sb.c revision 1.16 1 /* $NetBSD: sb.c,v 1.16 1995/01/03 01:31:01 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/ioctl.h>
40 #include <sys/syslog.h>
41 #include <sys/device.h>
42 #include <sys/buf.h>
43
44 #include <machine/cpu.h>
45 #include <machine/pio.h>
46
47 #include <i386/isa/isavar.h>
48 #include <i386/isa/dmavar.h>
49
50 #include "sbreg.h"
51
52 /*
53 * Software state, per SoundBlaster card.
54 * The soundblaster has multiple functionality, which we must demultiplex.
55 * One approach is to have one major device number for the soundblaster card,
56 * and use different minor numbers to indicate which hardware function
57 * we want. This would make for one large driver. Instead our approach
58 * is to partition the design into a set of drivers that share an underlying
59 * piece of hardware. Most things are hard to share, for example, the audio
60 * and midi ports. For audio, we might want to mix two processes' signals,
61 * and for midi we might want to merge streams (this is hard due to
62 * running status). Moreover, we should be able to re-use the high-level
63 * modules with other kinds of hardware. In this module, we only handle the
64 * most basic communications with the sb card.
65 */
66 struct sb_softc {
67 struct device sc_dev; /* base device */
68 struct isadev sc_id; /* ISA device */
69 struct intrhand sc_ih; /* interrupt vectoring */
70
71 int sc_open; /* reference count of open calls */
72 int sc_dmachan; /* dma channel */
73 int sc_locked; /* true when doing HS DMA */
74 int sc_iobase; /* I/O port base address */
75 int sc_adacmode; /* low/high speed mode indicator */
76 #define SB_ADAC_LS 0
77 #define SB_ADAC_HS 1
78 int sc_adactc; /* current adac time constant */
79 u_long sc_interrupts; /* number of interrupts taken */
80 void (*sc_intr)(void*); /* dma completion intr handler */
81 void (*sc_mintr)(void*, int);/* midi input intr handler */
82 void *sc_arg; /* arg for sc_intr() */
83 };
84
85 int sbreset __P((struct sb_softc *));
86 void sb_spkron __P((struct sb_softc *));
87 void sb_spkroff __P((struct sb_softc *));
88
89 static int wdsp(int iobase, int v);
90 static int rdsp(int iobase);
91
92 #define splsb splhigh /* XXX */
93 struct sb_softc *sb_softc; /* XXX */
94
95 #ifndef NEWCONFIG
96 #define at_dma(flags, ptr, cc, chan) isa_dmastart(flags, ptr, cc, chan)
97 #endif
98
99 struct {
100 int wdsp;
101 int rdsp;
102 int wmidi;
103 } sberr;
104
105 int sbprobe __P((struct device *, void *, void *));
106 #ifdef NEWCONFIG
107 void sbforceintr(void *);
108 #endif
109 void sbattach __P((struct device *, struct device *, void *));
110 int sbintr __P((struct sb_softc *));
111
112 struct cfdriver sbcd = {
113 NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
114 };
115
116 int
117 sbprobe(parent, match, aux)
118 struct device *parent;
119 void *match, *aux;
120 {
121 register struct sb_softc *sc = match;
122 register struct isa_attach_args *ia = aux;
123 register int iobase = ia->ia_iobase;
124
125 if (!SB_BASE_VALID(ia->ia_iobase)) {
126 printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
127 return 0;
128 }
129 sc->sc_iobase = iobase;
130 if (sbreset(sc) < 0) {
131 printf("sb: couldn't reset card\n");
132 return 0;
133 }
134 /*
135 * Cannot auto-discover DMA channel.
136 */
137 if (!SB_DRQ_VALID(ia->ia_drq)) {
138 printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
139 return 0;
140 }
141 #ifdef NEWCONFIG
142 /*
143 * If the IRQ wasn't compiled in, auto-detect it.
144 */
145 if (ia->ia_irq == IRQUNK) {
146 ia->ia_irq = isa_discoverintr(sbforceintr, aux);
147 sbreset(iobase);
148 if (!SB_IRQ_VALID(ia->ia_irq)) {
149 printf("sb: couldn't auto-detect interrupt");
150 return 0;
151 }
152 } else
153 #endif
154 if (!SB_IRQ_VALID(ia->ia_irq)) {
155 int irq = ia->ia_irq;
156 printf("sb: configured irq %d invalid\n", irq);
157 return 0;
158 }
159 ia->ia_iosize = SB_NPORT;
160 return 1;
161 }
162
163 #ifdef NEWCONFIG
164 void
165 sbforceintr(aux)
166 void *aux;
167 {
168 static char dmabuf;
169 struct isa_attach_args *ia = aux;
170 int iobase = ia->ia_iobase;
171
172 /*
173 * Set up a DMA read of one byte.
174 * XXX Note that at this point we haven't called
175 * at_setup_dmachan(). This is okay because it just
176 * allocates a buffer in case it needs to make a copy,
177 * and it won't need to make a copy for a 1 byte buffer.
178 * (I think that calling at_setup_dmachan() should be optional;
179 * if you don't call it, it will be called the first time
180 * it is needed (and you pay the latency). Also, you might
181 * never need the buffer anyway.)
182 */
183 at_dma(B_READ, &dmabuf, 1, ia->ia_drq);
184 if (wdsp(iobase, SB_DSP_RDMA) == 0) {
185 (void)wdsp(iobase, 0);
186 (void)wdsp(iobase, 0);
187 }
188 }
189 #endif
190
191 void
192 sbattach(parent, self, aux)
193 struct device *parent, *self;
194 void *aux;
195 {
196 register struct sb_softc *sc = (struct sb_softc *)self;
197 struct isa_attach_args *ia = (struct isa_attach_args *)aux;
198 register int iobase = ia->ia_iobase;
199 register int vers;
200
201 /* XXX */
202 sb_softc = sc;
203
204 sc->sc_iobase = iobase;
205 sc->sc_dmachan = ia->ia_drq;
206 sc->sc_locked = 0;
207
208 #ifdef NEWCONFIG
209 isa_establish(&sc->sc_id, &sc->sc_dev);
210 #endif
211 sc->sc_ih.ih_fun = sbintr;
212 sc->sc_ih.ih_arg = sc;
213 sc->sc_ih.ih_level = IPL_BIO;
214 intr_establish(ia->ia_irq, IST_EDGE, &sc->sc_ih);
215
216 #ifdef NEWCONFIG
217 /*
218 * We limit DMA transfers to a page, and use the generic DMA handling
219 * code in isa.c. This code can end up copying a buffer, but since
220 * the audio driver uses relative small buffers this isn't likely.
221 *
222 * This allocation scheme means that the maximum transfer is limited
223 * by the page size (rather than 64k). This is reasonable. For 4K
224 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms. This
225 * is plenty long enough to amortize any fixed time overhead.
226 */
227 at_setup_dmachan(sc->sc_dmachan, NBPG);
228 #endif
229
230 vers = sbversion(sc);
231 printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
232 }
233
234 #define SBUNIT(x) (minor(x) & 0xf)
235
236 struct sb_softc *
237 sbopen()
238 {
239 /* XXXX */
240 struct sb_softc *sc = sb_softc;
241
242 if (sc == 0)
243 return 0;
244
245 if (sc->sc_open == 0 && sbreset(sc) == 0) {
246 sc->sc_open = 1;
247 sc->sc_mintr = 0;
248 sc->sc_intr = 0;
249 return sc;
250 }
251 return 0;
252 }
253
254 void
255 sbclose(sc)
256 struct sb_softc *sc;
257 {
258
259 sc->sc_open = 0;
260 sb_spkroff(sc);
261 sc->sc_intr = 0;
262 sc->sc_mintr = 0;
263 /* XXX this will turn off any dma */
264 sbreset(sc);
265 }
266
267 /*
268 * Write a byte to the dsp.
269 * XXX We are at the mercy of the card as we use a
270 * polling loop and wait until it can take the byte.
271 */
272 static int
273 wdsp(int iobase, int v)
274 {
275 register int i;
276
277 for (i = 100; --i >= 0; ) {
278 register u_char x;
279 x = inb(iobase + SBP_DSP_WSTAT);
280 delay(20);
281 if ((x & SB_DSP_BUSY) != 0)
282 continue;
283 outb(iobase + SBP_DSP_WRITE, v);
284 delay(20);
285 return 0;
286 }
287 ++sberr.wdsp;
288 return -1;
289 }
290
291 /*
292 * Read a byte from the DSP, using polling.
293 */
294 int
295 rdsp(int iobase)
296 {
297 register int i;
298
299 for (i = 100; --i >= 0; ) {
300 register u_char x;
301 x = inb(iobase + SBP_DSP_RSTAT);
302 delay(20);
303 if ((x & SB_DSP_READY) == 0)
304 continue;
305 x = inb(iobase + SBP_DSP_READ);
306 delay(20);
307 return x;
308 }
309 ++sberr.rdsp;
310 return -1;
311 }
312
313 /*
314 * Reset the card.
315 * Return non-zero if the card isn't detected.
316 */
317 int
318 sbreset(sc)
319 struct sb_softc *sc;
320 {
321 register int iobase = sc->sc_iobase;
322 register int i;
323
324 /*
325 * See SBK, section 11.3.
326 * We pulse a reset signal into the card.
327 * Gee, what a brilliant hardware design.
328 */
329 outb(iobase + SBP_DSP_RESET, 1);
330 delay(20);
331 outb(iobase + SBP_DSP_RESET, 0);
332 delay(20);
333 if (rdsp(iobase) != SB_MAGIC)
334 return -1;
335 return 0;
336 }
337
338 /*
339 * Turn on the speaker. The SBK documention says this operation
340 * can take up to 1/10 of a second. Higher level layers should
341 * probably let the task sleep for this amount of time after
342 * calling here. Otherwise, things might not work (because
343 * wdsp() and rdsp() will probably timeout.)
344 *
345 * These engineers had their heads up their ass when
346 * they designed this card.
347 */
348 void
349 sb_spkron(sc)
350 struct sb_softc *sc;
351 {
352
353 (void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
354 /* XXX bogus */
355 delay(1000);
356 }
357
358 /*
359 * Turn off the speaker; see comment above.
360 */
361 void
362 sb_spkroff(sc)
363 struct sb_softc *sc;
364 {
365
366 (void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
367 }
368
369 /*
370 * Read the version number out of the card. Return major code
371 * in high byte, and minor code in low byte.
372 */
373 int
374 sbversion(sc)
375 struct sb_softc *sc;
376 {
377 register int iobase = sc->sc_iobase;
378 int v;
379
380 if (wdsp(iobase, SB_DSP_VERSION) < 0)
381 return 0;
382 v = rdsp(iobase) << 8;
383 v |= rdsp(iobase);
384 return ((v >= 0) ? v : 0);
385 }
386
387 /*
388 * Halt a DMA in progress. A low-speed transfer can be
389 * resumed with sb_contdma().
390 */
391 void
392 sb_haltdma(sc)
393 struct sb_softc *sc;
394 {
395
396 if (sc->sc_locked)
397 sbreset(sc);
398 else
399 (void)wdsp(sc->sc_iobase, SB_DSP_HALT);
400 }
401
402 void
403 sb_contdma(sc)
404 struct sb_softc *sc;
405 {
406
407 (void)wdsp(sc->sc_iobase, SB_DSP_CONT);
408 }
409
410 /*
411 * Time constant routines follow. See SBK, section 12.
412 * Although they don't come out and say it (in the docs),
413 * the card clearly uses a 1MHz countdown timer, as the
414 * low-speed formula (p. 12-4) is:
415 * tc = 256 - 10^6 / sr
416 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
417 * and a 256MHz clock is used:
418 * tc = 65536 - 256 * 10^ 6 / sr
419 * Since we can only use the upper byte of the HS TC, the two formulae
420 * are equivalent. (Why didn't they say so?) E.g.,
421 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
422 *
423 * The crossover point (from low- to high-speed modes) is different
424 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
425 *
426 * SBPRO SB20
427 * ----- --------
428 * input ls min 4 KHz 4 HJz
429 * input ls max 23 KHz 13 KHz
430 * input hs max 44.1 KHz 15 KHz
431 * output ls min 4 KHz 4 KHz
432 * output ls max 23 KHz 23 KHz
433 * output hs max 44.1 KHz 44.1 KHz
434 */
435 #define SB_LS_MIN 0x06 /* 4000 Hz */
436 #ifdef SBPRO
437 #define SB_ADC_LS_MAX 0xd4 /* 22727 Hz */
438 #define SB_ADC_HS_MAX 0xe9 /* 43478 Hz */
439 #else
440 #define SB_ADC_LS_MAX 0xb3 /* 12987 Hz */
441 #define SB_ADC_HS_MAX 0xbd /* 14925 Hz */
442 #endif
443 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
444 #define SB_DAC_HS_MAX 0xe9 /* 43478 Hz */
445
446 /*
447 * Convert a linear sampling rate into the DAC time constant.
448 * Set *mode to indicate the high/low-speed DMA operation.
449 * Because of limitations of the card, not all rates are possible.
450 * We return the time constant of the closest possible rate.
451 * The sampling rate limits are different for the DAC and ADC,
452 * so isdac indicates output, and !isdac indicates input.
453 */
454 int
455 sb_srtotc(sr, mode, isdac)
456 int sr;
457 int *mode;
458 int isdac;
459 {
460 register int tc = 256 - 1000000 / sr;
461
462 if (tc < SB_LS_MIN) {
463 tc = SB_LS_MIN;
464 *mode = SB_ADAC_LS;
465 } else if (isdac) {
466 if (tc < SB_DAC_LS_MAX)
467 *mode = SB_ADAC_LS;
468 else {
469 *mode = SB_ADAC_HS;
470 if (tc > SB_DAC_HS_MAX)
471 tc = SB_DAC_HS_MAX;
472 }
473 } else {
474 if (tc < SB_ADC_LS_MAX)
475 *mode = SB_ADAC_LS;
476 else {
477 *mode = SB_ADAC_HS;
478 if (tc > SB_ADC_HS_MAX)
479 tc = SB_ADC_HS_MAX;
480 }
481 }
482 return tc;
483 }
484
485 /*
486 * Convert a DAC time constant to a sampling rate.
487 * See SBK, section 12.
488 */
489 int
490 sb_tctosr(tc)
491 int tc;
492 {
493 return (1000000 / (256 - tc));
494 }
495
496 int
497 sb_set_sr(sc, sr, isdac)
498 register struct sb_softc *sc;
499 u_long *sr;
500 int isdac;
501 {
502 register int tc;
503 int mode;
504
505 tc = sb_srtotc(*sr, &mode, isdac);
506 if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
507 wdsp(sc->sc_iobase, tc) < 0)
508 return -1;
509
510 *sr = sb_tctosr(tc);
511 sc->sc_adacmode = mode;
512 sc->sc_adactc = tc;
513
514 return 0;
515 }
516
517 int
518 sb_round_sr(sr, isdac)
519 u_long sr;
520 int isdac;
521 {
522 int mode, tc;
523
524 tc = sb_srtotc(sr, &mode, isdac);
525 return sb_tctosr(tc);
526 }
527
528 int
529 sb_dma_input(sc, p, cc, intr, arg)
530 struct sb_softc *sc;
531 void *p;
532 int cc;
533 void (*intr)();
534 void *arg;
535 {
536 register int iobase;
537
538 at_dma(B_READ, p, cc, sc->sc_dmachan);
539 sc->sc_intr = intr;
540 sc->sc_arg = arg;
541 iobase = sc->sc_iobase;
542 --cc;
543 if (sc->sc_adacmode == SB_ADAC_LS) {
544 if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
545 wdsp(iobase, cc) < 0 ||
546 wdsp(iobase, cc >> 8) < 0) {
547 sbreset(sc);
548 return EIO;
549 }
550 } else {
551 if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
552 wdsp(iobase, cc) < 0 ||
553 wdsp(iobase, cc >> 8) < 0 ||
554 wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
555 sbreset(sc);
556 return EIO;
557 }
558 sc->sc_locked = 1;
559 }
560 return 0;
561 }
562
563 int
564 sb_dma_output(sc, p, cc, intr, arg)
565 struct sb_softc *sc;
566 void *p;
567 int cc;
568 void (*intr)();
569 void *arg;
570 {
571 register int iobase;
572
573 at_dma(B_WRITE, p, cc, sc->sc_dmachan);
574 sc->sc_intr = intr;
575 sc->sc_arg = arg;
576 iobase = sc->sc_iobase;
577 --cc;
578 if (sc->sc_adacmode == SB_ADAC_LS) {
579 if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
580 wdsp(iobase, cc) < 0 ||
581 wdsp(iobase, cc >> 8) < 0) {
582 sbreset(sc);
583 return EIO;
584 }
585 } else {
586 if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
587 wdsp(iobase, cc) < 0 ||
588 wdsp(iobase, cc >> 8) < 0 ||
589 wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
590 sbreset(sc);
591 return EIO;
592 }
593 sc->sc_locked = 1;
594 }
595 return 0;
596 }
597
598 /*
599 * Only the DSP unit on the sound blaster generates interrupts.
600 * There are three cases of interrupt: reception of a midi byte
601 * (when mode is enabled), completion of dma transmission, or
602 * completion of a dma reception. The three modes are mutually
603 * exclusive so we know a priori which event has occurred.
604 */
605 int
606 sbintr(sc)
607 register struct sb_softc *sc;
608 {
609
610 sc->sc_locked = 0;
611 /* clear interrupt */
612 inb(sc->sc_iobase + SBP_DSP_RSTAT);
613 delay(20);
614 if (sc->sc_mintr != 0) {
615 int c = rdsp(sc->sc_iobase);
616 (*sc->sc_mintr)(sc->sc_arg, c);
617 } else if (sc->sc_intr != 0)
618 (*sc->sc_intr)(sc->sc_arg);
619 else
620 return 0;
621 return 1;
622 }
623
624 /*
625 * Enter midi uart mode and arrange for read interrupts
626 * to vector to `intr'. This puts the card in a mode
627 * which allows only midi I/O; the card must be reset
628 * to leave this mode. Unfortunately, the card does not
629 * use transmit interrupts, so bytes must be output
630 * using polling. To keep the polling overhead to a
631 * minimum, output should be driven off a timer.
632 * This is a little tricky since only 320us separate
633 * consecutive midi bytes.
634 */
635 void
636 sb_set_midi_mode(sc, intr, arg)
637 struct sb_softc *sc;
638 void (*intr)();
639 void *arg;
640 {
641
642 wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
643 sc->sc_mintr = intr;
644 sc->sc_intr = 0;
645 sc->sc_arg = arg;
646 }
647
648 /*
649 * Write a byte to the midi port, when in midi uart mode.
650 */
651 void
652 sb_midi_output(sc, v)
653 struct sb_softc *sc;
654 int v;
655 {
656
657 if (wdsp(sc->sc_iobase, v) < 0)
658 ++sberr.wmidi;
659 }
660