Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.10
      1  1.10      cgd /*	$NetBSD: sb.c,v 1.10 1994/10/27 04:18:12 cgd Exp $	*/
      2  1.10      cgd 
      3   1.1      cgd /*
      4   1.1      cgd  * Copyright (c) 1991-1993 Regents of the University of California.
      5   1.1      cgd  * All rights reserved.
      6   1.1      cgd  *
      7   1.1      cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1      cgd  * modification, are permitted provided that the following conditions
      9   1.1      cgd  * are met:
     10   1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      cgd  *    documentation and/or other materials provided with the distribution.
     15   1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     16   1.1      cgd  *    must display the following acknowledgement:
     17   1.1      cgd  *	This product includes software developed by the Computer Systems
     18   1.1      cgd  *	Engineering Group at Lawrence Berkeley Laboratory.
     19   1.1      cgd  * 4. Neither the name of the University nor of the Laboratory may be used
     20   1.1      cgd  *    to endorse or promote products derived from this software without
     21   1.1      cgd  *    specific prior written permission.
     22   1.1      cgd  *
     23   1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1      cgd  * SUCH DAMAGE.
     34   1.1      cgd  */
     35   1.1      cgd 
     36   1.1      cgd #include <sys/param.h>
     37   1.1      cgd #include <sys/systm.h>
     38   1.1      cgd #include <sys/errno.h>
     39   1.1      cgd #include <sys/ioctl.h>
     40   1.1      cgd #include <sys/syslog.h>
     41   1.6  mycroft #include <sys/device.h>
     42   1.1      cgd 
     43   1.1      cgd #include <machine/cpu.h>
     44   1.1      cgd #include <machine/pio.h>
     45   1.1      cgd 
     46   1.6  mycroft #include <i386/isa/isavar.h>
     47   1.8  mycroft #include <i386/isa/dmavar.h>
     48   1.1      cgd #include <i386/isa/icu.h>
     49   1.1      cgd 
     50   1.1      cgd #include "sbreg.h"
     51   1.1      cgd 
     52   1.1      cgd /*
     53   1.1      cgd  * Software state, per SoundBlaster card.
     54   1.1      cgd  * The soundblaster has multiple functionality, which we must demultiplex.
     55   1.1      cgd  * One approach is to have one major device number for the soundblaster card,
     56   1.1      cgd  * and use different minor numbers to indicate which hardware function
     57   1.1      cgd  * we want.  This would make for one large driver.  Instead our approach
     58   1.1      cgd  * is to partition the design into a set of drivers that share an underlying
     59   1.1      cgd  * piece of hardware.  Most things are hard to share, for example, the audio
     60   1.1      cgd  * and midi ports.  For audio, we might want to mix two processes' signals,
     61   1.1      cgd  * and for midi we might want to merge streams (this is hard due to
     62   1.1      cgd  * running status).  Moreover, we should be able to re-use the high-level
     63   1.1      cgd  * modules with other kinds of hardware.  In this module, we only handle the
     64   1.1      cgd  * most basic communications with the sb card.
     65   1.1      cgd  */
     66   1.1      cgd struct sb_softc {
     67   1.1      cgd 	struct device sc_dev;		/* base device */
     68   1.1      cgd 	struct isadev sc_id;		/* ISA device */
     69   1.7  mycroft 	struct intrhand sc_ih;		/* interrupt vectoring */
     70   1.6  mycroft 
     71   1.1      cgd 	u_short	sc_open;		/* reference count of open calls */
     72   1.1      cgd 	u_short sc_dmachan;		/* dma channel */
     73   1.6  mycroft 	u_short	sc_locked;		/* true when doing HS DMA  */
     74   1.6  mycroft 	u_short	sc_iobase;		/* I/O port base address */
     75   1.1      cgd  	u_short	sc_adacmode;		/* low/high speed mode indicator */
     76   1.1      cgd #define SB_ADAC_LS 0
     77   1.1      cgd #define SB_ADAC_HS 1
     78   1.1      cgd  	u_short	sc_adactc;		/* current adac time constant */
     79   1.1      cgd 	u_long	sc_interrupts;		/* number of interrupts taken */
     80   1.1      cgd 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     81   1.1      cgd 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     82   1.1      cgd 	void	*sc_arg;		/* arg for sc_intr() */
     83   1.1      cgd };
     84   1.1      cgd 
     85   1.6  mycroft int sbreset __P((struct sb_softc *));
     86   1.6  mycroft void sb_spkron __P((struct sb_softc *));
     87   1.6  mycroft void sb_spkroff __P((struct sb_softc *));
     88   1.1      cgd 
     89   1.6  mycroft static int wdsp(u_short iobase, int v);
     90   1.6  mycroft static int rdsp(u_short iobase);
     91   1.1      cgd 
     92   1.6  mycroft #define splsb splhigh		/* XXX */
     93   1.6  mycroft struct sb_softc *sb_softc;	/* XXX */
     94   1.1      cgd 
     95   1.1      cgd #ifndef NEWCONFIG
     96   1.1      cgd #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     97   1.1      cgd #endif
     98   1.1      cgd 
     99   1.1      cgd struct {
    100   1.1      cgd 	int wdsp;
    101   1.1      cgd 	int rdsp;
    102   1.1      cgd 	int wmidi;
    103   1.1      cgd } sberr;
    104   1.1      cgd 
    105   1.7  mycroft int	sbintr __P((struct sb_softc *));
    106   1.6  mycroft int	sbprobe();
    107   1.6  mycroft void	sbattach();
    108   1.1      cgd #ifdef NEWCONFIG
    109   1.1      cgd void	sbforceintr(void *);
    110   1.6  mycroft #endif
    111   1.1      cgd 
    112   1.6  mycroft struct cfdriver sbcd = {
    113   1.6  mycroft 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    114   1.6  mycroft };
    115   1.1      cgd 
    116   1.1      cgd int
    117   1.6  mycroft sbprobe(parent, self, aux)
    118   1.6  mycroft 	struct device *parent, *self;
    119   1.6  mycroft 	void *aux;
    120   1.1      cgd {
    121   1.6  mycroft 	register struct sb_softc *sc = (void *)self;
    122   1.6  mycroft 	register struct isa_attach_args *ia = aux;
    123   1.6  mycroft 	register u_short iobase = ia->ia_iobase;
    124   1.1      cgd 
    125   1.6  mycroft 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    126   1.6  mycroft 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    127   1.6  mycroft 		return 0;
    128   1.1      cgd 	}
    129   1.6  mycroft 	sc->sc_iobase = iobase;
    130   1.6  mycroft 	if (sbreset(sc) < 0) {
    131   1.1      cgd 		printf("sb: couldn't reset card\n");
    132   1.6  mycroft 		return 0;
    133   1.1      cgd 	}
    134   1.1      cgd 	/*
    135   1.1      cgd 	 * Cannot auto-discover DMA channel.
    136   1.1      cgd 	 */
    137   1.1      cgd 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    138   1.1      cgd 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    139   1.6  mycroft 		return 0;
    140   1.1      cgd 	}
    141   1.6  mycroft #ifdef NEWCONFIG
    142   1.1      cgd 	/*
    143   1.1      cgd 	 * If the IRQ wasn't compiled in, auto-detect it.
    144   1.1      cgd 	 */
    145   1.1      cgd 	if (ia->ia_irq == IRQUNK) {
    146   1.1      cgd 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    147   1.6  mycroft 		sbreset(iobase);
    148   1.1      cgd 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    149   1.1      cgd 			printf("sb: couldn't auto-detect interrupt");
    150   1.6  mycroft 			return 0;
    151   1.1      cgd 		}
    152   1.6  mycroft 	} else
    153   1.6  mycroft #endif
    154   1.6  mycroft 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    155   1.1      cgd 		int irq = ffs(ia->ia_irq) - 1;
    156   1.1      cgd 		printf("sb: configured irq %d invalid\n", irq);
    157   1.6  mycroft 		return 0;
    158   1.1      cgd 	}
    159   1.6  mycroft 	ia->ia_iosize = SB_NPORT;
    160   1.6  mycroft 	return 1;
    161   1.1      cgd }
    162   1.1      cgd 
    163   1.6  mycroft #ifdef NEWCONFIG
    164   1.1      cgd void
    165   1.6  mycroft sbforceintr(aux)
    166   1.6  mycroft 	void *aux;
    167   1.1      cgd {
    168   1.1      cgd 	static char dmabuf;
    169   1.6  mycroft 	struct isa_attach_args *ia = aux;
    170   1.6  mycroft 	u_short iobase = ia->ia_iobase;
    171   1.6  mycroft 
    172   1.1      cgd 	/*
    173   1.1      cgd 	 * Set up a DMA read of one byte.
    174   1.1      cgd 	 * XXX Note that at this point we haven't called
    175   1.1      cgd 	 * at_setup_dmachan().  This is okay because it just
    176   1.1      cgd 	 * allocates a buffer in case it needs to make a copy,
    177   1.1      cgd 	 * and it won't need to make a copy for a 1 byte buffer.
    178   1.1      cgd 	 * (I think that calling at_setup_dmachan() should be optional;
    179   1.1      cgd 	 * if you don't call it, it will be called the first time
    180   1.1      cgd 	 * it is needed (and you pay the latency).  Also, you might
    181   1.1      cgd 	 * never need the buffer anyway.)
    182   1.1      cgd 	 */
    183   1.1      cgd 	at_dma(1, &dmabuf, 1, ia->ia_drq);
    184   1.6  mycroft 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    185   1.6  mycroft 		(void)wdsp(iobase, 0);
    186   1.6  mycroft 		(void)wdsp(iobase, 0);
    187   1.1      cgd 	}
    188   1.1      cgd }
    189   1.6  mycroft #endif
    190   1.1      cgd 
    191   1.1      cgd void
    192   1.1      cgd sbattach(parent, self, aux)
    193   1.1      cgd 	struct device *parent, *self;
    194   1.1      cgd 	void *aux;
    195   1.1      cgd {
    196   1.1      cgd 	register struct sb_softc *sc = (struct sb_softc *)self;
    197   1.1      cgd 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    198   1.6  mycroft 	register u_short iobase = ia->ia_iobase;
    199   1.1      cgd 	register int vers;
    200   1.1      cgd 
    201   1.1      cgd 	/* XXX */
    202   1.1      cgd 	sb_softc = sc;
    203   1.1      cgd 
    204   1.6  mycroft 	sc->sc_iobase = iobase;
    205   1.1      cgd 	sc->sc_dmachan = ia->ia_drq;
    206   1.1      cgd 	sc->sc_locked = 0;
    207   1.6  mycroft 
    208   1.6  mycroft #ifdef NEWCONFIG
    209   1.1      cgd 	isa_establish(&sc->sc_id, &sc->sc_dev);
    210   1.7  mycroft #endif
    211   1.1      cgd 	sc->sc_ih.ih_fun = sbintr;
    212   1.7  mycroft 	sc->sc_ih.ih_arg = sc;
    213   1.7  mycroft 	sc->sc_ih.ih_level = IPL_BIO;
    214   1.7  mycroft 	intr_establish(ia->ia_irq, &sc->sc_ih);
    215   1.1      cgd 
    216   1.7  mycroft #ifdef NEWCONFIG
    217   1.1      cgd 	/*
    218   1.1      cgd 	 * We limit DMA transfers to a page, and use the generic DMA handling
    219   1.1      cgd 	 * code in isa.c.  This code can end up copying a buffer, but since
    220   1.1      cgd 	 * the audio driver uses relative small buffers this isn't likely.
    221   1.1      cgd 	 *
    222   1.1      cgd 	 * This allocation scheme means that the maximum transfer is limited
    223   1.1      cgd 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    224   1.1      cgd 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    225   1.1      cgd 	 * is plenty long enough to amortize any fixed time overhead.
    226   1.1      cgd 	 */
    227   1.1      cgd 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    228   1.1      cgd #endif
    229   1.1      cgd 
    230   1.6  mycroft 	vers = sbversion(sc);
    231   1.6  mycroft 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    232   1.1      cgd }
    233   1.1      cgd 
    234   1.6  mycroft #define	SBUNIT(x)		(minor(x) & 0xf)
    235   1.1      cgd 
    236   1.1      cgd struct sb_softc *
    237   1.1      cgd sbopen()
    238   1.1      cgd {
    239   1.6  mycroft 	/* XXXX */
    240   1.1      cgd 	struct sb_softc *sc = sb_softc;
    241   1.1      cgd 
    242   1.1      cgd 	if (sc == 0)
    243   1.1      cgd 		return 0;
    244   1.1      cgd 
    245   1.6  mycroft 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    246   1.1      cgd 		sc->sc_open = 1;
    247   1.1      cgd 		sc->sc_mintr = 0;
    248   1.1      cgd 		sc->sc_intr = 0;
    249   1.6  mycroft 		return sc;
    250   1.1      cgd 	}
    251   1.6  mycroft 	return 0;
    252   1.1      cgd }
    253   1.1      cgd 
    254   1.1      cgd void
    255   1.6  mycroft sbclose(sc)
    256   1.6  mycroft 	struct sb_softc *sc;
    257   1.1      cgd {
    258   1.6  mycroft 
    259   1.1      cgd 	sc->sc_open = 0;
    260   1.1      cgd 	sb_spkroff(sc);
    261   1.1      cgd 	sc->sc_intr = 0;
    262   1.1      cgd 	sc->sc_mintr = 0;
    263   1.1      cgd 	/* XXX this will turn off any dma */
    264   1.6  mycroft 	sbreset(sc);
    265   1.1      cgd }
    266   1.1      cgd 
    267   1.1      cgd /*
    268   1.1      cgd  * Write a byte to the dsp.
    269   1.1      cgd  * XXX We are at the mercy of the card as we use a
    270   1.1      cgd  * polling loop and wait until it can take the byte.
    271   1.1      cgd  */
    272   1.1      cgd static int
    273   1.6  mycroft wdsp(u_short iobase, int v)
    274   1.1      cgd {
    275   1.1      cgd 	register int i;
    276   1.1      cgd 
    277   1.1      cgd 	for (i = 100; --i >= 0; ) {
    278   1.6  mycroft 		if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
    279   1.1      cgd 			continue;
    280   1.6  mycroft 		outb(iobase + SBP_DSP_WRITE, v);
    281   1.6  mycroft 		return 0;
    282   1.1      cgd 	}
    283   1.1      cgd 	++sberr.wdsp;
    284   1.6  mycroft 	return -1;
    285   1.1      cgd }
    286   1.1      cgd 
    287   1.1      cgd /*
    288   1.1      cgd  * Read a byte from the DSP, using polling.
    289   1.1      cgd  */
    290   1.1      cgd int
    291   1.6  mycroft rdsp(u_short iobase)
    292   1.1      cgd {
    293   1.1      cgd 	register int i;
    294   1.1      cgd 
    295   1.1      cgd 	for (i = 100; --i >= 0; ) {
    296   1.6  mycroft 		if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
    297   1.1      cgd 			continue;
    298   1.6  mycroft 		return inb(iobase + SBP_DSP_READ);
    299   1.1      cgd 	}
    300   1.1      cgd 	++sberr.rdsp;
    301   1.6  mycroft 	return -1;
    302   1.1      cgd }
    303   1.1      cgd 
    304   1.1      cgd /*
    305   1.1      cgd  * Reset the card.
    306   1.1      cgd  * Return non-zero if the card isn't detected.
    307   1.1      cgd  */
    308   1.1      cgd int
    309   1.6  mycroft sbreset(sc)
    310   1.6  mycroft 	struct sb_softc *sc;
    311   1.1      cgd {
    312   1.6  mycroft 	register u_short iobase = sc->sc_iobase;
    313   1.1      cgd 	register int i;
    314   1.6  mycroft 
    315   1.1      cgd 	/*
    316   1.1      cgd 	 * See SBK, section 11.3.
    317   1.1      cgd 	 * We pulse a reset signal into the card.
    318   1.1      cgd 	 * Gee, what a brilliant hardware design.
    319   1.1      cgd 	 */
    320   1.6  mycroft 	outb(iobase + SBP_DSP_RESET, 1);
    321   1.5  mycroft 	delay(3);
    322   1.6  mycroft 	outb(iobase + SBP_DSP_RESET, 0);
    323   1.6  mycroft 	if (rdsp(iobase) != SB_MAGIC)
    324   1.6  mycroft 		return -1;
    325   1.6  mycroft 	return 0;
    326   1.1      cgd }
    327   1.1      cgd 
    328   1.1      cgd /*
    329   1.1      cgd  * Turn on the speaker.  The SBK documention says this operation
    330   1.1      cgd  * can take up to 1/10 of a second.  Higher level layers should
    331   1.1      cgd  * probably let the task sleep for this amount of time after
    332   1.1      cgd  * calling here.  Otherwise, things might not work (because
    333   1.1      cgd  * wdsp() and rdsp() will probably timeout.)
    334   1.1      cgd  *
    335   1.1      cgd  * These engineers had their heads up their ass when
    336   1.1      cgd  * they designed this card.
    337   1.1      cgd  */
    338   1.1      cgd void
    339   1.6  mycroft sb_spkron(sc)
    340   1.6  mycroft 	struct sb_softc *sc;
    341   1.1      cgd {
    342   1.6  mycroft 
    343   1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    344   1.6  mycroft 	/* XXX bogus */
    345   1.5  mycroft 	delay(1000);
    346   1.1      cgd }
    347   1.1      cgd 
    348   1.1      cgd /*
    349   1.1      cgd  * Turn off the speaker; see comment above.
    350   1.1      cgd  */
    351   1.1      cgd void
    352   1.6  mycroft sb_spkroff(sc)
    353   1.6  mycroft 	struct sb_softc *sc;
    354   1.1      cgd {
    355   1.6  mycroft 
    356   1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    357   1.1      cgd }
    358   1.1      cgd 
    359   1.1      cgd /*
    360   1.1      cgd  * Read the version number out of the card.  Return major code
    361   1.1      cgd  * in high byte, and minor code in low byte.
    362   1.1      cgd  */
    363   1.1      cgd int
    364   1.6  mycroft sbversion(sc)
    365   1.6  mycroft 	struct sb_softc *sc;
    366   1.1      cgd {
    367   1.6  mycroft 	register u_short iobase = sc->sc_iobase;
    368   1.1      cgd 	int v;
    369   1.1      cgd 
    370   1.6  mycroft 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    371   1.6  mycroft 		return 0;
    372   1.6  mycroft 	v = rdsp(iobase) << 8;
    373   1.6  mycroft 	v |= rdsp(iobase);
    374   1.1      cgd 	return ((v >= 0) ? v : 0);
    375   1.1      cgd }
    376   1.1      cgd 
    377   1.1      cgd /*
    378   1.1      cgd  * Halt a DMA in progress.  A low-speed transfer can be
    379   1.1      cgd  * resumed with sb_contdma().
    380   1.1      cgd  */
    381   1.1      cgd void
    382   1.6  mycroft sb_haltdma(sc)
    383   1.6  mycroft 	struct sb_softc *sc;
    384   1.1      cgd {
    385   1.6  mycroft 
    386   1.1      cgd 	if (sc->sc_locked)
    387   1.6  mycroft 		sbreset(sc);
    388   1.1      cgd 	else
    389   1.6  mycroft 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    390   1.1      cgd }
    391   1.1      cgd 
    392   1.1      cgd void
    393   1.6  mycroft sb_contdma(sc)
    394   1.6  mycroft 	struct sb_softc *sc;
    395   1.1      cgd {
    396   1.6  mycroft 
    397   1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    398   1.1      cgd }
    399   1.1      cgd 
    400   1.1      cgd /*
    401   1.1      cgd  * Time constant routines follow.  See SBK, section 12.
    402   1.1      cgd  * Although they don't come out and say it (in the docs),
    403   1.1      cgd  * the card clearly uses a 1MHz countdown timer, as the
    404   1.1      cgd  * low-speed formula (p. 12-4) is:
    405   1.1      cgd  *	tc = 256 - 10^6 / sr
    406   1.1      cgd  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    407   1.1      cgd  * and a 256MHz clock is used:
    408   1.1      cgd  *	tc = 65536 - 256 * 10^ 6 / sr
    409   1.1      cgd  * Since we can only use the upper byte of the HS TC, the two formulae
    410   1.1      cgd  * are equivalent.  (Why didn't they say so?)  E.g.,
    411   1.1      cgd  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    412   1.1      cgd  *
    413   1.1      cgd  * The crossover point (from low- to high-speed modes) is different
    414   1.1      cgd  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    415   1.1      cgd  *
    416   1.1      cgd  *				SBPRO			SB20
    417   1.1      cgd  *				-----			--------
    418   1.1      cgd  * input ls min			4	KHz		4	HJz
    419   1.1      cgd  * input ls max			23	KHz		13	KHz
    420   1.1      cgd  * input hs max			44.1	KHz		15	KHz
    421   1.1      cgd  * output ls min		4	KHz		4	KHz
    422   1.1      cgd  * output ls max		23	KHz		23	KHz
    423   1.1      cgd  * output hs max		44.1	KHz		44.1	KHz
    424   1.1      cgd  */
    425   1.1      cgd #define SB_LS_MIN	0x06	/* 4000 Hz */
    426   1.1      cgd #ifdef SBPRO
    427   1.1      cgd #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    428   1.1      cgd #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    429   1.1      cgd #else
    430   1.1      cgd #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    431   1.1      cgd #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    432   1.1      cgd #endif
    433   1.1      cgd #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    434   1.1      cgd #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    435   1.1      cgd 
    436   1.1      cgd /*
    437   1.1      cgd  * Convert a linear sampling rate into the DAC time constant.
    438   1.1      cgd  * Set *mode to indicate the high/low-speed DMA operation.
    439   1.1      cgd  * Because of limitations of the card, not all rates are possible.
    440   1.1      cgd  * We return the time constant of the closest possible rate.
    441   1.1      cgd  * The sampling rate limits are different for the DAC and ADC,
    442   1.1      cgd  * so isdac indicates output, and !isdac indicates input.
    443   1.1      cgd  */
    444   1.1      cgd int
    445   1.6  mycroft sb_srtotc(sr, mode, isdac)
    446   1.6  mycroft 	int sr;
    447   1.6  mycroft 	int *mode;
    448   1.6  mycroft 	int isdac;
    449   1.1      cgd {
    450   1.1      cgd 	register int tc = 256 - 1000000 / sr;
    451   1.1      cgd 
    452   1.1      cgd 	if (tc < SB_LS_MIN) {
    453   1.1      cgd 		tc = SB_LS_MIN;
    454   1.1      cgd 		*mode = SB_ADAC_LS;
    455   1.1      cgd 	} else if (isdac) {
    456   1.1      cgd 		if (tc < SB_DAC_LS_MAX)
    457   1.1      cgd 			*mode = SB_ADAC_LS;
    458   1.1      cgd 		else {
    459   1.1      cgd 			*mode = SB_ADAC_HS;
    460   1.1      cgd 			if (tc > SB_DAC_HS_MAX)
    461   1.1      cgd 				tc = SB_DAC_HS_MAX;
    462   1.1      cgd 		}
    463   1.1      cgd 	} else {
    464   1.1      cgd 		if (tc < SB_ADC_LS_MAX)
    465   1.1      cgd 			*mode = SB_ADAC_LS;
    466   1.1      cgd 		else {
    467   1.1      cgd 			*mode = SB_ADAC_HS;
    468   1.1      cgd 			if (tc > SB_ADC_HS_MAX)
    469   1.1      cgd 				tc = SB_ADC_HS_MAX;
    470   1.1      cgd 		}
    471   1.1      cgd 	}
    472   1.6  mycroft 	return tc;
    473   1.1      cgd }
    474   1.1      cgd 
    475   1.1      cgd /*
    476   1.1      cgd  * Convert a DAC time constant to a sampling rate.
    477   1.1      cgd  * See SBK, section 12.
    478   1.1      cgd  */
    479   1.1      cgd int
    480   1.6  mycroft sb_tctosr(tc)
    481   1.6  mycroft 	int tc;
    482   1.1      cgd {
    483   1.1      cgd 	return (1000000 / (256 - tc));
    484   1.1      cgd }
    485   1.1      cgd 
    486   1.1      cgd int
    487   1.6  mycroft sb_set_sr(sc, sr, isdac)
    488   1.6  mycroft 	register struct sb_softc *sc;
    489   1.6  mycroft 	u_long *sr;
    490   1.6  mycroft 	int isdac;
    491   1.1      cgd {
    492   1.1      cgd 	register int tc;
    493   1.1      cgd 	int mode;
    494   1.1      cgd 
    495   1.1      cgd 	tc = sb_srtotc(*sr, &mode, isdac);
    496   1.6  mycroft 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    497   1.6  mycroft 	    wdsp(sc->sc_iobase, tc) < 0)
    498   1.6  mycroft 		return -1;
    499   1.1      cgd 
    500   1.1      cgd 	*sr = sb_tctosr(tc);
    501   1.1      cgd 	sc->sc_adacmode = mode;
    502   1.1      cgd 	sc->sc_adactc = tc;
    503   1.1      cgd 
    504   1.6  mycroft 	return 0;
    505   1.1      cgd }
    506   1.1      cgd 
    507   1.1      cgd int
    508   1.6  mycroft sb_round_sr(sr, isdac)
    509   1.6  mycroft 	u_long sr;
    510   1.6  mycroft 	int isdac;
    511   1.1      cgd {
    512   1.1      cgd 	int mode, tc;
    513   1.1      cgd 
    514   1.1      cgd 	tc = sb_srtotc(sr, &mode, isdac);
    515   1.6  mycroft 	return sb_tctosr(tc);
    516   1.1      cgd }
    517   1.1      cgd 
    518   1.1      cgd int
    519   1.6  mycroft sb_dma_input(sc, p, cc, intr, arg)
    520   1.6  mycroft 	struct sb_softc *sc;
    521   1.6  mycroft 	void *p;
    522   1.6  mycroft 	int cc;
    523   1.6  mycroft 	void (*intr)();
    524   1.6  mycroft 	void *arg;
    525   1.1      cgd {
    526   1.6  mycroft 	register u_short iobase;
    527   1.1      cgd 
    528   1.1      cgd 	at_dma(1, p, cc, sc->sc_dmachan);
    529   1.1      cgd 	sc->sc_intr = intr;
    530   1.1      cgd 	sc->sc_arg = arg;
    531   1.6  mycroft 	iobase = sc->sc_iobase;
    532   1.1      cgd 	--cc;
    533   1.1      cgd 	if (sc->sc_adacmode == SB_ADAC_LS) {
    534   1.6  mycroft 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    535   1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    536   1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0) {
    537   1.6  mycroft 			sbreset(sc);
    538   1.6  mycroft 			return EIO;
    539   1.1      cgd 		}
    540   1.1      cgd 	} else {
    541   1.6  mycroft 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    542   1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    543   1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0 ||
    544   1.6  mycroft 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    545   1.6  mycroft 			sbreset(sc);
    546   1.6  mycroft 			return EIO;
    547   1.1      cgd 		}
    548   1.1      cgd 		sc->sc_locked = 1;
    549   1.1      cgd 	}
    550   1.6  mycroft 	return 0;
    551   1.1      cgd }
    552   1.1      cgd 
    553   1.1      cgd int
    554   1.6  mycroft sb_dma_output(sc, p, cc, intr, arg)
    555   1.6  mycroft 	struct sb_softc *sc;
    556   1.6  mycroft 	void *p;
    557   1.6  mycroft 	int cc;
    558   1.6  mycroft 	void (*intr)();
    559   1.6  mycroft 	void *arg;
    560   1.1      cgd {
    561   1.6  mycroft 	register u_short iobase;
    562   1.1      cgd 
    563   1.1      cgd 	at_dma(0, p, cc, sc->sc_dmachan);
    564   1.1      cgd 	sc->sc_intr = intr;
    565   1.1      cgd 	sc->sc_arg = arg;
    566   1.6  mycroft 	iobase = sc->sc_iobase;
    567   1.1      cgd 	--cc;
    568   1.1      cgd 	if (sc->sc_adacmode == SB_ADAC_LS) {
    569   1.6  mycroft 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    570   1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    571   1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0) {
    572   1.6  mycroft 			sbreset(sc);
    573   1.6  mycroft 			return EIO;
    574   1.1      cgd 		}
    575   1.1      cgd 	} else {
    576   1.6  mycroft 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    577   1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    578   1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0 ||
    579   1.6  mycroft 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    580   1.6  mycroft 			sbreset(sc);
    581   1.6  mycroft 			return EIO;
    582   1.1      cgd 		}
    583   1.1      cgd 		sc->sc_locked = 1;
    584   1.1      cgd 	}
    585   1.6  mycroft 	return 0;
    586   1.1      cgd }
    587   1.1      cgd 
    588   1.1      cgd /*
    589   1.1      cgd  * Only the DSP unit on the sound blaster generates interrupts.
    590   1.1      cgd  * There are three cases of interrupt: reception of a midi byte
    591   1.1      cgd  * (when mode is enabled), completion of dma transmission, or
    592   1.1      cgd  * completion of a dma reception.  The three modes are mutually
    593   1.1      cgd  * exclusive so we know a priori which event has occurred.
    594   1.1      cgd  */
    595   1.1      cgd int
    596   1.7  mycroft sbintr(sc)
    597   1.7  mycroft 	register struct sb_softc *sc;
    598   1.1      cgd {
    599   1.1      cgd 
    600   1.1      cgd 	sc->sc_locked = 0;
    601   1.1      cgd 	/* clear interrupt */
    602   1.6  mycroft 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    603   1.1      cgd 	if (sc->sc_mintr != 0) {
    604   1.6  mycroft 		int c = rdsp(sc->sc_iobase);
    605   1.1      cgd 		(*sc->sc_mintr)(sc->sc_arg, c);
    606   1.6  mycroft 	} else if (sc->sc_intr != 0)
    607   1.3  deraadt 		(*sc->sc_intr)(sc->sc_arg);
    608   1.6  mycroft 	else
    609   1.6  mycroft 		return 0;
    610   1.6  mycroft 	return 1;
    611   1.1      cgd }
    612   1.1      cgd 
    613   1.1      cgd /*
    614   1.1      cgd  * Enter midi uart mode and arrange for read interrupts
    615   1.1      cgd  * to vector to `intr'.  This puts the card in a mode
    616   1.1      cgd  * which allows only midi I/O; the card must be reset
    617   1.1      cgd  * to leave this mode.  Unfortunately, the card does not
    618   1.1      cgd  * use transmit interrupts, so bytes must be output
    619   1.1      cgd  * using polling.  To keep the polling overhead to a
    620   1.1      cgd  * minimum, output should be driven off a timer.
    621   1.1      cgd  * This is a little tricky since only 320us separate
    622   1.1      cgd  * consecutive midi bytes.
    623   1.1      cgd  */
    624   1.1      cgd void
    625   1.6  mycroft sb_set_midi_mode(sc, intr, arg)
    626   1.6  mycroft 	struct sb_softc *sc;
    627   1.6  mycroft 	void (*intr)();
    628   1.6  mycroft 	void *arg;
    629   1.1      cgd {
    630   1.6  mycroft 
    631   1.6  mycroft 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    632   1.1      cgd 	sc->sc_mintr = intr;
    633   1.1      cgd 	sc->sc_intr = 0;
    634   1.1      cgd 	sc->sc_arg = arg;
    635   1.1      cgd }
    636   1.1      cgd 
    637   1.1      cgd /*
    638   1.1      cgd  * Write a byte to the midi port, when in midi uart mode.
    639   1.1      cgd  */
    640   1.1      cgd void
    641   1.6  mycroft sb_midi_output(sc, v)
    642   1.6  mycroft 	struct sb_softc *sc;
    643   1.6  mycroft 	int v;
    644   1.1      cgd {
    645   1.6  mycroft 
    646   1.6  mycroft 	if (wdsp(sc->sc_iobase, v) < 0)
    647   1.1      cgd 		++sberr.wmidi;
    648   1.1      cgd }
    649