Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.16
      1 /*	$NetBSD: sb.c,v 1.16 1995/01/03 01:31:01 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1991-1993 Regents of the University of California.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the Computer Systems
     18  *	Engineering Group at Lawrence Berkeley Laboratory.
     19  * 4. Neither the name of the University nor of the Laboratory may be used
     20  *    to endorse or promote products derived from this software without
     21  *    specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/errno.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/syslog.h>
     41 #include <sys/device.h>
     42 #include <sys/buf.h>
     43 
     44 #include <machine/cpu.h>
     45 #include <machine/pio.h>
     46 
     47 #include <i386/isa/isavar.h>
     48 #include <i386/isa/dmavar.h>
     49 
     50 #include "sbreg.h"
     51 
     52 /*
     53  * Software state, per SoundBlaster card.
     54  * The soundblaster has multiple functionality, which we must demultiplex.
     55  * One approach is to have one major device number for the soundblaster card,
     56  * and use different minor numbers to indicate which hardware function
     57  * we want.  This would make for one large driver.  Instead our approach
     58  * is to partition the design into a set of drivers that share an underlying
     59  * piece of hardware.  Most things are hard to share, for example, the audio
     60  * and midi ports.  For audio, we might want to mix two processes' signals,
     61  * and for midi we might want to merge streams (this is hard due to
     62  * running status).  Moreover, we should be able to re-use the high-level
     63  * modules with other kinds of hardware.  In this module, we only handle the
     64  * most basic communications with the sb card.
     65  */
     66 struct sb_softc {
     67 	struct device sc_dev;		/* base device */
     68 	struct isadev sc_id;		/* ISA device */
     69 	struct intrhand sc_ih;		/* interrupt vectoring */
     70 
     71 	int	sc_open;		/* reference count of open calls */
     72 	int	sc_dmachan;		/* dma channel */
     73 	int	sc_locked;		/* true when doing HS DMA  */
     74 	int	sc_iobase;		/* I/O port base address */
     75  	int	sc_adacmode;		/* low/high speed mode indicator */
     76 #define SB_ADAC_LS 0
     77 #define SB_ADAC_HS 1
     78  	int	sc_adactc;		/* current adac time constant */
     79 	u_long	sc_interrupts;		/* number of interrupts taken */
     80 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     81 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     82 	void	*sc_arg;		/* arg for sc_intr() */
     83 };
     84 
     85 int sbreset __P((struct sb_softc *));
     86 void sb_spkron __P((struct sb_softc *));
     87 void sb_spkroff __P((struct sb_softc *));
     88 
     89 static int wdsp(int iobase, int v);
     90 static int rdsp(int iobase);
     91 
     92 #define splsb splhigh		/* XXX */
     93 struct sb_softc *sb_softc;	/* XXX */
     94 
     95 #ifndef NEWCONFIG
     96 #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     97 #endif
     98 
     99 struct {
    100 	int wdsp;
    101 	int rdsp;
    102 	int wmidi;
    103 } sberr;
    104 
    105 int	sbprobe __P((struct device *, void *, void *));
    106 #ifdef NEWCONFIG
    107 void	sbforceintr(void *);
    108 #endif
    109 void	sbattach __P((struct device *, struct device *, void *));
    110 int	sbintr __P((struct sb_softc *));
    111 
    112 struct cfdriver sbcd = {
    113 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    114 };
    115 
    116 int
    117 sbprobe(parent, match, aux)
    118 	struct device *parent;
    119 	void *match, *aux;
    120 {
    121 	register struct sb_softc *sc = match;
    122 	register struct isa_attach_args *ia = aux;
    123 	register int iobase = ia->ia_iobase;
    124 
    125 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    126 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    127 		return 0;
    128 	}
    129 	sc->sc_iobase = iobase;
    130 	if (sbreset(sc) < 0) {
    131 		printf("sb: couldn't reset card\n");
    132 		return 0;
    133 	}
    134 	/*
    135 	 * Cannot auto-discover DMA channel.
    136 	 */
    137 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    138 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    139 		return 0;
    140 	}
    141 #ifdef NEWCONFIG
    142 	/*
    143 	 * If the IRQ wasn't compiled in, auto-detect it.
    144 	 */
    145 	if (ia->ia_irq == IRQUNK) {
    146 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    147 		sbreset(iobase);
    148 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    149 			printf("sb: couldn't auto-detect interrupt");
    150 			return 0;
    151 		}
    152 	} else
    153 #endif
    154 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    155 		int irq = ia->ia_irq;
    156 		printf("sb: configured irq %d invalid\n", irq);
    157 		return 0;
    158 	}
    159 	ia->ia_iosize = SB_NPORT;
    160 	return 1;
    161 }
    162 
    163 #ifdef NEWCONFIG
    164 void
    165 sbforceintr(aux)
    166 	void *aux;
    167 {
    168 	static char dmabuf;
    169 	struct isa_attach_args *ia = aux;
    170 	int iobase = ia->ia_iobase;
    171 
    172 	/*
    173 	 * Set up a DMA read of one byte.
    174 	 * XXX Note that at this point we haven't called
    175 	 * at_setup_dmachan().  This is okay because it just
    176 	 * allocates a buffer in case it needs to make a copy,
    177 	 * and it won't need to make a copy for a 1 byte buffer.
    178 	 * (I think that calling at_setup_dmachan() should be optional;
    179 	 * if you don't call it, it will be called the first time
    180 	 * it is needed (and you pay the latency).  Also, you might
    181 	 * never need the buffer anyway.)
    182 	 */
    183 	at_dma(B_READ, &dmabuf, 1, ia->ia_drq);
    184 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    185 		(void)wdsp(iobase, 0);
    186 		(void)wdsp(iobase, 0);
    187 	}
    188 }
    189 #endif
    190 
    191 void
    192 sbattach(parent, self, aux)
    193 	struct device *parent, *self;
    194 	void *aux;
    195 {
    196 	register struct sb_softc *sc = (struct sb_softc *)self;
    197 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    198 	register int iobase = ia->ia_iobase;
    199 	register int vers;
    200 
    201 	/* XXX */
    202 	sb_softc = sc;
    203 
    204 	sc->sc_iobase = iobase;
    205 	sc->sc_dmachan = ia->ia_drq;
    206 	sc->sc_locked = 0;
    207 
    208 #ifdef NEWCONFIG
    209 	isa_establish(&sc->sc_id, &sc->sc_dev);
    210 #endif
    211 	sc->sc_ih.ih_fun = sbintr;
    212 	sc->sc_ih.ih_arg = sc;
    213 	sc->sc_ih.ih_level = IPL_BIO;
    214 	intr_establish(ia->ia_irq, IST_EDGE, &sc->sc_ih);
    215 
    216 #ifdef NEWCONFIG
    217 	/*
    218 	 * We limit DMA transfers to a page, and use the generic DMA handling
    219 	 * code in isa.c.  This code can end up copying a buffer, but since
    220 	 * the audio driver uses relative small buffers this isn't likely.
    221 	 *
    222 	 * This allocation scheme means that the maximum transfer is limited
    223 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    224 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    225 	 * is plenty long enough to amortize any fixed time overhead.
    226 	 */
    227 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    228 #endif
    229 
    230 	vers = sbversion(sc);
    231 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    232 }
    233 
    234 #define	SBUNIT(x)		(minor(x) & 0xf)
    235 
    236 struct sb_softc *
    237 sbopen()
    238 {
    239 	/* XXXX */
    240 	struct sb_softc *sc = sb_softc;
    241 
    242 	if (sc == 0)
    243 		return 0;
    244 
    245 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    246 		sc->sc_open = 1;
    247 		sc->sc_mintr = 0;
    248 		sc->sc_intr = 0;
    249 		return sc;
    250 	}
    251 	return 0;
    252 }
    253 
    254 void
    255 sbclose(sc)
    256 	struct sb_softc *sc;
    257 {
    258 
    259 	sc->sc_open = 0;
    260 	sb_spkroff(sc);
    261 	sc->sc_intr = 0;
    262 	sc->sc_mintr = 0;
    263 	/* XXX this will turn off any dma */
    264 	sbreset(sc);
    265 }
    266 
    267 /*
    268  * Write a byte to the dsp.
    269  * XXX We are at the mercy of the card as we use a
    270  * polling loop and wait until it can take the byte.
    271  */
    272 static int
    273 wdsp(int iobase, int v)
    274 {
    275 	register int i;
    276 
    277 	for (i = 100; --i >= 0; ) {
    278 		register u_char x;
    279 		x = inb(iobase + SBP_DSP_WSTAT);
    280 		delay(20);
    281 		if ((x & SB_DSP_BUSY) != 0)
    282 			continue;
    283 		outb(iobase + SBP_DSP_WRITE, v);
    284 		delay(20);
    285 		return 0;
    286 	}
    287 	++sberr.wdsp;
    288 	return -1;
    289 }
    290 
    291 /*
    292  * Read a byte from the DSP, using polling.
    293  */
    294 int
    295 rdsp(int iobase)
    296 {
    297 	register int i;
    298 
    299 	for (i = 100; --i >= 0; ) {
    300 		register u_char x;
    301 		x = inb(iobase + SBP_DSP_RSTAT);
    302 		delay(20);
    303 		if ((x & SB_DSP_READY) == 0)
    304 			continue;
    305 		x = inb(iobase + SBP_DSP_READ);
    306 		delay(20);
    307 		return x;
    308 	}
    309 	++sberr.rdsp;
    310 	return -1;
    311 }
    312 
    313 /*
    314  * Reset the card.
    315  * Return non-zero if the card isn't detected.
    316  */
    317 int
    318 sbreset(sc)
    319 	struct sb_softc *sc;
    320 {
    321 	register int iobase = sc->sc_iobase;
    322 	register int i;
    323 
    324 	/*
    325 	 * See SBK, section 11.3.
    326 	 * We pulse a reset signal into the card.
    327 	 * Gee, what a brilliant hardware design.
    328 	 */
    329 	outb(iobase + SBP_DSP_RESET, 1);
    330 	delay(20);
    331 	outb(iobase + SBP_DSP_RESET, 0);
    332 	delay(20);
    333 	if (rdsp(iobase) != SB_MAGIC)
    334 		return -1;
    335 	return 0;
    336 }
    337 
    338 /*
    339  * Turn on the speaker.  The SBK documention says this operation
    340  * can take up to 1/10 of a second.  Higher level layers should
    341  * probably let the task sleep for this amount of time after
    342  * calling here.  Otherwise, things might not work (because
    343  * wdsp() and rdsp() will probably timeout.)
    344  *
    345  * These engineers had their heads up their ass when
    346  * they designed this card.
    347  */
    348 void
    349 sb_spkron(sc)
    350 	struct sb_softc *sc;
    351 {
    352 
    353 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    354 	/* XXX bogus */
    355 	delay(1000);
    356 }
    357 
    358 /*
    359  * Turn off the speaker; see comment above.
    360  */
    361 void
    362 sb_spkroff(sc)
    363 	struct sb_softc *sc;
    364 {
    365 
    366 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    367 }
    368 
    369 /*
    370  * Read the version number out of the card.  Return major code
    371  * in high byte, and minor code in low byte.
    372  */
    373 int
    374 sbversion(sc)
    375 	struct sb_softc *sc;
    376 {
    377 	register int iobase = sc->sc_iobase;
    378 	int v;
    379 
    380 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    381 		return 0;
    382 	v = rdsp(iobase) << 8;
    383 	v |= rdsp(iobase);
    384 	return ((v >= 0) ? v : 0);
    385 }
    386 
    387 /*
    388  * Halt a DMA in progress.  A low-speed transfer can be
    389  * resumed with sb_contdma().
    390  */
    391 void
    392 sb_haltdma(sc)
    393 	struct sb_softc *sc;
    394 {
    395 
    396 	if (sc->sc_locked)
    397 		sbreset(sc);
    398 	else
    399 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    400 }
    401 
    402 void
    403 sb_contdma(sc)
    404 	struct sb_softc *sc;
    405 {
    406 
    407 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    408 }
    409 
    410 /*
    411  * Time constant routines follow.  See SBK, section 12.
    412  * Although they don't come out and say it (in the docs),
    413  * the card clearly uses a 1MHz countdown timer, as the
    414  * low-speed formula (p. 12-4) is:
    415  *	tc = 256 - 10^6 / sr
    416  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    417  * and a 256MHz clock is used:
    418  *	tc = 65536 - 256 * 10^ 6 / sr
    419  * Since we can only use the upper byte of the HS TC, the two formulae
    420  * are equivalent.  (Why didn't they say so?)  E.g.,
    421  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    422  *
    423  * The crossover point (from low- to high-speed modes) is different
    424  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    425  *
    426  *				SBPRO			SB20
    427  *				-----			--------
    428  * input ls min			4	KHz		4	HJz
    429  * input ls max			23	KHz		13	KHz
    430  * input hs max			44.1	KHz		15	KHz
    431  * output ls min		4	KHz		4	KHz
    432  * output ls max		23	KHz		23	KHz
    433  * output hs max		44.1	KHz		44.1	KHz
    434  */
    435 #define SB_LS_MIN	0x06	/* 4000 Hz */
    436 #ifdef SBPRO
    437 #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    438 #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    439 #else
    440 #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    441 #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    442 #endif
    443 #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    444 #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    445 
    446 /*
    447  * Convert a linear sampling rate into the DAC time constant.
    448  * Set *mode to indicate the high/low-speed DMA operation.
    449  * Because of limitations of the card, not all rates are possible.
    450  * We return the time constant of the closest possible rate.
    451  * The sampling rate limits are different for the DAC and ADC,
    452  * so isdac indicates output, and !isdac indicates input.
    453  */
    454 int
    455 sb_srtotc(sr, mode, isdac)
    456 	int sr;
    457 	int *mode;
    458 	int isdac;
    459 {
    460 	register int tc = 256 - 1000000 / sr;
    461 
    462 	if (tc < SB_LS_MIN) {
    463 		tc = SB_LS_MIN;
    464 		*mode = SB_ADAC_LS;
    465 	} else if (isdac) {
    466 		if (tc < SB_DAC_LS_MAX)
    467 			*mode = SB_ADAC_LS;
    468 		else {
    469 			*mode = SB_ADAC_HS;
    470 			if (tc > SB_DAC_HS_MAX)
    471 				tc = SB_DAC_HS_MAX;
    472 		}
    473 	} else {
    474 		if (tc < SB_ADC_LS_MAX)
    475 			*mode = SB_ADAC_LS;
    476 		else {
    477 			*mode = SB_ADAC_HS;
    478 			if (tc > SB_ADC_HS_MAX)
    479 				tc = SB_ADC_HS_MAX;
    480 		}
    481 	}
    482 	return tc;
    483 }
    484 
    485 /*
    486  * Convert a DAC time constant to a sampling rate.
    487  * See SBK, section 12.
    488  */
    489 int
    490 sb_tctosr(tc)
    491 	int tc;
    492 {
    493 	return (1000000 / (256 - tc));
    494 }
    495 
    496 int
    497 sb_set_sr(sc, sr, isdac)
    498 	register struct sb_softc *sc;
    499 	u_long *sr;
    500 	int isdac;
    501 {
    502 	register int tc;
    503 	int mode;
    504 
    505 	tc = sb_srtotc(*sr, &mode, isdac);
    506 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    507 	    wdsp(sc->sc_iobase, tc) < 0)
    508 		return -1;
    509 
    510 	*sr = sb_tctosr(tc);
    511 	sc->sc_adacmode = mode;
    512 	sc->sc_adactc = tc;
    513 
    514 	return 0;
    515 }
    516 
    517 int
    518 sb_round_sr(sr, isdac)
    519 	u_long sr;
    520 	int isdac;
    521 {
    522 	int mode, tc;
    523 
    524 	tc = sb_srtotc(sr, &mode, isdac);
    525 	return sb_tctosr(tc);
    526 }
    527 
    528 int
    529 sb_dma_input(sc, p, cc, intr, arg)
    530 	struct sb_softc *sc;
    531 	void *p;
    532 	int cc;
    533 	void (*intr)();
    534 	void *arg;
    535 {
    536 	register int iobase;
    537 
    538 	at_dma(B_READ, p, cc, sc->sc_dmachan);
    539 	sc->sc_intr = intr;
    540 	sc->sc_arg = arg;
    541 	iobase = sc->sc_iobase;
    542 	--cc;
    543 	if (sc->sc_adacmode == SB_ADAC_LS) {
    544 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    545 		    wdsp(iobase, cc) < 0 ||
    546 		    wdsp(iobase, cc >> 8) < 0) {
    547 			sbreset(sc);
    548 			return EIO;
    549 		}
    550 	} else {
    551 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    552 		    wdsp(iobase, cc) < 0 ||
    553 		    wdsp(iobase, cc >> 8) < 0 ||
    554 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    555 			sbreset(sc);
    556 			return EIO;
    557 		}
    558 		sc->sc_locked = 1;
    559 	}
    560 	return 0;
    561 }
    562 
    563 int
    564 sb_dma_output(sc, p, cc, intr, arg)
    565 	struct sb_softc *sc;
    566 	void *p;
    567 	int cc;
    568 	void (*intr)();
    569 	void *arg;
    570 {
    571 	register int iobase;
    572 
    573 	at_dma(B_WRITE, p, cc, sc->sc_dmachan);
    574 	sc->sc_intr = intr;
    575 	sc->sc_arg = arg;
    576 	iobase = sc->sc_iobase;
    577 	--cc;
    578 	if (sc->sc_adacmode == SB_ADAC_LS) {
    579 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    580 		    wdsp(iobase, cc) < 0 ||
    581 		    wdsp(iobase, cc >> 8) < 0) {
    582 			sbreset(sc);
    583 			return EIO;
    584 		}
    585 	} else {
    586 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    587 		    wdsp(iobase, cc) < 0 ||
    588 		    wdsp(iobase, cc >> 8) < 0 ||
    589 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    590 			sbreset(sc);
    591 			return EIO;
    592 		}
    593 		sc->sc_locked = 1;
    594 	}
    595 	return 0;
    596 }
    597 
    598 /*
    599  * Only the DSP unit on the sound blaster generates interrupts.
    600  * There are three cases of interrupt: reception of a midi byte
    601  * (when mode is enabled), completion of dma transmission, or
    602  * completion of a dma reception.  The three modes are mutually
    603  * exclusive so we know a priori which event has occurred.
    604  */
    605 int
    606 sbintr(sc)
    607 	register struct sb_softc *sc;
    608 {
    609 
    610 	sc->sc_locked = 0;
    611 	/* clear interrupt */
    612 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    613 	delay(20);
    614 	if (sc->sc_mintr != 0) {
    615 		int c = rdsp(sc->sc_iobase);
    616 		(*sc->sc_mintr)(sc->sc_arg, c);
    617 	} else if (sc->sc_intr != 0)
    618 		(*sc->sc_intr)(sc->sc_arg);
    619 	else
    620 		return 0;
    621 	return 1;
    622 }
    623 
    624 /*
    625  * Enter midi uart mode and arrange for read interrupts
    626  * to vector to `intr'.  This puts the card in a mode
    627  * which allows only midi I/O; the card must be reset
    628  * to leave this mode.  Unfortunately, the card does not
    629  * use transmit interrupts, so bytes must be output
    630  * using polling.  To keep the polling overhead to a
    631  * minimum, output should be driven off a timer.
    632  * This is a little tricky since only 320us separate
    633  * consecutive midi bytes.
    634  */
    635 void
    636 sb_set_midi_mode(sc, intr, arg)
    637 	struct sb_softc *sc;
    638 	void (*intr)();
    639 	void *arg;
    640 {
    641 
    642 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    643 	sc->sc_mintr = intr;
    644 	sc->sc_intr = 0;
    645 	sc->sc_arg = arg;
    646 }
    647 
    648 /*
    649  * Write a byte to the midi port, when in midi uart mode.
    650  */
    651 void
    652 sb_midi_output(sc, v)
    653 	struct sb_softc *sc;
    654 	int v;
    655 {
    656 
    657 	if (wdsp(sc->sc_iobase, v) < 0)
    658 		++sberr.wmidi;
    659 }
    660