Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.14
      1 /*	$NetBSD: sb.c,v 1.14 1994/11/18 22:03:38 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991-1993 Regents of the University of California.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the Computer Systems
     18  *	Engineering Group at Lawrence Berkeley Laboratory.
     19  * 4. Neither the name of the University nor of the Laboratory may be used
     20  *    to endorse or promote products derived from this software without
     21  *    specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/errno.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/syslog.h>
     41 #include <sys/device.h>
     42 
     43 #include <machine/cpu.h>
     44 #include <machine/pio.h>
     45 
     46 #include <i386/isa/isavar.h>
     47 #include <i386/isa/dmavar.h>
     48 
     49 #include "sbreg.h"
     50 
     51 /*
     52  * Software state, per SoundBlaster card.
     53  * The soundblaster has multiple functionality, which we must demultiplex.
     54  * One approach is to have one major device number for the soundblaster card,
     55  * and use different minor numbers to indicate which hardware function
     56  * we want.  This would make for one large driver.  Instead our approach
     57  * is to partition the design into a set of drivers that share an underlying
     58  * piece of hardware.  Most things are hard to share, for example, the audio
     59  * and midi ports.  For audio, we might want to mix two processes' signals,
     60  * and for midi we might want to merge streams (this is hard due to
     61  * running status).  Moreover, we should be able to re-use the high-level
     62  * modules with other kinds of hardware.  In this module, we only handle the
     63  * most basic communications with the sb card.
     64  */
     65 struct sb_softc {
     66 	struct device sc_dev;		/* base device */
     67 	struct isadev sc_id;		/* ISA device */
     68 	struct intrhand sc_ih;		/* interrupt vectoring */
     69 
     70 	int	sc_open;		/* reference count of open calls */
     71 	int	sc_dmachan;		/* dma channel */
     72 	int	sc_locked;		/* true when doing HS DMA  */
     73 	int	sc_iobase;		/* I/O port base address */
     74  	int	sc_adacmode;		/* low/high speed mode indicator */
     75 #define SB_ADAC_LS 0
     76 #define SB_ADAC_HS 1
     77  	int	sc_adactc;		/* current adac time constant */
     78 	u_long	sc_interrupts;		/* number of interrupts taken */
     79 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     80 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     81 	void	*sc_arg;		/* arg for sc_intr() */
     82 };
     83 
     84 int sbreset __P((struct sb_softc *));
     85 void sb_spkron __P((struct sb_softc *));
     86 void sb_spkroff __P((struct sb_softc *));
     87 
     88 static int wdsp(int iobase, int v);
     89 static int rdsp(int iobase);
     90 
     91 #define splsb splhigh		/* XXX */
     92 struct sb_softc *sb_softc;	/* XXX */
     93 
     94 #ifndef NEWCONFIG
     95 #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     96 #endif
     97 
     98 struct {
     99 	int wdsp;
    100 	int rdsp;
    101 	int wmidi;
    102 } sberr;
    103 
    104 int	sbprobe __P((struct device *, void *, void *));
    105 #ifdef NEWCONFIG
    106 void	sbforceintr(void *);
    107 #endif
    108 void	sbattach __P((struct device *, struct device *, void *));
    109 int	sbintr __P((struct sb_softc *));
    110 
    111 struct cfdriver sbcd = {
    112 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    113 };
    114 
    115 int
    116 sbprobe(parent, match, aux)
    117 	struct device *parent;
    118 	void *match, *aux;
    119 {
    120 	register struct sb_softc *sc = match;
    121 	register struct isa_attach_args *ia = aux;
    122 	register int iobase = ia->ia_iobase;
    123 
    124 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    125 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    126 		return 0;
    127 	}
    128 	sc->sc_iobase = iobase;
    129 	if (sbreset(sc) < 0) {
    130 		printf("sb: couldn't reset card\n");
    131 		return 0;
    132 	}
    133 	/*
    134 	 * Cannot auto-discover DMA channel.
    135 	 */
    136 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    137 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    138 		return 0;
    139 	}
    140 #ifdef NEWCONFIG
    141 	/*
    142 	 * If the IRQ wasn't compiled in, auto-detect it.
    143 	 */
    144 	if (ia->ia_irq == IRQUNK) {
    145 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    146 		sbreset(iobase);
    147 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    148 			printf("sb: couldn't auto-detect interrupt");
    149 			return 0;
    150 		}
    151 	} else
    152 #endif
    153 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    154 		int irq = ia->ia_irq;
    155 		printf("sb: configured irq %d invalid\n", irq);
    156 		return 0;
    157 	}
    158 	ia->ia_iosize = SB_NPORT;
    159 	return 1;
    160 }
    161 
    162 #ifdef NEWCONFIG
    163 void
    164 sbforceintr(aux)
    165 	void *aux;
    166 {
    167 	static char dmabuf;
    168 	struct isa_attach_args *ia = aux;
    169 	int iobase = ia->ia_iobase;
    170 
    171 	/*
    172 	 * Set up a DMA read of one byte.
    173 	 * XXX Note that at this point we haven't called
    174 	 * at_setup_dmachan().  This is okay because it just
    175 	 * allocates a buffer in case it needs to make a copy,
    176 	 * and it won't need to make a copy for a 1 byte buffer.
    177 	 * (I think that calling at_setup_dmachan() should be optional;
    178 	 * if you don't call it, it will be called the first time
    179 	 * it is needed (and you pay the latency).  Also, you might
    180 	 * never need the buffer anyway.)
    181 	 */
    182 	at_dma(1, &dmabuf, 1, ia->ia_drq);
    183 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    184 		(void)wdsp(iobase, 0);
    185 		(void)wdsp(iobase, 0);
    186 	}
    187 }
    188 #endif
    189 
    190 void
    191 sbattach(parent, self, aux)
    192 	struct device *parent, *self;
    193 	void *aux;
    194 {
    195 	register struct sb_softc *sc = (struct sb_softc *)self;
    196 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    197 	register int iobase = ia->ia_iobase;
    198 	register int vers;
    199 
    200 	/* XXX */
    201 	sb_softc = sc;
    202 
    203 	sc->sc_iobase = iobase;
    204 	sc->sc_dmachan = ia->ia_drq;
    205 	sc->sc_locked = 0;
    206 
    207 #ifdef NEWCONFIG
    208 	isa_establish(&sc->sc_id, &sc->sc_dev);
    209 #endif
    210 	sc->sc_ih.ih_fun = sbintr;
    211 	sc->sc_ih.ih_arg = sc;
    212 	sc->sc_ih.ih_level = IPL_BIO;
    213 	intr_establish(ia->ia_irq, &sc->sc_ih);
    214 
    215 #ifdef NEWCONFIG
    216 	/*
    217 	 * We limit DMA transfers to a page, and use the generic DMA handling
    218 	 * code in isa.c.  This code can end up copying a buffer, but since
    219 	 * the audio driver uses relative small buffers this isn't likely.
    220 	 *
    221 	 * This allocation scheme means that the maximum transfer is limited
    222 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    223 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    224 	 * is plenty long enough to amortize any fixed time overhead.
    225 	 */
    226 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    227 #endif
    228 
    229 	vers = sbversion(sc);
    230 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    231 }
    232 
    233 #define	SBUNIT(x)		(minor(x) & 0xf)
    234 
    235 struct sb_softc *
    236 sbopen()
    237 {
    238 	/* XXXX */
    239 	struct sb_softc *sc = sb_softc;
    240 
    241 	if (sc == 0)
    242 		return 0;
    243 
    244 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    245 		sc->sc_open = 1;
    246 		sc->sc_mintr = 0;
    247 		sc->sc_intr = 0;
    248 		return sc;
    249 	}
    250 	return 0;
    251 }
    252 
    253 void
    254 sbclose(sc)
    255 	struct sb_softc *sc;
    256 {
    257 
    258 	sc->sc_open = 0;
    259 	sb_spkroff(sc);
    260 	sc->sc_intr = 0;
    261 	sc->sc_mintr = 0;
    262 	/* XXX this will turn off any dma */
    263 	sbreset(sc);
    264 }
    265 
    266 /*
    267  * Write a byte to the dsp.
    268  * XXX We are at the mercy of the card as we use a
    269  * polling loop and wait until it can take the byte.
    270  */
    271 static int
    272 wdsp(int iobase, int v)
    273 {
    274 	register int i;
    275 
    276 	for (i = 100; --i >= 0; ) {
    277 		if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
    278 			continue;
    279 		outb(iobase + SBP_DSP_WRITE, v);
    280 		return 0;
    281 	}
    282 	++sberr.wdsp;
    283 	return -1;
    284 }
    285 
    286 /*
    287  * Read a byte from the DSP, using polling.
    288  */
    289 int
    290 rdsp(int iobase)
    291 {
    292 	register int i;
    293 
    294 	for (i = 100; --i >= 0; ) {
    295 		if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
    296 			continue;
    297 		return inb(iobase + SBP_DSP_READ);
    298 	}
    299 	++sberr.rdsp;
    300 	return -1;
    301 }
    302 
    303 /*
    304  * Reset the card.
    305  * Return non-zero if the card isn't detected.
    306  */
    307 int
    308 sbreset(sc)
    309 	struct sb_softc *sc;
    310 {
    311 	register int iobase = sc->sc_iobase;
    312 	register int i;
    313 
    314 	/*
    315 	 * See SBK, section 11.3.
    316 	 * We pulse a reset signal into the card.
    317 	 * Gee, what a brilliant hardware design.
    318 	 */
    319 	outb(iobase + SBP_DSP_RESET, 1);
    320 	delay(3);
    321 	outb(iobase + SBP_DSP_RESET, 0);
    322 	if (rdsp(iobase) != SB_MAGIC)
    323 		return -1;
    324 	return 0;
    325 }
    326 
    327 /*
    328  * Turn on the speaker.  The SBK documention says this operation
    329  * can take up to 1/10 of a second.  Higher level layers should
    330  * probably let the task sleep for this amount of time after
    331  * calling here.  Otherwise, things might not work (because
    332  * wdsp() and rdsp() will probably timeout.)
    333  *
    334  * These engineers had their heads up their ass when
    335  * they designed this card.
    336  */
    337 void
    338 sb_spkron(sc)
    339 	struct sb_softc *sc;
    340 {
    341 
    342 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    343 	/* XXX bogus */
    344 	delay(1000);
    345 }
    346 
    347 /*
    348  * Turn off the speaker; see comment above.
    349  */
    350 void
    351 sb_spkroff(sc)
    352 	struct sb_softc *sc;
    353 {
    354 
    355 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    356 }
    357 
    358 /*
    359  * Read the version number out of the card.  Return major code
    360  * in high byte, and minor code in low byte.
    361  */
    362 int
    363 sbversion(sc)
    364 	struct sb_softc *sc;
    365 {
    366 	register int iobase = sc->sc_iobase;
    367 	int v;
    368 
    369 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    370 		return 0;
    371 	v = rdsp(iobase) << 8;
    372 	v |= rdsp(iobase);
    373 	return ((v >= 0) ? v : 0);
    374 }
    375 
    376 /*
    377  * Halt a DMA in progress.  A low-speed transfer can be
    378  * resumed with sb_contdma().
    379  */
    380 void
    381 sb_haltdma(sc)
    382 	struct sb_softc *sc;
    383 {
    384 
    385 	if (sc->sc_locked)
    386 		sbreset(sc);
    387 	else
    388 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    389 }
    390 
    391 void
    392 sb_contdma(sc)
    393 	struct sb_softc *sc;
    394 {
    395 
    396 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    397 }
    398 
    399 /*
    400  * Time constant routines follow.  See SBK, section 12.
    401  * Although they don't come out and say it (in the docs),
    402  * the card clearly uses a 1MHz countdown timer, as the
    403  * low-speed formula (p. 12-4) is:
    404  *	tc = 256 - 10^6 / sr
    405  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    406  * and a 256MHz clock is used:
    407  *	tc = 65536 - 256 * 10^ 6 / sr
    408  * Since we can only use the upper byte of the HS TC, the two formulae
    409  * are equivalent.  (Why didn't they say so?)  E.g.,
    410  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    411  *
    412  * The crossover point (from low- to high-speed modes) is different
    413  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    414  *
    415  *				SBPRO			SB20
    416  *				-----			--------
    417  * input ls min			4	KHz		4	HJz
    418  * input ls max			23	KHz		13	KHz
    419  * input hs max			44.1	KHz		15	KHz
    420  * output ls min		4	KHz		4	KHz
    421  * output ls max		23	KHz		23	KHz
    422  * output hs max		44.1	KHz		44.1	KHz
    423  */
    424 #define SB_LS_MIN	0x06	/* 4000 Hz */
    425 #ifdef SBPRO
    426 #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    427 #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    428 #else
    429 #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    430 #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    431 #endif
    432 #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    433 #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    434 
    435 /*
    436  * Convert a linear sampling rate into the DAC time constant.
    437  * Set *mode to indicate the high/low-speed DMA operation.
    438  * Because of limitations of the card, not all rates are possible.
    439  * We return the time constant of the closest possible rate.
    440  * The sampling rate limits are different for the DAC and ADC,
    441  * so isdac indicates output, and !isdac indicates input.
    442  */
    443 int
    444 sb_srtotc(sr, mode, isdac)
    445 	int sr;
    446 	int *mode;
    447 	int isdac;
    448 {
    449 	register int tc = 256 - 1000000 / sr;
    450 
    451 	if (tc < SB_LS_MIN) {
    452 		tc = SB_LS_MIN;
    453 		*mode = SB_ADAC_LS;
    454 	} else if (isdac) {
    455 		if (tc < SB_DAC_LS_MAX)
    456 			*mode = SB_ADAC_LS;
    457 		else {
    458 			*mode = SB_ADAC_HS;
    459 			if (tc > SB_DAC_HS_MAX)
    460 				tc = SB_DAC_HS_MAX;
    461 		}
    462 	} else {
    463 		if (tc < SB_ADC_LS_MAX)
    464 			*mode = SB_ADAC_LS;
    465 		else {
    466 			*mode = SB_ADAC_HS;
    467 			if (tc > SB_ADC_HS_MAX)
    468 				tc = SB_ADC_HS_MAX;
    469 		}
    470 	}
    471 	return tc;
    472 }
    473 
    474 /*
    475  * Convert a DAC time constant to a sampling rate.
    476  * See SBK, section 12.
    477  */
    478 int
    479 sb_tctosr(tc)
    480 	int tc;
    481 {
    482 	return (1000000 / (256 - tc));
    483 }
    484 
    485 int
    486 sb_set_sr(sc, sr, isdac)
    487 	register struct sb_softc *sc;
    488 	u_long *sr;
    489 	int isdac;
    490 {
    491 	register int tc;
    492 	int mode;
    493 
    494 	tc = sb_srtotc(*sr, &mode, isdac);
    495 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    496 	    wdsp(sc->sc_iobase, tc) < 0)
    497 		return -1;
    498 
    499 	*sr = sb_tctosr(tc);
    500 	sc->sc_adacmode = mode;
    501 	sc->sc_adactc = tc;
    502 
    503 	return 0;
    504 }
    505 
    506 int
    507 sb_round_sr(sr, isdac)
    508 	u_long sr;
    509 	int isdac;
    510 {
    511 	int mode, tc;
    512 
    513 	tc = sb_srtotc(sr, &mode, isdac);
    514 	return sb_tctosr(tc);
    515 }
    516 
    517 int
    518 sb_dma_input(sc, p, cc, intr, arg)
    519 	struct sb_softc *sc;
    520 	void *p;
    521 	int cc;
    522 	void (*intr)();
    523 	void *arg;
    524 {
    525 	register int iobase;
    526 
    527 	at_dma(1, p, cc, sc->sc_dmachan);
    528 	sc->sc_intr = intr;
    529 	sc->sc_arg = arg;
    530 	iobase = sc->sc_iobase;
    531 	--cc;
    532 	if (sc->sc_adacmode == SB_ADAC_LS) {
    533 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    534 		    wdsp(iobase, cc) < 0 ||
    535 		    wdsp(iobase, cc >> 8) < 0) {
    536 			sbreset(sc);
    537 			return EIO;
    538 		}
    539 	} else {
    540 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    541 		    wdsp(iobase, cc) < 0 ||
    542 		    wdsp(iobase, cc >> 8) < 0 ||
    543 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    544 			sbreset(sc);
    545 			return EIO;
    546 		}
    547 		sc->sc_locked = 1;
    548 	}
    549 	return 0;
    550 }
    551 
    552 int
    553 sb_dma_output(sc, p, cc, intr, arg)
    554 	struct sb_softc *sc;
    555 	void *p;
    556 	int cc;
    557 	void (*intr)();
    558 	void *arg;
    559 {
    560 	register int iobase;
    561 
    562 	at_dma(0, p, cc, sc->sc_dmachan);
    563 	sc->sc_intr = intr;
    564 	sc->sc_arg = arg;
    565 	iobase = sc->sc_iobase;
    566 	--cc;
    567 	if (sc->sc_adacmode == SB_ADAC_LS) {
    568 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    569 		    wdsp(iobase, cc) < 0 ||
    570 		    wdsp(iobase, cc >> 8) < 0) {
    571 			sbreset(sc);
    572 			return EIO;
    573 		}
    574 	} else {
    575 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    576 		    wdsp(iobase, cc) < 0 ||
    577 		    wdsp(iobase, cc >> 8) < 0 ||
    578 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    579 			sbreset(sc);
    580 			return EIO;
    581 		}
    582 		sc->sc_locked = 1;
    583 	}
    584 	return 0;
    585 }
    586 
    587 /*
    588  * Only the DSP unit on the sound blaster generates interrupts.
    589  * There are three cases of interrupt: reception of a midi byte
    590  * (when mode is enabled), completion of dma transmission, or
    591  * completion of a dma reception.  The three modes are mutually
    592  * exclusive so we know a priori which event has occurred.
    593  */
    594 int
    595 sbintr(sc)
    596 	register struct sb_softc *sc;
    597 {
    598 
    599 	sc->sc_locked = 0;
    600 	/* clear interrupt */
    601 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    602 	if (sc->sc_mintr != 0) {
    603 		int c = rdsp(sc->sc_iobase);
    604 		(*sc->sc_mintr)(sc->sc_arg, c);
    605 	} else if (sc->sc_intr != 0)
    606 		(*sc->sc_intr)(sc->sc_arg);
    607 	else
    608 		return 0;
    609 	return 1;
    610 }
    611 
    612 /*
    613  * Enter midi uart mode and arrange for read interrupts
    614  * to vector to `intr'.  This puts the card in a mode
    615  * which allows only midi I/O; the card must be reset
    616  * to leave this mode.  Unfortunately, the card does not
    617  * use transmit interrupts, so bytes must be output
    618  * using polling.  To keep the polling overhead to a
    619  * minimum, output should be driven off a timer.
    620  * This is a little tricky since only 320us separate
    621  * consecutive midi bytes.
    622  */
    623 void
    624 sb_set_midi_mode(sc, intr, arg)
    625 	struct sb_softc *sc;
    626 	void (*intr)();
    627 	void *arg;
    628 {
    629 
    630 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    631 	sc->sc_mintr = intr;
    632 	sc->sc_intr = 0;
    633 	sc->sc_arg = arg;
    634 }
    635 
    636 /*
    637  * Write a byte to the midi port, when in midi uart mode.
    638  */
    639 void
    640 sb_midi_output(sc, v)
    641 	struct sb_softc *sc;
    642 	int v;
    643 {
    644 
    645 	if (wdsp(sc->sc_iobase, v) < 0)
    646 		++sberr.wmidi;
    647 }
    648