Home | History | Annotate | Line # | Download | only in isa
sb.c revision 1.6
      1 /*
      2  * Copyright (c) 1991-1993 Regents of the University of California.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the Computer Systems
     16  *	Engineering Group at Lawrence Berkeley Laboratory.
     17  * 4. Neither the name of the University nor of the Laboratory may be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	$Id: sb.c,v 1.6 1994/03/29 04:36:26 mycroft Exp $
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/errno.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/syslog.h>
     41 #include <sys/device.h>
     42 
     43 #include <machine/cpu.h>
     44 #include <machine/pio.h>
     45 
     46 #include <i386/isa/isa.h>
     47 #include <i386/isa/isavar.h>
     48 #include <i386/isa/icu.h>
     49 
     50 #include "sbreg.h"
     51 
     52 /*
     53  * Software state, per SoundBlaster card.
     54  * The soundblaster has multiple functionality, which we must demultiplex.
     55  * One approach is to have one major device number for the soundblaster card,
     56  * and use different minor numbers to indicate which hardware function
     57  * we want.  This would make for one large driver.  Instead our approach
     58  * is to partition the design into a set of drivers that share an underlying
     59  * piece of hardware.  Most things are hard to share, for example, the audio
     60  * and midi ports.  For audio, we might want to mix two processes' signals,
     61  * and for midi we might want to merge streams (this is hard due to
     62  * running status).  Moreover, we should be able to re-use the high-level
     63  * modules with other kinds of hardware.  In this module, we only handle the
     64  * most basic communications with the sb card.
     65  */
     66 struct sb_softc {
     67 	struct device sc_dev;		/* base device */
     68 	struct isadev sc_id;		/* ISA device */
     69 	struct  intrhand sc_ih;		/* interrupt vectoring */
     70 
     71 	u_short	sc_open;		/* reference count of open calls */
     72 	u_short sc_dmachan;		/* dma channel */
     73 	u_short	sc_locked;		/* true when doing HS DMA  */
     74 	u_short	sc_iobase;		/* I/O port base address */
     75  	u_short	sc_adacmode;		/* low/high speed mode indicator */
     76 #define SB_ADAC_LS 0
     77 #define SB_ADAC_HS 1
     78  	u_short	sc_adactc;		/* current adac time constant */
     79 	u_long	sc_interrupts;		/* number of interrupts taken */
     80 	void	(*sc_intr)(void*);	/* dma completion intr handler */
     81 	void	(*sc_mintr)(void*, int);/* midi input intr handler */
     82 	void	*sc_arg;		/* arg for sc_intr() */
     83 };
     84 
     85 int sbreset __P((struct sb_softc *));
     86 void sb_spkron __P((struct sb_softc *));
     87 void sb_spkroff __P((struct sb_softc *));
     88 
     89 static int wdsp(u_short iobase, int v);
     90 static int rdsp(u_short iobase);
     91 
     92 #define splsb splhigh		/* XXX */
     93 struct sb_softc *sb_softc;	/* XXX */
     94 
     95 #ifndef NEWCONFIG
     96 #define at_dma(flags, ptr, cc, chan)	isa_dmastart(flags, ptr, cc, chan)
     97 #endif
     98 
     99 struct {
    100 	int wdsp;
    101 	int rdsp;
    102 	int wmidi;
    103 } sberr;
    104 
    105 int	sbintr __P((int));
    106 int	sbprobe();
    107 void	sbattach();
    108 #ifdef NEWCONFIG
    109 void	sbforceintr(void *);
    110 #endif
    111 
    112 struct cfdriver sbcd = {
    113 	NULL, "sb", sbprobe, sbattach, DV_DULL, sizeof(struct sb_softc)
    114 };
    115 
    116 int
    117 sbprobe(parent, self, aux)
    118 	struct device *parent, *self;
    119 	void *aux;
    120 {
    121 	register struct sb_softc *sc = (void *)self;
    122 	register struct isa_attach_args *ia = aux;
    123 	register u_short iobase = ia->ia_iobase;
    124 
    125 	if (!SB_BASE_VALID(ia->ia_iobase)) {
    126 		printf("sb: configured iobase %d invalid\n", ia->ia_iobase);
    127 		return 0;
    128 	}
    129 	sc->sc_iobase = iobase;
    130 	if (sbreset(sc) < 0) {
    131 		printf("sb: couldn't reset card\n");
    132 		return 0;
    133 	}
    134 	/*
    135 	 * Cannot auto-discover DMA channel.
    136 	 */
    137 	if (!SB_DRQ_VALID(ia->ia_drq)) {
    138 		printf("sb: configured dma chan %d invalid\n", ia->ia_drq);
    139 		return 0;
    140 	}
    141 #ifdef NEWCONFIG
    142 	/*
    143 	 * If the IRQ wasn't compiled in, auto-detect it.
    144 	 */
    145 	if (ia->ia_irq == IRQUNK) {
    146 		ia->ia_irq = isa_discoverintr(sbforceintr, aux);
    147 		sbreset(iobase);
    148 		if (!SB_IRQ_VALID(ia->ia_irq)) {
    149 			printf("sb: couldn't auto-detect interrupt");
    150 			return 0;
    151 		}
    152 	} else
    153 #endif
    154 	if (!SB_IRQ_VALID(ia->ia_irq)) {
    155 		int irq = ffs(ia->ia_irq) - 1;
    156 		printf("sb: configured irq %d invalid\n", irq);
    157 		return 0;
    158 	}
    159 	ia->ia_iosize = SB_NPORT;
    160 	return 1;
    161 }
    162 
    163 #ifdef NEWCONFIG
    164 void
    165 sbforceintr(aux)
    166 	void *aux;
    167 {
    168 	static char dmabuf;
    169 	struct isa_attach_args *ia = aux;
    170 	u_short iobase = ia->ia_iobase;
    171 
    172 	/*
    173 	 * Set up a DMA read of one byte.
    174 	 * XXX Note that at this point we haven't called
    175 	 * at_setup_dmachan().  This is okay because it just
    176 	 * allocates a buffer in case it needs to make a copy,
    177 	 * and it won't need to make a copy for a 1 byte buffer.
    178 	 * (I think that calling at_setup_dmachan() should be optional;
    179 	 * if you don't call it, it will be called the first time
    180 	 * it is needed (and you pay the latency).  Also, you might
    181 	 * never need the buffer anyway.)
    182 	 */
    183 	at_dma(1, &dmabuf, 1, ia->ia_drq);
    184 	if (wdsp(iobase, SB_DSP_RDMA) == 0) {
    185 		(void)wdsp(iobase, 0);
    186 		(void)wdsp(iobase, 0);
    187 	}
    188 }
    189 #endif
    190 
    191 void
    192 sbattach(parent, self, aux)
    193 	struct device *parent, *self;
    194 	void *aux;
    195 {
    196 	register struct sb_softc *sc = (struct sb_softc *)self;
    197 	struct isa_attach_args *ia = (struct isa_attach_args *)aux;
    198 	register u_short iobase = ia->ia_iobase;
    199 	register int vers;
    200 
    201 	/* XXX */
    202 	sb_softc = sc;
    203 
    204 	sc->sc_iobase = iobase;
    205 	sc->sc_dmachan = ia->ia_drq;
    206 	sc->sc_locked = 0;
    207 
    208 #ifdef NEWCONFIG
    209 	isa_establish(&sc->sc_id, &sc->sc_dev);
    210 	sc->sc_ih.ih_fun = sbintr;
    211 	sc->sc_ih.ih_arg = (void *)sc;
    212 	/* XXX DV_TAPE? */
    213 	intr_establish(ia->ia_irq, &sc->sc_ih, DV_TAPE);
    214 
    215 	/*
    216 	 * We limit DMA transfers to a page, and use the generic DMA handling
    217 	 * code in isa.c.  This code can end up copying a buffer, but since
    218 	 * the audio driver uses relative small buffers this isn't likely.
    219 	 *
    220 	 * This allocation scheme means that the maximum transfer is limited
    221 	 * by the page size (rather than 64k).  This is reasonable.  For 4K
    222 	 * pages, the transfer time at 48KHz is 4096 / 48000 = 85ms.  This
    223 	 * is plenty long enough to amortize any fixed time overhead.
    224 	 */
    225 	at_setup_dmachan(sc->sc_dmachan, NBPG);
    226 #endif
    227 
    228 	vers = sbversion(sc);
    229 	printf(": dsp v%d.%d\n", vers >> 8, vers & 0xff);
    230 }
    231 
    232 #define	SBUNIT(x)		(minor(x) & 0xf)
    233 
    234 struct sb_softc *
    235 sbopen()
    236 {
    237 	/* XXXX */
    238 	struct sb_softc *sc = sb_softc;
    239 
    240 	if (sc == 0)
    241 		return 0;
    242 
    243 	if (sc->sc_open == 0 && sbreset(sc) == 0) {
    244 		sc->sc_open = 1;
    245 		sc->sc_mintr = 0;
    246 		sc->sc_intr = 0;
    247 		return sc;
    248 	}
    249 	return 0;
    250 }
    251 
    252 void
    253 sbclose(sc)
    254 	struct sb_softc *sc;
    255 {
    256 
    257 	sc->sc_open = 0;
    258 	sb_spkroff(sc);
    259 	sc->sc_intr = 0;
    260 	sc->sc_mintr = 0;
    261 	/* XXX this will turn off any dma */
    262 	sbreset(sc);
    263 }
    264 
    265 /*
    266  * Write a byte to the dsp.
    267  * XXX We are at the mercy of the card as we use a
    268  * polling loop and wait until it can take the byte.
    269  */
    270 static int
    271 wdsp(u_short iobase, int v)
    272 {
    273 	register int i;
    274 
    275 	for (i = 100; --i >= 0; ) {
    276 		if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0)
    277 			continue;
    278 		outb(iobase + SBP_DSP_WRITE, v);
    279 		return 0;
    280 	}
    281 	++sberr.wdsp;
    282 	return -1;
    283 }
    284 
    285 /*
    286  * Read a byte from the DSP, using polling.
    287  */
    288 int
    289 rdsp(u_short iobase)
    290 {
    291 	register int i;
    292 
    293 	for (i = 100; --i >= 0; ) {
    294 		if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
    295 			continue;
    296 		return inb(iobase + SBP_DSP_READ);
    297 	}
    298 	++sberr.rdsp;
    299 	return -1;
    300 }
    301 
    302 /*
    303  * Reset the card.
    304  * Return non-zero if the card isn't detected.
    305  */
    306 int
    307 sbreset(sc)
    308 	struct sb_softc *sc;
    309 {
    310 	register u_short iobase = sc->sc_iobase;
    311 	register int i;
    312 
    313 	/*
    314 	 * See SBK, section 11.3.
    315 	 * We pulse a reset signal into the card.
    316 	 * Gee, what a brilliant hardware design.
    317 	 */
    318 	outb(iobase + SBP_DSP_RESET, 1);
    319 	delay(3);
    320 	outb(iobase + SBP_DSP_RESET, 0);
    321 	if (rdsp(iobase) != SB_MAGIC)
    322 		return -1;
    323 	return 0;
    324 }
    325 
    326 /*
    327  * Turn on the speaker.  The SBK documention says this operation
    328  * can take up to 1/10 of a second.  Higher level layers should
    329  * probably let the task sleep for this amount of time after
    330  * calling here.  Otherwise, things might not work (because
    331  * wdsp() and rdsp() will probably timeout.)
    332  *
    333  * These engineers had their heads up their ass when
    334  * they designed this card.
    335  */
    336 void
    337 sb_spkron(sc)
    338 	struct sb_softc *sc;
    339 {
    340 
    341 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
    342 	/* XXX bogus */
    343 	delay(1000);
    344 }
    345 
    346 /*
    347  * Turn off the speaker; see comment above.
    348  */
    349 void
    350 sb_spkroff(sc)
    351 	struct sb_softc *sc;
    352 {
    353 
    354 	(void)wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
    355 }
    356 
    357 /*
    358  * Read the version number out of the card.  Return major code
    359  * in high byte, and minor code in low byte.
    360  */
    361 int
    362 sbversion(sc)
    363 	struct sb_softc *sc;
    364 {
    365 	register u_short iobase = sc->sc_iobase;
    366 	int v;
    367 
    368 	if (wdsp(iobase, SB_DSP_VERSION) < 0)
    369 		return 0;
    370 	v = rdsp(iobase) << 8;
    371 	v |= rdsp(iobase);
    372 	return ((v >= 0) ? v : 0);
    373 }
    374 
    375 /*
    376  * Halt a DMA in progress.  A low-speed transfer can be
    377  * resumed with sb_contdma().
    378  */
    379 void
    380 sb_haltdma(sc)
    381 	struct sb_softc *sc;
    382 {
    383 
    384 	if (sc->sc_locked)
    385 		sbreset(sc);
    386 	else
    387 		(void)wdsp(sc->sc_iobase, SB_DSP_HALT);
    388 }
    389 
    390 void
    391 sb_contdma(sc)
    392 	struct sb_softc *sc;
    393 {
    394 
    395 	(void)wdsp(sc->sc_iobase, SB_DSP_CONT);
    396 }
    397 
    398 /*
    399  * Time constant routines follow.  See SBK, section 12.
    400  * Although they don't come out and say it (in the docs),
    401  * the card clearly uses a 1MHz countdown timer, as the
    402  * low-speed formula (p. 12-4) is:
    403  *	tc = 256 - 10^6 / sr
    404  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    405  * and a 256MHz clock is used:
    406  *	tc = 65536 - 256 * 10^ 6 / sr
    407  * Since we can only use the upper byte of the HS TC, the two formulae
    408  * are equivalent.  (Why didn't they say so?)  E.g.,
    409  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    410  *
    411  * The crossover point (from low- to high-speed modes) is different
    412  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    413  *
    414  *				SBPRO			SB20
    415  *				-----			--------
    416  * input ls min			4	KHz		4	HJz
    417  * input ls max			23	KHz		13	KHz
    418  * input hs max			44.1	KHz		15	KHz
    419  * output ls min		4	KHz		4	KHz
    420  * output ls max		23	KHz		23	KHz
    421  * output hs max		44.1	KHz		44.1	KHz
    422  */
    423 #define SB_LS_MIN	0x06	/* 4000 Hz */
    424 #ifdef SBPRO
    425 #define SB_ADC_LS_MAX	0xd4	/* 22727 Hz */
    426 #define SB_ADC_HS_MAX	0xe9	/* 43478 Hz */
    427 #else
    428 #define SB_ADC_LS_MAX	0xb3	/* 12987 Hz */
    429 #define SB_ADC_HS_MAX	0xbd	/* 14925 Hz */
    430 #endif
    431 #define SB_DAC_LS_MAX	0xd4	/* 22727 Hz */
    432 #define SB_DAC_HS_MAX	0xe9	/* 43478 Hz */
    433 
    434 /*
    435  * Convert a linear sampling rate into the DAC time constant.
    436  * Set *mode to indicate the high/low-speed DMA operation.
    437  * Because of limitations of the card, not all rates are possible.
    438  * We return the time constant of the closest possible rate.
    439  * The sampling rate limits are different for the DAC and ADC,
    440  * so isdac indicates output, and !isdac indicates input.
    441  */
    442 int
    443 sb_srtotc(sr, mode, isdac)
    444 	int sr;
    445 	int *mode;
    446 	int isdac;
    447 {
    448 	register int tc = 256 - 1000000 / sr;
    449 
    450 	if (tc < SB_LS_MIN) {
    451 		tc = SB_LS_MIN;
    452 		*mode = SB_ADAC_LS;
    453 	} else if (isdac) {
    454 		if (tc < SB_DAC_LS_MAX)
    455 			*mode = SB_ADAC_LS;
    456 		else {
    457 			*mode = SB_ADAC_HS;
    458 			if (tc > SB_DAC_HS_MAX)
    459 				tc = SB_DAC_HS_MAX;
    460 		}
    461 	} else {
    462 		if (tc < SB_ADC_LS_MAX)
    463 			*mode = SB_ADAC_LS;
    464 		else {
    465 			*mode = SB_ADAC_HS;
    466 			if (tc > SB_ADC_HS_MAX)
    467 				tc = SB_ADC_HS_MAX;
    468 		}
    469 	}
    470 	return tc;
    471 }
    472 
    473 /*
    474  * Convert a DAC time constant to a sampling rate.
    475  * See SBK, section 12.
    476  */
    477 int
    478 sb_tctosr(tc)
    479 	int tc;
    480 {
    481 	return (1000000 / (256 - tc));
    482 }
    483 
    484 int
    485 sb_set_sr(sc, sr, isdac)
    486 	register struct sb_softc *sc;
    487 	u_long *sr;
    488 	int isdac;
    489 {
    490 	register int tc;
    491 	int mode;
    492 
    493 	tc = sb_srtotc(*sr, &mode, isdac);
    494 	if (wdsp(sc->sc_iobase, SB_DSP_TIMECONST) < 0 ||
    495 	    wdsp(sc->sc_iobase, tc) < 0)
    496 		return -1;
    497 
    498 	*sr = sb_tctosr(tc);
    499 	sc->sc_adacmode = mode;
    500 	sc->sc_adactc = tc;
    501 
    502 	return 0;
    503 }
    504 
    505 int
    506 sb_round_sr(sr, isdac)
    507 	u_long sr;
    508 	int isdac;
    509 {
    510 	int mode, tc;
    511 
    512 	tc = sb_srtotc(sr, &mode, isdac);
    513 	return sb_tctosr(tc);
    514 }
    515 
    516 int
    517 sb_dma_input(sc, p, cc, intr, arg)
    518 	struct sb_softc *sc;
    519 	void *p;
    520 	int cc;
    521 	void (*intr)();
    522 	void *arg;
    523 {
    524 	register u_short iobase;
    525 
    526 	at_dma(1, p, cc, sc->sc_dmachan);
    527 	sc->sc_intr = intr;
    528 	sc->sc_arg = arg;
    529 	iobase = sc->sc_iobase;
    530 	--cc;
    531 	if (sc->sc_adacmode == SB_ADAC_LS) {
    532 		if (wdsp(iobase, SB_DSP_RDMA) < 0 ||
    533 		    wdsp(iobase, cc) < 0 ||
    534 		    wdsp(iobase, cc >> 8) < 0) {
    535 			sbreset(sc);
    536 			return EIO;
    537 		}
    538 	} else {
    539 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    540 		    wdsp(iobase, cc) < 0 ||
    541 		    wdsp(iobase, cc >> 8) < 0 ||
    542 		    wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
    543 			sbreset(sc);
    544 			return EIO;
    545 		}
    546 		sc->sc_locked = 1;
    547 	}
    548 	return 0;
    549 }
    550 
    551 int
    552 sb_dma_output(sc, p, cc, intr, arg)
    553 	struct sb_softc *sc;
    554 	void *p;
    555 	int cc;
    556 	void (*intr)();
    557 	void *arg;
    558 {
    559 	register u_short iobase;
    560 
    561 	at_dma(0, p, cc, sc->sc_dmachan);
    562 	sc->sc_intr = intr;
    563 	sc->sc_arg = arg;
    564 	iobase = sc->sc_iobase;
    565 	--cc;
    566 	if (sc->sc_adacmode == SB_ADAC_LS) {
    567 		if (wdsp(iobase, SB_DSP_WDMA) < 0 ||
    568 		    wdsp(iobase, cc) < 0 ||
    569 		    wdsp(iobase, cc >> 8) < 0) {
    570 			sbreset(sc);
    571 			return EIO;
    572 		}
    573 	} else {
    574 		if (wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
    575 		    wdsp(iobase, cc) < 0 ||
    576 		    wdsp(iobase, cc >> 8) < 0 ||
    577 		    wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
    578 			sbreset(sc);
    579 			return EIO;
    580 		}
    581 		sc->sc_locked = 1;
    582 	}
    583 	return 0;
    584 }
    585 
    586 /*
    587  * Only the DSP unit on the sound blaster generates interrupts.
    588  * There are three cases of interrupt: reception of a midi byte
    589  * (when mode is enabled), completion of dma transmission, or
    590  * completion of a dma reception.  The three modes are mutually
    591  * exclusive so we know a priori which event has occurred.
    592  */
    593 int
    594 sbintr(unit)
    595 	int unit;
    596 {
    597 	register struct sb_softc *sc = sbcd.cd_devs[SBUNIT(unit)];
    598 
    599 	sc->sc_locked = 0;
    600 	/* clear interrupt */
    601 	inb(sc->sc_iobase + SBP_DSP_RSTAT);
    602 	if (sc->sc_mintr != 0) {
    603 		int c = rdsp(sc->sc_iobase);
    604 		(*sc->sc_mintr)(sc->sc_arg, c);
    605 	} else if (sc->sc_intr != 0)
    606 		(*sc->sc_intr)(sc->sc_arg);
    607 	else
    608 		return 0;
    609 	return 1;
    610 }
    611 
    612 /*
    613  * Enter midi uart mode and arrange for read interrupts
    614  * to vector to `intr'.  This puts the card in a mode
    615  * which allows only midi I/O; the card must be reset
    616  * to leave this mode.  Unfortunately, the card does not
    617  * use transmit interrupts, so bytes must be output
    618  * using polling.  To keep the polling overhead to a
    619  * minimum, output should be driven off a timer.
    620  * This is a little tricky since only 320us separate
    621  * consecutive midi bytes.
    622  */
    623 void
    624 sb_set_midi_mode(sc, intr, arg)
    625 	struct sb_softc *sc;
    626 	void (*intr)();
    627 	void *arg;
    628 {
    629 
    630 	wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
    631 	sc->sc_mintr = intr;
    632 	sc->sc_intr = 0;
    633 	sc->sc_arg = arg;
    634 }
    635 
    636 /*
    637  * Write a byte to the midi port, when in midi uart mode.
    638  */
    639 void
    640 sb_midi_output(sc, v)
    641 	struct sb_softc *sc;
    642 	int v;
    643 {
    644 
    645 	if (wdsp(sc->sc_iobase, v) < 0)
    646 		++sberr.wmidi;
    647 }
    648