if_ate.c revision 1.3 1 /*
2 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3 *
4 * This software may be used, modified, copied, distributed, and sold, in
5 * both source and binary form provided that the above copyright, these
6 * terms and the following disclaimer are retained. The name of the author
7 * and/or the contributor may not be used to endorse or promote products
8 * derived from this software without specific prior written permission.
9 *
10 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20 * SUCH DAMAGE.
21 */
22
23 /*
24 * Portions copyright (C) 1993, David Greenman. This software may be used,
25 * modified, copied, distributed, and sold, in both source and binary form
26 * provided that the above copyright and these terms are retained. Under no
27 * circumstances is the author responsible for the proper functioning of this
28 * software, nor does the author assume any responsibility for damages
29 * incurred with its use.
30 */
31
32 #define FE_VERSION "if_fe.c ver. 0.8"
33
34 /*
35 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36 * Contributed by M.S. <seki (at) sysrap.cs.fujitsu.co.jp>
37 *
38 * This version is intended to be a generic template for various
39 * MB86960A/MB86965A based Ethernet cards. It currently supports
40 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41 * Telesis AT1700 series and RE2000 series. There are some
42 * unnecessary hooks embedded, which are primarily intended to support
43 * other types of Ethernet cards, but the author is not sure whether
44 * they are useful.
45 */
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80
81 #include <machine/cpu.h>
82 #include <machine/pio.h>
83
84 #include <dev/isa/isareg.h>
85 #include <dev/isa/isavar.h>
86 #include <dev/ic/mb86960reg.h>
87 #include <dev/isa/if_fereg.h>
88
89 /*
90 * Default settings for fe driver specific options.
91 * They can be set in config file by "options" statements.
92 */
93
94 /*
95 * Debug control.
96 * 0: No debug at all. All debug specific codes are stripped off.
97 * 1: Silent. No debug messages are logged except emergent ones.
98 * 2: Brief. Lair events and/or important information are logged.
99 * 3: Detailed. Logs all information which *may* be useful for debugging.
100 * 4: Trace. All actions in the driver is logged. Super verbose.
101 */
102 #ifndef FE_DEBUG
103 #define FE_DEBUG 1
104 #endif
105
106 /*
107 * Delay padding of short transmission packets to minimum Ethernet size.
108 * This may or may not gain performance. An EXPERIMENTAL option.
109 */
110 #ifndef FE_DELAYED_PADDING
111 #define FE_DELAYED_PADDING 0
112 #endif
113
114 /*
115 * Transmit just one packet per a "send" command to 86960.
116 * This option is intended for performance test. An EXPERIMENTAL option.
117 */
118 #ifndef FE_SINGLE_TRANSMISSION
119 #define FE_SINGLE_TRANSMISSION 0
120 #endif
121
122 /*
123 * Device configuration flags.
124 */
125
126 /* DLCR6 settings. */
127 #define FE_FLAGS_DLCR6_VALUE 0x007F
128
129 /* Force DLCR6 override. */
130 #define FE_FLAGS_OVERRIDE_DLCR6 0x0080
131
132 /* A cludge for PCMCIA support. */
133 #define FE_FLAGS_PCMCIA 0x8000
134
135 /* Identification of the driver version. */
136 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
137
138 /*
139 * Supported hardware (Ethernet card) types
140 * This information is currently used only for debugging
141 */
142 enum fe_type {
143 /* For cards which are successfully probed but not identified. */
144 FE_TYPE_UNKNOWN,
145
146 /* Fujitsu FMV-180 series. */
147 FE_TYPE_FMV181,
148 FE_TYPE_FMV182,
149
150 /* Allied-Telesis AT1700 series and RE2000 series. */
151 FE_TYPE_AT1700T,
152 FE_TYPE_AT1700BT,
153 FE_TYPE_AT1700FT,
154 FE_TYPE_AT1700AT,
155 FE_TYPE_RE2000,
156
157 /* PCMCIA by Fujitsu. */
158 FE_TYPE_MBH10302,
159 FE_TYPE_MBH10304,
160 };
161
162 /*
163 * fe_softc: per line info and status
164 */
165 struct fe_softc {
166 struct device sc_dev;
167 void *sc_ih;
168
169 struct arpcom sc_arpcom; /* ethernet common */
170
171 /* Set by probe() and not modified in later phases. */
172 enum fe_type type; /* interface type code */
173 char *typestr; /* printable name of the interface. */
174 int sc_iobase; /* MB86960A I/O base address */
175
176 u_char proto_dlcr4; /* DLCR4 prototype. */
177 u_char proto_dlcr5; /* DLCR5 prototype. */
178 u_char proto_dlcr6; /* DLCR6 prototype. */
179 u_char proto_dlcr7; /* DLCR7 prototype. */
180 u_char proto_bmpr13; /* BMPR13 prototype. */
181
182 /* Vendor specific hooks. */
183 void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
184 void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
185
186 /* Transmission buffer management. */
187 u_short txb_size; /* total bytes in TX buffer */
188 u_short txb_free; /* free bytes in TX buffer */
189 u_char txb_count; /* number of packets in TX buffer */
190 u_char txb_sched; /* number of scheduled packets */
191 u_char txb_padding; /* number of delayed padding bytes */
192
193 /* Multicast address filter management. */
194 u_char filter_change; /* MARs must be changed ASAP. */
195 u_char filter[FE_FILTER_LEN]; /* new filter value. */
196 };
197
198 /* Frequently accessed members in arpcom. */
199 #define sc_enaddr sc_arpcom.ac_enaddr
200
201 /* Standard driver entry points. These can be static. */
202 int feprobe __P((struct device *, void *, void *));
203 void feattach __P((struct device *, struct device *, void *));
204 int feintr __P((void *));
205 void fe_init __P((struct fe_softc *));
206 int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
207 void fe_start __P((struct ifnet *));
208 void fe_reset __P((struct fe_softc *));
209 void fe_watchdog __P((int));
210
211 /* Local functions. Order of declaration is confused. FIXME. */
212 int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
213 int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
214 int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
215 void fe_init_mbh __P((struct fe_softc *));
216 int fe_get_packet __P((struct fe_softc *, int));
217 void fe_stop __P((struct fe_softc *));
218 void fe_tint __P((/*struct fe_softc *, u_char*/));
219 void fe_rint __P((/*struct fe_softc *, u_char*/));
220 static inline
221 void fe_xmit __P((struct fe_softc *));
222 void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
223 void fe_getmcaf __P((struct arpcom *, u_char *));
224 void fe_setmode __P((struct fe_softc *));
225 void fe_loadmar __P((struct fe_softc *));
226 #if FE_DEBUG >= 1
227 void fe_dump __P((int, struct fe_softc *));
228 #endif
229
230 struct cfdriver fecd = {
231 NULL, "fe", feprobe, feattach, DV_IFNET, sizeof(struct fe_softc)
232 };
233
234 /* Ethernet constants. To be defined in if_ehter.h? FIXME. */
235 #define ETHER_MIN_LEN 60 /* with header, without CRC. */
236 #define ETHER_MAX_LEN 1514 /* with header, without CRC. */
237 #define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
238 #define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
239
240 /*
241 * Fe driver specific constants which relate to 86960/86965.
242 * They are here (not in if_fereg.h), since selection of those
243 * values depend on driver design. I want to keep definitions in
244 * if_fereg.h "clean", so that if someone wrote another driver
245 * for 86960/86965, if_fereg.h were usable unchanged.
246 *
247 * The above statement sounds somothing like it's better to name
248 * it "ic/mb86960.h" but "if_fereg.h"... Should I do so? FIXME.
249 */
250
251 /* Interrupt masks. */
252 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
253 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
254 FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
255
256 /* Maximum number of iterrations for a receive interrupt. */
257 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
258 /* Maximum size of SRAM is 65536,
259 * minimum size of transmission buffer in fe is 2x2KB,
260 * and minimum amount of received packet including headers
261 * added by the chip is 64 bytes.
262 * Hence FE_MAX_RECV_COUNT is the upper limit for number
263 * of packets in the receive buffer. */
264
265 /*
266 * Convenient routines to access contiguous I/O ports.
267 */
268
269 static inline void
270 inblk (int addr, u_char * mem, int len)
271 {
272 while (--len >= 0) {
273 *mem++ = inb(addr++);
274 }
275 }
276
277 static inline void
278 outblk (int addr, u_char const * mem, int len)
279 {
280 while (--len >= 0) {
281 outb(addr++, *mem++);
282 }
283 }
284
285 /*
286 * Hardware probe routines.
287 */
288
289 /*
290 * Determine if the device is present.
291 */
292 int
293 feprobe(parent, match, aux)
294 struct device *parent;
295 void *match, *aux;
296 {
297 struct fe_softc *sc = match;
298 struct isa_attach_args *ia = aux;
299
300 #if FE_DEBUG >= 2
301 log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
302 #endif
303
304 /* Probe an address. */
305 sc->sc_iobase = ia->ia_iobase;
306
307 if (fe_probe_fmv(sc, ia))
308 return (1);
309 if (fe_probe_ati(sc, ia))
310 return (1);
311 if (fe_probe_mbh(sc, ia))
312 return (1);
313 return (0);
314 }
315
316 /*
317 * Check for specific bits in specific registers have specific values.
318 */
319 struct fe_simple_probe_struct {
320 u_char port; /* Offset from the base I/O address. */
321 u_char mask; /* Bits to be checked. */
322 u_char bits; /* Values to be compared against. */
323 };
324
325 static inline int
326 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
327 {
328 struct fe_simple_probe_struct const * p;
329
330 for (p = sp; p->mask != 0; p++) {
331 if ((inb(addr + p->port) & p->mask) != p->bits) {
332 return (0);
333 }
334 }
335 return (1);
336 }
337
338 /*
339 * Routines to read all bytes from the config EEPROM through MB86965A.
340 * I'm not sure what exactly I'm doing here... I was told just to follow
341 * the steps, and it worked. Could someone tell me why the following
342 * code works? (Or, why all similar codes I tried previously doesn't
343 * work.) FIXME.
344 */
345
346 static inline void
347 strobe (int bmpr16)
348 {
349 /*
350 * Output same value twice. To speed-down execution?
351 */
352 outb(bmpr16, FE_B16_SELECT);
353 outb(bmpr16, FE_B16_SELECT);
354 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
355 outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
356 outb(bmpr16, FE_B16_SELECT);
357 outb(bmpr16, FE_B16_SELECT);
358 }
359
360 void
361 fe_read_eeprom(sc, data)
362 struct fe_softc *sc;
363 u_char *data;
364 {
365 int iobase = sc->sc_iobase;
366 int bmpr16 = iobase + FE_BMPR16;
367 int bmpr17 = iobase + FE_BMPR17;
368 u_char n, val, bit;
369
370 /* Read bytes from EEPROM; two bytes per an iterration. */
371 for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
372 /* Reset the EEPROM interface. */
373 outb(bmpr16, 0x00);
374 outb(bmpr17, 0x00);
375 outb(bmpr16, FE_B16_SELECT);
376
377 /* Start EEPROM access. */
378 outb(bmpr17, FE_B17_DATA);
379 strobe(bmpr16);
380
381 /* Pass the iterration count to the chip. */
382 val = 0x80 | n;
383 for (bit = 0x80; bit != 0x00; bit >>= 1) {
384 outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
385 strobe(bmpr16);
386 }
387 outb(bmpr17, 0x00);
388
389 /* Read a byte. */
390 val = 0;
391 for (bit = 0x80; bit != 0x00; bit >>= 1) {
392 strobe(bmpr16);
393 if (inb(bmpr17) & FE_B17_DATA)
394 val |= bit;
395 }
396 *data++ = val;
397
398 /* Read one more byte. */
399 val = 0;
400 for (bit = 0x80; bit != 0x00; bit >>= 1) {
401 strobe(bmpr16);
402 if (inb(bmpr17) & FE_B17_DATA)
403 val |= bit;
404 }
405 *data++ = val;
406 }
407
408 #if FE_DEBUG >= 3
409 /* Report what we got. */
410 data -= FE_EEPROM_SIZE;
411 log(LOG_INFO, "%s: EEPROM at %04x:"
412 " %02x%02x%02x%02x %02x%02x%02x%02x -"
413 " %02x%02x%02x%02x %02x%02x%02x%02x -"
414 " %02x%02x%02x%02x %02x%02x%02x%02x -"
415 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
416 sc->sc_dev.dv_xname, iobase,
417 data[ 0], data[ 1], data[ 2], data[ 3],
418 data[ 4], data[ 5], data[ 6], data[ 7],
419 data[ 8], data[ 9], data[10], data[11],
420 data[12], data[13], data[14], data[15],
421 data[16], data[17], data[18], data[19],
422 data[20], data[21], data[22], data[23],
423 data[24], data[25], data[26], data[27],
424 data[28], data[29], data[30], data[31]);
425 #endif
426 }
427
428 /*
429 * Hardware (vendor) specific probe routines.
430 */
431
432 /*
433 * Probe and initialization for Fujitsu FMV-180 series boards
434 */
435 int
436 fe_probe_fmv(sc, ia)
437 struct fe_softc *sc;
438 struct isa_attach_args *ia;
439 {
440 int i, n;
441 int iobase = sc->sc_iobase;
442 int irq;
443
444 static int const iomap[8] =
445 { 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
446 static int const irqmap[4] =
447 { 3, 7, 10, 15 };
448
449 static struct fe_simple_probe_struct const probe_table[] = {
450 { FE_DLCR2, 0x70, 0x00 },
451 { FE_DLCR4, 0x08, 0x00 },
452 /* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
453
454 { FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
455 { FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
456 { FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
457 #if 1
458 /*
459 * Test *vendor* part of the station address for Fujitsu.
460 * The test will gain reliability of probe process, but
461 * it rejects FMV-180 clone boards manufactured by other vendors.
462 * We have to turn the test off when such cards are made available.
463 */
464 { FE_FMV4, 0xFF, 0x00 },
465 { FE_FMV5, 0xFF, 0x00 },
466 { FE_FMV6, 0xFF, 0x0E },
467 #else
468 /*
469 * We can always verify the *first* 2 bits (in Ehternet
470 * bit order) are "no multicast" and "no local" even for
471 * unknown vendors.
472 */
473 { FE_FMV4, 0x03, 0x00 },
474 #endif
475 { 0 }
476 };
477
478 #if 0
479 /*
480 * Dont probe at all if the config says we are PCMCIA...
481 */
482 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
483 return (0);
484 #endif
485
486 /*
487 * See if the sepcified address is possible for FMV-180 series.
488 */
489 for (i = 0; i < 8; i++) {
490 if (iomap[i] == iobase)
491 break;
492 }
493 if (i == 8)
494 return (0);
495
496 /* Simple probe. */
497 if (!fe_simple_probe(iobase, probe_table))
498 return (0);
499
500 /* Check if our I/O address matches config info on EEPROM. */
501 n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
502 if (iomap[n] != iobase)
503 return (0);
504
505 /* Determine the card type. */
506 switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
507 case FE_FMV0_MODEL_FMV181:
508 sc->type = FE_TYPE_FMV181;
509 sc->typestr = "FMV-181";
510 break;
511 case FE_FMV0_MODEL_FMV182:
512 sc->type = FE_TYPE_FMV182;
513 sc->typestr = "FMV-182";
514 break;
515 default:
516 /* Unknown card type: maybe a new model, but... */
517 return (0);
518 }
519
520 /*
521 * An FMV-180 has successfully been proved.
522 * Determine which IRQ to be used.
523 *
524 * In this version, we always get an IRQ assignment from the
525 * FMV-180's configuration EEPROM, ignoring that specified in
526 * config file.
527 */
528 n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
529 irq = irqmap[n];
530
531 if (ia->ia_irq != IRQUNK) {
532 if (ia->ia_irq != irq) {
533 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
534 sc->sc_dev.dv_xname, ia->ia_irq, irq);
535 return (0);
536 }
537 } else
538 ia->ia_irq = irq;
539
540 /*
541 * Initialize constants in the per-line structure.
542 */
543
544 /* Get our station address from EEPROM. */
545 inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
546
547 /* Make sure we got a valid station address. */
548 if ((sc->sc_enaddr[0] & 0x03) != 0x00
549 || (sc->sc_enaddr[0] == 0x00
550 && sc->sc_enaddr[1] == 0x00
551 && sc->sc_enaddr[2] == 0x00))
552 return (0);
553
554 /* Register values which depend on board design. */
555 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
556 sc->proto_dlcr5 = 0;
557 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
558 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
559
560 /*
561 * Program the 86960 as follows:
562 * SRAM: 32KB, 100ns, byte-wide access.
563 * Transmission buffer: 4KB x 2.
564 * System bus interface: 16 bits.
565 * We cannot change these values but TXBSIZE, because they
566 * are hard-wired on the board. Modifying TXBSIZE will affect
567 * the driver performance.
568 */
569 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
570 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
571
572 /*
573 * Minimum initialization of the hardware.
574 * We write into registers; hope I/O ports have no
575 * overlap with other boards.
576 */
577
578 /* Initialize ASIC. */
579 outb(iobase + FE_FMV3, 0);
580 outb(iobase + FE_FMV10, 0);
581
582 /* Wait for a while. I'm not sure this is necessary. FIXME. */
583 delay(200);
584
585 /* Initialize 86960. */
586 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
587 delay(200);
588
589 /* Disable all interrupts. */
590 outb(iobase + FE_DLCR2, 0);
591 outb(iobase + FE_DLCR3, 0);
592
593 /* Turn the "master interrupt control" flag of ASIC on. */
594 outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
595
596 /*
597 * That's all. FMV-180 occupies 32 I/O addresses, by the way.
598 */
599 ia->ia_iosize = 32;
600 ia->ia_msize = 0;
601 return (1);
602 }
603
604 /*
605 * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
606 */
607 int
608 fe_probe_ati(sc, ia)
609 struct fe_softc *sc;
610 struct isa_attach_args *ia;
611 {
612 int i, n;
613 int iobase = sc->sc_iobase;
614 u_char eeprom[FE_EEPROM_SIZE];
615 u_char save16, save17;
616 int irq;
617
618 static int const iomap[8] =
619 { 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
620 static int const irqmap[4][4] = {
621 { 3, 4, 5, 9 },
622 { 10, 11, 12, 15 },
623 { 3, 11, 5, 15 },
624 { 10, 11, 14, 15 },
625 };
626 static struct fe_simple_probe_struct const probe_table[] = {
627 { FE_DLCR2, 0x70, 0x00 },
628 { FE_DLCR4, 0x08, 0x00 },
629 { FE_DLCR5, 0x80, 0x00 },
630 #if 0
631 { FE_BMPR16, 0x1B, 0x00 },
632 { FE_BMPR17, 0x7F, 0x00 },
633 #endif
634 { 0 }
635 };
636
637 #if 0
638 /*
639 * Don't probe at all if the config says we are PCMCIA...
640 */
641 if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
642 return (0);
643 #endif
644
645 #if FE_DEBUG >= 4
646 log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
647 fe_dump(LOG_INFO, sc);
648 #endif
649
650 /*
651 * See if the sepcified address is possible for MB86965A JLI mode.
652 */
653 for (i = 0; i < 8; i++) {
654 if (iomap[i] == iobase)
655 break;
656 }
657 if (i == 8)
658 return (0);
659
660 /*
661 * We should test if MB86965A is on the base address now.
662 * Unfortunately, it is very hard to probe it reliably, since
663 * we have no way to reset the chip under software control.
664 * On cold boot, we could check the "signature" bit patterns
665 * described in the Fujitsu document. On warm boot, however,
666 * we can predict almost nothing about register values.
667 */
668 if (!fe_simple_probe(iobase, probe_table))
669 return (0);
670
671 /* Save old values of the registers. */
672 save16 = inb(iobase + FE_BMPR16);
673 save17 = inb(iobase + FE_BMPR17);
674
675 /* Check if our I/O address matches config info on 86965. */
676 n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
677 if (iomap[n] != iobase)
678 goto fail;
679
680 /*
681 * We are now almost sure we have an AT1700 at the given
682 * address. So, read EEPROM through 86965. We have to write
683 * into LSI registers to read from EEPROM. I want to avoid it
684 * at this stage, but I cannot test the presense of the chip
685 * any further without reading EEPROM. FIXME.
686 */
687 fe_read_eeprom(sc, eeprom);
688
689 /* Make sure the EEPROM is turned off. */
690 outb(iobase + FE_BMPR16, 0);
691 outb(iobase + FE_BMPR17, 0);
692
693 /* Make sure that config info in EEPROM and 86965 agree. */
694 if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
695 goto fail;
696
697 /*
698 * Determine the card type.
699 */
700 switch (eeprom[FE_ATI_EEP_MODEL]) {
701 case FE_ATI_MODEL_AT1700T:
702 sc->type = FE_TYPE_AT1700T;
703 sc->typestr = "AT-1700T";
704 break;
705 case FE_ATI_MODEL_AT1700BT:
706 sc->type = FE_TYPE_AT1700BT;
707 sc->typestr = "AT-1700BT";
708 break;
709 case FE_ATI_MODEL_AT1700FT:
710 sc->type = FE_TYPE_AT1700FT;
711 sc->typestr = "AT-1700FT";
712 break;
713 case FE_ATI_MODEL_AT1700AT:
714 sc->type = FE_TYPE_AT1700AT;
715 sc->typestr = "AT-1700AT";
716 break;
717 default:
718 sc->type = FE_TYPE_RE2000;
719 sc->typestr = "unknown (RE-2000?)";
720 break;
721 }
722
723 /*
724 * Try to determine IRQ settings.
725 * Different models use different ranges of IRQs.
726 */
727 n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
728 switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
729 case 0x30:
730 irq = irqmap[3][n];
731 break;
732 case 0x10:
733 case 0x50:
734 irq = irqmap[2][n];
735 break;
736 case 0x40:
737 case 0x60:
738 if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
739 irq = irqmap[1][n];
740 break;
741 }
742 default:
743 irq = irqmap[0][n];
744 break;
745 }
746
747 if (ia->ia_irq != IRQUNK) {
748 if (ia->ia_irq != irq) {
749 printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
750 sc->sc_dev.dv_xname, ia->ia_irq, irq);
751 return (0);
752 }
753 } else
754 ia->ia_irq = irq;
755
756 /*
757 * Initialize constants in the per-line structure.
758 */
759
760 /* Get our station address from EEPROM. */
761 bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
762
763 /* Make sure we got a valid station address. */
764 if ((sc->sc_enaddr[0] & 0x03) != 0x00
765 || (sc->sc_enaddr[0] == 0x00
766 && sc->sc_enaddr[1] == 0x00
767 && sc->sc_enaddr[2] == 0x00))
768 goto fail;
769
770 /* Should find all register prototypes here. FIXME. */
771 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
772 sc->proto_dlcr5 = 0;
773 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
774 #if 0 /* XXXX Should we use this? */
775 sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
776 #else
777 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
778 #endif
779
780 /*
781 * Program the 86965 as follows:
782 * SRAM: 32KB, 100ns, byte-wide access.
783 * Transmission buffer: 4KB x 2.
784 * System bus interface: 16 bits.
785 * We cannot change these values but TXBSIZE, because they
786 * are hard-wired on the board. Modifying TXBSIZE will affect
787 * the driver performance.
788 */
789 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
790 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
791
792 #if FE_DEBUG >= 3
793 log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
794 fe_dump(LOG_INFO, sc);
795 #endif
796
797 /* Initialize 86965. */
798 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
799 delay(200);
800
801 /* Disable all interrupts. */
802 outb(iobase + FE_DLCR2, 0);
803 outb(iobase + FE_DLCR3, 0);
804
805 #if FE_DEBUG >= 3
806 log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
807 fe_dump(LOG_INFO, sc);
808 #endif
809
810 /*
811 * That's all. AT1700 occupies 32 I/O addresses, by the way.
812 */
813 ia->ia_iosize = 32;
814 ia->ia_msize = 0;
815 return (1);
816
817 fail:
818 /* Restore register values, in the case we had no 86965. */
819 outb(iobase + FE_BMPR16, save16);
820 outb(iobase + FE_BMPR17, save17);
821 return (0);
822 }
823
824 /*
825 * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
826 */
827 int
828 fe_probe_mbh(sc, ia)
829 struct fe_softc *sc;
830 struct isa_attach_args *ia;
831 {
832 int iobase = sc->sc_iobase;
833
834 static struct fe_simple_probe_struct probe_table[] = {
835 { FE_DLCR2, 0x70, 0x00 },
836 { FE_DLCR4, 0x08, 0x00 },
837 /* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
838 #if 0
839 /*
840 * Test *vendor* part of the address for Fujitsu.
841 * The test will gain reliability of probe process, but
842 * it rejects clones by other vendors, or OEM product
843 * supplied by resalers other than Fujitsu.
844 */
845 { FE_MBH10, 0xFF, 0x00 },
846 { FE_MBH11, 0xFF, 0x00 },
847 { FE_MBH12, 0xFF, 0x0E },
848 #else
849 /*
850 * We can always verify the *first* 2 bits (in Ehternet
851 * bit order) are "global" and "unicast" even for
852 * unknown vendors.
853 */
854 { FE_MBH10, 0x03, 0x00 },
855 #endif
856 /* Just a gap? Seems reliable, anyway. */
857 { 0x12, 0xFF, 0x00 },
858 { 0x13, 0xFF, 0x00 },
859 { 0x14, 0xFF, 0x00 },
860 { 0x15, 0xFF, 0x00 },
861 { 0x16, 0xFF, 0x00 },
862 { 0x17, 0xFF, 0x00 },
863 { 0x18, 0xFF, 0xFF },
864 { 0x19, 0xFF, 0xFF },
865
866 { 0 }
867 };
868
869 #if 0
870 /*
871 * We need a PCMCIA flag.
872 */
873 if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
874 return (0);
875 #endif
876
877 /*
878 * We need explicit IRQ and supported address.
879 */
880 if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
881 return (0);
882
883 #if FE_DEBUG >= 3
884 log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
885 fe_dump(LOG_INFO, sc);
886 #endif
887
888 /*
889 * See if MBH10302 is on its address.
890 * I'm not sure the following probe code works. FIXME.
891 */
892 if (!fe_simple_probe(iobase, probe_table))
893 return (0);
894
895 /* Determine the card type. */
896 sc->type = FE_TYPE_MBH10302;
897 sc->typestr = "MBH10302 (PCMCIA)";
898
899 /*
900 * Initialize constants in the per-line structure.
901 */
902
903 /* Get our station address from EEPROM. */
904 inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
905
906 /* Make sure we got a valid station address. */
907 if ((sc->sc_enaddr[0] & 0x03) != 0x00
908 || (sc->sc_enaddr[0] == 0x00
909 && sc->sc_enaddr[1] == 0x00
910 && sc->sc_enaddr[2] == 0x00))
911 return (0);
912
913 /* Should find all register prototypes here. FIXME. */
914 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
915 sc->proto_dlcr5 = 0;
916 sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
917 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
918
919 /*
920 * Program the 86960 as follows:
921 * SRAM: 32KB, 100ns, byte-wide access.
922 * Transmission buffer: 4KB x 2.
923 * System bus interface: 16 bits.
924 * We cannot change these values but TXBSIZE, because they
925 * are hard-wired on the board. Modifying TXBSIZE will affect
926 * the driver performance.
927 */
928 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
929 | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
930
931 /* Setup hooks. We need a special initialization procedure. */
932 sc->init = fe_init_mbh;
933
934 /*
935 * Minimum initialization.
936 */
937
938 /* Wait for a while. I'm not sure this is necessary. FIXME. */
939 delay(200);
940
941 /* Minimul initialization of 86960. */
942 outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
943 delay(200);
944
945 /* Disable all interrupts. */
946 outb(iobase + FE_DLCR2, 0);
947 outb(iobase + FE_DLCR3, 0);
948
949 #if 1 /* FIXME. */
950 /* Initialize system bus interface and encoder/decoder operation. */
951 outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
952 #endif
953
954 /*
955 * That's all. MBH10302 occupies 32 I/O addresses, by the way.
956 */
957 ia->ia_iosize = 32;
958 ia->ia_msize = 0;
959 return (1);
960 }
961
962 /* MBH specific initialization routine. */
963 void
964 fe_init_mbh(sc)
965 struct fe_softc *sc;
966 {
967
968 /* Probably required after hot-insertion... */
969
970 /* Wait for a while. I'm not sure this is necessary. FIXME. */
971 delay(200);
972
973 /* Minimul initialization of 86960. */
974 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
975 delay(200);
976
977 /* Disable all interrupts. */
978 outb(sc->sc_iobase + FE_DLCR2, 0);
979 outb(sc->sc_iobase + FE_DLCR3, 0);
980
981 /* Enable master interrupt flag. */
982 outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
983 }
984
985 /*
986 * Install interface into kernel networking data structures
987 */
988 void
989 feattach(parent, self, aux)
990 struct device *parent, *self;
991 void *aux;
992 {
993 struct fe_softc *sc = (void *)self;
994 struct isa_attach_args *ia = aux;
995 struct cfdata *cf = sc->sc_dev.dv_cfdata;
996 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
997
998 /* Stop the 86960. */
999 fe_stop(sc);
1000
1001 /* Initialize ifnet structure. */
1002 ifp->if_unit = sc->sc_dev.dv_unit;
1003 ifp->if_name = fecd.cd_name;
1004 ifp->if_start = fe_start;
1005 ifp->if_ioctl = fe_ioctl;
1006 ifp->if_watchdog = fe_watchdog;
1007 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
1008
1009 /*
1010 * Set maximum size of output queue, if it has not been set.
1011 * It is done here as this driver may be started after the
1012 * system intialization (i.e., the interface is PCMCIA.)
1013 *
1014 * I'm not sure this is really necessary, but, even if it is,
1015 * it should be done somewhere else, e.g., in if_attach(),
1016 * since it must be a common workaround for all network drivers.
1017 * FIXME.
1018 */
1019 if (ifp->if_snd.ifq_maxlen == 0) {
1020 extern int ifqmaxlen; /* Don't be so shocked... */
1021 ifp->if_snd.ifq_maxlen = ifqmaxlen;
1022 }
1023
1024 #if FE_DEBUG >= 3
1025 log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1026 fe_dump(LOG_INFO, sc);
1027 #endif
1028
1029 #if FE_SINGLE_TRANSMISSION
1030 /* Override txb config to allocate minimum. */
1031 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1032 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1033 #endif
1034
1035 /* Modify hardware config if it is requested. */
1036 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1037 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1038
1039 /* Find TX buffer size, based on the hardware dependent proto. */
1040 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1041 case FE_D6_TXBSIZ_2x2KB:
1042 sc->txb_size = 2048;
1043 break;
1044 case FE_D6_TXBSIZ_2x4KB:
1045 sc->txb_size = 4096;
1046 break;
1047 case FE_D6_TXBSIZ_2x8KB:
1048 sc->txb_size = 8192;
1049 break;
1050 default:
1051 /* Oops, we can't work with single buffer configuration. */
1052 #if FE_DEBUG >= 2
1053 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1054 sc->sc_dev.dv_xname);
1055 #endif
1056 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1057 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
1058 sc->txb_size = 2048;
1059 break;
1060 }
1061
1062 /* Attach the interface. */
1063 if_attach(ifp);
1064 ether_ifattach(ifp);
1065
1066 /* Print additional info when attached. */
1067 printf(": address %s, type %s\n",
1068 ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1069 #if FE_DEBUG >= 3
1070 {
1071 int buf, txb, bbw, sbw, ram;
1072
1073 buf = txb = bbw = sbw = ram = -1;
1074 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1075 case FE_D6_BUFSIZ_8KB:
1076 buf = 8;
1077 break;
1078 case FE_D6_BUFSIZ_16KB:
1079 buf = 16;
1080 break;
1081 case FE_D6_BUFSIZ_32KB:
1082 buf = 32;
1083 break;
1084 case FE_D6_BUFSIZ_64KB:
1085 buf = 64;
1086 break;
1087 }
1088 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1089 case FE_D6_TXBSIZ_2x2KB:
1090 txb = 2;
1091 break;
1092 case FE_D6_TXBSIZ_2x4KB:
1093 txb = 4;
1094 break;
1095 case FE_D6_TXBSIZ_2x8KB:
1096 txb = 8;
1097 break;
1098 }
1099 switch (sc->proto_dlcr6 & FE_D6_BBW) {
1100 case FE_D6_BBW_BYTE:
1101 bbw = 8;
1102 break;
1103 case FE_D6_BBW_WORD:
1104 bbw = 16;
1105 break;
1106 }
1107 switch (sc->proto_dlcr6 & FE_D6_SBW) {
1108 case FE_D6_SBW_BYTE:
1109 sbw = 8;
1110 break;
1111 case FE_D6_SBW_WORD:
1112 sbw = 16;
1113 break;
1114 }
1115 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1116 case FE_D6_SRAM_100ns:
1117 ram = 100;
1118 break;
1119 case FE_D6_SRAM_150ns:
1120 ram = 150;
1121 break;
1122 }
1123 printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1124 sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1125 }
1126 #endif
1127
1128 #if NBPFILTER > 0
1129 /* If BPF is in the kernel, call the attach for it. */
1130 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1131 #endif
1132
1133 sc->sc_ih = isa_intr_establish(ia->ia_irq, ISA_IST_EDGE, ISA_IPL_NET,
1134 feintr, sc);
1135 }
1136
1137 /*
1138 * Reset interface.
1139 */
1140 void
1141 fe_reset(sc)
1142 struct fe_softc *sc;
1143 {
1144 int s;
1145
1146 s = splimp();
1147 fe_stop(sc);
1148 fe_init(sc);
1149 splx(s);
1150 }
1151
1152 /*
1153 * Stop everything on the interface.
1154 *
1155 * All buffered packets, both transmitting and receiving,
1156 * if any, will be lost by stopping the interface.
1157 */
1158 void
1159 fe_stop(sc)
1160 struct fe_softc *sc;
1161 {
1162
1163 #if FE_DEBUG >= 3
1164 log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1165 fe_dump(LOG_INFO, sc);
1166 #endif
1167
1168 /* Disable interrupts. */
1169 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1170 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1171
1172 /* Stop interface hardware. */
1173 delay(200);
1174 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1175 delay(200);
1176
1177 /* Clear all interrupt status. */
1178 outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1179 outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1180
1181 /* Put the chip in stand-by mode. */
1182 delay(200);
1183 outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1184 delay(200);
1185
1186 /* MAR loading can be delayed. */
1187 sc->filter_change = 0;
1188
1189 /* Call a hook. */
1190 if (sc->stop)
1191 sc->stop(sc);
1192
1193 #if DEBUG >= 3
1194 log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1195 fe_dump(LOG_INFO, sc);
1196 #endif
1197 }
1198
1199 /*
1200 * Device timeout/watchdog routine. Entered if the device neglects to
1201 * generate an interrupt after a transmit has been started on it.
1202 */
1203 void
1204 fe_watchdog(unit)
1205 int unit;
1206 {
1207 struct fe_softc *sc = fecd.cd_devs[unit];
1208
1209 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1210 #if FE_DEBUG >= 3
1211 fe_dump(LOG_INFO, sc);
1212 #endif
1213
1214 /* Record how many packets are lost by this accident. */
1215 sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1216
1217 fe_reset(sc);
1218 }
1219
1220 /*
1221 * Initialize device.
1222 */
1223 void
1224 fe_init(sc)
1225 struct fe_softc *sc;
1226 {
1227 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1228 int i, s;
1229
1230 #if FE_DEBUG >= 3
1231 log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1232 fe_dump(LOG_INFO, sc);
1233 #endif
1234
1235 /* Start initializing 86960. */
1236 s = splimp();
1237
1238 /* Reset transmitter flags. */
1239 ifp->if_flags &= ~IFF_OACTIVE;
1240 ifp->if_timer = 0;
1241
1242 sc->txb_free = sc->txb_size;
1243 sc->txb_count = 0;
1244 sc->txb_sched = 0;
1245
1246 /* Call a hook. */
1247 if (sc->init)
1248 sc->init(sc);
1249
1250 #if FE_DEBUG >= 3
1251 log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1252 fe_dump(LOG_INFO, sc);
1253 #endif
1254
1255 /*
1256 * Make sure to disable the chip, also.
1257 * This may also help re-programming the chip after
1258 * hot insertion of PCMCIAs.
1259 */
1260 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1261
1262 /* Power up the chip and select register bank for DLCRs. */
1263 delay(200);
1264 outb(sc->sc_iobase + FE_DLCR7,
1265 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1266 delay(200);
1267
1268 /* Feed the station address. */
1269 outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1270
1271 /* Select the BMPR bank for runtime register access. */
1272 outb(sc->sc_iobase + FE_DLCR7,
1273 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1274
1275 /* Initialize registers. */
1276 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1277 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1278 outb(sc->sc_iobase + FE_DLCR2, 0x00);
1279 outb(sc->sc_iobase + FE_DLCR3, 0x00);
1280 outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1281 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1282 outb(sc->sc_iobase + FE_BMPR10, 0x00);
1283 outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1284 outb(sc->sc_iobase + FE_BMPR12, 0x00);
1285 outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1286 outb(sc->sc_iobase + FE_BMPR14, 0x00);
1287 outb(sc->sc_iobase + FE_BMPR15, 0x00);
1288
1289 #if FE_DEBUG >= 3
1290 log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1291 fe_dump(LOG_INFO, sc);
1292 #endif
1293
1294 /* Enable interrupts. */
1295 outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1296 outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1297
1298 /* Enable transmitter and receiver. */
1299 delay(200);
1300 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1301 delay(200);
1302
1303 #if FE_DEBUG >= 3
1304 log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1305 fe_dump(LOG_INFO, sc);
1306 #endif
1307
1308 /*
1309 * Make sure to empty the receive buffer.
1310 *
1311 * This may be redundant, but *if* the receive buffer were full
1312 * at this point, the driver would hang. I have experienced
1313 * some strange hangups just after UP. I hope the following
1314 * code solve the problem.
1315 *
1316 * I have changed the order of hardware initialization.
1317 * I think the receive buffer cannot have any packets at this
1318 * point in this version. The following code *must* be
1319 * redundant now. FIXME.
1320 */
1321 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1322 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1323 break;
1324 outb(sc->sc_iobase + FE_BMPR14, FE_B14_SKIP);
1325 }
1326 #if FE_DEBUG >= 1
1327 if (i >= FE_MAX_RECV_COUNT) {
1328 log(LOG_ERR, "%s: cannot empty receive buffer\n",
1329 sc->sc_dev.dv_xname);
1330 }
1331 #endif
1332 #if FE_DEBUG >= 3
1333 if (i < FE_MAX_RECV_COUNT) {
1334 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1335 sc->sc_dev.dv_xname, i);
1336 }
1337 #endif
1338
1339 #if FE_DEBUG >= 3
1340 log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1341 fe_dump(LOG_INFO, sc);
1342 #endif
1343
1344 /* Do we need this here? */
1345 outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
1346 outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
1347
1348 #if FE_DEBUG >= 3
1349 log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1350 fe_dump(LOG_INFO, sc);
1351 #endif
1352
1353 /* Set 'running' flag. */
1354 ifp->if_flags |= IFF_RUNNING;
1355
1356 /*
1357 * At this point, the interface is runnung properly,
1358 * except that it receives *no* packets. we then call
1359 * fe_setmode() to tell the chip what packets to be
1360 * received, based on the if_flags and multicast group
1361 * list. It completes the initialization process.
1362 */
1363 fe_setmode(sc);
1364
1365 #if FE_DEBUG >= 3
1366 log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1367 fe_dump(LOG_INFO, sc);
1368 #endif
1369
1370 /* ...and attempt to start output. */
1371 fe_start(ifp);
1372
1373 #if FE_DEBUG >= 3
1374 log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1375 fe_dump(LOG_INFO, sc);
1376 #endif
1377
1378 splx(s);
1379 }
1380
1381 /*
1382 * This routine actually starts the transmission on the interface
1383 */
1384 static inline void
1385 fe_xmit(sc)
1386 struct fe_softc *sc;
1387 {
1388
1389 /*
1390 * Set a timer just in case we never hear from the board again.
1391 * We use longer timeout for multiple packet transmission.
1392 * I'm not sure this timer value is appropriate. FIXME.
1393 */
1394 sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1395
1396 /* Update txb variables. */
1397 sc->txb_sched = sc->txb_count;
1398 sc->txb_count = 0;
1399 sc->txb_free = sc->txb_size;
1400
1401 #if FE_DELAYED_PADDING
1402 /* Omit the postponed padding process. */
1403 sc->txb_padding = 0;
1404 #endif
1405
1406 /* Start transmitter, passing packets in TX buffer. */
1407 outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1408 }
1409
1410 /*
1411 * Start output on interface.
1412 * We make two assumptions here:
1413 * 1) that the current priority is set to splimp _before_ this code
1414 * is called *and* is returned to the appropriate priority after
1415 * return
1416 * 2) that the IFF_OACTIVE flag is checked before this code is called
1417 * (i.e. that the output part of the interface is idle)
1418 */
1419 void
1420 fe_start(ifp)
1421 struct ifnet *ifp;
1422 {
1423 struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1424 struct mbuf *m;
1425
1426 #if FE_DEBUG >= 1
1427 /* Just a sanity check. */
1428 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1429 /*
1430 * Txb_count and txb_free co-works to manage the
1431 * transmission buffer. Txb_count keeps track of the
1432 * used potion of the buffer, while txb_free does unused
1433 * potion. So, as long as the driver runs properly,
1434 * txb_count is zero if and only if txb_free is same
1435 * as txb_size (which represents whole buffer.)
1436 */
1437 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1438 sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1439 /*
1440 * So, what should I do, then?
1441 *
1442 * We now know txb_count and txb_free contradicts. We
1443 * cannot, however, tell which is wrong. More
1444 * over, we cannot peek 86960 transmission buffer or
1445 * reset the transmission buffer. (In fact, we can
1446 * reset the entire interface. I don't want to do it.)
1447 *
1448 * If txb_count is incorrect, leaving it as is will cause
1449 * sending of gabages after next interrupt. We have to
1450 * avoid it. Hence, we reset the txb_count here. If
1451 * txb_free was incorrect, resetting txb_count just loose
1452 * some packets. We can live with it.
1453 */
1454 sc->txb_count = 0;
1455 }
1456 #endif
1457
1458 #if FE_DEBUG >= 1
1459 /*
1460 * First, see if there are buffered packets and an idle
1461 * transmitter - should never happen at this point.
1462 */
1463 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1464 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1465 sc->sc_dev.dv_xname, sc->txb_count);
1466 fe_xmit(sc);
1467 }
1468 #endif
1469
1470 /*
1471 * Stop accepting more transmission packets temporarily, when
1472 * a filter change request is delayed. Updating the MARs on
1473 * 86960 flushes the transmisstion buffer, so it is delayed
1474 * until all buffered transmission packets have been sent
1475 * out.
1476 */
1477 if (sc->filter_change) {
1478 /*
1479 * Filter change requst is delayed only when the DLC is
1480 * working. DLC soon raise an interrupt after finishing
1481 * the work.
1482 */
1483 goto indicate_active;
1484 }
1485
1486 for (;;) {
1487 /*
1488 * See if there is room to put another packet in the buffer.
1489 * We *could* do better job by peeking the send queue to
1490 * know the length of the next packet. Current version just
1491 * tests against the worst case (i.e., longest packet). FIXME.
1492 *
1493 * When adding the packet-peek feature, don't forget adding a
1494 * test on txb_count against QUEUEING_MAX.
1495 * There is a little chance the packet count exceeds
1496 * the limit. Assume transmission buffer is 8KB (2x8KB
1497 * configuration) and an application sends a bunch of small
1498 * (i.e., minimum packet sized) packets rapidly. An 8KB
1499 * buffer can hold 130 blocks of 62 bytes long...
1500 */
1501 if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1502 /* No room. */
1503 goto indicate_active;
1504 }
1505
1506 #if FE_SINGLE_TRANSMISSION
1507 if (sc->txb_count > 0) {
1508 /* Just one packet per a transmission buffer. */
1509 goto indicate_active;
1510 }
1511 #endif
1512
1513 /*
1514 * Get the next mbuf chain for a packet to send.
1515 */
1516 IF_DEQUEUE(&ifp->if_snd, m);
1517 if (m == 0) {
1518 /* No more packets to send. */
1519 goto indicate_inactive;
1520 }
1521
1522 /*
1523 * Copy the mbuf chain into the transmission buffer.
1524 * txb_* variables are updated as necessary.
1525 */
1526 fe_write_mbufs(sc, m);
1527
1528 /* Start transmitter if it's idle. */
1529 if (sc->txb_sched == 0)
1530 fe_xmit(sc);
1531
1532 #if 0 /* Turned of, since our interface is now duplex. */
1533 /*
1534 * Tap off here if there is a bpf listener.
1535 */
1536 #if NBPFILTER > 0
1537 if (ifp->if_bpf)
1538 bpf_mtap(ifp->if_bpf, m);
1539 #endif
1540 #endif
1541
1542 m_freem(m);
1543 }
1544
1545 indicate_inactive:
1546 /*
1547 * We are using the !OACTIVE flag to indicate to
1548 * the outside world that we can accept an
1549 * additional packet rather than that the
1550 * transmitter is _actually_ active. Indeed, the
1551 * transmitter may be active, but if we haven't
1552 * filled all the buffers with data then we still
1553 * want to accept more.
1554 */
1555 ifp->if_flags &= ~IFF_OACTIVE;
1556 return;
1557
1558 indicate_active:
1559 /*
1560 * The transmitter is active, and there are no room for
1561 * more outgoing packets in the transmission buffer.
1562 */
1563 ifp->if_flags |= IFF_OACTIVE;
1564 return;
1565 }
1566
1567 /*
1568 * Drop (skip) a packet from receive buffer in 86960 memory.
1569 */
1570 static inline void
1571 fe_droppacket (struct fe_softc * sc)
1572 {
1573 outb(sc->sc_iobase + FE_BMPR14, FE_B14_SKIP);
1574 }
1575
1576 /*
1577 * Transmission interrupt handler
1578 * The control flow of this function looks silly. FIXME.
1579 */
1580 void
1581 fe_tint(sc, tstat)
1582 struct fe_softc *sc;
1583 u_char tstat;
1584 {
1585 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1586 int left;
1587 int col;
1588
1589 /*
1590 * Handle "excessive collision" interrupt.
1591 */
1592 if (tstat & FE_D0_COLL16) {
1593 /*
1594 * Find how many packets (including this collided one)
1595 * are left unsent in transmission buffer.
1596 */
1597 left = inb(sc->sc_iobase + FE_BMPR10);
1598
1599 #if FE_DEBUG >= 2
1600 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1601 sc->sc_dev.dv_xname, left, sc->txb_sched);
1602 #endif
1603 #if FE_DEBUG >= 3
1604 fe_dump(LOG_INFO, sc);
1605 #endif
1606
1607 /*
1608 * Update statistics.
1609 */
1610 ifp->if_collisions += 16;
1611 ifp->if_oerrors++;
1612 ifp->if_opackets += sc->txb_sched - left;
1613
1614 /*
1615 * Collision statistics has been updated.
1616 * Clear the collision flag on 86960 now to avoid confusion.
1617 */
1618 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1619
1620 /*
1621 * Restart transmitter, skipping the
1622 * collided packet.
1623 *
1624 * We *must* skip the packet to keep network running
1625 * properly. Excessive collision error is an
1626 * indication of the network overload. If we
1627 * tried sending the same packet after excessive
1628 * collision, the network would be filled with
1629 * out-of-time packets. Packets belonging
1630 * to reliable transport (such as TCP) are resent
1631 * by some upper layer.
1632 */
1633 outb(sc->sc_iobase + FE_BMPR11,
1634 FE_B11_CTRL_SKIP | FE_B11_MODE1);
1635 sc->txb_sched = left - 1;
1636 }
1637
1638 /*
1639 * Handle "transmission complete" interrupt.
1640 */
1641 if (tstat & FE_D0_TXDONE) {
1642 /*
1643 * Add in total number of collisions on last
1644 * transmission. We also clear "collision occurred" flag
1645 * here.
1646 *
1647 * 86960 has a design flow on collision count on multiple
1648 * packet transmission. When we send two or more packets
1649 * with one start command (that's what we do when the
1650 * transmission queue is clauded), 86960 informs us number
1651 * of collisions occured on the last packet on the
1652 * transmission only. Number of collisions on previous
1653 * packets are lost. I have told that the fact is clearly
1654 * stated in the Fujitsu document.
1655 *
1656 * I considered not to mind it seriously. Collision
1657 * count is not so important, anyway. Any comments? FIXME.
1658 */
1659
1660 if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1661 /* Clear collision flag. */
1662 outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1663
1664 /* Extract collision count from 86960. */
1665 col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1666 if (col == 0) {
1667 /*
1668 * Status register indicates collisions,
1669 * while the collision count is zero.
1670 * This can happen after multiple packet
1671 * transmission, indicating that one or more
1672 * previous packet(s) had been collided.
1673 *
1674 * Since the accurate number of collisions
1675 * has been lost, we just guess it as 1;
1676 * Am I too optimistic? FIXME.
1677 */
1678 col = 1;
1679 } else
1680 col >>= FE_D4_COL_SHIFT;
1681 ifp->if_collisions += col;
1682 #if FE_DEBUG >= 4
1683 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1684 sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1685 sc->txb_sched);
1686 #endif
1687 }
1688
1689 /*
1690 * Update total number of successfully
1691 * transmitted packets.
1692 */
1693 ifp->if_opackets += sc->txb_sched;
1694 sc->txb_sched = 0;
1695
1696 /*
1697 * The transmitter is no more active.
1698 * Reset output active flag and watchdog timer.
1699 */
1700 ifp->if_flags &= ~IFF_OACTIVE;
1701 ifp->if_timer = 0;
1702
1703 /*
1704 * If more data is ready to transmit in the buffer, start
1705 * transmitting them. Otherwise keep transmitter idle,
1706 * even if more data is queued. This gives receive
1707 * process a slight priority.
1708 */
1709 if (sc->txb_count > 0)
1710 fe_xmit(sc);
1711 }
1712 }
1713
1714 /*
1715 * Ethernet interface receiver interrupt.
1716 */
1717 void
1718 fe_rint(sc, rstat)
1719 struct fe_softc *sc;
1720 u_char rstat;
1721 {
1722 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1723 int len;
1724 u_char status;
1725 int i;
1726
1727 /*
1728 * Update statistics if this interrupt is caused by an error.
1729 */
1730 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1731 FE_D1_ALGERR | FE_D1_SRTPKT)) {
1732 #if FE_DEBUG >= 3
1733 log(LOG_WARNING, "%s: receive error: %b\n",
1734 sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1735 #endif
1736 ifp->if_ierrors++;
1737 }
1738
1739 /*
1740 * MB86960 has a flag indicating "receive queue empty."
1741 * We just loop cheking the flag to pull out all received
1742 * packets.
1743 *
1744 * We limit the number of iterrations to avoid infinite loop.
1745 * It can be caused by a very slow CPU (some broken
1746 * peripheral may insert incredible number of wait cycles)
1747 * or, worse, by a broken MB86960 chip.
1748 */
1749 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1750 /* Stop the iterration if 86960 indicates no packets. */
1751 if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1752 break;
1753
1754 /*
1755 * Extract A receive status byte.
1756 * As our 86960 is in 16 bit bus access mode, we have to
1757 * use inw() to get the status byte. The significant
1758 * value is returned in lower 8 bits.
1759 */
1760 status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1761 #if FE_DEBUG >= 4
1762 log(LOG_INFO, "%s: receive status = %02x\n",
1763 sc->sc_dev.dv_xname, status);
1764 #endif
1765
1766 /*
1767 * If there was an error, update statistics and drop
1768 * the packet, unless the interface is in promiscuous
1769 * mode.
1770 */
1771 if ((status & 0xF0) != 0x20) { /* XXXX ? */
1772 if ((ifp->if_flags & IFF_PROMISC) == 0) {
1773 ifp->if_ierrors++;
1774 fe_droppacket(sc);
1775 continue;
1776 }
1777 }
1778
1779 /*
1780 * Extract the packet length.
1781 * It is a sum of a header (14 bytes) and a payload.
1782 * CRC has been stripped off by the 86960.
1783 */
1784 len = inw(sc->sc_iobase + FE_BMPR8);
1785
1786 /*
1787 * MB86965 checks the packet length and drop big packet
1788 * before passing it to us. There are no chance we can
1789 * get [crufty] packets. Hence, if the length exceeds
1790 * the specified limit, it means some serious failure,
1791 * such as out-of-sync on receive buffer management.
1792 *
1793 * Is this statement true? FIXME.
1794 */
1795 if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1796 #if FE_DEBUG >= 2
1797 log(LOG_WARNING,
1798 "%s: received a %s packet? (%u bytes)\n",
1799 sc->sc_dev.dv_xname,
1800 len < ETHER_HDR_SIZE ? "partial" : "big", len);
1801 #endif
1802 ifp->if_ierrors++;
1803 fe_droppacket(sc);
1804 continue;
1805 }
1806
1807 /*
1808 * Check for a short (RUNT) packet. We *do* check
1809 * but do nothing other than print a message.
1810 * Short packets are illegal, but does nothing bad
1811 * if it carries data for upper layer.
1812 */
1813 #if FE_DEBUG >= 2
1814 if (len < ETHER_MIN_LEN) {
1815 log(LOG_WARNING,
1816 "%s: received a short packet? (%u bytes)\n",
1817 sc->sc_dev.dv_xname, len);
1818 }
1819 #endif
1820
1821 /*
1822 * Go get a packet.
1823 */
1824 if (!fe_get_packet(sc, len)) {
1825 /* Skip a packet, updating statistics. */
1826 #if FE_DEBUG >= 2
1827 log(LOG_WARNING,
1828 "%s: out of mbufs; dropping packet (%u bytes)\n",
1829 sc->sc_dev.dv_xname, len);
1830 #endif
1831 ifp->if_ierrors++;
1832 fe_droppacket(sc);
1833
1834 /*
1835 * We stop receiving packets, even if there are
1836 * more in the buffer. We hope we can get more
1837 * mbufs next time.
1838 */
1839 return;
1840 }
1841
1842 /* Successfully received a packet. Update stat. */
1843 ifp->if_ipackets++;
1844 }
1845 }
1846
1847 /*
1848 * Ethernet interface interrupt processor
1849 */
1850 int
1851 feintr(arg)
1852 void *arg;
1853 {
1854 struct fe_softc *sc = arg;
1855 u_char tstat, rstat;
1856
1857 #if FE_DEBUG >= 4
1858 log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1859 fe_dump(LOG_INFO, sc);
1860 #endif
1861
1862 /*
1863 * Get interrupt conditions, masking unneeded flags.
1864 */
1865 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1866 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1867 if (tstat == 0 && rstat == 0)
1868 return (0);
1869
1870 /*
1871 * Loop until there are no more new interrupt conditions.
1872 */
1873 for (;;) {
1874 /*
1875 * Reset the conditions we are acknowledging.
1876 */
1877 outb(sc->sc_iobase + FE_DLCR0, tstat);
1878 outb(sc->sc_iobase + FE_DLCR1, rstat);
1879
1880 /*
1881 * Handle transmitter interrupts. Handle these first because
1882 * the receiver will reset the board under some conditions.
1883 */
1884 if (tstat != 0)
1885 fe_tint(sc, tstat);
1886
1887 /*
1888 * Handle receiver interrupts.
1889 */
1890 if (rstat != 0)
1891 fe_rint(sc, rstat);
1892
1893 /*
1894 * Update the multicast address filter if it is
1895 * needed and possible. We do it now, because
1896 * we can make sure the transmission buffer is empty,
1897 * and there is a good chance that the receive queue
1898 * is empty. It will minimize the possibility of
1899 * packet lossage.
1900 */
1901 if (sc->filter_change &&
1902 sc->txb_count == 0 && sc->txb_sched == 0) {
1903 fe_loadmar(sc);
1904 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1905 }
1906
1907 /*
1908 * If it looks like the transmitter can take more data,
1909 * attempt to start output on the interface. This is done
1910 * after handling the receiver interrupt to give the
1911 * receive operation priority.
1912 */
1913 if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1914 fe_start(&sc->sc_arpcom.ac_if);
1915
1916 /*
1917 * Get interrupt conditions, masking unneeded flags.
1918 */
1919 tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1920 rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1921 if (tstat == 0 && rstat == 0)
1922 return (1);
1923 }
1924 }
1925
1926 /*
1927 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1928 */
1929 int
1930 fe_ioctl(ifp, command, data)
1931 register struct ifnet *ifp;
1932 u_long command;
1933 caddr_t data;
1934 {
1935 struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1936 register struct ifaddr *ifa = (struct ifaddr *)data;
1937 struct ifreq *ifr = (struct ifreq *)data;
1938 int s, error = 0;
1939
1940 #if FE_DEBUG >= 3
1941 log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1942 #endif
1943
1944 s = splimp();
1945
1946 switch (command) {
1947
1948 case SIOCSIFADDR:
1949 ifp->if_flags |= IFF_UP;
1950
1951 switch (ifa->ifa_addr->sa_family) {
1952 #ifdef INET
1953 case AF_INET:
1954 fe_init(sc);
1955 arp_ifinit(&sc->sc_arpcom, ifa);
1956 break;
1957 #endif
1958 #ifdef NS
1959 case AF_NS:
1960 {
1961 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1962
1963 if (ns_nullhost(*ina))
1964 ina->x_host =
1965 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1966 else
1967 bcopy(ina->x_host.c_host,
1968 sc->sc_arpcom.ac_enaddr,
1969 sizeof(sc->sc_arpcom.ac_enaddr));
1970 /* Set new address. */
1971 fe_init(sc);
1972 break;
1973 }
1974 #endif
1975 default:
1976 fe_init(sc);
1977 break;
1978 }
1979 break;
1980
1981 case SIOCSIFFLAGS:
1982 if ((ifp->if_flags & IFF_UP) == 0 &&
1983 (ifp->if_flags & IFF_RUNNING) != 0) {
1984 /*
1985 * If interface is marked down and it is running, then
1986 * stop it.
1987 */
1988 fe_stop(sc);
1989 ifp->if_flags &= ~IFF_RUNNING;
1990 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1991 (ifp->if_flags & IFF_RUNNING) == 0) {
1992 /*
1993 * If interface is marked up and it is stopped, then
1994 * start it.
1995 */
1996 fe_init(sc);
1997 } else {
1998 /*
1999 * Reset the interface to pick up changes in any other
2000 * flags that affect hardware registers.
2001 */
2002 fe_setmode(sc);
2003 }
2004 #if DEBUG >= 1
2005 /* "ifconfig fe0 debug" to print register dump. */
2006 if (ifp->if_flags & IFF_DEBUG) {
2007 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2008 fe_dump(LOG_DEBUG, sc);
2009 }
2010 #endif
2011 break;
2012
2013 case SIOCADDMULTI:
2014 case SIOCDELMULTI:
2015 /* Update our multicast list. */
2016 error = (command == SIOCADDMULTI) ?
2017 ether_addmulti(ifr, &sc->sc_arpcom) :
2018 ether_delmulti(ifr, &sc->sc_arpcom);
2019
2020 if (error == ENETRESET) {
2021 /*
2022 * Multicast list has changed; set the hardware filter
2023 * accordingly.
2024 */
2025 fe_setmode(sc);
2026 error = 0;
2027 }
2028 break;
2029
2030 default:
2031 error = EINVAL;
2032 }
2033
2034 splx(s);
2035 return (error);
2036 }
2037
2038 /*
2039 * Retreive packet from receive buffer and send to the next level up via
2040 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2041 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2042 */
2043 int
2044 fe_get_packet(sc, len)
2045 struct fe_softc *sc;
2046 int len;
2047 {
2048 struct ether_header *eh;
2049 struct mbuf *m;
2050 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2051
2052 /* Allocate a header mbuf. */
2053 MGETHDR(m, M_DONTWAIT, MT_DATA);
2054 if (m == 0)
2055 return (0);
2056 m->m_pkthdr.rcvif = ifp;
2057 m->m_pkthdr.len = len;
2058
2059 /* The following silliness is to make NFS happy. */
2060 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
2061 #define EOFF (EROUND - sizeof(struct ether_header))
2062
2063 #if 0
2064 /*
2065 * This function assumes that an Ethernet packet fits in an
2066 * mbuf (with a cluster attached when necessary.) On FreeBSD
2067 * 2.0 for x86, which is the primary target of this driver, an
2068 * mbuf cluster has 4096 bytes, and we are happy. On ancient
2069 * BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
2070 * however. If the following #error message were printed upon
2071 * compile, you need to rewrite this function.
2072 */
2073 #if (MCLBYTES < ETHER_MAX_LEN + EOFF)
2074 #error "Too small MCLBYTES to use fe driver."
2075 #endif
2076 #endif
2077
2078 /*
2079 * Our strategy has one more problem. There is a policy on
2080 * mbuf cluster allocation. It says that we must have at
2081 * least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
2082 * allocate a cluster. For a packet of a size between
2083 * (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
2084 * On the other hand, the current code is short, simle,
2085 * and fast, however. It does no harmful thing, just waists
2086 * some memory. Any comments? FIXME.
2087 */
2088
2089 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2090 if (len > MHLEN - EOFF) {
2091 MCLGET(m, M_DONTWAIT);
2092 if ((m->m_flags & M_EXT) == 0) {
2093 m_freem(m);
2094 return (0);
2095 }
2096 }
2097
2098 /*
2099 * The following assumes there is room for the ether header in the
2100 * header mbuf.
2101 */
2102 m->m_data += EOFF;
2103 eh = mtod(m, struct ether_header *);
2104
2105 /* Set the length of this packet. */
2106 m->m_len = len;
2107
2108 /* Get a packet. */
2109 insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2110
2111 #if NBPFILTER > 0
2112 /*
2113 * Check if there's a BPF listener on this interface. If so, hand off
2114 * the raw packet to bpf.
2115 */
2116 if (ifp->if_bpf) {
2117 bpf_mtap(ifp->if_bpf, m);
2118
2119 /*
2120 * Note that the interface cannot be in promiscuous mode if
2121 * there are no BPF listeners. And if we are in promiscuous
2122 * mode, we have to check if this packet is really ours.
2123 */
2124 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2125 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2126 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2127 sizeof(eh->ether_dhost)) != 0) {
2128 m_freem(m);
2129 return (1);
2130 }
2131 }
2132 #endif
2133
2134 /* Fix up data start offset in mbuf to point past ether header. */
2135 m_adj(m, sizeof(struct ether_header));
2136 ether_input(ifp, eh, m);
2137 return (1);
2138 }
2139
2140 /*
2141 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2142 * Returns number of bytes actually written, including length word.
2143 *
2144 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2145 * Packets shorter than Ethernet minimum are legal, and we pad them
2146 * before sending out. An exception is "partial" packets which are
2147 * shorter than mandatory Ethernet header.
2148 *
2149 * I wrote a code for an experimental "delayed padding" technique.
2150 * When employed, it postpones the padding process for short packets.
2151 * If xmit() occured at the moment, the padding process is omitted, and
2152 * garbages are sent as pad data. If next packet is stored in the
2153 * transmission buffer before xmit(), write_mbuf() pads the previous
2154 * packet before transmitting new packet. This *may* gain the
2155 * system performance (slightly).
2156 */
2157 void
2158 fe_write_mbufs(sc, m)
2159 struct fe_softc *sc;
2160 struct mbuf *m;
2161 {
2162 int bmpr8 = sc->sc_iobase + FE_BMPR8;
2163 struct mbuf *mp;
2164 u_char *data;
2165 u_short savebyte; /* WARNING: Architecture dependent! */
2166 int totlen, len, wantbyte;
2167
2168 #if FE_DELAYED_PADDING
2169 /* Do the "delayed padding." */
2170 len = sc->txb_padding >> 1;
2171 if (len > 0) {
2172 while (--len >= 0)
2173 outw(bmpr8, 0);
2174 sc->txb_padding = 0;
2175 }
2176 #endif
2177
2178 #if FE_DEBUG >= 2
2179 /* First, count up the total number of bytes to copy. */
2180 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2181 totlen += mp->m_len;
2182 /* Check if this matches the one in the packet header. */
2183 if (totlen != m->m_pkthdr.len)
2184 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2185 sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2186 #else
2187 /* Just use the length value in the packet header. */
2188 totlen = m->m_pkthdr.len;
2189 #endif
2190
2191 #if FE_DEBUG >= 1
2192 /*
2193 * Should never send big packets. If such a packet is passed,
2194 * it should be a bug of upper layer. We just ignore it.
2195 * ... Partial (too short) packets, neither.
2196 */
2197 if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2198 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2199 sc->sc_dev.dv_xname,
2200 totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2201 sc->sc_arpcom.ac_if.if_oerrors++;
2202 return;
2203 }
2204 #endif
2205
2206 /*
2207 * Put the length word for this frame.
2208 * Does 86960 accept odd length? -- Yes.
2209 * Do we need to pad the length to minimum size by ourselves?
2210 * -- Generally yes. But for (or will be) the last
2211 * packet in the transmission buffer, we can skip the
2212 * padding process. It may gain performance slightly. FIXME.
2213 */
2214 outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2215
2216 /*
2217 * Update buffer status now.
2218 * Truncate the length up to an even number, since we use outw().
2219 */
2220 totlen = (totlen + 1) & ~1;
2221 sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2222 sc->txb_count++;
2223
2224 #if FE_DELAYED_PADDING
2225 /* Postpone the packet padding if necessary. */
2226 if (totlen < ETHER_MIN_LEN)
2227 sc->txb_padding = ETHER_MIN_LEN - totlen;
2228 #endif
2229
2230 /*
2231 * Transfer the data from mbuf chain to the transmission buffer.
2232 * MB86960 seems to require that data be transferred as words, and
2233 * only words. So that we require some extra code to patch
2234 * over odd-length mbufs.
2235 */
2236 wantbyte = 0;
2237 for (; m != 0; m = m->m_next) {
2238 /* Ignore empty mbuf. */
2239 len = m->m_len;
2240 if (len == 0)
2241 continue;
2242
2243 /* Find the actual data to send. */
2244 data = mtod(m, caddr_t);
2245
2246 /* Finish the last byte. */
2247 if (wantbyte) {
2248 outw(bmpr8, savebyte | (*data << 8));
2249 data++;
2250 len--;
2251 wantbyte = 0;
2252 }
2253
2254 /* Output contiguous words. */
2255 if (len > 1)
2256 outsw(bmpr8, data, len >> 1);
2257
2258 /* Save remaining byte, if there is one. */
2259 if (len & 1) {
2260 data += len & ~1;
2261 savebyte = *data;
2262 wantbyte = 1;
2263 }
2264 }
2265
2266 /* Spit the last byte, if the length is odd. */
2267 if (wantbyte)
2268 outw(bmpr8, savebyte);
2269
2270 #if ! FE_DELAYED_PADDING
2271 /*
2272 * Pad the packet to the minimum length if necessary.
2273 */
2274 len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2275 while (--len >= 0)
2276 outw(bmpr8, 0);
2277 #endif
2278 }
2279
2280 /*
2281 * Compute the multicast address filter from the
2282 * list of multicast addresses we need to listen to.
2283 */
2284 void
2285 fe_getmcaf(ac, af)
2286 struct arpcom *ac;
2287 u_char *af;
2288 {
2289 struct ifnet *ifp = &ac->ac_if;
2290 struct ether_multi *enm;
2291 register u_char *cp, c;
2292 register u_long crc;
2293 register int i, len;
2294 struct ether_multistep step;
2295
2296 /*
2297 * Set up multicast address filter by passing all multicast addresses
2298 * through a crc generator, and then using the high order 6 bits as an
2299 * index into the 64 bit logical address filter. The high order bit
2300 * selects the word, while the rest of the bits select the bit within
2301 * the word.
2302 */
2303
2304 if ((ifp->if_flags & IFF_PROMISC) != 0)
2305 goto allmulti;
2306
2307 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2308 ETHER_FIRST_MULTI(step, ac, enm);
2309 while (enm != NULL) {
2310 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2311 sizeof(enm->enm_addrlo)) != 0) {
2312 /*
2313 * We must listen to a range of multicast addresses.
2314 * For now, just accept all multicasts, rather than
2315 * trying to set only those filter bits needed to match
2316 * the range. (At this time, the only use of address
2317 * ranges is for IP multicast routing, for which the
2318 * range is big enough to require all bits set.)
2319 */
2320 goto allmulti;
2321 }
2322
2323 cp = enm->enm_addrlo;
2324 crc = 0xffffffff;
2325 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2326 c = *cp++;
2327 for (i = 8; --i >= 0;) {
2328 if ((crc & 0x01) ^ (c & 0x01)) {
2329 crc >>= 1;
2330 crc ^= 0xedb88320;
2331 } else
2332 crc >>= 1;
2333 c >>= 1;
2334 }
2335 }
2336 /* Just want the 6 most significant bits. */
2337 crc >>= 26;
2338
2339 /* Turn on the corresponding bit in the filter. */
2340 af[crc >> 3] |= 1 << (crc & 7);
2341
2342 ETHER_NEXT_MULTI(step, enm);
2343 }
2344 ifp->if_flags &= ~IFF_ALLMULTI;
2345 return;
2346
2347 allmulti:
2348 ifp->if_flags |= IFF_ALLMULTI;
2349 af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2350 }
2351
2352 /*
2353 * Calculate a new "multicast packet filter" and put the 86960
2354 * receiver in appropriate mode.
2355 */
2356 void
2357 fe_setmode(sc)
2358 struct fe_softc *sc;
2359 {
2360 int flags = sc->sc_arpcom.ac_if.if_flags;
2361
2362 /*
2363 * If the interface is not running, we postpone the update
2364 * process for receive modes and multicast address filter
2365 * until the interface is restarted. It reduces some
2366 * complicated job on maintaining chip states. (Earlier versions
2367 * of this driver had a bug on that point...)
2368 *
2369 * To complete the trick, fe_init() calls fe_setmode() after
2370 * restarting the interface.
2371 */
2372 if ((flags & IFF_RUNNING) == 0)
2373 return;
2374
2375 /*
2376 * Promiscuous mode is handled separately.
2377 */
2378 if ((flags & IFF_PROMISC) != 0) {
2379 /*
2380 * Program 86960 to receive all packets on the segment
2381 * including those directed to other stations.
2382 * Multicast filter stored in MARs are ignored
2383 * under this setting, so we don't need to update it.
2384 *
2385 * Promiscuous mode in FreeBSD 2 is used solely by
2386 * BPF, and BPF only listens to valid (no error) packets.
2387 * So, we ignore errornous ones even in this mode.
2388 * (Older versions of fe driver mistook the point.)
2389 */
2390 outb(sc->sc_iobase + FE_DLCR5,
2391 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2392 sc->filter_change = 0;
2393
2394 #if FE_DEBUG >= 3
2395 log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2396 #endif
2397 return;
2398 }
2399
2400 /*
2401 * Turn the chip to the normal (non-promiscuous) mode.
2402 */
2403 outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2404
2405 /*
2406 * Find the new multicast filter value.
2407 */
2408 fe_getmcaf(&sc->sc_arpcom, sc->filter);
2409 sc->filter_change = 1;
2410
2411 #if FE_DEBUG >= 3
2412 log(LOG_INFO,
2413 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2414 sc->sc_dev.dv_xname,
2415 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2416 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2417 #endif
2418
2419 /*
2420 * We have to update the multicast filter in the 86960, A.S.A.P.
2421 *
2422 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2423 * and receiver) must be stopped when feeding the filter, and
2424 * DLC trushes all packets in both transmission and receive
2425 * buffers when stopped.
2426 *
2427 * ... Are the above sentenses correct? I have to check the
2428 * manual of the MB86960A. FIXME.
2429 *
2430 * To reduce the packet lossage, we delay the filter update
2431 * process until buffers are empty.
2432 */
2433 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2434 (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2435 /*
2436 * Buffers are (apparently) empty. Load
2437 * the new filter value into MARs now.
2438 */
2439 fe_loadmar(sc);
2440 } else {
2441 /*
2442 * Buffers are not empty. Mark that we have to update
2443 * the MARs. The new filter will be loaded by feintr()
2444 * later.
2445 */
2446 #if FE_DEBUG >= 4
2447 log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2448 #endif
2449 }
2450 }
2451
2452 /*
2453 * Load a new multicast address filter into MARs.
2454 *
2455 * The caller must have splimp'ed befor fe_loadmar.
2456 * This function starts the DLC upon return. So it can be called only
2457 * when the chip is working, i.e., from the driver's point of view, when
2458 * a device is RUNNING. (I mistook the point in previous versions.)
2459 */
2460 void
2461 fe_loadmar(sc)
2462 struct fe_softc *sc;
2463 {
2464
2465 /* Stop the DLC (transmitter and receiver). */
2466 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2467
2468 /* Select register bank 1 for MARs. */
2469 outb(sc->sc_iobase + FE_DLCR7,
2470 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2471
2472 /* Copy filter value into the registers. */
2473 outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2474
2475 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
2476 outb(sc->sc_iobase + FE_DLCR7,
2477 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2478
2479 /* Restart the DLC. */
2480 outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2481
2482 /* We have just updated the filter. */
2483 sc->filter_change = 0;
2484
2485 #if FE_DEBUG >= 3
2486 log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2487 #endif
2488 }
2489
2490 #if FE_DEBUG >= 1
2491 void
2492 fe_dump(level, sc)
2493 int level;
2494 struct fe_softc *sc;
2495 {
2496 int iobase = sc->sc_iobase;
2497 u_char save_dlcr7;
2498
2499 save_dlcr7 = inb(iobase + FE_DLCR7);
2500
2501 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2502 inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
2503 inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
2504 inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
2505 inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
2506
2507 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2508 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
2509 inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
2510 inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2511 inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2512 inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2513
2514 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2515 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
2516 inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
2517 inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
2518 inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
2519 inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
2520
2521 outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2522 log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2523 inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2524 inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2525 inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2526 inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2527 inb(iobase + FE_BMPR19));
2528
2529 outb(iobase + FE_DLCR7, save_dlcr7);
2530 }
2531 #endif
2532