sb.c revision 1.14 1 1.14 mycroft /* $NetBSD: sb.c,v 1.14 1994/11/18 22:03:38 mycroft Exp $ */
2 1.10 cgd
3 1.1 cgd /*
4 1.1 cgd * Copyright (c) 1991-1993 Regents of the University of California.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the Computer Systems
18 1.1 cgd * Engineering Group at Lawrence Berkeley Laboratory.
19 1.1 cgd * 4. Neither the name of the University nor of the Laboratory may be used
20 1.1 cgd * to endorse or promote products derived from this software without
21 1.1 cgd * specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd */
35 1.1 cgd
36 1.1 cgd #include <sys/param.h>
37 1.1 cgd #include <sys/systm.h>
38 1.1 cgd #include <sys/errno.h>
39 1.1 cgd #include <sys/ioctl.h>
40 1.1 cgd #include <sys/syslog.h>
41 1.6 mycroft #include <sys/device.h>
42 1.1 cgd
43 1.1 cgd #include <machine/cpu.h>
44 1.1 cgd #include <machine/pio.h>
45 1.1 cgd
46 1.6 mycroft #include <i386/isa/isavar.h>
47 1.8 mycroft #include <i386/isa/dmavar.h>
48 1.1 cgd
49 1.1 cgd #include "sbreg.h"
50 1.1 cgd
51 1.1 cgd /*
52 1.1 cgd * Software state, per SoundBlaster card.
53 1.1 cgd * The soundblaster has multiple functionality, which we must demultiplex.
54 1.1 cgd * One approach is to have one major device number for the soundblaster card,
55 1.1 cgd * and use different minor numbers to indicate which hardware function
56 1.1 cgd * we want. This would make for one large driver. Instead our approach
57 1.1 cgd * is to partition the design into a set of drivers that share an underlying
58 1.1 cgd * piece of hardware. Most things are hard to share, for example, the audio
59 1.1 cgd * and midi ports. For audio, we might want to mix two processes' signals,
60 1.1 cgd * and for midi we might want to merge streams (this is hard due to
61 1.1 cgd * running status). Moreover, we should be able to re-use the high-level
62 1.1 cgd * modules with other kinds of hardware. In this module, we only handle the
63 1.1 cgd * most basic communications with the sb card.
64 1.1 cgd */
65 1.1 cgd struct sb_softc {
66 1.1 cgd struct device sc_dev; /* base device */
67 1.1 cgd struct isadev sc_id; /* ISA device */
68 1.7 mycroft struct intrhand sc_ih; /* interrupt vectoring */
69 1.6 mycroft
70 1.14 mycroft int sc_open; /* reference count of open calls */
71 1.14 mycroft int sc_dmachan; /* dma channel */
72 1.14 mycroft int sc_locked; /* true when doing HS DMA */
73 1.14 mycroft int sc_iobase; /* I/O port base address */
74 1.14 mycroft int sc_adacmode; /* low/high speed mode indicator */
75 1.1 cgd #define SB_ADAC_LS 0
76 1.1 cgd #define SB_ADAC_HS 1
77 1.14 mycroft int sc_adactc; /* current adac time constant */
78 1.1 cgd u_long sc_interrupts; /* number of interrupts taken */
79 1.1 cgd void (*sc_intr)(void*); /* dma completion intr handler */
80 1.1 cgd void (*sc_mintr)(void*, int);/* midi input intr handler */
81 1.1 cgd void *sc_arg; /* arg for sc_intr() */
82 1.1 cgd };
83 1.1 cgd
84 1.6 mycroft int sbreset __P((struct sb_softc *));
85 1.6 mycroft void sb_spkron __P((struct sb_softc *));
86 1.6 mycroft void sb_spkroff __P((struct sb_softc *));
87 1.1 cgd
88 1.14 mycroft static int wdsp(int iobase, int v);
89 1.14 mycroft static int rdsp(int iobase);
90 1.1 cgd
91 1.6 mycroft #define splsb splhigh /* XXX */
92 1.6 mycroft struct sb_softc *sb_softc; /* XXX */
93 1.1 cgd
94 1.1 cgd #ifndef NEWCONFIG
95 1.1 cgd #define at_dma(flags, ptr, cc, chan) isa_dmastart(flags, ptr, cc, chan)
96 1.1 cgd #endif
97 1.1 cgd
98 1.1 cgd struct {
99 1.1 cgd int wdsp;
100 1.1 cgd int rdsp;
101 1.1 cgd int wmidi;
102 1.1 cgd } sberr;
103 1.1 cgd
104 1.11 mycroft int sbprobe __P((struct device *, void *, void *));
105 1.1 cgd #ifdef NEWCONFIG
106 1.1 cgd void sbforceintr(void *);
107 1.6 mycroft #endif
108 1.11 mycroft void sbattach __P((struct device *, struct device *, void *));
109 1.11 mycroft int sbintr __P((struct sb_softc *));
110 1.1 cgd
111 1.6 mycroft struct cfdriver sbcd = {
112 1.6 mycroft NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
113 1.6 mycroft };
114 1.1 cgd
115 1.1 cgd int
116 1.11 mycroft sbprobe(parent, match, aux)
117 1.11 mycroft struct device *parent;
118 1.11 mycroft void *match, *aux;
119 1.1 cgd {
120 1.11 mycroft register struct sb_softc *sc = match;
121 1.6 mycroft register struct isa_attach_args *ia = aux;
122 1.14 mycroft register int iobase = ia->ia_iobase;
123 1.1 cgd
124 1.6 mycroft if (!SB_BASE_VALID(ia->ia_iobase)) {
125 1.6 mycroft printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
126 1.6 mycroft return 0;
127 1.1 cgd }
128 1.6 mycroft sc->sc_iobase = iobase;
129 1.6 mycroft if (sbreset(sc) < 0) {
130 1.1 cgd printf("sb: couldn't reset card\n");
131 1.6 mycroft return 0;
132 1.1 cgd }
133 1.1 cgd /*
134 1.1 cgd * Cannot auto-discover DMA channel.
135 1.1 cgd */
136 1.1 cgd if (!SB_DRQ_VALID(ia->ia_drq)) {
137 1.1 cgd printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
138 1.6 mycroft return 0;
139 1.1 cgd }
140 1.6 mycroft #ifdef NEWCONFIG
141 1.1 cgd /*
142 1.1 cgd * If the IRQ wasn't compiled in, auto-detect it.
143 1.1 cgd */
144 1.1 cgd if (ia->ia_irq == IRQUNK) {
145 1.1 cgd ia->ia_irq = isa_discoverintr(sbforceintr, aux);
146 1.6 mycroft sbreset(iobase);
147 1.1 cgd if (!SB_IRQ_VALID(ia->ia_irq)) {
148 1.1 cgd printf("sb: couldn't auto-detect interrupt");
149 1.6 mycroft return 0;
150 1.1 cgd }
151 1.6 mycroft } else
152 1.6 mycroft #endif
153 1.6 mycroft if (!SB_IRQ_VALID(ia->ia_irq)) {
154 1.12 mycroft int irq = ia->ia_irq;
155 1.1 cgd printf("sb: configured irq %d invalid\n", irq);
156 1.6 mycroft return 0;
157 1.1 cgd }
158 1.6 mycroft ia->ia_iosize = SB_NPORT;
159 1.6 mycroft return 1;
160 1.1 cgd }
161 1.1 cgd
162 1.6 mycroft #ifdef NEWCONFIG
163 1.1 cgd void
164 1.6 mycroft sbforceintr(aux)
165 1.6 mycroft void *aux;
166 1.1 cgd {
167 1.1 cgd static char dmabuf;
168 1.6 mycroft struct isa_attach_args *ia = aux;
169 1.14 mycroft int iobase = ia->ia_iobase;
170 1.6 mycroft
171 1.1 cgd /*
172 1.1 cgd * Set up a DMA read of one byte.
173 1.1 cgd * XXX Note that at this point we haven't called
174 1.1 cgd * at_setup_dmachan(). This is okay because it just
175 1.1 cgd * allocates a buffer in case it needs to make a copy,
176 1.1 cgd * and it won't need to make a copy for a 1 byte buffer.
177 1.1 cgd * (I think that calling at_setup_dmachan() should be optional;
178 1.1 cgd * if you don't call it, it will be called the first time
179 1.1 cgd * it is needed (and you pay the latency). Also, you might
180 1.1 cgd * never need the buffer anyway.)
181 1.1 cgd */
182 1.1 cgd at_dma(1, &dmabuf, 1, ia->ia_drq);
183 1.6 mycroft if (wdsp(iobase, SB_DSP_RDMA) == 0) {
184 1.6 mycroft (void)wdsp(iobase, 0);
185 1.6 mycroft (void)wdsp(iobase, 0);
186 1.1 cgd }
187 1.1 cgd }
188 1.6 mycroft #endif
189 1.1 cgd
190 1.1 cgd void
191 1.1 cgd sbattach(parent, self, aux)
192 1.1 cgd struct device *parent, *self;
193 1.1 cgd void *aux;
194 1.1 cgd {
195 1.1 cgd register struct sb_softc *sc = (struct sb_softc *)self;
196 1.1 cgd struct isa_attach_args *ia = (struct isa_attach_args *)aux;
197 1.14 mycroft register int iobase = ia->ia_iobase;
198 1.1 cgd register int vers;
199 1.1 cgd
200 1.1 cgd /* XXX */
201 1.1 cgd sb_softc = sc;
202 1.1 cgd
203 1.6 mycroft sc->sc_iobase = iobase;
204 1.1 cgd sc->sc_dmachan = ia->ia_drq;
205 1.1 cgd sc->sc_locked = 0;
206 1.6 mycroft
207 1.6 mycroft #ifdef NEWCONFIG
208 1.1 cgd isa_establish(&sc->sc_id, &sc->sc_dev);
209 1.7 mycroft #endif
210 1.1 cgd sc->sc_ih.ih_fun = sbintr;
211 1.7 mycroft sc->sc_ih.ih_arg = sc;
212 1.7 mycroft sc->sc_ih.ih_level = IPL_BIO;
213 1.7 mycroft intr_establish(ia->ia_irq, &sc->sc_ih);
214 1.1 cgd
215 1.7 mycroft #ifdef NEWCONFIG
216 1.1 cgd /*
217 1.1 cgd * We limit DMA transfers to a page, and use the generic DMA handling
218 1.1 cgd * code in isa.c. This code can end up copying a buffer, but since
219 1.1 cgd * the audio driver uses relative small buffers this isn't likely.
220 1.1 cgd *
221 1.1 cgd * This allocation scheme means that the maximum transfer is limited
222 1.1 cgd * by the page size (rather than 64k). This is reasonable. For 4K
223 1.1 cgd * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms. This
224 1.1 cgd * is plenty long enough to amortize any fixed time overhead.
225 1.1 cgd */
226 1.1 cgd at_setup_dmachan(sc->sc_dmachan, NBPG);
227 1.1 cgd #endif
228 1.1 cgd
229 1.6 mycroft vers = sbversion(sc);
230 1.6 mycroft printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
231 1.1 cgd }
232 1.1 cgd
233 1.6 mycroft #define SBUNIT(x) (minor(x) & 0xf)
234 1.1 cgd
235 1.1 cgd struct sb_softc *
236 1.1 cgd sbopen()
237 1.1 cgd {
238 1.6 mycroft /* XXXX */
239 1.1 cgd struct sb_softc *sc = sb_softc;
240 1.1 cgd
241 1.1 cgd if (sc == 0)
242 1.1 cgd return 0;
243 1.1 cgd
244 1.6 mycroft if (sc->sc_open == 0 && sbreset(sc) == 0) {
245 1.1 cgd sc->sc_open = 1;
246 1.1 cgd sc->sc_mintr = 0;
247 1.1 cgd sc->sc_intr = 0;
248 1.6 mycroft return sc;
249 1.1 cgd }
250 1.6 mycroft return 0;
251 1.1 cgd }
252 1.1 cgd
253 1.1 cgd void
254 1.6 mycroft sbclose(sc)
255 1.6 mycroft struct sb_softc *sc;
256 1.1 cgd {
257 1.6 mycroft
258 1.1 cgd sc->sc_open = 0;
259 1.1 cgd sb_spkroff(sc);
260 1.1 cgd sc->sc_intr = 0;
261 1.1 cgd sc->sc_mintr = 0;
262 1.1 cgd /* XXX this will turn off any dma */
263 1.6 mycroft sbreset(sc);
264 1.1 cgd }
265 1.1 cgd
266 1.1 cgd /*
267 1.1 cgd * Write a byte to the dsp.
268 1.1 cgd * XXX We are at the mercy of the card as we use a
269 1.1 cgd * polling loop and wait until it can take the byte.
270 1.1 cgd */
271 1.1 cgd static int
272 1.14 mycroft wdsp(int iobase, int v)
273 1.1 cgd {
274 1.1 cgd register int i;
275 1.1 cgd
276 1.1 cgd for (i = 100; --i >= 0; ) {
277 1.6 mycroft if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
278 1.1 cgd continue;
279 1.6 mycroft outb(iobase + SBP_DSP_WRITE, v);
280 1.6 mycroft return 0;
281 1.1 cgd }
282 1.1 cgd ++sberr.wdsp;
283 1.6 mycroft return -1;
284 1.1 cgd }
285 1.1 cgd
286 1.1 cgd /*
287 1.1 cgd * Read a byte from the DSP, using polling.
288 1.1 cgd */
289 1.1 cgd int
290 1.14 mycroft rdsp(int iobase)
291 1.1 cgd {
292 1.1 cgd register int i;
293 1.1 cgd
294 1.1 cgd for (i = 100; --i >= 0; ) {
295 1.6 mycroft if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
296 1.1 cgd continue;
297 1.6 mycroft return inb(iobase + SBP_DSP_READ);
298 1.1 cgd }
299 1.1 cgd ++sberr.rdsp;
300 1.6 mycroft return -1;
301 1.1 cgd }
302 1.1 cgd
303 1.1 cgd /*
304 1.1 cgd * Reset the card.
305 1.1 cgd * Return non-zero if the card isn't detected.
306 1.1 cgd */
307 1.1 cgd int
308 1.6 mycroft sbreset(sc)
309 1.6 mycroft struct sb_softc *sc;
310 1.1 cgd {
311 1.14 mycroft register int iobase = sc->sc_iobase;
312 1.1 cgd register int i;
313 1.6 mycroft
314 1.1 cgd /*
315 1.1 cgd * See SBK, section 11.3.
316 1.1 cgd * We pulse a reset signal into the card.
317 1.1 cgd * Gee, what a brilliant hardware design.
318 1.1 cgd */
319 1.6 mycroft outb(iobase + SBP_DSP_RESET, 1);
320 1.5 mycroft delay(3);
321 1.6 mycroft outb(iobase + SBP_DSP_RESET, 0);
322 1.6 mycroft if (rdsp(iobase) != SB_MAGIC)
323 1.6 mycroft return -1;
324 1.6 mycroft return 0;
325 1.1 cgd }
326 1.1 cgd
327 1.1 cgd /*
328 1.1 cgd * Turn on the speaker. The SBK documention says this operation
329 1.1 cgd * can take up to 1/10 of a second. Higher level layers should
330 1.1 cgd * probably let the task sleep for this amount of time after
331 1.1 cgd * calling here. Otherwise, things might not work (because
332 1.1 cgd * wdsp() and rdsp() will probably timeout.)
333 1.1 cgd *
334 1.1 cgd * These engineers had their heads up their ass when
335 1.1 cgd * they designed this card.
336 1.1 cgd */
337 1.1 cgd void
338 1.6 mycroft sb_spkron(sc)
339 1.6 mycroft struct sb_softc *sc;
340 1.1 cgd {
341 1.6 mycroft
342 1.6 mycroft (void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
343 1.6 mycroft /* XXX bogus */
344 1.5 mycroft delay(1000);
345 1.1 cgd }
346 1.1 cgd
347 1.1 cgd /*
348 1.1 cgd * Turn off the speaker; see comment above.
349 1.1 cgd */
350 1.1 cgd void
351 1.6 mycroft sb_spkroff(sc)
352 1.6 mycroft struct sb_softc *sc;
353 1.1 cgd {
354 1.6 mycroft
355 1.6 mycroft (void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
356 1.1 cgd }
357 1.1 cgd
358 1.1 cgd /*
359 1.1 cgd * Read the version number out of the card. Return major code
360 1.1 cgd * in high byte, and minor code in low byte.
361 1.1 cgd */
362 1.1 cgd int
363 1.6 mycroft sbversion(sc)
364 1.6 mycroft struct sb_softc *sc;
365 1.1 cgd {
366 1.14 mycroft register int iobase = sc->sc_iobase;
367 1.1 cgd int v;
368 1.1 cgd
369 1.6 mycroft if (wdsp(iobase, SB_DSP_VERSION) < 0)
370 1.6 mycroft return 0;
371 1.6 mycroft v = rdsp(iobase) << 8;
372 1.6 mycroft v |= rdsp(iobase);
373 1.1 cgd return ((v >= 0) ? v : 0);
374 1.1 cgd }
375 1.1 cgd
376 1.1 cgd /*
377 1.1 cgd * Halt a DMA in progress. A low-speed transfer can be
378 1.1 cgd * resumed with sb_contdma().
379 1.1 cgd */
380 1.1 cgd void
381 1.6 mycroft sb_haltdma(sc)
382 1.6 mycroft struct sb_softc *sc;
383 1.1 cgd {
384 1.6 mycroft
385 1.1 cgd if (sc->sc_locked)
386 1.6 mycroft sbreset(sc);
387 1.1 cgd else
388 1.6 mycroft (void)wdsp(sc->sc_iobase, SB_DSP_HALT);
389 1.1 cgd }
390 1.1 cgd
391 1.1 cgd void
392 1.6 mycroft sb_contdma(sc)
393 1.6 mycroft struct sb_softc *sc;
394 1.1 cgd {
395 1.6 mycroft
396 1.6 mycroft (void)wdsp(sc->sc_iobase, SB_DSP_CONT);
397 1.1 cgd }
398 1.1 cgd
399 1.1 cgd /*
400 1.1 cgd * Time constant routines follow. See SBK, section 12.
401 1.1 cgd * Although they don't come out and say it (in the docs),
402 1.1 cgd * the card clearly uses a 1MHz countdown timer, as the
403 1.1 cgd * low-speed formula (p. 12-4) is:
404 1.1 cgd * tc = 256 - 10^6 / sr
405 1.1 cgd * In high-speed mode, the constant is the upper byte of a 16-bit counter,
406 1.1 cgd * and a 256MHz clock is used:
407 1.1 cgd * tc = 65536 - 256 * 10^ 6 / sr
408 1.1 cgd * Since we can only use the upper byte of the HS TC, the two formulae
409 1.1 cgd * are equivalent. (Why didn't they say so?) E.g.,
410 1.1 cgd * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
411 1.1 cgd *
412 1.1 cgd * The crossover point (from low- to high-speed modes) is different
413 1.1 cgd * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
414 1.1 cgd *
415 1.1 cgd * SBPRO SB20
416 1.1 cgd * ----- --------
417 1.1 cgd * input ls min 4 KHz 4 HJz
418 1.1 cgd * input ls max 23 KHz 13 KHz
419 1.1 cgd * input hs max 44.1 KHz 15 KHz
420 1.1 cgd * output ls min 4 KHz 4 KHz
421 1.1 cgd * output ls max 23 KHz 23 KHz
422 1.1 cgd * output hs max 44.1 KHz 44.1 KHz
423 1.1 cgd */
424 1.1 cgd #define SB_LS_MIN 0x06 /* 4000 Hz */
425 1.1 cgd #ifdef SBPRO
426 1.1 cgd #define SB_ADC_LS_MAX 0xd4 /* 22727 Hz */
427 1.1 cgd #define SB_ADC_HS_MAX 0xe9 /* 43478 Hz */
428 1.1 cgd #else
429 1.1 cgd #define SB_ADC_LS_MAX 0xb3 /* 12987 Hz */
430 1.1 cgd #define SB_ADC_HS_MAX 0xbd /* 14925 Hz */
431 1.1 cgd #endif
432 1.1 cgd #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
433 1.1 cgd #define SB_DAC_HS_MAX 0xe9 /* 43478 Hz */
434 1.1 cgd
435 1.1 cgd /*
436 1.1 cgd * Convert a linear sampling rate into the DAC time constant.
437 1.1 cgd * Set *mode to indicate the high/low-speed DMA operation.
438 1.1 cgd * Because of limitations of the card, not all rates are possible.
439 1.1 cgd * We return the time constant of the closest possible rate.
440 1.1 cgd * The sampling rate limits are different for the DAC and ADC,
441 1.1 cgd * so isdac indicates output, and !isdac indicates input.
442 1.1 cgd */
443 1.1 cgd int
444 1.6 mycroft sb_srtotc(sr, mode, isdac)
445 1.6 mycroft int sr;
446 1.6 mycroft int *mode;
447 1.6 mycroft int isdac;
448 1.1 cgd {
449 1.1 cgd register int tc = 256 - 1000000 / sr;
450 1.1 cgd
451 1.1 cgd if (tc < SB_LS_MIN) {
452 1.1 cgd tc = SB_LS_MIN;
453 1.1 cgd *mode = SB_ADAC_LS;
454 1.1 cgd } else if (isdac) {
455 1.1 cgd if (tc < SB_DAC_LS_MAX)
456 1.1 cgd *mode = SB_ADAC_LS;
457 1.1 cgd else {
458 1.1 cgd *mode = SB_ADAC_HS;
459 1.1 cgd if (tc > SB_DAC_HS_MAX)
460 1.1 cgd tc = SB_DAC_HS_MAX;
461 1.1 cgd }
462 1.1 cgd } else {
463 1.1 cgd if (tc < SB_ADC_LS_MAX)
464 1.1 cgd *mode = SB_ADAC_LS;
465 1.1 cgd else {
466 1.1 cgd *mode = SB_ADAC_HS;
467 1.1 cgd if (tc > SB_ADC_HS_MAX)
468 1.1 cgd tc = SB_ADC_HS_MAX;
469 1.1 cgd }
470 1.1 cgd }
471 1.6 mycroft return tc;
472 1.1 cgd }
473 1.1 cgd
474 1.1 cgd /*
475 1.1 cgd * Convert a DAC time constant to a sampling rate.
476 1.1 cgd * See SBK, section 12.
477 1.1 cgd */
478 1.1 cgd int
479 1.6 mycroft sb_tctosr(tc)
480 1.6 mycroft int tc;
481 1.1 cgd {
482 1.1 cgd return (1000000 / (256 - tc));
483 1.1 cgd }
484 1.1 cgd
485 1.1 cgd int
486 1.6 mycroft sb_set_sr(sc, sr, isdac)
487 1.6 mycroft register struct sb_softc *sc;
488 1.6 mycroft u_long *sr;
489 1.6 mycroft int isdac;
490 1.1 cgd {
491 1.1 cgd register int tc;
492 1.1 cgd int mode;
493 1.1 cgd
494 1.1 cgd tc = sb_srtotc(*sr, &mode, isdac);
495 1.6 mycroft if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
496 1.6 mycroft wdsp(sc->sc_iobase, tc) < 0)
497 1.6 mycroft return -1;
498 1.1 cgd
499 1.1 cgd *sr = sb_tctosr(tc);
500 1.1 cgd sc->sc_adacmode = mode;
501 1.1 cgd sc->sc_adactc = tc;
502 1.1 cgd
503 1.6 mycroft return 0;
504 1.1 cgd }
505 1.1 cgd
506 1.1 cgd int
507 1.6 mycroft sb_round_sr(sr, isdac)
508 1.6 mycroft u_long sr;
509 1.6 mycroft int isdac;
510 1.1 cgd {
511 1.1 cgd int mode, tc;
512 1.1 cgd
513 1.1 cgd tc = sb_srtotc(sr, &mode, isdac);
514 1.6 mycroft return sb_tctosr(tc);
515 1.1 cgd }
516 1.1 cgd
517 1.1 cgd int
518 1.6 mycroft sb_dma_input(sc, p, cc, intr, arg)
519 1.6 mycroft struct sb_softc *sc;
520 1.6 mycroft void *p;
521 1.6 mycroft int cc;
522 1.6 mycroft void (*intr)();
523 1.6 mycroft void *arg;
524 1.1 cgd {
525 1.14 mycroft register int iobase;
526 1.1 cgd
527 1.1 cgd at_dma(1, p, cc, sc->sc_dmachan);
528 1.1 cgd sc->sc_intr = intr;
529 1.1 cgd sc->sc_arg = arg;
530 1.6 mycroft iobase = sc->sc_iobase;
531 1.1 cgd --cc;
532 1.1 cgd if (sc->sc_adacmode == SB_ADAC_LS) {
533 1.6 mycroft if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
534 1.6 mycroft wdsp(iobase, cc) < 0 ||
535 1.6 mycroft wdsp(iobase, cc >> 8) < 0) {
536 1.6 mycroft sbreset(sc);
537 1.6 mycroft return EIO;
538 1.1 cgd }
539 1.1 cgd } else {
540 1.6 mycroft if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
541 1.6 mycroft wdsp(iobase, cc) < 0 ||
542 1.6 mycroft wdsp(iobase, cc >> 8) < 0 ||
543 1.6 mycroft wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
544 1.6 mycroft sbreset(sc);
545 1.6 mycroft return EIO;
546 1.1 cgd }
547 1.1 cgd sc->sc_locked = 1;
548 1.1 cgd }
549 1.6 mycroft return 0;
550 1.1 cgd }
551 1.1 cgd
552 1.1 cgd int
553 1.6 mycroft sb_dma_output(sc, p, cc, intr, arg)
554 1.6 mycroft struct sb_softc *sc;
555 1.6 mycroft void *p;
556 1.6 mycroft int cc;
557 1.6 mycroft void (*intr)();
558 1.6 mycroft void *arg;
559 1.1 cgd {
560 1.14 mycroft register int iobase;
561 1.1 cgd
562 1.1 cgd at_dma(0, p, cc, sc->sc_dmachan);
563 1.1 cgd sc->sc_intr = intr;
564 1.1 cgd sc->sc_arg = arg;
565 1.6 mycroft iobase = sc->sc_iobase;
566 1.1 cgd --cc;
567 1.1 cgd if (sc->sc_adacmode == SB_ADAC_LS) {
568 1.6 mycroft if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
569 1.6 mycroft wdsp(iobase, cc) < 0 ||
570 1.6 mycroft wdsp(iobase, cc >> 8) < 0) {
571 1.6 mycroft sbreset(sc);
572 1.6 mycroft return EIO;
573 1.1 cgd }
574 1.1 cgd } else {
575 1.6 mycroft if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
576 1.6 mycroft wdsp(iobase, cc) < 0 ||
577 1.6 mycroft wdsp(iobase, cc >> 8) < 0 ||
578 1.6 mycroft wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
579 1.6 mycroft sbreset(sc);
580 1.6 mycroft return EIO;
581 1.1 cgd }
582 1.1 cgd sc->sc_locked = 1;
583 1.1 cgd }
584 1.6 mycroft return 0;
585 1.1 cgd }
586 1.1 cgd
587 1.1 cgd /*
588 1.1 cgd * Only the DSP unit on the sound blaster generates interrupts.
589 1.1 cgd * There are three cases of interrupt: reception of a midi byte
590 1.1 cgd * (when mode is enabled), completion of dma transmission, or
591 1.1 cgd * completion of a dma reception. The three modes are mutually
592 1.1 cgd * exclusive so we know a priori which event has occurred.
593 1.1 cgd */
594 1.1 cgd int
595 1.7 mycroft sbintr(sc)
596 1.7 mycroft register struct sb_softc *sc;
597 1.1 cgd {
598 1.1 cgd
599 1.1 cgd sc->sc_locked = 0;
600 1.1 cgd /* clear interrupt */
601 1.6 mycroft inb(sc->sc_iobase + SBP_DSP_RSTAT);
602 1.1 cgd if (sc->sc_mintr != 0) {
603 1.6 mycroft int c = rdsp(sc->sc_iobase);
604 1.1 cgd (*sc->sc_mintr)(sc->sc_arg, c);
605 1.6 mycroft } else if (sc->sc_intr != 0)
606 1.3 deraadt (*sc->sc_intr)(sc->sc_arg);
607 1.6 mycroft else
608 1.6 mycroft return 0;
609 1.6 mycroft return 1;
610 1.1 cgd }
611 1.1 cgd
612 1.1 cgd /*
613 1.1 cgd * Enter midi uart mode and arrange for read interrupts
614 1.1 cgd * to vector to `intr'. This puts the card in a mode
615 1.1 cgd * which allows only midi I/O; the card must be reset
616 1.1 cgd * to leave this mode. Unfortunately, the card does not
617 1.1 cgd * use transmit interrupts, so bytes must be output
618 1.1 cgd * using polling. To keep the polling overhead to a
619 1.1 cgd * minimum, output should be driven off a timer.
620 1.1 cgd * This is a little tricky since only 320us separate
621 1.1 cgd * consecutive midi bytes.
622 1.1 cgd */
623 1.1 cgd void
624 1.6 mycroft sb_set_midi_mode(sc, intr, arg)
625 1.6 mycroft struct sb_softc *sc;
626 1.6 mycroft void (*intr)();
627 1.6 mycroft void *arg;
628 1.1 cgd {
629 1.6 mycroft
630 1.6 mycroft wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
631 1.1 cgd sc->sc_mintr = intr;
632 1.1 cgd sc->sc_intr = 0;
633 1.1 cgd sc->sc_arg = arg;
634 1.1 cgd }
635 1.1 cgd
636 1.1 cgd /*
637 1.1 cgd * Write a byte to the midi port, when in midi uart mode.
638 1.1 cgd */
639 1.1 cgd void
640 1.6 mycroft sb_midi_output(sc, v)
641 1.6 mycroft struct sb_softc *sc;
642 1.6 mycroft int v;
643 1.1 cgd {
644 1.6 mycroft
645 1.6 mycroft if (wdsp(sc->sc_iobase, v) < 0)
646 1.1 cgd ++sberr.wmidi;
647 1.1 cgd }
648