Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.12
      1 /*	$NetBSD: sb.c,v 1.12 1994/11/04 18:35:19 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991-1993 Regents of the University of California.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the Computer Systems
     18  *	Engineering Group at Lawrence Berkeley Laboratory.
     19  * 4. Neither the name of the University nor of the Laboratory may be used
     20  *    to endorse or promote products derived from this software without
     21  *    specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/errno.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/syslog.h>
     41 #include <sys/device.h>
     42 
     43 #include <machine/cpu.h>
     44 #include <machine/pio.h>
     45 
     46 #include <i386/isa/isavar.h>
     47 #include <i386/isa/dmavar.h>
     48 #include <i386/isa/icu.h>
     49 
     50 #include "sbreg.h"
     51 
     52 /*
     53  * Software state, per SoundBlaster card.
     54  * The soundblaster has multiple functionality, which we must demultiplex.
     55  * One approach is to have one major device number for the soundblaster card,
     56  * and use different minor numbers to indicate which hardware function
     57  * we want.  This would make for one large driver.  Instead our approach
     58  * is to partition the design into a set of drivers that share an underlying
     59  * piece of hardware.  Most things are hard to share, for example, the audio
     60  * and midi ports.  For audio, we might want to mix two processes' signals,
     61  * and for midi we might want to merge streams (this is hard due to
     62  * running status).  Moreover, we should be able to re-use the high-level
     63  * modules with other kinds of hardware.  In this module, we only handle the
     64  * most basic communications with the sb card.
     65  */
     66 struct sb_softc {
     67 	struct device sc_dev;		/* base device */
     68 	struct isadev sc_id;		/* ISA device */
     69 	struct intrhand sc_ih;		/* interrupt vectoring */
     70 
     71 	u_short	sc_open;		/* reference count of open calls */
     72 	u_short sc_dmachan;		/* dma channel */
     73 	u_short	sc_locked;		/* true when doing HS DMA  */
     74 	u_short	sc_iobase;		/* I/O port base address */
     75  	u_short	sc_adacmode;		/* low/high speed mode indicator */
     76 #define SB_ADAC_LS 0
     77 #define SB_ADAC_HS 1
     78  	u_short	sc_adactc;		/* current adac time constant */
     79 	u_long	sc_interrupts;		/* number of interrupts taken */
     80 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     81 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     82 	void	*sc_arg;		/* arg for sc_intr() */
     83 };
     84 
     85 int sbreset __P((struct sb_softc *));
     86 void sb_spkron __P((struct sb_softc *));
     87 void sb_spkroff __P((struct sb_softc *));
     88 
     89 static int wdsp(u_short iobase, int v);
     90 static int rdsp(u_short iobase);
     91 
     92 #define splsb splhigh		/* XXX */
     93 struct sb_softc *sb_softc;	/* XXX */
     94 
     95 #ifndef NEWCONFIG
     96 #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     97 #endif
     98 
     99 struct {
    100 	int wdsp;
    101 	int rdsp;
    102 	int wmidi;
    103 } sberr;
    104 
    105 int	sbprobe __P((struct device *, void *, void *));
    106 #ifdef NEWCONFIG
    107 void	sbforceintr(void *);
    108 #endif
    109 void	sbattach __P((struct device *, struct device *, void *));
    110 int	sbintr __P((struct sb_softc *));
    111 
    112 struct cfdriver sbcd = {
    113 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    114 };
    115 
    116 int
    117 sbprobe(parent, match, aux)
    118 	struct device *parent;
    119 	void *match, *aux;
    120 {
    121 	register struct sb_softc *sc = match;
    122 	register struct isa_attach_args *ia = aux;
    123 	register u_short iobase = ia->ia_iobase;
    124 
    125 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    126 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    127 		return 0;
    128 	}
    129 	sc->sc_iobase = iobase;
    130 	if (sbreset(sc) < 0) {
    131 		printf("sb: couldn't reset card\n");
    132 		return 0;
    133 	}
    134 	/*
    135 	 * Cannot auto-discover DMA channel.
    136 	 */
    137 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    138 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    139 		return 0;
    140 	}
    141 #ifdef NEWCONFIG
    142 	/*
    143 	 * If the IRQ wasn't compiled in, auto-detect it.
    144 	 */
    145 	if (ia->ia_irq == IRQUNK) {
    146 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    147 		sbreset(iobase);
    148 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    149 			printf("sb: couldn't auto-detect interrupt");
    150 			return 0;
    151 		}
    152 	} else
    153 #endif
    154 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    155 		int irq = ia->ia_irq;
    156 		printf("sb: configured irq %d invalid\n", irq);
    157 		return 0;
    158 	}
    159 	ia->ia_iosize = SB_NPORT;
    160 	return 1;
    161 }
    162 
    163 #ifdef NEWCONFIG
    164 void
    165 sbforceintr(aux)
    166 	void *aux;
    167 {
    168 	static char dmabuf;
    169 	struct isa_attach_args *ia = aux;
    170 	u_short iobase = ia->ia_iobase;
    171 
    172 	/*
    173 	 * Set up a DMA read of one byte.
    174 	 * XXX Note that at this point we haven't called
    175 	 * at_setup_dmachan().  This is okay because it just
    176 	 * allocates a buffer in case it needs to make a copy,
    177 	 * and it won't need to make a copy for a 1 byte buffer.
    178 	 * (I think that calling at_setup_dmachan() should be optional;
    179 	 * if you don't call it, it will be called the first time
    180 	 * it is needed (and you pay the latency).  Also, you might
    181 	 * never need the buffer anyway.)
    182 	 */
    183 	at_dma(1, &dmabuf, 1, ia->ia_drq);
    184 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    185 		(void)wdsp(iobase, 0);
    186 		(void)wdsp(iobase, 0);
    187 	}
    188 }
    189 #endif
    190 
    191 void
    192 sbattach(parent, self, aux)
    193 	struct device *parent, *self;
    194 	void *aux;
    195 {
    196 	register struct sb_softc *sc = (struct sb_softc *)self;
    197 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    198 	register u_short iobase = ia->ia_iobase;
    199 	register int vers;
    200 
    201 	/* XXX */
    202 	sb_softc = sc;
    203 
    204 	sc->sc_iobase = iobase;
    205 	sc->sc_dmachan = ia->ia_drq;
    206 	sc->sc_locked = 0;
    207 
    208 #ifdef NEWCONFIG
    209 	isa_establish(&sc->sc_id, &sc->sc_dev);
    210 #endif
    211 	sc->sc_ih.ih_fun = sbintr;
    212 	sc->sc_ih.ih_arg = sc;
    213 	sc->sc_ih.ih_level = IPL_BIO;
    214 	intr_establish(ia->ia_irq, &sc->sc_ih);
    215 
    216 #ifdef NEWCONFIG
    217 	/*
    218 	 * We limit DMA transfers to a page, and use the generic DMA handling
    219 	 * code in isa.c.  This code can end up copying a buffer, but since
    220 	 * the audio driver uses relative small buffers this isn't likely.
    221 	 *
    222 	 * This allocation scheme means that the maximum transfer is limited
    223 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    224 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    225 	 * is plenty long enough to amortize any fixed time overhead.
    226 	 */
    227 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    228 #endif
    229 
    230 	vers = sbversion(sc);
    231 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    232 }
    233 
    234 #define	SBUNIT(x)		(minor(x) & 0xf)
    235 
    236 struct sb_softc *
    237 sbopen()
    238 {
    239 	/* XXXX */
    240 	struct sb_softc *sc = sb_softc;
    241 
    242 	if (sc == 0)
    243 		return 0;
    244 
    245 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    246 		sc->sc_open = 1;
    247 		sc->sc_mintr = 0;
    248 		sc->sc_intr = 0;
    249 		return sc;
    250 	}
    251 	return 0;
    252 }
    253 
    254 void
    255 sbclose(sc)
    256 	struct sb_softc *sc;
    257 {
    258 
    259 	sc->sc_open = 0;
    260 	sb_spkroff(sc);
    261 	sc->sc_intr = 0;
    262 	sc->sc_mintr = 0;
    263 	/* XXX this will turn off any dma */
    264 	sbreset(sc);
    265 }
    266 
    267 /*
    268  * Write a byte to the dsp.
    269  * XXX We are at the mercy of the card as we use a
    270  * polling loop and wait until it can take the byte.
    271  */
    272 static int
    273 wdsp(u_short iobase, int v)
    274 {
    275 	register int i;
    276 
    277 	for (i = 100; --i >= 0; ) {
    278 		if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
    279 			continue;
    280 		outb(iobase + SBP_DSP_WRITE, v);
    281 		return 0;
    282 	}
    283 	++sberr.wdsp;
    284 	return -1;
    285 }
    286 
    287 /*
    288  * Read a byte from the DSP, using polling.
    289  */
    290 int
    291 rdsp(u_short iobase)
    292 {
    293 	register int i;
    294 
    295 	for (i = 100; --i >= 0; ) {
    296 		if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
    297 			continue;
    298 		return inb(iobase + SBP_DSP_READ);
    299 	}
    300 	++sberr.rdsp;
    301 	return -1;
    302 }
    303 
    304 /*
    305  * Reset the card.
    306  * Return non-zero if the card isn't detected.
    307  */
    308 int
    309 sbreset(sc)
    310 	struct sb_softc *sc;
    311 {
    312 	register u_short iobase = sc->sc_iobase;
    313 	register int i;
    314 
    315 	/*
    316 	 * See SBK, section 11.3.
    317 	 * We pulse a reset signal into the card.
    318 	 * Gee, what a brilliant hardware design.
    319 	 */
    320 	outb(iobase + SBP_DSP_RESET, 1);
    321 	delay(3);
    322 	outb(iobase + SBP_DSP_RESET, 0);
    323 	if (rdsp(iobase) != SB_MAGIC)
    324 		return -1;
    325 	return 0;
    326 }
    327 
    328 /*
    329  * Turn on the speaker.  The SBK documention says this operation
    330  * can take up to 1/10 of a second.  Higher level layers should
    331  * probably let the task sleep for this amount of time after
    332  * calling here.  Otherwise, things might not work (because
    333  * wdsp() and rdsp() will probably timeout.)
    334  *
    335  * These engineers had their heads up their ass when
    336  * they designed this card.
    337  */
    338 void
    339 sb_spkron(sc)
    340 	struct sb_softc *sc;
    341 {
    342 
    343 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    344 	/* XXX bogus */
    345 	delay(1000);
    346 }
    347 
    348 /*
    349  * Turn off the speaker; see comment above.
    350  */
    351 void
    352 sb_spkroff(sc)
    353 	struct sb_softc *sc;
    354 {
    355 
    356 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    357 }
    358 
    359 /*
    360  * Read the version number out of the card.  Return major code
    361  * in high byte, and minor code in low byte.
    362  */
    363 int
    364 sbversion(sc)
    365 	struct sb_softc *sc;
    366 {
    367 	register u_short iobase = sc->sc_iobase;
    368 	int v;
    369 
    370 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    371 		return 0;
    372 	v = rdsp(iobase) << 8;
    373 	v |= rdsp(iobase);
    374 	return ((v >= 0) ? v : 0);
    375 }
    376 
    377 /*
    378  * Halt a DMA in progress.  A low-speed transfer can be
    379  * resumed with sb_contdma().
    380  */
    381 void
    382 sb_haltdma(sc)
    383 	struct sb_softc *sc;
    384 {
    385 
    386 	if (sc->sc_locked)
    387 		sbreset(sc);
    388 	else
    389 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    390 }
    391 
    392 void
    393 sb_contdma(sc)
    394 	struct sb_softc *sc;
    395 {
    396 
    397 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    398 }
    399 
    400 /*
    401  * Time constant routines follow.  See SBK, section 12.
    402  * Although they don't come out and say it (in the docs),
    403  * the card clearly uses a 1MHz countdown timer, as the
    404  * low-speed formula (p. 12-4) is:
    405  *	tc = 256 - 10^6 / sr
    406  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    407  * and a 256MHz clock is used:
    408  *	tc = 65536 - 256 * 10^ 6 / sr
    409  * Since we can only use the upper byte of the HS TC, the two formulae
    410  * are equivalent.  (Why didn't they say so?)  E.g.,
    411  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    412  *
    413  * The crossover point (from low- to high-speed modes) is different
    414  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    415  *
    416  *				SBPRO			SB20
    417  *				-----			--------
    418  * input ls min			4	KHz		4	HJz
    419  * input ls max			23	KHz		13	KHz
    420  * input hs max			44.1	KHz		15	KHz
    421  * output ls min		4	KHz		4	KHz
    422  * output ls max		23	KHz		23	KHz
    423  * output hs max		44.1	KHz		44.1	KHz
    424  */
    425 #define SB_LS_MIN	0x06	/* 4000 Hz */
    426 #ifdef SBPRO
    427 #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    428 #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    429 #else
    430 #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    431 #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    432 #endif
    433 #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    434 #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    435 
    436 /*
    437  * Convert a linear sampling rate into the DAC time constant.
    438  * Set *mode to indicate the high/low-speed DMA operation.
    439  * Because of limitations of the card, not all rates are possible.
    440  * We return the time constant of the closest possible rate.
    441  * The sampling rate limits are different for the DAC and ADC,
    442  * so isdac indicates output, and !isdac indicates input.
    443  */
    444 int
    445 sb_srtotc(sr, mode, isdac)
    446 	int sr;
    447 	int *mode;
    448 	int isdac;
    449 {
    450 	register int tc = 256 - 1000000 / sr;
    451 
    452 	if (tc < SB_LS_MIN) {
    453 		tc = SB_LS_MIN;
    454 		*mode = SB_ADAC_LS;
    455 	} else if (isdac) {
    456 		if (tc < SB_DAC_LS_MAX)
    457 			*mode = SB_ADAC_LS;
    458 		else {
    459 			*mode = SB_ADAC_HS;
    460 			if (tc > SB_DAC_HS_MAX)
    461 				tc = SB_DAC_HS_MAX;
    462 		}
    463 	} else {
    464 		if (tc < SB_ADC_LS_MAX)
    465 			*mode = SB_ADAC_LS;
    466 		else {
    467 			*mode = SB_ADAC_HS;
    468 			if (tc > SB_ADC_HS_MAX)
    469 				tc = SB_ADC_HS_MAX;
    470 		}
    471 	}
    472 	return tc;
    473 }
    474 
    475 /*
    476  * Convert a DAC time constant to a sampling rate.
    477  * See SBK, section 12.
    478  */
    479 int
    480 sb_tctosr(tc)
    481 	int tc;
    482 {
    483 	return (1000000 / (256 - tc));
    484 }
    485 
    486 int
    487 sb_set_sr(sc, sr, isdac)
    488 	register struct sb_softc *sc;
    489 	u_long *sr;
    490 	int isdac;
    491 {
    492 	register int tc;
    493 	int mode;
    494 
    495 	tc = sb_srtotc(*sr, &mode, isdac);
    496 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    497 	    wdsp(sc->sc_iobase, tc) < 0)
    498 		return -1;
    499 
    500 	*sr = sb_tctosr(tc);
    501 	sc->sc_adacmode = mode;
    502 	sc->sc_adactc = tc;
    503 
    504 	return 0;
    505 }
    506 
    507 int
    508 sb_round_sr(sr, isdac)
    509 	u_long sr;
    510 	int isdac;
    511 {
    512 	int mode, tc;
    513 
    514 	tc = sb_srtotc(sr, &mode, isdac);
    515 	return sb_tctosr(tc);
    516 }
    517 
    518 int
    519 sb_dma_input(sc, p, cc, intr, arg)
    520 	struct sb_softc *sc;
    521 	void *p;
    522 	int cc;
    523 	void (*intr)();
    524 	void *arg;
    525 {
    526 	register u_short iobase;
    527 
    528 	at_dma(1, p, cc, sc->sc_dmachan);
    529 	sc->sc_intr = intr;
    530 	sc->sc_arg = arg;
    531 	iobase = sc->sc_iobase;
    532 	--cc;
    533 	if (sc->sc_adacmode == SB_ADAC_LS) {
    534 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    535 		    wdsp(iobase, cc) < 0 ||
    536 		    wdsp(iobase, cc >> 8) < 0) {
    537 			sbreset(sc);
    538 			return EIO;
    539 		}
    540 	} else {
    541 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    542 		    wdsp(iobase, cc) < 0 ||
    543 		    wdsp(iobase, cc >> 8) < 0 ||
    544 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    545 			sbreset(sc);
    546 			return EIO;
    547 		}
    548 		sc->sc_locked = 1;
    549 	}
    550 	return 0;
    551 }
    552 
    553 int
    554 sb_dma_output(sc, p, cc, intr, arg)
    555 	struct sb_softc *sc;
    556 	void *p;
    557 	int cc;
    558 	void (*intr)();
    559 	void *arg;
    560 {
    561 	register u_short iobase;
    562 
    563 	at_dma(0, p, cc, sc->sc_dmachan);
    564 	sc->sc_intr = intr;
    565 	sc->sc_arg = arg;
    566 	iobase = sc->sc_iobase;
    567 	--cc;
    568 	if (sc->sc_adacmode == SB_ADAC_LS) {
    569 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    570 		    wdsp(iobase, cc) < 0 ||
    571 		    wdsp(iobase, cc >> 8) < 0) {
    572 			sbreset(sc);
    573 			return EIO;
    574 		}
    575 	} else {
    576 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    577 		    wdsp(iobase, cc) < 0 ||
    578 		    wdsp(iobase, cc >> 8) < 0 ||
    579 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    580 			sbreset(sc);
    581 			return EIO;
    582 		}
    583 		sc->sc_locked = 1;
    584 	}
    585 	return 0;
    586 }
    587 
    588 /*
    589  * Only the DSP unit on the sound blaster generates interrupts.
    590  * There are three cases of interrupt: reception of a midi byte
    591  * (when mode is enabled), completion of dma transmission, or
    592  * completion of a dma reception.  The three modes are mutually
    593  * exclusive so we know a priori which event has occurred.
    594  */
    595 int
    596 sbintr(sc)
    597 	register struct sb_softc *sc;
    598 {
    599 
    600 	sc->sc_locked = 0;
    601 	/* clear interrupt */
    602 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    603 	if (sc->sc_mintr != 0) {
    604 		int c = rdsp(sc->sc_iobase);
    605 		(*sc->sc_mintr)(sc->sc_arg, c);
    606 	} else if (sc->sc_intr != 0)
    607 		(*sc->sc_intr)(sc->sc_arg);
    608 	else
    609 		return 0;
    610 	return 1;
    611 }
    612 
    613 /*
    614  * Enter midi uart mode and arrange for read interrupts
    615  * to vector to `intr'.  This puts the card in a mode
    616  * which allows only midi I/O; the card must be reset
    617  * to leave this mode.  Unfortunately, the card does not
    618  * use transmit interrupts, so bytes must be output
    619  * using polling.  To keep the polling overhead to a
    620  * minimum, output should be driven off a timer.
    621  * This is a little tricky since only 320us separate
    622  * consecutive midi bytes.
    623  */
    624 void
    625 sb_set_midi_mode(sc, intr, arg)
    626 	struct sb_softc *sc;
    627 	void (*intr)();
    628 	void *arg;
    629 {
    630 
    631 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    632 	sc->sc_mintr = intr;
    633 	sc->sc_intr = 0;
    634 	sc->sc_arg = arg;
    635 }
    636 
    637 /*
    638  * Write a byte to the midi port, when in midi uart mode.
    639  */
    640 void
    641 sb_midi_output(sc, v)
    642 	struct sb_softc *sc;
    643 	int v;
    644 {
    645 
    646 	if (wdsp(sc->sc_iobase, v) < 0)
    647 		++sberr.wmidi;
    648 }
    649