Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.6
      1  1.1      cgd /*
      2  1.1      cgd  * Copyright (c) 1991-1993 Regents of the University of California.
      3  1.1      cgd  * All rights reserved.
      4  1.1      cgd  *
      5  1.1      cgd  * Redistribution and use in source and binary forms, with or without
      6  1.1      cgd  * modification, are permitted provided that the following conditions
      7  1.1      cgd  * are met:
      8  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
      9  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     10  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     12  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     13  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     14  1.1      cgd  *    must display the following acknowledgement:
     15  1.1      cgd  *	This product includes software developed by the Computer Systems
     16  1.1      cgd  *	Engineering Group at Lawrence Berkeley Laboratory.
     17  1.1      cgd  * 4. Neither the name of the University nor of the Laboratory may be used
     18  1.1      cgd  *    to endorse or promote products derived from this software without
     19  1.1      cgd  *    specific prior written permission.
     20  1.1      cgd  *
     21  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1      cgd  * SUCH DAMAGE.
     32  1.1      cgd  *
     33  1.6  mycroft  *	$Id: sb.c,v 1.6 1994/03/29 04:36:26 mycroft Exp $
     34  1.1      cgd  */
     35  1.1      cgd 
     36  1.1      cgd #include <sys/param.h>
     37  1.1      cgd #include <sys/systm.h>
     38  1.1      cgd #include <sys/errno.h>
     39  1.1      cgd #include <sys/ioctl.h>
     40  1.1      cgd #include <sys/syslog.h>
     41  1.6  mycroft #include <sys/device.h>
     42  1.1      cgd 
     43  1.1      cgd #include <machine/cpu.h>
     44  1.1      cgd #include <machine/pio.h>
     45  1.1      cgd 
     46  1.1      cgd #include <i386/isa/isa.h>
     47  1.6  mycroft #include <i386/isa/isavar.h>
     48  1.1      cgd #include <i386/isa/icu.h>
     49  1.1      cgd 
     50  1.1      cgd #include "sbreg.h"
     51  1.1      cgd 
     52  1.1      cgd /*
     53  1.1      cgd  * Software state, per SoundBlaster card.
     54  1.1      cgd  * The soundblaster has multiple functionality, which we must demultiplex.
     55  1.1      cgd  * One approach is to have one major device number for the soundblaster card,
     56  1.1      cgd  * and use different minor numbers to indicate which hardware function
     57  1.1      cgd  * we want.  This would make for one large driver.  Instead our approach
     58  1.1      cgd  * is to partition the design into a set of drivers that share an underlying
     59  1.1      cgd  * piece of hardware.  Most things are hard to share, for example, the audio
     60  1.1      cgd  * and midi ports.  For audio, we might want to mix two processes' signals,
     61  1.1      cgd  * and for midi we might want to merge streams (this is hard due to
     62  1.1      cgd  * running status).  Moreover, we should be able to re-use the high-level
     63  1.1      cgd  * modules with other kinds of hardware.  In this module, we only handle the
     64  1.1      cgd  * most basic communications with the sb card.
     65  1.1      cgd  */
     66  1.1      cgd struct sb_softc {
     67  1.1      cgd 	struct device sc_dev;		/* base device */
     68  1.1      cgd 	struct isadev sc_id;		/* ISA device */
     69  1.1      cgd 	struct  intrhand sc_ih;		/* interrupt vectoring */
     70  1.6  mycroft 
     71  1.1      cgd 	u_short	sc_open;		/* reference count of open calls */
     72  1.1      cgd 	u_short sc_dmachan;		/* dma channel */
     73  1.6  mycroft 	u_short	sc_locked;		/* true when doing HS DMA  */
     74  1.6  mycroft 	u_short	sc_iobase;		/* I/O port base address */
     75  1.1      cgd  	u_short	sc_adacmode;		/* low/high speed mode indicator */
     76  1.1      cgd #define SB_ADAC_LS 0
     77  1.1      cgd #define SB_ADAC_HS 1
     78  1.1      cgd  	u_short	sc_adactc;		/* current adac time constant */
     79  1.1      cgd 	u_long	sc_interrupts;		/* number of interrupts taken */
     80  1.1      cgd 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     81  1.1      cgd 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     82  1.1      cgd 	void	*sc_arg;		/* arg for sc_intr() */
     83  1.1      cgd };
     84  1.1      cgd 
     85  1.6  mycroft int sbreset __P((struct sb_softc *));
     86  1.6  mycroft void sb_spkron __P((struct sb_softc *));
     87  1.6  mycroft void sb_spkroff __P((struct sb_softc *));
     88  1.1      cgd 
     89  1.6  mycroft static int wdsp(u_short iobase, int v);
     90  1.6  mycroft static int rdsp(u_short iobase);
     91  1.1      cgd 
     92  1.6  mycroft #define splsb splhigh		/* XXX */
     93  1.6  mycroft struct sb_softc *sb_softc;	/* XXX */
     94  1.1      cgd 
     95  1.1      cgd #ifndef NEWCONFIG
     96  1.1      cgd #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     97  1.1      cgd #endif
     98  1.1      cgd 
     99  1.1      cgd struct {
    100  1.1      cgd 	int wdsp;
    101  1.1      cgd 	int rdsp;
    102  1.1      cgd 	int wmidi;
    103  1.1      cgd } sberr;
    104  1.1      cgd 
    105  1.6  mycroft int	sbintr __P((int));
    106  1.6  mycroft int	sbprobe();
    107  1.6  mycroft void	sbattach();
    108  1.1      cgd #ifdef NEWCONFIG
    109  1.1      cgd void	sbforceintr(void *);
    110  1.6  mycroft #endif
    111  1.1      cgd 
    112  1.6  mycroft struct cfdriver sbcd = {
    113  1.6  mycroft 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    114  1.6  mycroft };
    115  1.1      cgd 
    116  1.1      cgd int
    117  1.6  mycroft sbprobe(parent, self, aux)
    118  1.6  mycroft 	struct device *parent, *self;
    119  1.6  mycroft 	void *aux;
    120  1.1      cgd {
    121  1.6  mycroft 	register struct sb_softc *sc = (void *)self;
    122  1.6  mycroft 	register struct isa_attach_args *ia = aux;
    123  1.6  mycroft 	register u_short iobase = ia->ia_iobase;
    124  1.1      cgd 
    125  1.6  mycroft 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    126  1.6  mycroft 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    127  1.6  mycroft 		return 0;
    128  1.1      cgd 	}
    129  1.6  mycroft 	sc->sc_iobase = iobase;
    130  1.6  mycroft 	if (sbreset(sc) < 0) {
    131  1.1      cgd 		printf("sb: couldn't reset card\n");
    132  1.6  mycroft 		return 0;
    133  1.1      cgd 	}
    134  1.1      cgd 	/*
    135  1.1      cgd 	 * Cannot auto-discover DMA channel.
    136  1.1      cgd 	 */
    137  1.1      cgd 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    138  1.1      cgd 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    139  1.6  mycroft 		return 0;
    140  1.1      cgd 	}
    141  1.6  mycroft #ifdef NEWCONFIG
    142  1.1      cgd 	/*
    143  1.1      cgd 	 * If the IRQ wasn't compiled in, auto-detect it.
    144  1.1      cgd 	 */
    145  1.1      cgd 	if (ia->ia_irq == IRQUNK) {
    146  1.1      cgd 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    147  1.6  mycroft 		sbreset(iobase);
    148  1.1      cgd 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    149  1.1      cgd 			printf("sb: couldn't auto-detect interrupt");
    150  1.6  mycroft 			return 0;
    151  1.1      cgd 		}
    152  1.6  mycroft 	} else
    153  1.6  mycroft #endif
    154  1.6  mycroft 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    155  1.1      cgd 		int irq = ffs(ia->ia_irq) - 1;
    156  1.1      cgd 		printf("sb: configured irq %d invalid\n", irq);
    157  1.6  mycroft 		return 0;
    158  1.1      cgd 	}
    159  1.6  mycroft 	ia->ia_iosize = SB_NPORT;
    160  1.6  mycroft 	return 1;
    161  1.1      cgd }
    162  1.1      cgd 
    163  1.6  mycroft #ifdef NEWCONFIG
    164  1.1      cgd void
    165  1.6  mycroft sbforceintr(aux)
    166  1.6  mycroft 	void *aux;
    167  1.1      cgd {
    168  1.1      cgd 	static char dmabuf;
    169  1.6  mycroft 	struct isa_attach_args *ia = aux;
    170  1.6  mycroft 	u_short iobase = ia->ia_iobase;
    171  1.6  mycroft 
    172  1.1      cgd 	/*
    173  1.1      cgd 	 * Set up a DMA read of one byte.
    174  1.1      cgd 	 * XXX Note that at this point we haven't called
    175  1.1      cgd 	 * at_setup_dmachan().  This is okay because it just
    176  1.1      cgd 	 * allocates a buffer in case it needs to make a copy,
    177  1.1      cgd 	 * and it won't need to make a copy for a 1 byte buffer.
    178  1.1      cgd 	 * (I think that calling at_setup_dmachan() should be optional;
    179  1.1      cgd 	 * if you don't call it, it will be called the first time
    180  1.1      cgd 	 * it is needed (and you pay the latency).  Also, you might
    181  1.1      cgd 	 * never need the buffer anyway.)
    182  1.1      cgd 	 */
    183  1.1      cgd 	at_dma(1, &dmabuf, 1, ia->ia_drq);
    184  1.6  mycroft 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    185  1.6  mycroft 		(void)wdsp(iobase, 0);
    186  1.6  mycroft 		(void)wdsp(iobase, 0);
    187  1.1      cgd 	}
    188  1.1      cgd }
    189  1.6  mycroft #endif
    190  1.1      cgd 
    191  1.1      cgd void
    192  1.1      cgd sbattach(parent, self, aux)
    193  1.1      cgd 	struct device *parent, *self;
    194  1.1      cgd 	void *aux;
    195  1.1      cgd {
    196  1.1      cgd 	register struct sb_softc *sc = (struct sb_softc *)self;
    197  1.1      cgd 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    198  1.6  mycroft 	register u_short iobase = ia->ia_iobase;
    199  1.1      cgd 	register int vers;
    200  1.1      cgd 
    201  1.1      cgd 	/* XXX */
    202  1.1      cgd 	sb_softc = sc;
    203  1.1      cgd 
    204  1.6  mycroft 	sc->sc_iobase = iobase;
    205  1.1      cgd 	sc->sc_dmachan = ia->ia_drq;
    206  1.1      cgd 	sc->sc_locked = 0;
    207  1.6  mycroft 
    208  1.6  mycroft #ifdef NEWCONFIG
    209  1.1      cgd 	isa_establish(&sc->sc_id, &sc->sc_dev);
    210  1.1      cgd 	sc->sc_ih.ih_fun = sbintr;
    211  1.1      cgd 	sc->sc_ih.ih_arg = (void *)sc;
    212  1.1      cgd 	/* XXX DV_TAPE? */
    213  1.1      cgd 	intr_establish(ia->ia_irq, &sc->sc_ih, DV_TAPE);
    214  1.1      cgd 
    215  1.1      cgd 	/*
    216  1.1      cgd 	 * We limit DMA transfers to a page, and use the generic DMA handling
    217  1.1      cgd 	 * code in isa.c.  This code can end up copying a buffer, but since
    218  1.1      cgd 	 * the audio driver uses relative small buffers this isn't likely.
    219  1.1      cgd 	 *
    220  1.1      cgd 	 * This allocation scheme means that the maximum transfer is limited
    221  1.1      cgd 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    222  1.1      cgd 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    223  1.1      cgd 	 * is plenty long enough to amortize any fixed time overhead.
    224  1.1      cgd 	 */
    225  1.1      cgd 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    226  1.1      cgd #endif
    227  1.1      cgd 
    228  1.6  mycroft 	vers = sbversion(sc);
    229  1.6  mycroft 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    230  1.1      cgd }
    231  1.1      cgd 
    232  1.6  mycroft #define	SBUNIT(x)		(minor(x) & 0xf)
    233  1.1      cgd 
    234  1.1      cgd struct sb_softc *
    235  1.1      cgd sbopen()
    236  1.1      cgd {
    237  1.6  mycroft 	/* XXXX */
    238  1.1      cgd 	struct sb_softc *sc = sb_softc;
    239  1.1      cgd 
    240  1.1      cgd 	if (sc == 0)
    241  1.1      cgd 		return 0;
    242  1.1      cgd 
    243  1.6  mycroft 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    244  1.1      cgd 		sc->sc_open = 1;
    245  1.1      cgd 		sc->sc_mintr = 0;
    246  1.1      cgd 		sc->sc_intr = 0;
    247  1.6  mycroft 		return sc;
    248  1.1      cgd 	}
    249  1.6  mycroft 	return 0;
    250  1.1      cgd }
    251  1.1      cgd 
    252  1.1      cgd void
    253  1.6  mycroft sbclose(sc)
    254  1.6  mycroft 	struct sb_softc *sc;
    255  1.1      cgd {
    256  1.6  mycroft 
    257  1.1      cgd 	sc->sc_open = 0;
    258  1.1      cgd 	sb_spkroff(sc);
    259  1.1      cgd 	sc->sc_intr = 0;
    260  1.1      cgd 	sc->sc_mintr = 0;
    261  1.1      cgd 	/* XXX this will turn off any dma */
    262  1.6  mycroft 	sbreset(sc);
    263  1.1      cgd }
    264  1.1      cgd 
    265  1.1      cgd /*
    266  1.1      cgd  * Write a byte to the dsp.
    267  1.1      cgd  * XXX We are at the mercy of the card as we use a
    268  1.1      cgd  * polling loop and wait until it can take the byte.
    269  1.1      cgd  */
    270  1.1      cgd static int
    271  1.6  mycroft wdsp(u_short iobase, int v)
    272  1.1      cgd {
    273  1.1      cgd 	register int i;
    274  1.1      cgd 
    275  1.1      cgd 	for (i = 100; --i >= 0; ) {
    276  1.6  mycroft 		if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
    277  1.1      cgd 			continue;
    278  1.6  mycroft 		outb(iobase + SBP_DSP_WRITE, v);
    279  1.6  mycroft 		return 0;
    280  1.1      cgd 	}
    281  1.1      cgd 	++sberr.wdsp;
    282  1.6  mycroft 	return -1;
    283  1.1      cgd }
    284  1.1      cgd 
    285  1.1      cgd /*
    286  1.1      cgd  * Read a byte from the DSP, using polling.
    287  1.1      cgd  */
    288  1.1      cgd int
    289  1.6  mycroft rdsp(u_short iobase)
    290  1.1      cgd {
    291  1.1      cgd 	register int i;
    292  1.1      cgd 
    293  1.1      cgd 	for (i = 100; --i >= 0; ) {
    294  1.6  mycroft 		if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
    295  1.1      cgd 			continue;
    296  1.6  mycroft 		return inb(iobase + SBP_DSP_READ);
    297  1.1      cgd 	}
    298  1.1      cgd 	++sberr.rdsp;
    299  1.6  mycroft 	return -1;
    300  1.1      cgd }
    301  1.1      cgd 
    302  1.1      cgd /*
    303  1.1      cgd  * Reset the card.
    304  1.1      cgd  * Return non-zero if the card isn't detected.
    305  1.1      cgd  */
    306  1.1      cgd int
    307  1.6  mycroft sbreset(sc)
    308  1.6  mycroft 	struct sb_softc *sc;
    309  1.1      cgd {
    310  1.6  mycroft 	register u_short iobase = sc->sc_iobase;
    311  1.1      cgd 	register int i;
    312  1.6  mycroft 
    313  1.1      cgd 	/*
    314  1.1      cgd 	 * See SBK, section 11.3.
    315  1.1      cgd 	 * We pulse a reset signal into the card.
    316  1.1      cgd 	 * Gee, what a brilliant hardware design.
    317  1.1      cgd 	 */
    318  1.6  mycroft 	outb(iobase + SBP_DSP_RESET, 1);
    319  1.5  mycroft 	delay(3);
    320  1.6  mycroft 	outb(iobase + SBP_DSP_RESET, 0);
    321  1.6  mycroft 	if (rdsp(iobase) != SB_MAGIC)
    322  1.6  mycroft 		return -1;
    323  1.6  mycroft 	return 0;
    324  1.1      cgd }
    325  1.1      cgd 
    326  1.1      cgd /*
    327  1.1      cgd  * Turn on the speaker.  The SBK documention says this operation
    328  1.1      cgd  * can take up to 1/10 of a second.  Higher level layers should
    329  1.1      cgd  * probably let the task sleep for this amount of time after
    330  1.1      cgd  * calling here.  Otherwise, things might not work (because
    331  1.1      cgd  * wdsp() and rdsp() will probably timeout.)
    332  1.1      cgd  *
    333  1.1      cgd  * These engineers had their heads up their ass when
    334  1.1      cgd  * they designed this card.
    335  1.1      cgd  */
    336  1.1      cgd void
    337  1.6  mycroft sb_spkron(sc)
    338  1.6  mycroft 	struct sb_softc *sc;
    339  1.1      cgd {
    340  1.6  mycroft 
    341  1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    342  1.6  mycroft 	/* XXX bogus */
    343  1.5  mycroft 	delay(1000);
    344  1.1      cgd }
    345  1.1      cgd 
    346  1.1      cgd /*
    347  1.1      cgd  * Turn off the speaker; see comment above.
    348  1.1      cgd  */
    349  1.1      cgd void
    350  1.6  mycroft sb_spkroff(sc)
    351  1.6  mycroft 	struct sb_softc *sc;
    352  1.1      cgd {
    353  1.6  mycroft 
    354  1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    355  1.1      cgd }
    356  1.1      cgd 
    357  1.1      cgd /*
    358  1.1      cgd  * Read the version number out of the card.  Return major code
    359  1.1      cgd  * in high byte, and minor code in low byte.
    360  1.1      cgd  */
    361  1.1      cgd int
    362  1.6  mycroft sbversion(sc)
    363  1.6  mycroft 	struct sb_softc *sc;
    364  1.1      cgd {
    365  1.6  mycroft 	register u_short iobase = sc->sc_iobase;
    366  1.1      cgd 	int v;
    367  1.1      cgd 
    368  1.6  mycroft 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    369  1.6  mycroft 		return 0;
    370  1.6  mycroft 	v = rdsp(iobase) << 8;
    371  1.6  mycroft 	v |= rdsp(iobase);
    372  1.1      cgd 	return ((v >= 0) ? v : 0);
    373  1.1      cgd }
    374  1.1      cgd 
    375  1.1      cgd /*
    376  1.1      cgd  * Halt a DMA in progress.  A low-speed transfer can be
    377  1.1      cgd  * resumed with sb_contdma().
    378  1.1      cgd  */
    379  1.1      cgd void
    380  1.6  mycroft sb_haltdma(sc)
    381  1.6  mycroft 	struct sb_softc *sc;
    382  1.1      cgd {
    383  1.6  mycroft 
    384  1.1      cgd 	if (sc->sc_locked)
    385  1.6  mycroft 		sbreset(sc);
    386  1.1      cgd 	else
    387  1.6  mycroft 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    388  1.1      cgd }
    389  1.1      cgd 
    390  1.1      cgd void
    391  1.6  mycroft sb_contdma(sc)
    392  1.6  mycroft 	struct sb_softc *sc;
    393  1.1      cgd {
    394  1.6  mycroft 
    395  1.6  mycroft 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    396  1.1      cgd }
    397  1.1      cgd 
    398  1.1      cgd /*
    399  1.1      cgd  * Time constant routines follow.  See SBK, section 12.
    400  1.1      cgd  * Although they don't come out and say it (in the docs),
    401  1.1      cgd  * the card clearly uses a 1MHz countdown timer, as the
    402  1.1      cgd  * low-speed formula (p. 12-4) is:
    403  1.1      cgd  *	tc = 256 - 10^6 / sr
    404  1.1      cgd  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    405  1.1      cgd  * and a 256MHz clock is used:
    406  1.1      cgd  *	tc = 65536 - 256 * 10^ 6 / sr
    407  1.1      cgd  * Since we can only use the upper byte of the HS TC, the two formulae
    408  1.1      cgd  * are equivalent.  (Why didn't they say so?)  E.g.,
    409  1.1      cgd  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    410  1.1      cgd  *
    411  1.1      cgd  * The crossover point (from low- to high-speed modes) is different
    412  1.1      cgd  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    413  1.1      cgd  *
    414  1.1      cgd  *				SBPRO			SB20
    415  1.1      cgd  *				-----			--------
    416  1.1      cgd  * input ls min			4	KHz		4	HJz
    417  1.1      cgd  * input ls max			23	KHz		13	KHz
    418  1.1      cgd  * input hs max			44.1	KHz		15	KHz
    419  1.1      cgd  * output ls min		4	KHz		4	KHz
    420  1.1      cgd  * output ls max		23	KHz		23	KHz
    421  1.1      cgd  * output hs max		44.1	KHz		44.1	KHz
    422  1.1      cgd  */
    423  1.1      cgd #define SB_LS_MIN	0x06	/* 4000 Hz */
    424  1.1      cgd #ifdef SBPRO
    425  1.1      cgd #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    426  1.1      cgd #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    427  1.1      cgd #else
    428  1.1      cgd #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    429  1.1      cgd #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    430  1.1      cgd #endif
    431  1.1      cgd #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    432  1.1      cgd #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    433  1.1      cgd 
    434  1.1      cgd /*
    435  1.1      cgd  * Convert a linear sampling rate into the DAC time constant.
    436  1.1      cgd  * Set *mode to indicate the high/low-speed DMA operation.
    437  1.1      cgd  * Because of limitations of the card, not all rates are possible.
    438  1.1      cgd  * We return the time constant of the closest possible rate.
    439  1.1      cgd  * The sampling rate limits are different for the DAC and ADC,
    440  1.1      cgd  * so isdac indicates output, and !isdac indicates input.
    441  1.1      cgd  */
    442  1.1      cgd int
    443  1.6  mycroft sb_srtotc(sr, mode, isdac)
    444  1.6  mycroft 	int sr;
    445  1.6  mycroft 	int *mode;
    446  1.6  mycroft 	int isdac;
    447  1.1      cgd {
    448  1.1      cgd 	register int tc = 256 - 1000000 / sr;
    449  1.1      cgd 
    450  1.1      cgd 	if (tc < SB_LS_MIN) {
    451  1.1      cgd 		tc = SB_LS_MIN;
    452  1.1      cgd 		*mode = SB_ADAC_LS;
    453  1.1      cgd 	} else if (isdac) {
    454  1.1      cgd 		if (tc < SB_DAC_LS_MAX)
    455  1.1      cgd 			*mode = SB_ADAC_LS;
    456  1.1      cgd 		else {
    457  1.1      cgd 			*mode = SB_ADAC_HS;
    458  1.1      cgd 			if (tc > SB_DAC_HS_MAX)
    459  1.1      cgd 				tc = SB_DAC_HS_MAX;
    460  1.1      cgd 		}
    461  1.1      cgd 	} else {
    462  1.1      cgd 		if (tc < SB_ADC_LS_MAX)
    463  1.1      cgd 			*mode = SB_ADAC_LS;
    464  1.1      cgd 		else {
    465  1.1      cgd 			*mode = SB_ADAC_HS;
    466  1.1      cgd 			if (tc > SB_ADC_HS_MAX)
    467  1.1      cgd 				tc = SB_ADC_HS_MAX;
    468  1.1      cgd 		}
    469  1.1      cgd 	}
    470  1.6  mycroft 	return tc;
    471  1.1      cgd }
    472  1.1      cgd 
    473  1.1      cgd /*
    474  1.1      cgd  * Convert a DAC time constant to a sampling rate.
    475  1.1      cgd  * See SBK, section 12.
    476  1.1      cgd  */
    477  1.1      cgd int
    478  1.6  mycroft sb_tctosr(tc)
    479  1.6  mycroft 	int tc;
    480  1.1      cgd {
    481  1.1      cgd 	return (1000000 / (256 - tc));
    482  1.1      cgd }
    483  1.1      cgd 
    484  1.1      cgd int
    485  1.6  mycroft sb_set_sr(sc, sr, isdac)
    486  1.6  mycroft 	register struct sb_softc *sc;
    487  1.6  mycroft 	u_long *sr;
    488  1.6  mycroft 	int isdac;
    489  1.1      cgd {
    490  1.1      cgd 	register int tc;
    491  1.1      cgd 	int mode;
    492  1.1      cgd 
    493  1.1      cgd 	tc = sb_srtotc(*sr, &mode, isdac);
    494  1.6  mycroft 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    495  1.6  mycroft 	    wdsp(sc->sc_iobase, tc) < 0)
    496  1.6  mycroft 		return -1;
    497  1.1      cgd 
    498  1.1      cgd 	*sr = sb_tctosr(tc);
    499  1.1      cgd 	sc->sc_adacmode = mode;
    500  1.1      cgd 	sc->sc_adactc = tc;
    501  1.1      cgd 
    502  1.6  mycroft 	return 0;
    503  1.1      cgd }
    504  1.1      cgd 
    505  1.1      cgd int
    506  1.6  mycroft sb_round_sr(sr, isdac)
    507  1.6  mycroft 	u_long sr;
    508  1.6  mycroft 	int isdac;
    509  1.1      cgd {
    510  1.1      cgd 	int mode, tc;
    511  1.1      cgd 
    512  1.1      cgd 	tc = sb_srtotc(sr, &mode, isdac);
    513  1.6  mycroft 	return sb_tctosr(tc);
    514  1.1      cgd }
    515  1.1      cgd 
    516  1.1      cgd int
    517  1.6  mycroft sb_dma_input(sc, p, cc, intr, arg)
    518  1.6  mycroft 	struct sb_softc *sc;
    519  1.6  mycroft 	void *p;
    520  1.6  mycroft 	int cc;
    521  1.6  mycroft 	void (*intr)();
    522  1.6  mycroft 	void *arg;
    523  1.1      cgd {
    524  1.6  mycroft 	register u_short iobase;
    525  1.1      cgd 
    526  1.1      cgd 	at_dma(1, p, cc, sc->sc_dmachan);
    527  1.1      cgd 	sc->sc_intr = intr;
    528  1.1      cgd 	sc->sc_arg = arg;
    529  1.6  mycroft 	iobase = sc->sc_iobase;
    530  1.1      cgd 	--cc;
    531  1.1      cgd 	if (sc->sc_adacmode == SB_ADAC_LS) {
    532  1.6  mycroft 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    533  1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    534  1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0) {
    535  1.6  mycroft 			sbreset(sc);
    536  1.6  mycroft 			return EIO;
    537  1.1      cgd 		}
    538  1.1      cgd 	} else {
    539  1.6  mycroft 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    540  1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    541  1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0 ||
    542  1.6  mycroft 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    543  1.6  mycroft 			sbreset(sc);
    544  1.6  mycroft 			return EIO;
    545  1.1      cgd 		}
    546  1.1      cgd 		sc->sc_locked = 1;
    547  1.1      cgd 	}
    548  1.6  mycroft 	return 0;
    549  1.1      cgd }
    550  1.1      cgd 
    551  1.1      cgd int
    552  1.6  mycroft sb_dma_output(sc, p, cc, intr, arg)
    553  1.6  mycroft 	struct sb_softc *sc;
    554  1.6  mycroft 	void *p;
    555  1.6  mycroft 	int cc;
    556  1.6  mycroft 	void (*intr)();
    557  1.6  mycroft 	void *arg;
    558  1.1      cgd {
    559  1.6  mycroft 	register u_short iobase;
    560  1.1      cgd 
    561  1.1      cgd 	at_dma(0, p, cc, sc->sc_dmachan);
    562  1.1      cgd 	sc->sc_intr = intr;
    563  1.1      cgd 	sc->sc_arg = arg;
    564  1.6  mycroft 	iobase = sc->sc_iobase;
    565  1.1      cgd 	--cc;
    566  1.1      cgd 	if (sc->sc_adacmode == SB_ADAC_LS) {
    567  1.6  mycroft 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    568  1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    569  1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0) {
    570  1.6  mycroft 			sbreset(sc);
    571  1.6  mycroft 			return EIO;
    572  1.1      cgd 		}
    573  1.1      cgd 	} else {
    574  1.6  mycroft 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    575  1.6  mycroft 		    wdsp(iobase, cc) < 0 ||
    576  1.6  mycroft 		    wdsp(iobase, cc >> 8) < 0 ||
    577  1.6  mycroft 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    578  1.6  mycroft 			sbreset(sc);
    579  1.6  mycroft 			return EIO;
    580  1.1      cgd 		}
    581  1.1      cgd 		sc->sc_locked = 1;
    582  1.1      cgd 	}
    583  1.6  mycroft 	return 0;
    584  1.1      cgd }
    585  1.1      cgd 
    586  1.1      cgd /*
    587  1.1      cgd  * Only the DSP unit on the sound blaster generates interrupts.
    588  1.1      cgd  * There are three cases of interrupt: reception of a midi byte
    589  1.1      cgd  * (when mode is enabled), completion of dma transmission, or
    590  1.1      cgd  * completion of a dma reception.  The three modes are mutually
    591  1.1      cgd  * exclusive so we know a priori which event has occurred.
    592  1.1      cgd  */
    593  1.1      cgd int
    594  1.6  mycroft sbintr(unit)
    595  1.6  mycroft 	int unit;
    596  1.1      cgd {
    597  1.6  mycroft 	register struct sb_softc *sc = sbcd.cd_devs[SBUNIT(unit)];
    598  1.1      cgd 
    599  1.1      cgd 	sc->sc_locked = 0;
    600  1.1      cgd 	/* clear interrupt */
    601  1.6  mycroft 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    602  1.1      cgd 	if (sc->sc_mintr != 0) {
    603  1.6  mycroft 		int c = rdsp(sc->sc_iobase);
    604  1.1      cgd 		(*sc->sc_mintr)(sc->sc_arg, c);
    605  1.6  mycroft 	} else if (sc->sc_intr != 0)
    606  1.3  deraadt 		(*sc->sc_intr)(sc->sc_arg);
    607  1.6  mycroft 	else
    608  1.6  mycroft 		return 0;
    609  1.6  mycroft 	return 1;
    610  1.1      cgd }
    611  1.1      cgd 
    612  1.1      cgd /*
    613  1.1      cgd  * Enter midi uart mode and arrange for read interrupts
    614  1.1      cgd  * to vector to `intr'.  This puts the card in a mode
    615  1.1      cgd  * which allows only midi I/O; the card must be reset
    616  1.1      cgd  * to leave this mode.  Unfortunately, the card does not
    617  1.1      cgd  * use transmit interrupts, so bytes must be output
    618  1.1      cgd  * using polling.  To keep the polling overhead to a
    619  1.1      cgd  * minimum, output should be driven off a timer.
    620  1.1      cgd  * This is a little tricky since only 320us separate
    621  1.1      cgd  * consecutive midi bytes.
    622  1.1      cgd  */
    623  1.1      cgd void
    624  1.6  mycroft sb_set_midi_mode(sc, intr, arg)
    625  1.6  mycroft 	struct sb_softc *sc;
    626  1.6  mycroft 	void (*intr)();
    627  1.6  mycroft 	void *arg;
    628  1.1      cgd {
    629  1.6  mycroft 
    630  1.6  mycroft 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    631  1.1      cgd 	sc->sc_mintr = intr;
    632  1.1      cgd 	sc->sc_intr = 0;
    633  1.1      cgd 	sc->sc_arg = arg;
    634  1.1      cgd }
    635  1.1      cgd 
    636  1.1      cgd /*
    637  1.1      cgd  * Write a byte to the midi port, when in midi uart mode.
    638  1.1      cgd  */
    639  1.1      cgd void
    640  1.6  mycroft sb_midi_output(sc, v)
    641  1.6  mycroft 	struct sb_softc *sc;
    642  1.6  mycroft 	int v;
    643  1.1      cgd {
    644  1.6  mycroft 
    645  1.6  mycroft 	if (wdsp(sc->sc_iobase, v) < 0)
    646  1.1      cgd 		++sberr.wmidi;
    647  1.1      cgd }
    648