sb.c revision 1.4 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1991-1993 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the Computer Systems
16 1.1 cgd * Engineering Group at Lawrence Berkeley Laboratory.
17 1.1 cgd * 4. Neither the name of the University nor of the Laboratory may be used
18 1.1 cgd * to endorse or promote products derived from this software without
19 1.1 cgd * specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.4 hpeyerl * $Id: sb.c,v 1.4 1994/03/02 16:23:10 hpeyerl Exp $
34 1.1 cgd */
35 1.1 cgd
36 1.1 cgd #include "sb.h"
37 1.1 cgd #if NSB > 0
38 1.1 cgd
39 1.1 cgd #include <sys/param.h>
40 1.1 cgd #include <sys/systm.h>
41 1.1 cgd #include <sys/errno.h>
42 1.1 cgd #include <sys/ioctl.h>
43 1.1 cgd #include <sys/syslog.h>
44 1.1 cgd
45 1.1 cgd #include <machine/cpu.h>
46 1.1 cgd #include <machine/pio.h>
47 1.1 cgd
48 1.1 cgd #include <i386/isa/isa.h>
49 1.1 cgd #include <i386/isa/isa_device.h>
50 1.1 cgd #include <i386/isa/icu.h>
51 1.1 cgd
52 1.1 cgd #include "sbreg.h"
53 1.1 cgd
54 1.1 cgd /*
55 1.1 cgd * Software state, per SoundBlaster card.
56 1.1 cgd * The soundblaster has multiple functionality, which we must demultiplex.
57 1.1 cgd * One approach is to have one major device number for the soundblaster card,
58 1.1 cgd * and use different minor numbers to indicate which hardware function
59 1.1 cgd * we want. This would make for one large driver. Instead our approach
60 1.1 cgd * is to partition the design into a set of drivers that share an underlying
61 1.1 cgd * piece of hardware. Most things are hard to share, for example, the audio
62 1.1 cgd * and midi ports. For audio, we might want to mix two processes' signals,
63 1.1 cgd * and for midi we might want to merge streams (this is hard due to
64 1.1 cgd * running status). Moreover, we should be able to re-use the high-level
65 1.1 cgd * modules with other kinds of hardware. In this module, we only handle the
66 1.1 cgd * most basic communications with the sb card.
67 1.1 cgd */
68 1.1 cgd struct sb_softc {
69 1.1 cgd #ifdef NEWCONFIG
70 1.1 cgd struct device sc_dev; /* base device */
71 1.1 cgd struct isadev sc_id; /* ISA device */
72 1.1 cgd struct intrhand sc_ih; /* interrupt vectoring */
73 1.1 cgd #endif
74 1.1 cgd u_short sc_open; /* reference count of open calls */
75 1.1 cgd u_short sc_dmachan; /* dma channel */
76 1.1 cgd u_long sc_locked; /* true when doing HS DMA */
77 1.1 cgd u_long sc_base; /* I/O port base address */
78 1.1 cgd u_short sc_adacmode; /* low/high speed mode indicator */
79 1.1 cgd #define SB_ADAC_LS 0
80 1.1 cgd #define SB_ADAC_HS 1
81 1.1 cgd u_short sc_adactc; /* current adac time constant */
82 1.1 cgd u_long sc_interrupts; /* number of interrupts taken */
83 1.1 cgd void (*sc_intr)(void*); /* dma completion intr handler */
84 1.1 cgd void (*sc_mintr)(void*, int);/* midi input intr handler */
85 1.1 cgd void *sc_arg; /* arg for sc_intr() */
86 1.1 cgd };
87 1.1 cgd
88 1.1 cgd int sbreset(u_long);
89 1.1 cgd
90 1.1 cgd void sb_spkron(struct sb_softc *);
91 1.1 cgd void sb_spkroff(struct sb_softc *);
92 1.1 cgd
93 1.1 cgd static int wdsp(u_long base, int v);
94 1.1 cgd static int rdsp(u_long base);
95 1.1 cgd
96 1.1 cgd /* XXX */
97 1.1 cgd #define splsb splhigh
98 1.1 cgd /* XXX */
99 1.1 cgd struct sb_softc *sb_softc;
100 1.1 cgd
101 1.1 cgd #ifndef NEWCONFIG
102 1.1 cgd struct sb_softc sb_softcs[NSB];
103 1.1 cgd #define at_dma(flags, ptr, cc, chan) isa_dmastart(flags, ptr, cc, chan)
104 1.1 cgd #endif
105 1.1 cgd
106 1.1 cgd struct {
107 1.1 cgd int wdsp;
108 1.1 cgd int rdsp;
109 1.1 cgd int wmidi;
110 1.1 cgd } sberr;
111 1.1 cgd
112 1.1 cgd #ifdef NEWCONFIG
113 1.1 cgd int sbintr(struct sb_softc *);
114 1.1 cgd int sbprobe(struct device *, struct cfdata *, void *);
115 1.1 cgd void sbattach(struct device *, struct device *, void *);
116 1.1 cgd void sbforceintr(void *);
117 1.1 cgd
118 1.1 cgd struct cfdriver sbcd =
119 1.1 cgd { NULL, "sb", sbprobe, sbattach, sizeof(struct sb_softc) };
120 1.1 cgd
121 1.1 cgd int
122 1.1 cgd sbprobe(struct device *parent, struct cfdata *cf, void *aux)
123 1.1 cgd {
124 1.1 cgd register struct isa_attach_args *ia = (struct isa_attach_args *)aux;
125 1.1 cgd register int base = ia->ia_iobase;
126 1.1 cgd
127 1.1 cgd if (!SB_BASE_VALID(base)) {
128 1.1 cgd printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
129 1.1 cgd return (0);
130 1.1 cgd }
131 1.1 cgd ia->ia_iosize = SB_NPORT;
132 1.1 cgd if (sbreset(base) < 0) {
133 1.1 cgd printf("sb: couldn't reset card\n");
134 1.1 cgd return (0);
135 1.1 cgd }
136 1.1 cgd /*
137 1.1 cgd * Cannot auto-discover DMA channel.
138 1.1 cgd */
139 1.1 cgd if (!SB_DRQ_VALID(ia->ia_drq)) {
140 1.1 cgd printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
141 1.1 cgd return (0);
142 1.1 cgd }
143 1.1 cgd /*
144 1.1 cgd * If the IRQ wasn't compiled in, auto-detect it.
145 1.1 cgd */
146 1.1 cgd if (ia->ia_irq == IRQUNK) {
147 1.1 cgd ia->ia_irq = isa_discoverintr(sbforceintr, aux);
148 1.1 cgd sbreset(base);
149 1.1 cgd if (!SB_IRQ_VALID(ia->ia_irq)) {
150 1.1 cgd printf("sb: couldn't auto-detect interrupt");
151 1.1 cgd return (0);
152 1.1 cgd }
153 1.1 cgd } else if (!SB_IRQ_VALID(ia->ia_irq)) {
154 1.1 cgd int irq = ffs(ia->ia_irq) - 1;
155 1.1 cgd printf("sb: configured irq %d invalid\n", irq);
156 1.1 cgd }
157 1.4 hpeyerl return (15);
158 1.1 cgd }
159 1.1 cgd
160 1.1 cgd void
161 1.1 cgd sbforceintr(void *arg)
162 1.1 cgd {
163 1.1 cgd static char dmabuf;
164 1.1 cgd struct isa_attach_args *ia = (struct isa_attach_args *)arg;
165 1.1 cgd int base = ia->ia_iobase;
166 1.1 cgd /*
167 1.1 cgd * Set up a DMA read of one byte.
168 1.1 cgd * XXX Note that at this point we haven't called
169 1.1 cgd * at_setup_dmachan(). This is okay because it just
170 1.1 cgd * allocates a buffer in case it needs to make a copy,
171 1.1 cgd * and it won't need to make a copy for a 1 byte buffer.
172 1.1 cgd * (I think that calling at_setup_dmachan() should be optional;
173 1.1 cgd * if you don't call it, it will be called the first time
174 1.1 cgd * it is needed (and you pay the latency). Also, you might
175 1.1 cgd * never need the buffer anyway.)
176 1.1 cgd */
177 1.1 cgd at_dma(1, &dmabuf, 1, ia->ia_drq);
178 1.1 cgd if (wdsp(base, SB_DSP_RDMA) == 0) {
179 1.1 cgd (void)wdsp(base, 0);
180 1.1 cgd (void)wdsp(base, 0);
181 1.1 cgd }
182 1.1 cgd }
183 1.1 cgd
184 1.1 cgd void
185 1.1 cgd sbattach(parent, self, aux)
186 1.1 cgd struct device *parent, *self;
187 1.1 cgd void *aux;
188 1.1 cgd {
189 1.1 cgd register struct sb_softc *sc = (struct sb_softc *)self;
190 1.1 cgd struct isa_attach_args *ia = (struct isa_attach_args *)aux;
191 1.1 cgd register int base = ia->ia_iobase;
192 1.1 cgd register int vers;
193 1.1 cgd
194 1.1 cgd /* XXX */
195 1.1 cgd sb_softc = sc;
196 1.1 cgd
197 1.1 cgd sc->sc_base = base;
198 1.1 cgd sc->sc_dmachan = ia->ia_drq;
199 1.1 cgd sc->sc_locked = 0;
200 1.1 cgd isa_establish(&sc->sc_id, &sc->sc_dev);
201 1.1 cgd sc->sc_ih.ih_fun = sbintr;
202 1.1 cgd sc->sc_ih.ih_arg = (void *)sc;
203 1.1 cgd /* XXX DV_TAPE? */
204 1.1 cgd intr_establish(ia->ia_irq, &sc->sc_ih, DV_TAPE);
205 1.1 cgd
206 1.1 cgd /*
207 1.1 cgd * We limit DMA transfers to a page, and use the generic DMA handling
208 1.1 cgd * code in isa.c. This code can end up copying a buffer, but since
209 1.1 cgd * the audio driver uses relative small buffers this isn't likely.
210 1.1 cgd *
211 1.1 cgd * This allocation scheme means that the maximum transfer is limited
212 1.1 cgd * by the page size (rather than 64k). This is reasonable. For 4K
213 1.1 cgd * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms. This
214 1.1 cgd * is plenty long enough to amortize any fixed time overhead.
215 1.1 cgd */
216 1.1 cgd at_setup_dmachan(sc->sc_dmachan, NBPG);
217 1.1 cgd
218 1.1 cgd vers = sbversion(base);
219 1.1 cgd printf(" dsp v%d.%d\n", vers >> 8, vers & 0xff);
220 1.1 cgd }
221 1.1 cgd #endif
222 1.1 cgd
223 1.1 cgd #ifndef NEWCONFIG
224 1.1 cgd int sbintr(int unit);
225 1.1 cgd int sbprobe(struct isa_device *dev);
226 1.1 cgd int sbattach(struct isa_device *dev);
227 1.1 cgd
228 1.1 cgd struct isa_driver sbdriver = { sbprobe, sbattach, "sb" };
229 1.1 cgd
230 1.1 cgd int
231 1.1 cgd sbprobe(struct isa_device *dev)
232 1.1 cgd {
233 1.1 cgd register int base = dev->id_iobase;
234 1.1 cgd
235 1.1 cgd if (!SB_BASE_VALID(base)) {
236 1.1 cgd printf("sb: configured dma chan %d invalid\n", dev->id_drq);
237 1.1 cgd return (0);
238 1.1 cgd }
239 1.1 cgd if (sbreset(base) < 0) {
240 1.1 cgd printf("sb: couldn't reset card\n");
241 1.1 cgd return (0);
242 1.1 cgd }
243 1.1 cgd /*
244 1.1 cgd * Cannot auto-discover DMA channel.
245 1.1 cgd */
246 1.1 cgd if (!SB_DRQ_VALID(dev->id_drq)) {
247 1.1 cgd printf("sb: configured dma chan %d invalid\n", dev->id_drq);
248 1.1 cgd return (0);
249 1.1 cgd }
250 1.1 cgd /*
251 1.1 cgd * If the IRQ wasn't compiled in, auto-detect it.
252 1.1 cgd */
253 1.1 cgd if (dev->id_irq == 0) {
254 1.1 cgd printf("sb: no irq configured\n");
255 1.1 cgd return (0);
256 1.1 cgd } else if (!SB_IRQ_VALID(dev->id_irq)) {
257 1.1 cgd int irq = ffs(dev->id_irq) - 1;
258 1.1 cgd printf("sb: configured irq %d invalid\n", irq);
259 1.1 cgd return (0);
260 1.1 cgd }
261 1.4 hpeyerl return (15);
262 1.1 cgd }
263 1.1 cgd
264 1.1 cgd #define UNIT(x) (minor(x) & 0xf)
265 1.1 cgd
266 1.1 cgd int
267 1.1 cgd sbattach(struct isa_device *dev)
268 1.1 cgd {
269 1.1 cgd int unit = UNIT(dev->id_unit);
270 1.1 cgd register struct sb_softc *sc = &sb_softcs[unit];
271 1.1 cgd register int base = dev->id_iobase;
272 1.1 cgd register int vers;
273 1.1 cgd
274 1.1 cgd /* XXX */
275 1.1 cgd sb_softc = sc;
276 1.1 cgd
277 1.1 cgd sc->sc_base = base;
278 1.1 cgd sc->sc_dmachan = dev->id_drq;
279 1.1 cgd sc->sc_locked = 0;
280 1.1 cgd
281 1.1 cgd vers = sbversion(base);
282 1.1 cgd printf("sb%d: dsp v%d.%d\n", unit, vers >> 8, vers & 0xff);
283 1.1 cgd }
284 1.1 cgd #endif
285 1.1 cgd
286 1.1 cgd struct sb_softc *
287 1.1 cgd sbopen()
288 1.1 cgd {
289 1.1 cgd struct sb_softc *sc = sb_softc;
290 1.1 cgd
291 1.1 cgd if (sc == 0)
292 1.1 cgd return 0;
293 1.1 cgd
294 1.1 cgd if (sc->sc_open == 0 && sbreset(sc->sc_base) == 0) {
295 1.1 cgd sc->sc_open = 1;
296 1.1 cgd sc->sc_mintr = 0;
297 1.1 cgd sc->sc_intr = 0;
298 1.1 cgd return (sc);
299 1.1 cgd }
300 1.1 cgd return (0);
301 1.1 cgd }
302 1.1 cgd
303 1.1 cgd void
304 1.1 cgd sbclose(struct sb_softc *sc)
305 1.1 cgd {
306 1.1 cgd sc->sc_open = 0;
307 1.1 cgd sb_spkroff(sc);
308 1.1 cgd sc->sc_intr = 0;
309 1.1 cgd sc->sc_mintr = 0;
310 1.1 cgd /* XXX this will turn off any dma */
311 1.1 cgd sbreset(sc->sc_base);
312 1.1 cgd }
313 1.1 cgd
314 1.1 cgd /*
315 1.1 cgd * Write a byte to the dsp.
316 1.1 cgd * XXX We are at the mercy of the card as we use a
317 1.1 cgd * polling loop and wait until it can take the byte.
318 1.1 cgd */
319 1.1 cgd static int
320 1.1 cgd wdsp(u_long base, int v)
321 1.1 cgd {
322 1.1 cgd register int i;
323 1.1 cgd
324 1.1 cgd for (i = 100; --i >= 0; ) {
325 1.1 cgd if ((inb(base + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
326 1.1 cgd continue;
327 1.1 cgd outb(base + SBP_DSP_WRITE, v);
328 1.1 cgd return (0);
329 1.1 cgd }
330 1.1 cgd ++sberr.wdsp;
331 1.1 cgd return (-1);
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd /*
335 1.1 cgd * Read a byte from the DSP, using polling.
336 1.1 cgd */
337 1.1 cgd int
338 1.1 cgd rdsp(u_long base)
339 1.1 cgd {
340 1.1 cgd register int i;
341 1.1 cgd
342 1.1 cgd for (i = 100; --i >= 0; ) {
343 1.1 cgd if ((inb(base + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
344 1.1 cgd continue;
345 1.1 cgd return (inb(base + SBP_DSP_READ));
346 1.1 cgd }
347 1.1 cgd ++sberr.rdsp;
348 1.1 cgd return (-1);
349 1.1 cgd }
350 1.1 cgd
351 1.1 cgd /*
352 1.1 cgd * Reset the card.
353 1.1 cgd * Return non-zero if the card isn't detected.
354 1.1 cgd */
355 1.1 cgd int
356 1.1 cgd sbreset(register u_long base)
357 1.1 cgd {
358 1.1 cgd register int i;
359 1.1 cgd /*
360 1.1 cgd * See SBK, section 11.3.
361 1.1 cgd * We pulse a reset signal into the card.
362 1.1 cgd * Gee, what a brilliant hardware design.
363 1.1 cgd */
364 1.1 cgd outb(base + SBP_DSP_RESET, 1);
365 1.1 cgd DELAY(3);
366 1.1 cgd outb(base + SBP_DSP_RESET, 0);
367 1.1 cgd if (rdsp(base) != SB_MAGIC)
368 1.1 cgd return (-1);
369 1.1 cgd return (0);
370 1.1 cgd }
371 1.1 cgd
372 1.1 cgd /*
373 1.1 cgd * Turn on the speaker. The SBK documention says this operation
374 1.1 cgd * can take up to 1/10 of a second. Higher level layers should
375 1.1 cgd * probably let the task sleep for this amount of time after
376 1.1 cgd * calling here. Otherwise, things might not work (because
377 1.1 cgd * wdsp() and rdsp() will probably timeout.)
378 1.1 cgd *
379 1.1 cgd * These engineers had their heads up their ass when
380 1.1 cgd * they designed this card.
381 1.1 cgd */
382 1.1 cgd void
383 1.1 cgd sb_spkron(struct sb_softc *sc)
384 1.1 cgd {
385 1.1 cgd (void)wdsp(sc->sc_base, SB_DSP_SPKR_ON);
386 1.2 hpeyerl DELAY(1000);
387 1.1 cgd }
388 1.1 cgd
389 1.1 cgd /*
390 1.1 cgd * Turn off the speaker; see comment above.
391 1.1 cgd */
392 1.1 cgd void
393 1.1 cgd sb_spkroff(struct sb_softc *sc)
394 1.1 cgd {
395 1.1 cgd (void)wdsp(sc->sc_base, SB_DSP_SPKR_OFF);
396 1.1 cgd }
397 1.1 cgd
398 1.1 cgd /*
399 1.1 cgd * Read the version number out of the card. Return major code
400 1.1 cgd * in high byte, and minor code in low byte.
401 1.1 cgd */
402 1.1 cgd int
403 1.1 cgd sbversion(register u_long base)
404 1.1 cgd {
405 1.1 cgd int v;
406 1.1 cgd
407 1.1 cgd if (wdsp(base, SB_DSP_VERSION) < 0)
408 1.1 cgd return (0);
409 1.1 cgd v = rdsp(base) << 8;
410 1.1 cgd v |= rdsp(base);
411 1.1 cgd return ((v >= 0) ? v : 0);
412 1.1 cgd }
413 1.1 cgd
414 1.1 cgd /*
415 1.1 cgd * Halt a DMA in progress. A low-speed transfer can be
416 1.1 cgd * resumed with sb_contdma().
417 1.1 cgd */
418 1.1 cgd void
419 1.1 cgd sb_haltdma(struct sb_softc *sc)
420 1.1 cgd {
421 1.1 cgd if (sc->sc_locked)
422 1.1 cgd sbreset(sc->sc_base);
423 1.1 cgd else
424 1.1 cgd (void)wdsp(sc->sc_base, SB_DSP_HALT);
425 1.1 cgd }
426 1.1 cgd
427 1.1 cgd void
428 1.1 cgd sb_contdma(struct sb_softc *sc)
429 1.1 cgd {
430 1.1 cgd (void)wdsp(sc->sc_base, SB_DSP_CONT);
431 1.1 cgd }
432 1.1 cgd
433 1.1 cgd /*
434 1.1 cgd * Time constant routines follow. See SBK, section 12.
435 1.1 cgd * Although they don't come out and say it (in the docs),
436 1.1 cgd * the card clearly uses a 1MHz countdown timer, as the
437 1.1 cgd * low-speed formula (p. 12-4) is:
438 1.1 cgd * tc = 256 - 10^6 / sr
439 1.1 cgd * In high-speed mode, the constant is the upper byte of a 16-bit counter,
440 1.1 cgd * and a 256MHz clock is used:
441 1.1 cgd * tc = 65536 - 256 * 10^ 6 / sr
442 1.1 cgd * Since we can only use the upper byte of the HS TC, the two formulae
443 1.1 cgd * are equivalent. (Why didn't they say so?) E.g.,
444 1.1 cgd * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
445 1.1 cgd *
446 1.1 cgd * The crossover point (from low- to high-speed modes) is different
447 1.1 cgd * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
448 1.1 cgd *
449 1.1 cgd * SBPRO SB20
450 1.1 cgd * ----- --------
451 1.1 cgd * input ls min 4 KHz 4 HJz
452 1.1 cgd * input ls max 23 KHz 13 KHz
453 1.1 cgd * input hs max 44.1 KHz 15 KHz
454 1.1 cgd * output ls min 4 KHz 4 KHz
455 1.1 cgd * output ls max 23 KHz 23 KHz
456 1.1 cgd * output hs max 44.1 KHz 44.1 KHz
457 1.1 cgd */
458 1.1 cgd #define SB_LS_MIN 0x06 /* 4000 Hz */
459 1.1 cgd #ifdef SBPRO
460 1.1 cgd #define SB_ADC_LS_MAX 0xd4 /* 22727 Hz */
461 1.1 cgd #define SB_ADC_HS_MAX 0xe9 /* 43478 Hz */
462 1.1 cgd #else
463 1.1 cgd #define SB_ADC_LS_MAX 0xb3 /* 12987 Hz */
464 1.1 cgd #define SB_ADC_HS_MAX 0xbd /* 14925 Hz */
465 1.1 cgd #endif
466 1.1 cgd #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
467 1.1 cgd #define SB_DAC_HS_MAX 0xe9 /* 43478 Hz */
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd * Convert a linear sampling rate into the DAC time constant.
471 1.1 cgd * Set *mode to indicate the high/low-speed DMA operation.
472 1.1 cgd * Because of limitations of the card, not all rates are possible.
473 1.1 cgd * We return the time constant of the closest possible rate.
474 1.1 cgd * The sampling rate limits are different for the DAC and ADC,
475 1.1 cgd * so isdac indicates output, and !isdac indicates input.
476 1.1 cgd */
477 1.1 cgd int
478 1.1 cgd sb_srtotc(int sr, int *mode, int isdac)
479 1.1 cgd {
480 1.1 cgd register int tc = 256 - 1000000 / sr;
481 1.1 cgd
482 1.1 cgd if (tc < SB_LS_MIN) {
483 1.1 cgd tc = SB_LS_MIN;
484 1.1 cgd *mode = SB_ADAC_LS;
485 1.1 cgd } else if (isdac) {
486 1.1 cgd if (tc < SB_DAC_LS_MAX)
487 1.1 cgd *mode = SB_ADAC_LS;
488 1.1 cgd else {
489 1.1 cgd *mode = SB_ADAC_HS;
490 1.1 cgd if (tc > SB_DAC_HS_MAX)
491 1.1 cgd tc = SB_DAC_HS_MAX;
492 1.1 cgd }
493 1.1 cgd } else {
494 1.1 cgd if (tc < SB_ADC_LS_MAX)
495 1.1 cgd *mode = SB_ADAC_LS;
496 1.1 cgd else {
497 1.1 cgd *mode = SB_ADAC_HS;
498 1.1 cgd if (tc > SB_ADC_HS_MAX)
499 1.1 cgd tc = SB_ADC_HS_MAX;
500 1.1 cgd }
501 1.1 cgd }
502 1.1 cgd return (tc);
503 1.1 cgd }
504 1.1 cgd
505 1.1 cgd /*
506 1.1 cgd * Convert a DAC time constant to a sampling rate.
507 1.1 cgd * See SBK, section 12.
508 1.1 cgd */
509 1.1 cgd int
510 1.1 cgd sb_tctosr(int tc)
511 1.1 cgd {
512 1.1 cgd return (1000000 / (256 - tc));
513 1.1 cgd }
514 1.1 cgd
515 1.1 cgd int
516 1.1 cgd sb_set_sr(register struct sb_softc *sc, u_long *sr, int isdac)
517 1.1 cgd {
518 1.1 cgd register int tc;
519 1.1 cgd int mode;
520 1.1 cgd
521 1.1 cgd tc = sb_srtotc(*sr, &mode, isdac);
522 1.1 cgd if (wdsp(sc->sc_base, SB_DSP_TIMECONST) < 0 ||
523 1.1 cgd wdsp(sc->sc_base, tc) < 0)
524 1.1 cgd return (-1);
525 1.1 cgd
526 1.1 cgd *sr = sb_tctosr(tc);
527 1.1 cgd sc->sc_adacmode = mode;
528 1.1 cgd sc->sc_adactc = tc;
529 1.1 cgd
530 1.1 cgd return (0);
531 1.1 cgd }
532 1.1 cgd
533 1.1 cgd int
534 1.1 cgd sb_round_sr(u_long sr, int isdac)
535 1.1 cgd {
536 1.1 cgd int mode, tc;
537 1.1 cgd
538 1.1 cgd tc = sb_srtotc(sr, &mode, isdac);
539 1.1 cgd return (sb_tctosr(tc));
540 1.1 cgd }
541 1.1 cgd
542 1.1 cgd int
543 1.1 cgd sb_dma_input(struct sb_softc *sc, void *p, int cc, void (*intr)(), void *arg)
544 1.1 cgd {
545 1.1 cgd register int base;
546 1.1 cgd
547 1.1 cgd at_dma(1, p, cc, sc->sc_dmachan);
548 1.1 cgd sc->sc_intr = intr;
549 1.1 cgd sc->sc_arg = arg;
550 1.1 cgd base = sc->sc_base;
551 1.1 cgd --cc;
552 1.1 cgd if (sc->sc_adacmode == SB_ADAC_LS) {
553 1.1 cgd if (wdsp(base, SB_DSP_RDMA) < 0 ||
554 1.1 cgd wdsp(base, cc) < 0 ||
555 1.1 cgd wdsp(base, cc >> 8) < 0) {
556 1.1 cgd sbreset(sc->sc_base);
557 1.1 cgd return (EIO);
558 1.1 cgd }
559 1.1 cgd } else {
560 1.1 cgd if (wdsp(base, SB_DSP_BLOCKSIZE) < 0 ||
561 1.1 cgd wdsp(base, cc) < 0 ||
562 1.1 cgd wdsp(base, cc >> 8) < 0 ||
563 1.1 cgd wdsp(base, SB_DSP_HS_INPUT) < 0) {
564 1.1 cgd sbreset(sc->sc_base);
565 1.1 cgd return (EIO);
566 1.1 cgd }
567 1.1 cgd sc->sc_locked = 1;
568 1.1 cgd }
569 1.1 cgd return (0);
570 1.1 cgd }
571 1.1 cgd
572 1.1 cgd int
573 1.1 cgd sb_dma_output(struct sb_softc *sc, void *p, int cc, void (*intr)(), void *arg)
574 1.1 cgd {
575 1.1 cgd register int base;
576 1.1 cgd
577 1.1 cgd at_dma(0, p, cc, sc->sc_dmachan);
578 1.1 cgd sc->sc_intr = intr;
579 1.1 cgd sc->sc_arg = arg;
580 1.1 cgd base = sc->sc_base;
581 1.1 cgd --cc;
582 1.1 cgd if (sc->sc_adacmode == SB_ADAC_LS) {
583 1.1 cgd if (wdsp(base, SB_DSP_WDMA) < 0 ||
584 1.1 cgd wdsp(base, cc) < 0 ||
585 1.1 cgd wdsp(base, cc >> 8) < 0) {
586 1.1 cgd sbreset(sc->sc_base);
587 1.1 cgd return (EIO);
588 1.1 cgd }
589 1.1 cgd } else {
590 1.1 cgd if (wdsp(base, SB_DSP_BLOCKSIZE) < 0 ||
591 1.1 cgd wdsp(base, cc) < 0 ||
592 1.1 cgd wdsp(base, cc >> 8) < 0 ||
593 1.1 cgd wdsp(base, SB_DSP_HS_OUTPUT) < 0) {
594 1.1 cgd sbreset(sc->sc_base);
595 1.1 cgd return (EIO);
596 1.1 cgd }
597 1.1 cgd sc->sc_locked = 1;
598 1.1 cgd }
599 1.1 cgd return (0);
600 1.1 cgd }
601 1.1 cgd
602 1.1 cgd /*
603 1.1 cgd * Only the DSP unit on the sound blaster generates interrupts.
604 1.1 cgd * There are three cases of interrupt: reception of a midi byte
605 1.1 cgd * (when mode is enabled), completion of dma transmission, or
606 1.1 cgd * completion of a dma reception. The three modes are mutually
607 1.1 cgd * exclusive so we know a priori which event has occurred.
608 1.1 cgd */
609 1.1 cgd #ifdef NEWCONFIG
610 1.1 cgd int
611 1.1 cgd sbintr(struct sb_softc *sc)
612 1.1 cgd {
613 1.1 cgd #else
614 1.1 cgd int
615 1.1 cgd sbintr(int unit)
616 1.1 cgd {
617 1.1 cgd register struct sb_softc *sc = &sb_softcs[UNIT(unit)];
618 1.1 cgd #endif
619 1.1 cgd
620 1.1 cgd sc->sc_locked = 0;
621 1.1 cgd /* clear interrupt */
622 1.1 cgd inb(sc->sc_base + SBP_DSP_RSTAT);
623 1.1 cgd if (sc->sc_mintr != 0) {
624 1.1 cgd int c = rdsp(sc->sc_base);
625 1.1 cgd (*sc->sc_mintr)(sc->sc_arg, c);
626 1.3 deraadt } else if(sc->sc_intr != 0) {
627 1.3 deraadt (*sc->sc_intr)(sc->sc_arg);
628 1.1 cgd } else
629 1.3 deraadt return (0);
630 1.1 cgd return (1);
631 1.1 cgd }
632 1.1 cgd
633 1.1 cgd /*
634 1.1 cgd * Enter midi uart mode and arrange for read interrupts
635 1.1 cgd * to vector to `intr'. This puts the card in a mode
636 1.1 cgd * which allows only midi I/O; the card must be reset
637 1.1 cgd * to leave this mode. Unfortunately, the card does not
638 1.1 cgd * use transmit interrupts, so bytes must be output
639 1.1 cgd
640 1.1 cgd
641 1.1 cgd * using polling. To keep the polling overhead to a
642 1.1 cgd * minimum, output should be driven off a timer.
643 1.1 cgd * This is a little tricky since only 320us separate
644 1.1 cgd * consecutive midi bytes.
645 1.1 cgd */
646 1.1 cgd void
647 1.1 cgd sb_set_midi_mode(struct sb_softc *sc, void (*intr)(), void *arg)
648 1.1 cgd {
649 1.1 cgd wdsp(sc->sc_base, SB_MIDI_UART_INTR);
650 1.1 cgd sc->sc_mintr = intr;
651 1.1 cgd sc->sc_intr = 0;
652 1.1 cgd sc->sc_arg = arg;
653 1.1 cgd }
654 1.1 cgd
655 1.1 cgd /*
656 1.1 cgd * Write a byte to the midi port, when in midi uart mode.
657 1.1 cgd */
658 1.1 cgd void
659 1.1 cgd sb_midi_output(struct sb_softc *sc, int v)
660 1.1 cgd {
661 1.1 cgd if (wdsp(sc->sc_base, v) < 0)
662 1.1 cgd ++sberr.wmidi;
663 1.1 cgd }
664 1.1 cgd #endif
665