & 0x03) != 0x00
766 || (sc->sc_enaddr[0] == 0x00
767 && sc->sc_enaddr[1] == 0x00
768 && sc->sc_enaddr[2] == 0x00))
769 goto fail;
770
771 /* Should find all register prototypes here. FIXME. */
772 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
773 sc->proto_dlcr5 = 0;
774 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
775 #if 0 /* XXXX Should we use this? */
776 sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
777 #else
778 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
779 #endif
780
781 /*
782 * Program the 86965 as follows:
783 * SRAM: 32KB, 100ns, byte-wide access.
784 * Transmission buffer: 4KB x 2.
785 * System bus interface: 16 bits.
786 * We cannot change these values but TXBSIZE, because they
787 * are hard-wired on the board. Modifying TXBSIZE will affect
788 * the driver performance.
789 */
790 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
791 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
792
793 #if FE_DEBUG >= 3
794 log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
795 fe_dump(LOG_INFO, sc);
796 #endif
797
798 /* Initialize 86965. */
799 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
800 delay(200);
801
802 /* Disable all interrupts. */
803 outb(iobase + FE_DLCR2, 0);
804 outb(iobase + FE_DLCR3, 0);
805
806 #if FE_DEBUG >= 3
807 log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
808 fe_dump(LOG_INFO, sc);
809 #endif
810
811 /*
812 * That's all. AT1700 occupies 32 I/O addresses, by the way.
813 */
814 ia->ia_iosize = 32;
815 ia->ia_msize = 0;
816 return (1);
817
818 fail:
819 /* Restore register values, in the case we had no 86965. */
820 outb(iobase + FE_BMPR16, save16);
821 outb(iobase + FE_BMPR17, save17);
822 return (0);
823 }
824
825 /*
826 * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
827 */
828 int
829 fe_probe_mbh(sc, ia)
830 struct fe_softc *sc;
831 struct isa_attach_args *ia;
832 {
833 int iobase = sc->sc_iobase;
834
835 static struct fe_simple_probe_struct probe_table[] = {
836 { FE_DLCR2, 0x70, 0x00 },
837 { FE_DLCR4, 0x08, 0x00 },
838 /* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
839 #if 0
840 /*
841 * Test *vendor* part of the address for Fujitsu.
842 * The test will gain reliability of probe process, but
843 * it rejects clones by other vendors, or OEM product
844 * supplied by resalers other than Fujitsu.
845 */
846 { FE_MBH10, 0xFF, 0x00 },
847 { FE_MBH11, 0xFF, 0x00 },
848 { FE_MBH12, 0xFF, 0x0E },
849 #else
850 /*
851 * We can always verify the *first* 2 bits (in Ehternet
852 * bit order) are "global" and "unicast" even for
853 * unknown vendors.
854 */
855 { FE_MBH10, 0x03, 0x00 },
856 #endif
857 /* Just a gap? Seems reliable, anyway. */
858 { 0x12, 0xFF, 0x00 },
859 { 0x13, 0xFF, 0x00 },
860 { 0x14, 0xFF, 0x00 },
861 { 0x15, 0xFF, 0x00 },
862 { 0x16, 0xFF, 0x00 },
863 { 0x17, 0xFF, 0x00 },
864 { 0x18, 0xFF, 0xFF },
865 { 0x19, 0xFF, 0xFF },
866
867 { 0 }
868 };
869
870 #if 0
871 /*
872 * We need a PCMCIA flag.
873 */
874 if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
875 return (0);
876 #endif
877
878 /*
879 * We need explicit IRQ and supported address.
880 */
881 if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
882 return (0);
883
884 #if FE_DEBUG >= 3
885 log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
886 fe_dump(LOG_INFO, sc);
887 #endif
888
889 /*
890 * See if MBH10302 is on its address.
891 * I'm not sure the following probe code works. FIXME.
892 */
893 if (!fe_simple_probe(iobase, probe_table))
894 return (0);
895
896 /* Determine the card type. */
897 sc->type = FE_TYPE_MBH10302;
898 sc->typestr = "MBH10302 (PCMCIA)";
899
900 /*
901 * Initialize constants in the per-line structure.
902 */
903
904 /* Get our station address from EEPROM. */
905 inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
906
907 /* Make sure we got a valid station address. */
908 if ((sc->sc_enaddr[0] & 0x03) != 0x00
909 || (sc->sc_enaddr[0] == 0x00
910 && sc->sc_enaddr[1] == 0x00
911 && sc->sc_enaddr[2] == 0x00))
912 return (0);
913
914 /* Should find all register prototypes here. FIXME. */
915 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
916 sc->proto_dlcr5 = 0;
917 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
918 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
919
920 /*
921 * Program the 86960 as follows:
922 * SRAM: 32KB, 100ns, byte-wide access.
923 * Transmission buffer: 4KB x 2.
924 * System bus interface: 16 bits.
925 * We cannot change these values but TXBSIZE, because they
926 * are hard-wired on the board. Modifying TXBSIZE will affect
927 * the driver performance.
928 */
929 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
930 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
931
932 /* Setup hooks. We need a special initialization procedure. */
933 sc->init = fe_init_mbh;
934
935 /*
936 * Minimum initialization.
937 */
938
939 /* Wait for a while. I'm not sure this is necessary. FIXME. */
940 delay(200);
941
942 /* Minimul initialization of 86960. */
943 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
944 delay(200);
945
946 /* Disable all interrupts. */
947 outb(iobase + FE_DLCR2, 0);
948 outb(iobase + FE_DLCR3, 0);
949
950 #if 1 /* FIXME. */
951 /* Initialize system bus interface and encoder/decoder operation. */
952 outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
953 #endif
954
955 /*
956 * That's all. MBH10302 occupies 32 I/O addresses, by the way.
957 */
958 ia->ia_iosize = 32;
959 ia->ia_msize = 0;
960 return (1);
961 }
962
963 /* MBH specific initialization routine. */
964 void
965 fe_init_mbh(sc)
966 struct fe_softc *sc;
967 {
968
969 /* Probably required after hot-insertion... */
970
971 /* Wait for a while. I'm not sure this is necessary. FIXME. */
972 delay(200);
973
974 /* Minimul initialization of 86960. */
975 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
976 delay(200);
977
978 /* Disable all interrupts. */
979 outb(sc->sc_iobase + FE_DLCR2, 0);
980 outb(sc->sc_iobase + FE_DLCR3, 0);
981
982 /* Enable master interrupt flag. */
983 outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
984 }
985
986 /*
987 * Install interface into kernel networking data structures
988 */
989 void
990 feattach(parent, self, aux)
991 struct device *parent, *self;
992 void *aux;
993 {
994 struct fe_softc *sc = (void *)self;
995 struct isa_attach_args *ia = aux;
996 struct cfdata *cf = sc->sc_dev.dv_cfdata;
997 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
998
999 /* Stop the 86960. */
1000 fe_stop(sc);
1001
1002 /* Initialize ifnet structure. */
1003 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1004 ifp->if_softc = sc;
1005 ifp->if_start = fe_start;
1006 ifp->if_ioctl = fe_ioctl;
1007 ifp->if_watchdog = fe_watchdog;
1008 ifp->if_flags =
1009 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1010
1011 /*
1012 * Set maximum size of output queue, if it has not been set.
1013 * It is done here as this driver may be started after the
1014 * system intialization (i.e., the interface is PCMCIA.)
1015 *
1016 * I'm not sure this is really necessary, but, even if it is,
1017 * it should be done somewhere else, e.g., in if_attach(),
1018 * since it must be a common workaround for all network drivers.
1019 * FIXME.
1020 */
1021 if (ifp->if_snd.ifq_maxlen == 0) {
1022 extern int ifqmaxlen; /* Don't be so shocked... */
1023 ifp->if_snd.ifq_maxlen = ifqmaxlen;
1024 }
1025
1026 #if FE_DEBUG >= 3
1027 log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1028 fe_dump(LOG_INFO, sc);
1029 #endif
1030
1031 #if FE_SINGLE_TRANSMISSION
1032 /* Override txb config to allocate minimum. */
1033 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1034 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1035 #endif
1036
1037 /* Modify hardware config if it is requested. */
1038 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1039 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1040
1041 /* Find TX buffer size, based on the hardware dependent proto. */
1042 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1043 case FE_D6_TXBSIZ_2x2KB:
1044 sc->txb_size = 2048;
1045 break;
1046 case FE_D6_TXBSIZ_2x4KB:
1047 sc->txb_size = 4096;
1048 break;
1049 case FE_D6_TXBSIZ_2x8KB:
1050 sc->txb_size = 8192;
1051 break;
1052 default:
1053 /* Oops, we can't work with single buffer configuration. */
1054 #if FE_DEBUG >= 2
1055 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1056 sc->sc_dev.dv_xname);
1057 #endif
1058 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1059 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1060 sc->txb_size = 2048;
1061 break;
1062 }
1063
1064 /* Attach the interface. */
1065 if_attach(ifp);
1066 ether_ifattach(ifp);
1067
1068 /* Print additional info when attached. */
1069 printf(": address %s, type %s\n",
1070 ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1071 #if FE_DEBUG >= 3
1072 {
1073 int buf, txb, bbw, sbw, ram;
1074
1075 buf = txb = bbw = sbw = ram = -1;
1076 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1077 case FE_D6_BUFSIZ_8KB:
1078 buf = 8;
1079 break;
1080 case FE_D6_BUFSIZ_16KB:
1081 buf = 16;
1082 break;
1083 case FE_D6_BUFSIZ_32KB:
1084 buf = 32;
1085 break;
1086 case FE_D6_BUFSIZ_64KB:
1087 buf = 64;
1088 break;
1089 }
1090 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1091 case FE_D6_TXBSIZ_2x2KB:
1092 txb = 2;
1093 break;
1094 case FE_D6_TXBSIZ_2x4KB:
1095 txb = 4;
1096 break;
1097 case FE_D6_TXBSIZ_2x8KB:
1098 txb = 8;
1099 break;
1100 }
1101 switch (sc->proto_dlcr6 & FE_D6_BBW) {
1102 case FE_D6_BBW_BYTE:
1103 bbw = 8;
1104 break;
1105 case FE_D6_BBW_WORD:
1106 bbw = 16;
1107 break;
1108 }
1109 switch (sc->proto_dlcr6 & FE_D6_SBW) {
1110 case FE_D6_SBW_BYTE:
1111 sbw = 8;
1112 break;
1113 case FE_D6_SBW_WORD:
1114 sbw = 16;
1115 break;
1116 }
1117 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1118 case FE_D6_SRAM_100ns:
1119 ram = 100;
1120 break;
1121 case FE_D6_SRAM_150ns:
1122 ram = 150;
1123 break;
1124 }
1125 printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1126 sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1127 }
1128 #endif
1129
1130 #if NBPFILTER > 0
1131 /* If BPF is in the kernel, call the attach for it. */
1132 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1133 #endif
1134
1135 sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1136 IPL_NET, feintr, sc);
1137 }
1138
1139 /*
1140 * Reset interface.
1141 */
1142 void
1143 fe_reset(sc)
1144 struct fe_softc *sc;
1145 {
1146 int s;
1147
1148 s = splnet();
1149 fe_stop(sc);
1150 fe_init(sc);
1151 splx(s);
1152 }
1153
1154 /*
1155 * Stop everything on the interface.
1156 *
1157 * All buffered packets, both transmitting and receiving,
1158 * if any, will be lost by stopping the interface.
1159 */
1160 void
1161 fe_stop(sc)
1162 struct fe_softc *sc;
1163 {
1164
1165 #if FE_DEBUG >= 3
1166 log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1167 fe_dump(LOG_INFO, sc);
1168 #endif
1169
1170 /* Disable interrupts. */
1171 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1172 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1173
1174 /* Stop interface hardware. */
1175 delay(200);
1176 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1177 delay(200);
1178
1179 /* Clear all interrupt status. */
1180 outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1181 outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1182
1183 /* Put the chip in stand-by mode. */
1184 delay(200);
1185 outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1186 delay(200);
1187
1188 /* MAR loading can be delayed. */
1189 sc->filter_change = 0;
1190
1191 /* Call a hook. */
1192 if (sc->stop)
1193 sc->stop(sc);
1194
1195 #if DEBUG >= 3
1196 log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1197 fe_dump(LOG_INFO, sc);
1198 #endif
1199 }
1200
1201 /*
1202 * Device timeout/watchdog routine. Entered if the device neglects to
1203 * generate an interrupt after a transmit has been started on it.
1204 */
1205 void
1206 fe_watchdog(ifp)
1207 struct ifnet *ifp;
1208 {
1209 struct fe_softc *sc = ifp->if_softc;
1210
1211 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1212 #if FE_DEBUG >= 3
1213 fe_dump(LOG_INFO, sc);
1214 #endif
1215
1216 /* Record how many packets are lost by this accident. */
1217 sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1218
1219 fe_reset(sc);
1220 }
1221
1222 /*
1223 * Drop (skip) a packet from receive buffer in 86960 memory.
1224 */
1225 static inline void
1226 fe_droppacket(sc)
1227 struct fe_softc *sc;
1228 {
1229
1230 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1231 }
1232
1233 /*
1234 * Initialize device.
1235 */
1236 void
1237 fe_init(sc)
1238 struct fe_softc *sc;
1239 {
1240 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1241 int i;
1242
1243 #if FE_DEBUG >= 3
1244 log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1245 fe_dump(LOG_INFO, sc);
1246 #endif
1247
1248 /* Reset transmitter flags. */
1249 ifp->if_flags &= ~IFF_OACTIVE;
1250 ifp->if_timer = 0;
1251
1252 sc->txb_free = sc->txb_size;
1253 sc->txb_count = 0;
1254 sc->txb_sched = 0;
1255
1256 /* Call a hook. */
1257 if (sc->init)
1258 sc->init(sc);
1259
1260 #if FE_DEBUG >= 3
1261 log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1262 fe_dump(LOG_INFO, sc);
1263 #endif
1264
1265 /*
1266 * Make sure to disable the chip, also.
1267 * This may also help re-programming the chip after
1268 * hot insertion of PCMCIAs.
1269 */
1270 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1271
1272 /* Power up the chip and select register bank for DLCRs. */
1273 delay(200);
1274 outb(sc->sc_iobase + FE_DLCR7,
1275 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1276 delay(200);
1277
1278 /* Feed the station address. */
1279 outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1280
1281 /* Select the BMPR bank for runtime register access. */
1282 outb(sc->sc_iobase + FE_DLCR7,
1283 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1284
1285 /* Initialize registers. */
1286 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1287 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1288 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1289 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1290 outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1291 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1292 outb(sc->sc_iobase + FE_BMPR10, 0x00);
1293 outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1294 outb(sc->sc_iobase + FE_BMPR12, 0x00);
1295 outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1296 outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1297 outb(sc->sc_iobase + FE_BMPR15, 0x00);
1298
1299 #if FE_DEBUG >= 3
1300 log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1301 fe_dump(LOG_INFO, sc);
1302 #endif
1303
1304 /* Enable interrupts. */
1305 outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1306 outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1307
1308 /* Enable transmitter and receiver. */
1309 delay(200);
1310 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1311 delay(200);
1312
1313 #if FE_DEBUG >= 3
1314 log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1315 fe_dump(LOG_INFO, sc);
1316 #endif
1317
1318 /*
1319 * Make sure to empty the receive buffer.
1320 *
1321 * This may be redundant, but *if* the receive buffer were full
1322 * at this point, the driver would hang. I have experienced
1323 * some strange hangups just after UP. I hope the following
1324 * code solve the problem.
1325 *
1326 * I have changed the order of hardware initialization.
1327 * I think the receive buffer cannot have any packets at this
1328 * point in this version. The following code *must* be
1329 * redundant now. FIXME.
1330 */
1331 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1332 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1333 break;
1334 fe_droppacket(sc);
1335 }
1336 #if FE_DEBUG >= 1
1337 if (i >= FE_MAX_RECV_COUNT) {
1338 log(LOG_ERR, "%s: cannot empty receive buffer\n",
1339 sc->sc_dev.dv_xname);
1340 }
1341 #endif
1342 #if FE_DEBUG >= 3
1343 if (i < FE_MAX_RECV_COUNT) {
1344 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1345 sc->sc_dev.dv_xname, i);
1346 }
1347 #endif
1348
1349 #if FE_DEBUG >= 3
1350 log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1351 fe_dump(LOG_INFO, sc);
1352 #endif
1353
1354 /* Do we need this here? */
1355 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1356 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1357
1358 #if FE_DEBUG >= 3
1359 log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1360 fe_dump(LOG_INFO, sc);
1361 #endif
1362
1363 /* Set 'running' flag. */
1364 ifp->if_flags |= IFF_RUNNING;
1365
1366 /*
1367 * At this point, the interface is runnung properly,
1368 * except that it receives *no* packets. we then call
1369 * fe_setmode() to tell the chip what packets to be
1370 * received, based on the if_flags and multicast group
1371 * list. It completes the initialization process.
1372 */
1373 fe_setmode(sc);
1374
1375 #if FE_DEBUG >= 3
1376 log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1377 fe_dump(LOG_INFO, sc);
1378 #endif
1379
1380 /* ...and attempt to start output. */
1381 fe_start(ifp);
1382
1383 #if FE_DEBUG >= 3
1384 log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1385 fe_dump(LOG_INFO, sc);
1386 #endif
1387 }
1388
1389 /*
1390 * This routine actually starts the transmission on the interface
1391 */
1392 static inline void
1393 fe_xmit(sc)
1394 struct fe_softc *sc;
1395 {
1396
1397 /*
1398 * Set a timer just in case we never hear from the board again.
1399 * We use longer timeout for multiple packet transmission.
1400 * I'm not sure this timer value is appropriate. FIXME.
1401 */
1402 sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1403
1404 /* Update txb variables. */
1405 sc->txb_sched = sc->txb_count;
1406 sc->txb_count = 0;
1407 sc->txb_free = sc->txb_size;
1408
1409 #if FE_DELAYED_PADDING
1410 /* Omit the postponed padding process. */
1411 sc->txb_padding = 0;
1412 #endif
1413
1414 /* Start transmitter, passing packets in TX buffer. */
1415 outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1416 }
1417
1418 /*
1419 * Start output on interface.
1420 * We make two assumptions here:
1421 * 1) that the current priority is set to splnet _before_ this code
1422 * is called *and* is returned to the appropriate priority after
1423 * return
1424 * 2) that the IFF_OACTIVE flag is checked before this code is called
1425 * (i.e. that the output part of the interface is idle)
1426 */
1427 void
1428 fe_start(ifp)
1429 struct ifnet *ifp;
1430 {
1431 struct fe_softc *sc = ifp->if_softc;
1432 struct mbuf *m;
1433
1434 #if FE_DEBUG >= 1
1435 /* Just a sanity check. */
1436 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1437 /*
1438 * Txb_count and txb_free co-works to manage the
1439 * transmission buffer. Txb_count keeps track of the
1440 * used potion of the buffer, while txb_free does unused
1441 * potion. So, as long as the driver runs properly,
1442 * txb_count is zero if and only if txb_free is same
1443 * as txb_size (which represents whole buffer.)
1444 */
1445 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1446 sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1447 /*
1448 * So, what should I do, then?
1449 *
1450 * We now know txb_count and txb_free contradicts. We
1451 * cannot, however, tell which is wrong. More
1452 * over, we cannot peek 86960 transmission buffer or
1453 * reset the transmission buffer. (In fact, we can
1454 * reset the entire interface. I don't want to do it.)
1455 *
1456 * If txb_count is incorrect, leaving it as is will cause
1457 * sending of gabages after next interrupt. We have to
1458 * avoid it. Hence, we reset the txb_count here. If
1459 * txb_free was incorrect, resetting txb_count just loose
1460 * some packets. We can live with it.
1461 */
1462 sc->txb_count = 0;
1463 }
1464 #endif
1465
1466 #if FE_DEBUG >= 1
1467 /*
1468 * First, see if there are buffered packets and an idle
1469 * transmitter - should never happen at this point.
1470 */
1471 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1472 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1473 sc->sc_dev.dv_xname, sc->txb_count);
1474 fe_xmit(sc);
1475 }
1476 #endif
1477
1478 /*
1479 * Stop accepting more transmission packets temporarily, when
1480 * a filter change request is delayed. Updating the MARs on
1481 * 86960 flushes the transmisstion buffer, so it is delayed
1482 * until all buffered transmission packets have been sent
1483 * out.
1484 */
1485 if (sc->filter_change) {
1486 /*
1487 * Filter change requst is delayed only when the DLC is
1488 * working. DLC soon raise an interrupt after finishing
1489 * the work.
1490 */
1491 goto indicate_active;
1492 }
1493
1494 for (;;) {
1495 /*
1496 * See if there is room to put another packet in the buffer.
1497 * We *could* do better job by peeking the send queue to
1498 * know the length of the next packet. Current version just
1499 * tests against the worst case (i.e., longest packet). FIXME.
1500 *
1501 * When adding the packet-peek feature, don't forget adding a
1502 * test on txb_count against QUEUEING_MAX.
1503 * There is a little chance the packet count exceeds
1504 * the limit. Assume transmission buffer is 8KB (2x8KB
1505 * configuration) and an application sends a bunch of small
1506 * (i.e., minimum packet sized) packets rapidly. An 8KB
1507 * buffer can hold 130 blocks of 62 bytes long...
1508 */
1509 if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1510 /* No room. */
1511 goto indicate_active;
1512 }
1513
1514 #if FE_SINGLE_TRANSMISSION
1515 if (sc->txb_count > 0) {
1516 /* Just one packet per a transmission buffer. */
1517 goto indicate_active;
1518 }
1519 #endif
1520
1521 /*
1522 * Get the next mbuf chain for a packet to send.
1523 */
1524 IF_DEQUEUE(&ifp->if_snd, m);
1525 if (m == 0) {
1526 /* No more packets to send. */
1527 goto indicate_inactive;
1528 }
1529
1530 #if NBPFILTER > 0
1531 /* Tap off here if there is a BPF listener. */
1532 if (ifp->if_bpf)
1533 bpf_mtap(ifp->if_bpf, m);
1534 #endif
1535
1536 /*
1537 * Copy the mbuf chain into the transmission buffer.
1538 * txb_* variables are updated as necessary.
1539 */
1540 fe_write_mbufs(sc, m);
1541
1542 m_freem(m);
1543
1544 /* Start transmitter if it's idle. */
1545 if (sc->txb_sched == 0)
1546 fe_xmit(sc);
1547 }
1548
1549 indicate_inactive:
1550 /*
1551 * We are using the !OACTIVE flag to indicate to
1552 * the outside world that we can accept an
1553 * additional packet rather than that the
1554 * transmitter is _actually_ active. Indeed, the
1555 * transmitter may be active, but if we haven't
1556 * filled all the buffers with data then we still
1557 * want to accept more.
1558 */
1559 ifp->if_flags &= ~IFF_OACTIVE;
1560 return;
1561
1562 indicate_active:
1563 /*
1564 * The transmitter is active, and there are no room for
1565 * more outgoing packets in the transmission buffer.
1566 */
1567 ifp->if_flags |= IFF_OACTIVE;
1568 return;
1569 }
1570
1571 /*
1572 * Transmission interrupt handler
1573 * The control flow of this function looks silly. FIXME.
1574 */
1575 void
1576 fe_tint(sc, tstat)
1577 struct fe_softc *sc;
1578 u_char tstat;
1579 {
1580 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1581 int left;
1582 int col;
1583
1584 /*
1585 * Handle "excessive collision" interrupt.
1586 */
1587 if (tstat & FE_D0_COLL16) {
1588 /*
1589 * Find how many packets (including this collided one)
1590 * are left unsent in transmission buffer.
1591 */
1592 left = inb(sc->sc_iobase + FE_BMPR10);
1593
1594 #if FE_DEBUG >= 2
1595 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1596 sc->sc_dev.dv_xname, left, sc->txb_sched);
1597 #endif
1598 #if FE_DEBUG >= 3
1599 fe_dump(LOG_INFO, sc);
1600 #endif
1601
1602 /*
1603 * Update statistics.
1604 */
1605 ifp->if_collisions += 16;
1606 ifp->if_oerrors++;
1607 ifp->if_opackets += sc->txb_sched - left;
1608
1609 /*
1610 * Collision statistics has been updated.
1611 * Clear the collision flag on 86960 now to avoid confusion.
1612 */
1613 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1614
1615 /*
1616 * Restart transmitter, skipping the
1617 * collided packet.
1618 *
1619 * We *must* skip the packet to keep network running
1620 * properly. Excessive collision error is an
1621 * indication of the network overload. If we
1622 * tried sending the same packet after excessive
1623 * collision, the network would be filled with
1624 * out-of-time packets. Packets belonging
1625 * to reliable transport (such as TCP) are resent
1626 * by some upper layer.
1627 */
1628 outb(sc->sc_iobase + FE_BMPR11,
1629 FE_B11_CTRL_SKIP | FE_B11_MODE1);
1630 sc->txb_sched = left - 1;
1631 }
1632
1633 /*
1634 * Handle "transmission complete" interrupt.
1635 */
1636 if (tstat & FE_D0_TXDONE) {
1637 /*
1638 * Add in total number of collisions on last
1639 * transmission. We also clear "collision occurred" flag
1640 * here.
1641 *
1642 * 86960 has a design flow on collision count on multiple
1643 * packet transmission. When we send two or more packets
1644 * with one start command (that's what we do when the
1645 * transmission queue is clauded), 86960 informs us number
1646 * of collisions occured on the last packet on the
1647 * transmission only. Number of collisions on previous
1648 * packets are lost. I have told that the fact is clearly
1649 * stated in the Fujitsu document.
1650 *
1651 * I considered not to mind it seriously. Collision
1652 * count is not so important, anyway. Any comments? FIXME.
1653 */
1654
1655 if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1656 /* Clear collision flag. */
1657 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1658
1659 /* Extract collision count from 86960. */
1660 col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1661 if (col == 0) {
1662 /*
1663 * Status register indicates collisions,
1664 * while the collision count is zero.
1665 * This can happen after multiple packet
1666 * transmission, indicating that one or more
1667 * previous packet(s) had been collided.
1668 *
1669 * Since the accurate number of collisions
1670 * has been lost, we just guess it as 1;
1671 * Am I too optimistic? FIXME.
1672 */
1673 col = 1;
1674 } else
1675 col >>= FE_D4_COL_SHIFT;
1676 ifp->if_collisions += col;
1677 #if FE_DEBUG >= 4
1678 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1679 sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1680 sc->txb_sched);
1681 #endif
1682 }
1683
1684 /*
1685 * Update total number of successfully
1686 * transmitted packets.
1687 */
1688 ifp->if_opackets += sc->txb_sched;
1689 sc->txb_sched = 0;
1690 }
1691
1692 if (sc->txb_sched == 0) {
1693 /*
1694 * The transmitter is no more active.
1695 * Reset output active flag and watchdog timer.
1696 */
1697 ifp->if_flags &= ~IFF_OACTIVE;
1698 ifp->if_timer = 0;
1699
1700 /*
1701 * If more data is ready to transmit in the buffer, start
1702 * transmitting them. Otherwise keep transmitter idle,
1703 * even if more data is queued. This gives receive
1704 * process a slight priority.
1705 */
1706 if (sc->txb_count > 0)
1707 fe_xmit(sc);
1708 }
1709 }
1710
1711 /*
1712 * Ethernet interface receiver interrupt.
1713 */
1714 void
1715 fe_rint(sc, rstat)
1716 struct fe_softc *sc;
1717 u_char rstat;
1718 {
1719 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1720 int len;
1721 u_char status;
1722 int i;
1723
1724 /*
1725 * Update statistics if this interrupt is caused by an error.
1726 */
1727 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1728 FE_D1_ALGERR | FE_D1_SRTPKT)) {
1729 #if FE_DEBUG >= 3
1730 log(LOG_WARNING, "%s: receive error: %b\n",
1731 sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1732 #endif
1733 ifp->if_ierrors++;
1734 }
1735
1736 /*
1737 * MB86960 has a flag indicating "receive queue empty."
1738 * We just loop cheking the flag to pull out all received
1739 * packets.
1740 *
1741 * We limit the number of iterrations to avoid infinite loop.
1742 * It can be caused by a very slow CPU (some broken
1743 * peripheral may insert incredible number of wait cycles)
1744 * or, worse, by a broken MB86960 chip.
1745 */
1746 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1747 /* Stop the iterration if 86960 indicates no packets. */
1748 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1749 break;
1750
1751 /*
1752 * Extract A receive status byte.
1753 * As our 86960 is in 16 bit bus access mode, we have to
1754 * use inw() to get the status byte. The significant
1755 * value is returned in lower 8 bits.
1756 */
1757 status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1758 #if FE_DEBUG >= 4
1759 log(LOG_INFO, "%s: receive status = %02x\n",
1760 sc->sc_dev.dv_xname, status);
1761 #endif
1762
1763 /*
1764 * If there was an error, update statistics and drop
1765 * the packet, unless the interface is in promiscuous
1766 * mode.
1767 */
1768 if ((status & 0xF0) != 0x20) { /* XXXX ? */
1769 if ((ifp->if_flags & IFF_PROMISC) == 0) {
1770 ifp->if_ierrors++;
1771 fe_droppacket(sc);
1772 continue;
1773 }
1774 }
1775
1776 /*
1777 * Extract the packet length.
1778 * It is a sum of a header (14 bytes) and a payload.
1779 * CRC has been stripped off by the 86960.
1780 */
1781 len = inw(sc->sc_iobase + FE_BMPR8);
1782
1783 /*
1784 * MB86965 checks the packet length and drop big packet
1785 * before passing it to us. There are no chance we can
1786 * get [crufty] packets. Hence, if the length exceeds
1787 * the specified limit, it means some serious failure,
1788 * such as out-of-sync on receive buffer management.
1789 *
1790 * Is this statement true? FIXME.
1791 */
1792 if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1793 #if FE_DEBUG >= 2
1794 log(LOG_WARNING,
1795 "%s: received a %s packet? (%u bytes)\n",
1796 sc->sc_dev.dv_xname,
1797 len < ETHER_HDR_SIZE ? "partial" : "big", len);
1798 #endif
1799 ifp->if_ierrors++;
1800 fe_droppacket(sc);
1801 continue;
1802 }
1803
1804 /*
1805 * Check for a short (RUNT) packet. We *do* check
1806 * but do nothing other than print a message.
1807 * Short packets are illegal, but does nothing bad
1808 * if it carries data for upper layer.
1809 */
1810 #if FE_DEBUG >= 2
1811 if (len < ETHER_MIN_LEN) {
1812 log(LOG_WARNING,
1813 "%s: received a short packet? (%u bytes)\n",
1814 sc->sc_dev.dv_xname, len);
1815 }
1816 #endif
1817
1818 /*
1819 * Go get a packet.
1820 */
1821 if (!fe_get_packet(sc, len)) {
1822 /* Skip a packet, updating statistics. */
1823 #if FE_DEBUG >= 2
1824 log(LOG_WARNING,
1825 "%s: out of mbufs; dropping packet (%u bytes)\n",
1826 sc->sc_dev.dv_xname, len);
1827 #endif
1828 ifp->if_ierrors++;
1829 fe_droppacket(sc);
1830
1831 /*
1832 * We stop receiving packets, even if there are
1833 * more in the buffer. We hope we can get more
1834 * mbufs next time.
1835 */
1836 return;
1837 }
1838
1839 /* Successfully received a packet. Update stat. */
1840 ifp->if_ipackets++;
1841 }
1842 }
1843
1844 /*
1845 * Ethernet interface interrupt processor
1846 */
1847 int
1848 feintr(arg)
1849 void *arg;
1850 {
1851 struct fe_softc *sc = arg;
1852 u_char tstat, rstat;
1853
1854 #if FE_DEBUG >= 4
1855 log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1856 fe_dump(LOG_INFO, sc);
1857 #endif
1858
1859 /*
1860 * Get interrupt conditions, masking unneeded flags.
1861 */
1862 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1863 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1864 if (tstat == 0 && rstat == 0)
1865 return (0);
1866
1867 /*
1868 * Loop until there are no more new interrupt conditions.
1869 */
1870 for (;;) {
1871 /*
1872 * Reset the conditions we are acknowledging.
1873 */
1874 outb(sc->sc_iobase + FE_DLCR0, tstat);
1875 outb(sc->sc_iobase + FE_DLCR1, rstat);
1876
1877 /*
1878 * Handle transmitter interrupts. Handle these first because
1879 * the receiver will reset the board under some conditions.
1880 */
1881 if (tstat != 0)
1882 fe_tint(sc, tstat);
1883
1884 /*
1885 * Handle receiver interrupts.
1886 */
1887 if (rstat != 0)
1888 fe_rint(sc, rstat);
1889
1890 /*
1891 * Update the multicast address filter if it is
1892 * needed and possible. We do it now, because
1893 * we can make sure the transmission buffer is empty,
1894 * and there is a good chance that the receive queue
1895 * is empty. It will minimize the possibility of
1896 * packet lossage.
1897 */
1898 if (sc->filter_change &&
1899 sc->txb_count == 0 && sc->txb_sched == 0) {
1900 fe_loadmar(sc);
1901 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1902 }
1903
1904 /*
1905 * If it looks like the transmitter can take more data,
1906 * attempt to start output on the interface. This is done
1907 * after handling the receiver interrupt to give the
1908 * receive operation priority.
1909 */
1910 if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1911 fe_start(&sc->sc_arpcom.ac_if);
1912
1913 /*
1914 * Get interrupt conditions, masking unneeded flags.
1915 */
1916 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1917 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1918 if (tstat == 0 && rstat == 0)
1919 return (1);
1920 }
1921 }
1922
1923 /*
1924 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1925 */
1926 int
1927 fe_ioctl(ifp, command, data)
1928 register struct ifnet *ifp;
1929 u_long command;
1930 caddr_t data;
1931 {
1932 struct fe_softc *sc = ifp->if_softc;
1933 register struct ifaddr *ifa = (struct ifaddr *)data;
1934 struct ifreq *ifr = (struct ifreq *)data;
1935 int s, error = 0;
1936
1937 #if FE_DEBUG >= 3
1938 log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1939 #endif
1940
1941 s = splnet();
1942
1943 switch (command) {
1944
1945 case SIOCSIFADDR:
1946 ifp->if_flags |= IFF_UP;
1947
1948 switch (ifa->ifa_addr->sa_family) {
1949 #ifdef INET
1950 case AF_INET:
1951 fe_init(sc);
1952 arp_ifinit(&sc->sc_arpcom, ifa);
1953 break;
1954 #endif
1955 #ifdef NS
1956 case AF_NS:
1957 {
1958 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1959
1960 if (ns_nullhost(*ina))
1961 ina->x_host =
1962 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1963 else
1964 bcopy(ina->x_host.c_host,
1965 sc->sc_arpcom.ac_enaddr,
1966 sizeof(sc->sc_arpcom.ac_enaddr));
1967 /* Set new address. */
1968 fe_init(sc);
1969 break;
1970 }
1971 #endif
1972 default:
1973 fe_init(sc);
1974 break;
1975 }
1976 break;
1977
1978 case SIOCSIFFLAGS:
1979 if ((ifp->if_flags & IFF_UP) == 0 &&
1980 (ifp->if_flags & IFF_RUNNING) != 0) {
1981 /*
1982 * If interface is marked down and it is running, then
1983 * stop it.
1984 */
1985 fe_stop(sc);
1986 ifp->if_flags &= ~IFF_RUNNING;
1987 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1988 (ifp->if_flags & IFF_RUNNING) == 0) {
1989 /*
1990 * If interface is marked up and it is stopped, then
1991 * start it.
1992 */
1993 fe_init(sc);
1994 } else {
1995 /*
1996 * Reset the interface to pick up changes in any other
1997 * flags that affect hardware registers.
1998 */
1999 fe_setmode(sc);
2000 }
2001 #if DEBUG >= 1
2002 /* "ifconfig fe0 debug" to print register dump. */
2003 if (ifp->if_flags & IFF_DEBUG) {
2004 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2005 fe_dump(LOG_DEBUG, sc);
2006 }
2007 #endif
2008 break;
2009
2010 case SIOCADDMULTI:
2011 case SIOCDELMULTI:
2012 /* Update our multicast list. */
2013 error = (command == SIOCADDMULTI) ?
2014 ether_addmulti(ifr, &sc->sc_arpcom) :
2015 ether_delmulti(ifr, &sc->sc_arpcom);
2016
2017 if (error == ENETRESET) {
2018 /*
2019 * Multicast list has changed; set the hardware filter
2020 * accordingly.
2021 */
2022 fe_setmode(sc);
2023 error = 0;
2024 }
2025 break;
2026
2027 default:
2028 error = EINVAL;
2029 }
2030
2031 splx(s);
2032 return (error);
2033 }
2034
2035 /*
2036 * Retreive packet from receive buffer and send to the next level up via
2037 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2038 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2039 */
2040 int
2041 fe_get_packet(sc, len)
2042 struct fe_softc *sc;
2043 int len;
2044 {
2045 struct ether_header *eh;
2046 struct mbuf *m;
2047 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2048
2049 /* Allocate a header mbuf. */
2050 MGETHDR(m, M_DONTWAIT, MT_DATA);
2051 if (m == 0)
2052 return (0);
2053 m->m_pkthdr.rcvif = ifp;
2054 m->m_pkthdr.len = len;
2055
2056 /* The following silliness is to make NFS happy. */
2057 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
2058 #define EOFF (EROUND - sizeof(struct ether_header))
2059
2060 /*
2061 * Our strategy has one more problem. There is a policy on
2062 * mbuf cluster allocation. It says that we must have at
2063 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
2064 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2065 * our code violates the rule...
2066 * On the other hand, the current code is short, simle,
2067 * and fast, however. It does no harmful thing, just waists
2068 * some memory. Any comments? FIXME.
2069 */
2070
2071 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2072 if (len > MHLEN - EOFF) {
2073 MCLGET(m, M_DONTWAIT);
2074 if ((m->m_flags & M_EXT) == 0) {
2075 m_freem(m);
2076 return (0);
2077 }
2078 }
2079
2080 /*
2081 * The following assumes there is room for the ether header in the
2082 * header mbuf.
2083 */
2084 m->m_data += EOFF;
2085 eh = mtod(m, struct ether_header *);
2086
2087 /* Set the length of this packet. */
2088 m->m_len = len;
2089
2090 /* Get a packet. */
2091 insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2092
2093 #if NBPFILTER > 0
2094 /*
2095 * Check if there's a BPF listener on this interface. If so, hand off
2096 * the raw packet to bpf.
2097 */
2098 if (ifp->if_bpf) {
2099 bpf_mtap(ifp->if_bpf, m);
2100
2101 /*
2102 * Note that the interface cannot be in promiscuous mode if
2103 * there are no BPF listeners. And if we are in promiscuous
2104 * mode, we have to check if this packet is really ours.
2105 */
2106 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2107 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2108 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2109 sizeof(eh->ether_dhost)) != 0) {
2110 m_freem(m);
2111 return (1);
2112 }
2113 }
2114 #endif
2115
2116 /* Fix up data start offset in mbuf to point past ether header. */
2117 m_adj(m, sizeof(struct ether_header));
2118 ether_input(ifp, eh, m);
2119 return (1);
2120 }
2121
2122 /*
2123 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2124 * Returns number of bytes actually written, including length word.
2125 *
2126 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2127 * Packets shorter than Ethernet minimum are legal, and we pad them
2128 * before sending out. An exception is "partial" packets which are
2129 * shorter than mandatory Ethernet header.
2130 *
2131 * I wrote a code for an experimental "delayed padding" technique.
2132 * When employed, it postpones the padding process for short packets.
2133 * If xmit() occured at the moment, the padding process is omitted, and
2134 * garbages are sent as pad data. If next packet is stored in the
2135 * transmission buffer before xmit(), write_mbuf() pads the previous
2136 * packet before transmitting new packet. This *may* gain the
2137 * system performance (slightly).
2138 */
2139 void
2140 fe_write_mbufs(sc, m)
2141 struct fe_softc *sc;
2142 struct mbuf *m;
2143 {
2144 int bmpr8 = sc->sc_iobase + FE_BMPR8;
2145 u_char *data;
2146 u_short savebyte; /* WARNING: Architecture dependent! */
2147 int totlen, len, wantbyte;
2148
2149 /* XXX thorpej 960116 - quiet bogus compiler warning. */
2150 savebyte = 0;
2151
2152 #if FE_DELAYED_PADDING
2153 /* Do the "delayed padding." */
2154 len = sc->txb_padding >> 1;
2155 if (len > 0) {
2156 while (--len >= 0)
2157 outw(bmpr8, 0);
2158 sc->txb_padding = 0;
2159 }
2160 #endif
2161
2162 /* We need to use m->m_pkthdr.len, so require the header */
2163 if ((m->m_flags & M_PKTHDR) == 0)
2164 panic("fe_write_mbufs: no header mbuf");
2165
2166 #if FE_DEBUG >= 2
2167 /* First, count up the total number of bytes to copy. */
2168 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2169 totlen += mp->m_len;
2170 /* Check if this matches the one in the packet header. */
2171 if (totlen != m->m_pkthdr.len)
2172 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2173 sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2174 #else
2175 /* Just use the length value in the packet header. */
2176 totlen = m->m_pkthdr.len;
2177 #endif
2178
2179 #if FE_DEBUG >= 1
2180 /*
2181 * Should never send big packets. If such a packet is passed,
2182 * it should be a bug of upper layer. We just ignore it.
2183 * ... Partial (too short) packets, neither.
2184 */
2185 if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2186 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2187 sc->sc_dev.dv_xname,
2188 totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2189 sc->sc_arpcom.ac_if.if_oerrors++;
2190 return;
2191 }
2192 #endif
2193
2194 /*
2195 * Put the length word for this frame.
2196 * Does 86960 accept odd length? -- Yes.
2197 * Do we need to pad the length to minimum size by ourselves?
2198 * -- Generally yes. But for (or will be) the last
2199 * packet in the transmission buffer, we can skip the
2200 * padding process. It may gain performance slightly. FIXME.
2201 */
2202 outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2203
2204 /*
2205 * Update buffer status now.
2206 * Truncate the length up to an even number, since we use outw().
2207 */
2208 totlen = (totlen + 1) & ~1;
2209 sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2210 sc->txb_count++;
2211
2212 #if FE_DELAYED_PADDING
2213 /* Postpone the packet padding if necessary. */
2214 if (totlen < ETHER_MIN_LEN)
2215 sc->txb_padding = ETHER_MIN_LEN - totlen;
2216 #endif
2217
2218 /*
2219 * Transfer the data from mbuf chain to the transmission buffer.
2220 * MB86960 seems to require that data be transferred as words, and
2221 * only words. So that we require some extra code to patch
2222 * over odd-length mbufs.
2223 */
2224 wantbyte = 0;
2225 for (; m != 0; m = m->m_next) {
2226 /* Ignore empty mbuf. */
2227 len = m->m_len;
2228 if (len == 0)
2229 continue;
2230
2231 /* Find the actual data to send. */
2232 data = mtod(m, caddr_t);
2233
2234 /* Finish the last byte. */
2235 if (wantbyte) {
2236 outw(bmpr8, savebyte | (*data << 8));
2237 data++;
2238 len--;
2239 wantbyte = 0;
2240 }
2241
2242 /* Output contiguous words. */
2243 if (len > 1)
2244 outsw(bmpr8, data, len >> 1);
2245
2246 /* Save remaining byte, if there is one. */
2247 if (len & 1) {
2248 data += len & ~1;
2249 savebyte = *data;
2250 wantbyte = 1;
2251 }
2252 }
2253
2254 /* Spit the last byte, if the length is odd. */
2255 if (wantbyte)
2256 outw(bmpr8, savebyte);
2257
2258 #if ! FE_DELAYED_PADDING
2259 /*
2260 * Pad the packet to the minimum length if necessary.
2261 */
2262 len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2263 while (--len >= 0)
2264 outw(bmpr8, 0);
2265 #endif
2266 }
2267
2268 /*
2269 * Compute the multicast address filter from the
2270 * list of multicast addresses we need to listen to.
2271 */
2272 void
2273 fe_getmcaf(ac, af)
2274 struct arpcom *ac;
2275 u_char *af;
2276 {
2277 struct ifnet *ifp = &ac->ac_if;
2278 struct ether_multi *enm;
2279 register u_char *cp, c;
2280 register u_long crc;
2281 register int i, len;
2282 struct ether_multistep step;
2283
2284 /*
2285 * Set up multicast address filter by passing all multicast addresses
2286 * through a crc generator, and then using the high order 6 bits as an
2287 * index into the 64 bit logical address filter. The high order bit
2288 * selects the word, while the rest of the bits select the bit within
2289 * the word.
2290 */
2291
2292 if ((ifp->if_flags & IFF_PROMISC) != 0)
2293 goto allmulti;
2294
2295 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2296 ETHER_FIRST_MULTI(step, ac, enm);
2297 while (enm != NULL) {
2298 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2299 sizeof(enm->enm_addrlo)) != 0) {
2300 /*
2301 * We must listen to a range of multicast addresses.
2302 * For now, just accept all multicasts, rather than
2303 * trying to set only those filter bits needed to match
2304 * the range. (At this time, the only use of address
2305 * ranges is for IP multicast routing, for which the
2306 * range is big enough to require all bits set.)
2307 */
2308 goto allmulti;
2309 }
2310
2311 cp = enm->enm_addrlo;
2312 crc = 0xffffffff;
2313 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2314 c = *cp++;
2315 for (i = 8; --i >= 0;) {
2316 if ((crc & 0x01) ^ (c & 0x01)) {
2317 crc >>= 1;
2318 crc ^= 0xedb88320;
2319 } else
2320 crc >>= 1;
2321 c >>= 1;
2322 }
2323 }
2324 /* Just want the 6 most significant bits. */
2325 crc >>= 26;
2326
2327 /* Turn on the corresponding bit in the filter. */
2328 af[crc >> 3] |= 1 << (crc & 7);
2329
2330 ETHER_NEXT_MULTI(step, enm);
2331 }
2332 ifp->if_flags &= ~IFF_ALLMULTI;
2333 return;
2334
2335 allmulti:
2336 ifp->if_flags |= IFF_ALLMULTI;
2337 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2338 }
2339
2340 /*
2341 * Calculate a new "multicast packet filter" and put the 86960
2342 * receiver in appropriate mode.
2343 */
2344 void
2345 fe_setmode(sc)
2346 struct fe_softc *sc;
2347 {
2348 int flags = sc->sc_arpcom.ac_if.if_flags;
2349
2350 /*
2351 * If the interface is not running, we postpone the update
2352 * process for receive modes and multicast address filter
2353 * until the interface is restarted. It reduces some
2354 * complicated job on maintaining chip states. (Earlier versions
2355 * of this driver had a bug on that point...)
2356 *
2357 * To complete the trick, fe_init() calls fe_setmode() after
2358 * restarting the interface.
2359 */
2360 if ((flags & IFF_RUNNING) == 0)
2361 return;
2362
2363 /*
2364 * Promiscuous mode is handled separately.
2365 */
2366 if ((flags & IFF_PROMISC) != 0) {
2367 /*
2368 * Program 86960 to receive all packets on the segment
2369 * including those directed to other stations.
2370 * Multicast filter stored in MARs are ignored
2371 * under this setting, so we don't need to update it.
2372 *
2373 * Promiscuous mode is used solely by BPF, and BPF only
2374 * listens to valid (no error) packets. So, we ignore
2375 * errornous ones even in this mode.
2376 */
2377 outb(sc->sc_iobase + FE_DLCR5,
2378 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2379 sc->filter_change = 0;
2380
2381 #if FE_DEBUG >= 3
2382 log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2383 #endif
2384 return;
2385 }
2386
2387 /*
2388 * Turn the chip to the normal (non-promiscuous) mode.
2389 */
2390 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2391
2392 /*
2393 * Find the new multicast filter value.
2394 */
2395 fe_getmcaf(&sc->sc_arpcom, sc->filter);
2396 sc->filter_change = 1;
2397
2398 #if FE_DEBUG >= 3
2399 log(LOG_INFO,
2400 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2401 sc->sc_dev.dv_xname,
2402 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2403 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2404 #endif
2405
2406 /*
2407 * We have to update the multicast filter in the 86960, A.S.A.P.
2408 *
2409 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2410 * and receiver) must be stopped when feeding the filter, and
2411 * DLC trushes all packets in both transmission and receive
2412 * buffers when stopped.
2413 *
2414 * ... Are the above sentenses correct? I have to check the
2415 * manual of the MB86960A. FIXME.
2416 *
2417 * To reduce the packet lossage, we delay the filter update
2418 * process until buffers are empty.
2419 */
2420 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2421 (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2422 /*
2423 * Buffers are (apparently) empty. Load
2424 * the new filter value into MARs now.
2425 */
2426 fe_loadmar(sc);
2427 } else {
2428 /*
2429 * Buffers are not empty. Mark that we have to update
2430 * the MARs. The new filter will be loaded by feintr()
2431 * later.
2432 */
2433 #if FE_DEBUG >= 4
2434 log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2435 #endif
2436 }
2437 }
2438
2439 /*
2440 * Load a new multicast address filter into MARs.
2441 *
2442 * The caller must have splnet'ed befor fe_loadmar.
2443 * This function starts the DLC upon return. So it can be called only
2444 * when the chip is working, i.e., from the driver's point of view, when
2445 * a device is RUNNING. (I mistook the point in previous versions.)
2446 */
2447 void
2448 fe_loadmar(sc)
2449 struct fe_softc *sc;
2450 {
2451
2452 /* Stop the DLC (transmitter and receiver). */
2453 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2454
2455 /* Select register bank 1 for MARs. */
2456 outb(sc->sc_iobase + FE_DLCR7,
2457 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2458
2459 /* Copy filter value into the registers. */
2460 outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2461
2462 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
2463 outb(sc->sc_iobase + FE_DLCR7,
2464 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2465
2466 /* Restart the DLC. */
2467 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2468
2469 /* We have just updated the filter. */
2470 sc->filter_change = 0;
2471
2472 #if FE_DEBUG >= 3
2473 log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2474 #endif
2475 }
2476
2477 #if FE_DEBUG >= 1
2478 void
2479 fe_dump(level, sc)
2480 int level;
2481 struct fe_softc *sc;
2482 {
2483 int iobase = sc->sc_iobase;
2484 u_char save_dlcr7;
2485
2486 save_dlcr7 = inb(iobase + FE_DLCR7);
2487
2488 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2489 inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
2490 inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
2491 inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
2492 inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
2493
2494 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2495 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
2496 inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
2497 inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2498 inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2499 inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2500
2501 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2502 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
2503 inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
2504 inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
2505 inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
2506 inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
2507
2508 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2509 log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2510 inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2511 inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2512 inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2513 inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2514 inb(iobase + FE_BMPR19));
2515
2516 outb(iobase + FE_DLCR7, save_dlcr7);
2517 }
2518 #endif
2519