sbdsp.c revision 1.100 1 /* $NetBSD: sbdsp.c,v 1.100 1999/08/04 10:50:52 augustss Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84 #include "mpu.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/errno.h>
89 #include <sys/ioctl.h>
90 #include <sys/syslog.h>
91 #include <sys/device.h>
92 #include <sys/proc.h>
93 #include <sys/buf.h>
94 #include <vm/vm.h>
95
96 #include <machine/cpu.h>
97 #include <machine/intr.h>
98 #include <machine/bus.h>
99
100 #include <sys/audioio.h>
101 #include <dev/audio_if.h>
102 #include <dev/midi_if.h>
103 #include <dev/mulaw.h>
104 #include <dev/auconv.h>
105
106 #include <dev/isa/isavar.h>
107 #include <dev/isa/isadmavar.h>
108
109 #include <dev/isa/sbreg.h>
110 #include <dev/isa/sbdspvar.h>
111
112
113 #ifdef AUDIO_DEBUG
114 #define DPRINTF(x) if (sbdspdebug) printf x
115 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
116 int sbdspdebug = 0;
117 #else
118 #define DPRINTF(x)
119 #define DPRINTFN(n,x)
120 #endif
121
122 #ifndef SBDSP_NPOLL
123 #define SBDSP_NPOLL 3000
124 #endif
125
126 struct {
127 int wdsp;
128 int rdsp;
129 int wmidi;
130 } sberr;
131
132 /*
133 * Time constant routines follow. See SBK, section 12.
134 * Although they don't come out and say it (in the docs),
135 * the card clearly uses a 1MHz countdown timer, as the
136 * low-speed formula (p. 12-4) is:
137 * tc = 256 - 10^6 / sr
138 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
139 * and a 256MHz clock is used:
140 * tc = 65536 - 256 * 10^ 6 / sr
141 * Since we can only use the upper byte of the HS TC, the two formulae
142 * are equivalent. (Why didn't they say so?) E.g.,
143 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
144 *
145 * The crossover point (from low- to high-speed modes) is different
146 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
147 *
148 * SBPRO SB20
149 * ----- --------
150 * input ls min 4 KHz 4 KHz
151 * input ls max 23 KHz 13 KHz
152 * input hs max 44.1 KHz 15 KHz
153 * output ls min 4 KHz 4 KHz
154 * output ls max 23 KHz 23 KHz
155 * output hs max 44.1 KHz 44.1 KHz
156 */
157 /* XXX Should we round the tc?
158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
159 */
160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
162
163 struct sbmode {
164 short model;
165 u_char channels;
166 u_char precision;
167 u_short lowrate, highrate;
168 u_char cmd;
169 u_char halt, cont;
170 u_char cmdchan;
171 };
172 static struct sbmode sbpmodes[] = {
173 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
180 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
181 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
183 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
184 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
186 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
187 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
189 #define PLAY16 15 /* must be the index of the next entry in the table */
190 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192 { -1 }
193 };
194 static struct sbmode sbrmodes[] = {
195 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
201 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
202 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
207 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
208 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
210 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212 { -1 }
213 };
214
215 void sbversion __P((struct sbdsp_softc *));
216 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
217 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
218 void sbdsp_to __P((void *));
219 void sbdsp_pause __P((struct sbdsp_softc *));
220 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
221 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
222 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
223 void sbdsp_set_ifilter __P((void *, int));
224 int sbdsp_get_ifilter __P((void *));
225
226 int sbdsp_block_output __P((void *));
227 int sbdsp_block_input __P((void *));
228 static int sbdsp_adjust __P((int, int));
229
230 int sbdsp_midi_intr __P((void *));
231
232 #ifdef AUDIO_DEBUG
233 void sb_printsc __P((struct sbdsp_softc *));
234
235 void
236 sb_printsc(sc)
237 struct sbdsp_softc *sc;
238 {
239 int i;
240
241 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
242 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
243 sc->sc_drq8, sc->sc_drq16,
244 sc->sc_iobase, sc->sc_irq);
245 printf("irate %d itc %x orate %d otc %x\n",
246 sc->sc_i.rate, sc->sc_i.tc,
247 sc->sc_o.rate, sc->sc_o.tc);
248 printf("spkron %u nintr %lu\n",
249 sc->spkr_state, sc->sc_interrupts);
250 printf("intr8 %p intr16 %p\n",
251 sc->sc_intr8, sc->sc_intr16);
252 printf("gain:");
253 for (i = 0; i < SB_NDEVS; i++)
254 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
255 printf("\n");
256 }
257 #endif /* AUDIO_DEBUG */
258
259 /*
260 * Probe / attach routines.
261 */
262
263 /*
264 * Probe for the soundblaster hardware.
265 */
266 int
267 sbdsp_probe(sc)
268 struct sbdsp_softc *sc;
269 {
270
271 if (sbdsp_reset(sc) < 0) {
272 DPRINTF(("sbdsp: couldn't reset card\n"));
273 return 0;
274 }
275 /* if flags set, go and probe the jazz16 stuff */
276 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
277 sbdsp_jazz16_probe(sc);
278 else
279 sbversion(sc);
280 if (sc->sc_model == SB_UNK) {
281 /* Unknown SB model found. */
282 DPRINTF(("sbdsp: unknown SB model found\n"));
283 return 0;
284 }
285 return 1;
286 }
287
288 /*
289 * Try add-on stuff for Jazz16.
290 */
291 void
292 sbdsp_jazz16_probe(sc)
293 struct sbdsp_softc *sc;
294 {
295 static u_char jazz16_irq_conf[16] = {
296 -1, -1, 0x02, 0x03,
297 -1, 0x01, -1, 0x04,
298 -1, 0x02, 0x05, -1,
299 -1, -1, -1, 0x06};
300 static u_char jazz16_drq_conf[8] = {
301 -1, 0x01, -1, 0x02,
302 -1, 0x03, -1, 0x04};
303
304 bus_space_tag_t iot = sc->sc_iot;
305 bus_space_handle_t ioh;
306
307 sbversion(sc);
308
309 DPRINTF(("jazz16 probe\n"));
310
311 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
312 DPRINTF(("bus map failed\n"));
313 return;
314 }
315
316 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
317 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
318 DPRINTF(("drq/irq check failed\n"));
319 goto done; /* give up, we can't do it. */
320 }
321
322 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
323 delay(10000); /* delay 10 ms */
324 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
325 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
326
327 if (sbdsp_reset(sc) < 0) {
328 DPRINTF(("sbdsp_reset check failed\n"));
329 goto done; /* XXX? what else could we do? */
330 }
331
332 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
333 DPRINTF(("read16 setup failed\n"));
334 goto done;
335 }
336
337 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
338 DPRINTF(("read16 failed\n"));
339 goto done;
340 }
341
342 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
343 sc->sc_drq16 = sc->sc_drq8;
344 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
345 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
346 jazz16_drq_conf[sc->sc_drq8]) ||
347 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
348 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
349 } else {
350 DPRINTF(("jazz16 detected!\n"));
351 sc->sc_model = SB_JAZZ;
352 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
353 }
354
355 done:
356 bus_space_unmap(iot, ioh, 1);
357 }
358
359 /*
360 * Attach hardware to driver, attach hardware driver to audio
361 * pseudo-device driver .
362 */
363 void
364 sbdsp_attach(sc)
365 struct sbdsp_softc *sc;
366 {
367 struct audio_params pparams, rparams;
368 int i;
369 u_int v;
370
371 pparams = audio_default;
372 rparams = audio_default;
373 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
374
375 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
376
377 if (sc->sc_mixer_model != SBM_NONE) {
378 /* Reset the mixer.*/
379 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
380 /* And set our own default values */
381 for (i = 0; i < SB_NDEVS; i++) {
382 switch(i) {
383 case SB_MIC_VOL:
384 case SB_LINE_IN_VOL:
385 v = 0;
386 break;
387 case SB_BASS:
388 case SB_TREBLE:
389 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
390 break;
391 case SB_CD_IN_MUTE:
392 case SB_MIC_IN_MUTE:
393 case SB_LINE_IN_MUTE:
394 case SB_MIDI_IN_MUTE:
395 case SB_CD_SWAP:
396 case SB_MIC_SWAP:
397 case SB_LINE_SWAP:
398 case SB_MIDI_SWAP:
399 case SB_CD_OUT_MUTE:
400 case SB_MIC_OUT_MUTE:
401 case SB_LINE_OUT_MUTE:
402 v = 0;
403 break;
404 default:
405 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
406 break;
407 }
408 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
409 sbdsp_set_mixer_gain(sc, i);
410 }
411 sc->in_filter = 0; /* no filters turned on, please */
412 }
413
414 printf(": dsp v%d.%02d%s\n",
415 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
416 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
417
418 sc->sc_fullduplex = ISSB16CLASS(sc) &&
419 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
420 sc->sc_drq8 != sc->sc_drq16;
421 }
422
423 void
424 sbdsp_mix_write(sc, mixerport, val)
425 struct sbdsp_softc *sc;
426 int mixerport;
427 int val;
428 {
429 bus_space_tag_t iot = sc->sc_iot;
430 bus_space_handle_t ioh = sc->sc_ioh;
431 int s;
432
433 s = splaudio();
434 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
435 delay(20);
436 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
437 delay(30);
438 splx(s);
439 }
440
441 int
442 sbdsp_mix_read(sc, mixerport)
443 struct sbdsp_softc *sc;
444 int mixerport;
445 {
446 bus_space_tag_t iot = sc->sc_iot;
447 bus_space_handle_t ioh = sc->sc_ioh;
448 int val;
449 int s;
450
451 s = splaudio();
452 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
453 delay(20);
454 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
455 delay(30);
456 splx(s);
457 return val;
458 }
459
460 /*
461 * Various routines to interface to higher level audio driver
462 */
463
464 int
465 sbdsp_query_encoding(addr, fp)
466 void *addr;
467 struct audio_encoding *fp;
468 {
469 struct sbdsp_softc *sc = addr;
470 int emul;
471
472 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
473
474 switch (fp->index) {
475 case 0:
476 strcpy(fp->name, AudioEulinear);
477 fp->encoding = AUDIO_ENCODING_ULINEAR;
478 fp->precision = 8;
479 fp->flags = 0;
480 return 0;
481 case 1:
482 strcpy(fp->name, AudioEmulaw);
483 fp->encoding = AUDIO_ENCODING_ULAW;
484 fp->precision = 8;
485 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
486 return 0;
487 case 2:
488 strcpy(fp->name, AudioEalaw);
489 fp->encoding = AUDIO_ENCODING_ALAW;
490 fp->precision = 8;
491 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
492 return 0;
493 case 3:
494 strcpy(fp->name, AudioEslinear);
495 fp->encoding = AUDIO_ENCODING_SLINEAR;
496 fp->precision = 8;
497 fp->flags = emul;
498 return 0;
499 }
500 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
501 return EINVAL;
502
503 switch(fp->index) {
504 case 4:
505 strcpy(fp->name, AudioEslinear_le);
506 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
507 fp->precision = 16;
508 fp->flags = 0;
509 return 0;
510 case 5:
511 strcpy(fp->name, AudioEulinear_le);
512 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
513 fp->precision = 16;
514 fp->flags = emul;
515 return 0;
516 case 6:
517 strcpy(fp->name, AudioEslinear_be);
518 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
519 fp->precision = 16;
520 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
521 return 0;
522 case 7:
523 strcpy(fp->name, AudioEulinear_be);
524 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
525 fp->precision = 16;
526 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
527 return 0;
528 default:
529 return EINVAL;
530 }
531 return 0;
532 }
533
534 int
535 sbdsp_set_params(addr, setmode, usemode, play, rec)
536 void *addr;
537 int setmode, usemode;
538 struct audio_params *play, *rec;
539 {
540 struct sbdsp_softc *sc = addr;
541 struct sbmode *m;
542 u_int rate, tc, bmode;
543 void (*swcode) __P((void *, u_char *buf, int cnt));
544 int factor;
545 int model;
546 int chan;
547 struct audio_params *p;
548 int mode;
549
550 if (sc->sc_open == SB_OPEN_MIDI)
551 return EBUSY;
552
553 /* Later models work like SB16. */
554 model = min(sc->sc_model, SB_16);
555
556 /*
557 * Prior to the SB16, we have only one clock, so make the sample
558 * rates match.
559 */
560 if (!ISSB16CLASS(sc) &&
561 play->sample_rate != rec->sample_rate &&
562 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
563 if (setmode == AUMODE_PLAY) {
564 rec->sample_rate = play->sample_rate;
565 setmode |= AUMODE_RECORD;
566 } else if (setmode == AUMODE_RECORD) {
567 play->sample_rate = rec->sample_rate;
568 setmode |= AUMODE_PLAY;
569 } else
570 return (EINVAL);
571 }
572
573 /* Set first record info, then play info */
574 for (mode = AUMODE_RECORD; mode != -1;
575 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
576 if ((setmode & mode) == 0)
577 continue;
578
579 p = mode == AUMODE_PLAY ? play : rec;
580 /* Locate proper commands */
581 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
582 m->model != -1; m++) {
583 if (model == m->model &&
584 p->channels == m->channels &&
585 p->precision == m->precision &&
586 p->sample_rate >= m->lowrate &&
587 p->sample_rate <= m->highrate)
588 break;
589 }
590 if (m->model == -1)
591 return EINVAL;
592 rate = p->sample_rate;
593 swcode = 0;
594 factor = 1;
595 tc = 1;
596 bmode = -1;
597 if (model == SB_16) {
598 switch (p->encoding) {
599 case AUDIO_ENCODING_SLINEAR_BE:
600 if (p->precision == 16)
601 swcode = swap_bytes;
602 /* fall into */
603 case AUDIO_ENCODING_SLINEAR_LE:
604 bmode = SB_BMODE_SIGNED;
605 break;
606 case AUDIO_ENCODING_ULINEAR_BE:
607 if (p->precision == 16)
608 swcode = swap_bytes;
609 /* fall into */
610 case AUDIO_ENCODING_ULINEAR_LE:
611 bmode = SB_BMODE_UNSIGNED;
612 break;
613 case AUDIO_ENCODING_ULAW:
614 if (mode == AUMODE_PLAY) {
615 swcode = mulaw_to_ulinear16;
616 factor = 2;
617 m = &sbpmodes[PLAY16];
618 } else
619 swcode = ulinear8_to_mulaw;
620 bmode = SB_BMODE_UNSIGNED;
621 break;
622 case AUDIO_ENCODING_ALAW:
623 if (mode == AUMODE_PLAY) {
624 swcode = alaw_to_ulinear16;
625 factor = 2;
626 m = &sbpmodes[PLAY16];
627 } else
628 swcode = ulinear8_to_alaw;
629 bmode = SB_BMODE_UNSIGNED;
630 break;
631 default:
632 return EINVAL;
633 }
634 if (p->channels == 2)
635 bmode |= SB_BMODE_STEREO;
636 } else if (m->model == SB_JAZZ && m->precision == 16) {
637 switch (p->encoding) {
638 case AUDIO_ENCODING_SLINEAR_LE:
639 break;
640 case AUDIO_ENCODING_ULINEAR_LE:
641 swcode = change_sign16;
642 break;
643 case AUDIO_ENCODING_SLINEAR_BE:
644 swcode = swap_bytes;
645 break;
646 case AUDIO_ENCODING_ULINEAR_BE:
647 swcode = mode == AUMODE_PLAY ?
648 swap_bytes_change_sign16 : change_sign16_swap_bytes;
649 break;
650 case AUDIO_ENCODING_ULAW:
651 swcode = mode == AUMODE_PLAY ?
652 mulaw_to_ulinear8 : ulinear8_to_mulaw;
653 break;
654 case AUDIO_ENCODING_ALAW:
655 swcode = mode == AUMODE_PLAY ?
656 alaw_to_ulinear8 : ulinear8_to_alaw;
657 break;
658 default:
659 return EINVAL;
660 }
661 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
662 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
663 } else {
664 switch (p->encoding) {
665 case AUDIO_ENCODING_SLINEAR_BE:
666 case AUDIO_ENCODING_SLINEAR_LE:
667 swcode = change_sign8;
668 break;
669 case AUDIO_ENCODING_ULINEAR_BE:
670 case AUDIO_ENCODING_ULINEAR_LE:
671 break;
672 case AUDIO_ENCODING_ULAW:
673 swcode = mode == AUMODE_PLAY ?
674 mulaw_to_ulinear8 : ulinear8_to_mulaw;
675 break;
676 case AUDIO_ENCODING_ALAW:
677 swcode = mode == AUMODE_PLAY ?
678 alaw_to_ulinear8 : ulinear8_to_alaw;
679 break;
680 default:
681 return EINVAL;
682 }
683 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
684 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
685 }
686
687 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
688 if (mode == AUMODE_PLAY) {
689 sc->sc_o.rate = rate;
690 sc->sc_o.tc = tc;
691 sc->sc_o.modep = m;
692 sc->sc_o.bmode = bmode;
693 sc->sc_o.dmachan = chan;
694 } else {
695 sc->sc_i.rate = rate;
696 sc->sc_i.tc = tc;
697 sc->sc_i.modep = m;
698 sc->sc_i.bmode = bmode;
699 sc->sc_i.dmachan = chan;
700 }
701
702 p->sw_code = swcode;
703 p->factor = factor;
704 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
705 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
706 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
707
708 }
709
710 if (sc->sc_fullduplex &&
711 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
712 sc->sc_i.dmachan == sc->sc_o.dmachan) {
713 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
714 if (sc->sc_o.dmachan == sc->sc_drq8) {
715 /* Use 16 bit DMA for playing by expanding the samples. */
716 play->sw_code = linear8_to_linear16;
717 play->factor = 2;
718 sc->sc_o.modep = &sbpmodes[PLAY16];
719 sc->sc_o.dmachan = sc->sc_drq16;
720 } else {
721 return EINVAL;
722 }
723 }
724 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
725 sc->sc_i.dmachan, sc->sc_o.dmachan));
726
727 return (0);
728 }
729
730 void
731 sbdsp_set_ifilter(addr, which)
732 void *addr;
733 int which;
734 {
735 struct sbdsp_softc *sc = addr;
736 int mixval;
737
738 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
739 switch (which) {
740 case 0:
741 mixval |= SBP_FILTER_OFF;
742 break;
743 case SB_TREBLE:
744 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
745 break;
746 case SB_BASS:
747 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
748 break;
749 default:
750 return;
751 }
752 sc->in_filter = mixval & SBP_IFILTER_MASK;
753 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
754 }
755
756 int
757 sbdsp_get_ifilter(addr)
758 void *addr;
759 {
760 struct sbdsp_softc *sc = addr;
761
762 sc->in_filter =
763 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
764 switch (sc->in_filter) {
765 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
766 return SB_TREBLE;
767 case SBP_FILTER_ON|SBP_IFILTER_LOW:
768 return SB_BASS;
769 default:
770 return 0;
771 }
772 }
773
774 int
775 sbdsp_set_in_ports(sc, mask)
776 struct sbdsp_softc *sc;
777 int mask;
778 {
779 int bitsl, bitsr;
780 int sbport;
781
782 if (sc->sc_open == SB_OPEN_MIDI)
783 return EBUSY;
784
785 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
786 sc->sc_mixer_model, mask));
787
788 switch(sc->sc_mixer_model) {
789 case SBM_NONE:
790 return EINVAL;
791 case SBM_CT1335:
792 if (mask != (1 << SB_MIC_VOL))
793 return EINVAL;
794 break;
795 case SBM_CT1345:
796 switch (mask) {
797 case 1 << SB_MIC_VOL:
798 sbport = SBP_FROM_MIC;
799 break;
800 case 1 << SB_LINE_IN_VOL:
801 sbport = SBP_FROM_LINE;
802 break;
803 case 1 << SB_CD_VOL:
804 sbport = SBP_FROM_CD;
805 break;
806 default:
807 return (EINVAL);
808 }
809 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
810 break;
811 case SBM_CT1XX5:
812 case SBM_CT1745:
813 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
814 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
815 return EINVAL;
816 bitsr = 0;
817 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
818 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
819 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
820 bitsl = SB_SRC_R_TO_L(bitsr);
821 if (mask & (1<<SB_MIC_VOL)) {
822 bitsl |= SBP_MIC_SRC;
823 bitsr |= SBP_MIC_SRC;
824 }
825 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
826 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
827 break;
828 }
829 sc->in_mask = mask;
830
831 return 0;
832 }
833
834 int
835 sbdsp_speaker_ctl(addr, newstate)
836 void *addr;
837 int newstate;
838 {
839 struct sbdsp_softc *sc = addr;
840
841 if (sc->sc_open == SB_OPEN_MIDI)
842 return EBUSY;
843
844 if ((newstate == SPKR_ON) &&
845 (sc->spkr_state == SPKR_OFF)) {
846 sbdsp_spkron(sc);
847 sc->spkr_state = SPKR_ON;
848 }
849 if ((newstate == SPKR_OFF) &&
850 (sc->spkr_state == SPKR_ON)) {
851 sbdsp_spkroff(sc);
852 sc->spkr_state = SPKR_OFF;
853 }
854 return 0;
855 }
856
857 int
858 sbdsp_round_blocksize(addr, blk)
859 void *addr;
860 int blk;
861 {
862 return blk & -4; /* round to biggest sample size */
863 }
864
865 int
866 sbdsp_open(addr, flags)
867 void *addr;
868 int flags;
869 {
870 struct sbdsp_softc *sc = addr;
871 int error, state;
872
873 DPRINTF(("sbdsp_open: sc=%p\n", sc));
874
875 if (sc->sc_open != SB_CLOSED)
876 return (EBUSY);
877 sc->sc_open = SB_OPEN_AUDIO;
878 sc->sc_openflags = flags;
879 state = 0;
880
881 if (sc->sc_drq8 != -1) {
882 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
883 MAX_ISADMA, BUS_DMA_NOWAIT);
884 if (error) {
885 printf("%s: can't create map for drq %d\n",
886 sc->sc_dev.dv_xname, sc->sc_drq8);
887 goto bad;
888 }
889 state |= 1;
890 }
891 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
892 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
893 MAX_ISADMA, BUS_DMA_NOWAIT);
894 if (error) {
895 printf("%s: can't create map for drq %d\n",
896 sc->sc_dev.dv_xname, sc->sc_drq16);
897 goto bad;
898 }
899 state |= 2;
900 }
901
902 if (sbdsp_reset(sc) != 0) {
903 error = EIO;
904 goto bad;
905 }
906
907 if (ISSBPRO(sc) &&
908 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
909 DPRINTF(("sbdsp_open: can't set mono mode\n"));
910 /* we'll readjust when it's time for DMA. */
911 }
912
913 /*
914 * Leave most things as they were; users must change things if
915 * the previous process didn't leave it they way they wanted.
916 * Looked at another way, it's easy to set up a configuration
917 * in one program and leave it for another to inherit.
918 */
919 DPRINTF(("sbdsp_open: opened\n"));
920
921 return (0);
922
923 bad:
924 if (state & 1)
925 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
926 if (state & 2)
927 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
928
929 sc->sc_open = SB_CLOSED;
930 return (error);
931 }
932
933 void
934 sbdsp_close(addr)
935 void *addr;
936 {
937 struct sbdsp_softc *sc = addr;
938
939 DPRINTF(("sbdsp_close: sc=%p\n", sc));
940
941 sbdsp_spkroff(sc);
942 sc->spkr_state = SPKR_OFF;
943
944 sbdsp_halt_output(sc);
945 sbdsp_halt_input(sc);
946
947 sc->sc_intr8 = 0;
948 sc->sc_intr16 = 0;
949
950 if (sc->sc_drq8 != -1)
951 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
952 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
953 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
954
955 sc->sc_open = SB_CLOSED;
956 DPRINTF(("sbdsp_close: closed\n"));
957 }
958
959 /*
960 * Lower-level routines
961 */
962
963 /*
964 * Reset the card.
965 * Return non-zero if the card isn't detected.
966 */
967 int
968 sbdsp_reset(sc)
969 struct sbdsp_softc *sc;
970 {
971 bus_space_tag_t iot = sc->sc_iot;
972 bus_space_handle_t ioh = sc->sc_ioh;
973
974 sc->sc_intr8 = 0;
975 sc->sc_intr16 = 0;
976 sc->sc_intrm = 0;
977
978 /*
979 * See SBK, section 11.3.
980 * We pulse a reset signal into the card.
981 * Gee, what a brilliant hardware design.
982 */
983 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
984 delay(10);
985 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
986 delay(30);
987 if (sbdsp_rdsp(sc) != SB_MAGIC)
988 return -1;
989
990 return 0;
991 }
992
993 /*
994 * Write a byte to the dsp.
995 * We are at the mercy of the card as we use a
996 * polling loop and wait until it can take the byte.
997 */
998 int
999 sbdsp_wdsp(sc, v)
1000 struct sbdsp_softc *sc;
1001 int v;
1002 {
1003 bus_space_tag_t iot = sc->sc_iot;
1004 bus_space_handle_t ioh = sc->sc_ioh;
1005 int i;
1006 u_char x;
1007
1008 for (i = SBDSP_NPOLL; --i >= 0; ) {
1009 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1010 delay(10);
1011 if ((x & SB_DSP_BUSY) == 0) {
1012 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1013 delay(10);
1014 return 0;
1015 }
1016 }
1017 ++sberr.wdsp;
1018 return -1;
1019 }
1020
1021 /*
1022 * Read a byte from the DSP, using polling.
1023 */
1024 int
1025 sbdsp_rdsp(sc)
1026 struct sbdsp_softc *sc;
1027 {
1028 bus_space_tag_t iot = sc->sc_iot;
1029 bus_space_handle_t ioh = sc->sc_ioh;
1030 int i;
1031 u_char x;
1032
1033 for (i = SBDSP_NPOLL; --i >= 0; ) {
1034 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1035 delay(10);
1036 if (x & SB_DSP_READY) {
1037 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1038 delay(10);
1039 return x;
1040 }
1041 }
1042 ++sberr.rdsp;
1043 return -1;
1044 }
1045
1046 /*
1047 * Doing certain things (like toggling the speaker) make
1048 * the SB hardware go away for a while, so pause a little.
1049 */
1050 void
1051 sbdsp_to(arg)
1052 void *arg;
1053 {
1054 wakeup(arg);
1055 }
1056
1057 void
1058 sbdsp_pause(sc)
1059 struct sbdsp_softc *sc;
1060 {
1061 extern int hz;
1062
1063 timeout(sbdsp_to, sbdsp_to, hz/8);
1064 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1065 }
1066
1067 /*
1068 * Turn on the speaker. The SBK documention says this operation
1069 * can take up to 1/10 of a second. Higher level layers should
1070 * probably let the task sleep for this amount of time after
1071 * calling here. Otherwise, things might not work (because
1072 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1073 *
1074 * These engineers had their heads up their ass when
1075 * they designed this card.
1076 */
1077 void
1078 sbdsp_spkron(sc)
1079 struct sbdsp_softc *sc;
1080 {
1081 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1082 sbdsp_pause(sc);
1083 }
1084
1085 /*
1086 * Turn off the speaker; see comment above.
1087 */
1088 void
1089 sbdsp_spkroff(sc)
1090 struct sbdsp_softc *sc;
1091 {
1092 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1093 sbdsp_pause(sc);
1094 }
1095
1096 /*
1097 * Read the version number out of the card.
1098 * Store version information in the softc.
1099 */
1100 void
1101 sbversion(sc)
1102 struct sbdsp_softc *sc;
1103 {
1104 int v;
1105
1106 sc->sc_model = SB_UNK;
1107 sc->sc_version = 0;
1108 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1109 return;
1110 v = sbdsp_rdsp(sc) << 8;
1111 v |= sbdsp_rdsp(sc);
1112 if (v < 0)
1113 return;
1114 sc->sc_version = v;
1115 switch(SBVER_MAJOR(v)) {
1116 case 1:
1117 sc->sc_mixer_model = SBM_NONE;
1118 sc->sc_model = SB_1;
1119 break;
1120 case 2:
1121 /* Some SB2 have a mixer, some don't. */
1122 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1123 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1124 /* Check if we can read back the mixer values. */
1125 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1126 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1127 sc->sc_mixer_model = SBM_CT1335;
1128 else
1129 sc->sc_mixer_model = SBM_NONE;
1130 if (SBVER_MINOR(v) == 0)
1131 sc->sc_model = SB_20;
1132 else
1133 sc->sc_model = SB_2x;
1134 break;
1135 case 3:
1136 sc->sc_mixer_model = SBM_CT1345;
1137 sc->sc_model = SB_PRO;
1138 break;
1139 case 4:
1140 #if 0
1141 /* XXX This does not work */
1142 /* Most SB16 have a tone controls, but some don't. */
1143 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1144 /* Check if we can read back the mixer value. */
1145 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1146 sc->sc_mixer_model = SBM_CT1745;
1147 else
1148 sc->sc_mixer_model = SBM_CT1XX5;
1149 #else
1150 sc->sc_mixer_model = SBM_CT1745;
1151 #endif
1152 #if 0
1153 /* XXX figure out a good way of determining the model */
1154 /* XXX what about SB_32 */
1155 if (SBVER_MINOR(v) == 16)
1156 sc->sc_model = SB_64;
1157 else
1158 #endif
1159 sc->sc_model = SB_16;
1160 break;
1161 }
1162 }
1163
1164 int
1165 sbdsp_set_timeconst(sc, tc)
1166 struct sbdsp_softc *sc;
1167 int tc;
1168 {
1169 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1170
1171 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1172 sbdsp_wdsp(sc, tc) < 0)
1173 return EIO;
1174
1175 return 0;
1176 }
1177
1178 int
1179 sbdsp16_set_rate(sc, cmd, rate)
1180 struct sbdsp_softc *sc;
1181 int cmd, rate;
1182 {
1183 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1184
1185 if (sbdsp_wdsp(sc, cmd) < 0 ||
1186 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1187 sbdsp_wdsp(sc, rate) < 0)
1188 return EIO;
1189 return 0;
1190 }
1191
1192 int
1193 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1194 void *addr;
1195 void *start, *end;
1196 int blksize;
1197 void (*intr) __P((void *));
1198 void *arg;
1199 struct audio_params *param;
1200 {
1201 struct sbdsp_softc *sc = addr;
1202 int stereo = param->channels == 2;
1203 int width = param->precision * param->factor;
1204 int filter;
1205
1206 #ifdef DIAGNOSTIC
1207 if (stereo && (blksize & 1)) {
1208 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1209 return (EIO);
1210 }
1211 if (sc->sc_i.run != SB_NOTRUNNING)
1212 printf("sbdsp_trigger_input: already running\n");
1213 #endif
1214
1215 sc->sc_intrr = intr;
1216 sc->sc_argr = arg;
1217
1218 if (width == 8) {
1219 #ifdef DIAGNOSTIC
1220 if (sc->sc_i.dmachan != sc->sc_drq8) {
1221 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1222 width, sc->sc_i.dmachan);
1223 return (EIO);
1224 }
1225 #endif
1226 sc->sc_intr8 = sbdsp_block_input;
1227 } else {
1228 #ifdef DIAGNOSTIC
1229 if (sc->sc_i.dmachan != sc->sc_drq16) {
1230 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1231 width, sc->sc_i.dmachan);
1232 return (EIO);
1233 }
1234 #endif
1235 sc->sc_intr16 = sbdsp_block_input;
1236 }
1237
1238 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1239 blksize >>= 1;
1240 --blksize;
1241 sc->sc_i.blksize = blksize;
1242
1243 if (ISSBPRO(sc)) {
1244 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1245 return (EIO);
1246 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1247 sbdsp_mix_write(sc, SBP_INFILTER,
1248 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1249 filter);
1250 }
1251
1252 if (ISSB16CLASS(sc)) {
1253 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1254 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1255 sc->sc_i.rate));
1256 return (EIO);
1257 }
1258 } else {
1259 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1260 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1261 sc->sc_i.rate));
1262 return (EIO);
1263 }
1264 }
1265
1266 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1267 start, end, sc->sc_i.dmachan));
1268 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1269 (char *)end - (char *)start, NULL,
1270 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1271
1272 return sbdsp_block_input(addr);
1273 }
1274
1275 int
1276 sbdsp_block_input(addr)
1277 void *addr;
1278 {
1279 struct sbdsp_softc *sc = addr;
1280 int cc = sc->sc_i.blksize;
1281
1282 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1283
1284 if (sc->sc_i.run != SB_NOTRUNNING)
1285 sc->sc_intrr(sc->sc_argr);
1286
1287 if (sc->sc_model == SB_1) {
1288 /* Non-looping mode, start DMA */
1289 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1290 sbdsp_wdsp(sc, cc) < 0 ||
1291 sbdsp_wdsp(sc, cc >> 8) < 0) {
1292 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1293 return (EIO);
1294 }
1295 sc->sc_i.run = SB_RUNNING;
1296 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1297 /* Initialize looping PCM */
1298 if (ISSB16CLASS(sc)) {
1299 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1300 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1301 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1302 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1303 sbdsp_wdsp(sc, cc) < 0 ||
1304 sbdsp_wdsp(sc, cc >> 8) < 0) {
1305 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1306 return (EIO);
1307 }
1308 } else {
1309 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1310 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1311 sbdsp_wdsp(sc, cc) < 0 ||
1312 sbdsp_wdsp(sc, cc >> 8) < 0) {
1313 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1314 return (EIO);
1315 }
1316 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1317 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1318 return (EIO);
1319 }
1320 }
1321 sc->sc_i.run = SB_LOOPING;
1322 }
1323
1324 return (0);
1325 }
1326
1327 int
1328 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1329 void *addr;
1330 void *start, *end;
1331 int blksize;
1332 void (*intr) __P((void *));
1333 void *arg;
1334 struct audio_params *param;
1335 {
1336 struct sbdsp_softc *sc = addr;
1337 int stereo = param->channels == 2;
1338 int width = param->precision * param->factor;
1339 int cmd;
1340
1341 #ifdef DIAGNOSTIC
1342 if (stereo && (blksize & 1)) {
1343 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1344 return (EIO);
1345 }
1346 if (sc->sc_o.run != SB_NOTRUNNING)
1347 printf("sbdsp_trigger_output: already running\n");
1348 #endif
1349
1350 sc->sc_intrp = intr;
1351 sc->sc_argp = arg;
1352
1353 if (width == 8) {
1354 #ifdef DIAGNOSTIC
1355 if (sc->sc_o.dmachan != sc->sc_drq8) {
1356 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1357 width, sc->sc_o.dmachan);
1358 return (EIO);
1359 }
1360 #endif
1361 sc->sc_intr8 = sbdsp_block_output;
1362 } else {
1363 #ifdef DIAGNOSTIC
1364 if (sc->sc_o.dmachan != sc->sc_drq16) {
1365 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1366 width, sc->sc_o.dmachan);
1367 return (EIO);
1368 }
1369 #endif
1370 sc->sc_intr16 = sbdsp_block_output;
1371 }
1372
1373 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1374 blksize >>= 1;
1375 --blksize;
1376 sc->sc_o.blksize = blksize;
1377
1378 if (ISSBPRO(sc)) {
1379 /* make sure we re-set stereo mixer bit when we start output. */
1380 sbdsp_mix_write(sc, SBP_STEREO,
1381 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1382 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1383 cmd = sc->sc_o.modep->cmdchan;
1384 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1385 return (EIO);
1386 }
1387
1388 if (ISSB16CLASS(sc)) {
1389 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1390 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1391 sc->sc_o.rate));
1392 return (EIO);
1393 }
1394 } else {
1395 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1396 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1397 sc->sc_o.rate));
1398 return (EIO);
1399 }
1400 }
1401
1402 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1403 start, end, sc->sc_o.dmachan));
1404 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1405 (char *)end - (char *)start, NULL,
1406 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1407
1408 return sbdsp_block_output(addr);
1409 }
1410
1411 int
1412 sbdsp_block_output(addr)
1413 void *addr;
1414 {
1415 struct sbdsp_softc *sc = addr;
1416 int cc = sc->sc_o.blksize;
1417
1418 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1419
1420 if (sc->sc_o.run != SB_NOTRUNNING)
1421 sc->sc_intrp(sc->sc_argp);
1422
1423 if (sc->sc_model == SB_1) {
1424 /* Non-looping mode, initialized. Start DMA and PCM */
1425 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1426 sbdsp_wdsp(sc, cc) < 0 ||
1427 sbdsp_wdsp(sc, cc >> 8) < 0) {
1428 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1429 return (EIO);
1430 }
1431 sc->sc_o.run = SB_RUNNING;
1432 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1433 /* Initialize looping PCM */
1434 if (ISSB16CLASS(sc)) {
1435 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1436 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1437 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1438 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1439 sbdsp_wdsp(sc, cc) < 0 ||
1440 sbdsp_wdsp(sc, cc >> 8) < 0) {
1441 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1442 return (EIO);
1443 }
1444 } else {
1445 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1446 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1447 sbdsp_wdsp(sc, cc) < 0 ||
1448 sbdsp_wdsp(sc, cc >> 8) < 0) {
1449 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1450 return (EIO);
1451 }
1452 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1453 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1454 return (EIO);
1455 }
1456 }
1457 sc->sc_o.run = SB_LOOPING;
1458 }
1459
1460 return (0);
1461 }
1462
1463 int
1464 sbdsp_halt_output(addr)
1465 void *addr;
1466 {
1467 struct sbdsp_softc *sc = addr;
1468
1469 if (sc->sc_o.run != SB_NOTRUNNING) {
1470 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1471 printf("sbdsp_halt_output: failed to halt\n");
1472 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1473 sc->sc_o.run = SB_NOTRUNNING;
1474 }
1475
1476 return (0);
1477 }
1478
1479 int
1480 sbdsp_halt_input(addr)
1481 void *addr;
1482 {
1483 struct sbdsp_softc *sc = addr;
1484
1485 if (sc->sc_i.run != SB_NOTRUNNING) {
1486 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1487 printf("sbdsp_halt_input: failed to halt\n");
1488 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1489 sc->sc_i.run = SB_NOTRUNNING;
1490 }
1491
1492 return (0);
1493 }
1494
1495 /*
1496 * Only the DSP unit on the sound blaster generates interrupts.
1497 * There are three cases of interrupt: reception of a midi byte
1498 * (when mode is enabled), completion of dma transmission, or
1499 * completion of a dma reception.
1500 *
1501 * If there is interrupt sharing or a spurious interrupt occurs
1502 * there is no way to distinguish this on an SB2. So if you have
1503 * an SB2 and experience problems, buy an SB16 (it's only $40).
1504 */
1505 int
1506 sbdsp_intr(arg)
1507 void *arg;
1508 {
1509 struct sbdsp_softc *sc = arg;
1510 u_char irq;
1511
1512 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1513 sc->sc_intr8, sc->sc_intr16));
1514 if (ISSB16CLASS(sc)) {
1515 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1516 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1517 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1518 return 0;
1519 }
1520 } else {
1521 /* XXXX CHECK FOR INTERRUPT */
1522 irq = SBP_IRQ_DMA8;
1523 }
1524
1525 sc->sc_interrupts++;
1526 delay(10); /* XXX why? */
1527
1528 /* clear interrupt */
1529 if (irq & SBP_IRQ_DMA8) {
1530 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1531 if (sc->sc_intr8)
1532 sc->sc_intr8(arg);
1533 }
1534 if (irq & SBP_IRQ_DMA16) {
1535 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1536 if (sc->sc_intr16)
1537 sc->sc_intr16(arg);
1538 }
1539 #if NMPU > 0
1540 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1541 mpu_intr(sc->sc_mpudev);
1542 }
1543 #endif
1544 return 1;
1545 }
1546
1547 /* Like val & mask, but make sure the result is correctly rounded. */
1548 #define MAXVAL 256
1549 static int
1550 sbdsp_adjust(val, mask)
1551 int val, mask;
1552 {
1553 val += (MAXVAL - mask) >> 1;
1554 if (val >= MAXVAL)
1555 val = MAXVAL-1;
1556 return val & mask;
1557 }
1558
1559 void
1560 sbdsp_set_mixer_gain(sc, port)
1561 struct sbdsp_softc *sc;
1562 int port;
1563 {
1564 int src, gain;
1565
1566 switch(sc->sc_mixer_model) {
1567 case SBM_NONE:
1568 return;
1569 case SBM_CT1335:
1570 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1571 switch(port) {
1572 case SB_MASTER_VOL:
1573 src = SBP_1335_MASTER_VOL;
1574 break;
1575 case SB_MIDI_VOL:
1576 src = SBP_1335_MIDI_VOL;
1577 break;
1578 case SB_CD_VOL:
1579 src = SBP_1335_CD_VOL;
1580 break;
1581 case SB_VOICE_VOL:
1582 src = SBP_1335_VOICE_VOL;
1583 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1584 break;
1585 default:
1586 return;
1587 }
1588 sbdsp_mix_write(sc, src, gain);
1589 break;
1590 case SBM_CT1345:
1591 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1592 sc->gain[port][SB_RIGHT]);
1593 switch (port) {
1594 case SB_MIC_VOL:
1595 src = SBP_MIC_VOL;
1596 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1597 break;
1598 case SB_MASTER_VOL:
1599 src = SBP_MASTER_VOL;
1600 break;
1601 case SB_LINE_IN_VOL:
1602 src = SBP_LINE_VOL;
1603 break;
1604 case SB_VOICE_VOL:
1605 src = SBP_VOICE_VOL;
1606 break;
1607 case SB_MIDI_VOL:
1608 src = SBP_MIDI_VOL;
1609 break;
1610 case SB_CD_VOL:
1611 src = SBP_CD_VOL;
1612 break;
1613 default:
1614 return;
1615 }
1616 sbdsp_mix_write(sc, src, gain);
1617 break;
1618 case SBM_CT1XX5:
1619 case SBM_CT1745:
1620 switch (port) {
1621 case SB_MIC_VOL:
1622 src = SB16P_MIC_L;
1623 break;
1624 case SB_MASTER_VOL:
1625 src = SB16P_MASTER_L;
1626 break;
1627 case SB_LINE_IN_VOL:
1628 src = SB16P_LINE_L;
1629 break;
1630 case SB_VOICE_VOL:
1631 src = SB16P_VOICE_L;
1632 break;
1633 case SB_MIDI_VOL:
1634 src = SB16P_MIDI_L;
1635 break;
1636 case SB_CD_VOL:
1637 src = SB16P_CD_L;
1638 break;
1639 case SB_INPUT_GAIN:
1640 src = SB16P_INPUT_GAIN_L;
1641 break;
1642 case SB_OUTPUT_GAIN:
1643 src = SB16P_OUTPUT_GAIN_L;
1644 break;
1645 case SB_TREBLE:
1646 src = SB16P_TREBLE_L;
1647 break;
1648 case SB_BASS:
1649 src = SB16P_BASS_L;
1650 break;
1651 case SB_PCSPEAKER:
1652 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1653 return;
1654 default:
1655 return;
1656 }
1657 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1658 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1659 break;
1660 }
1661 }
1662
1663 int
1664 sbdsp_mixer_set_port(addr, cp)
1665 void *addr;
1666 mixer_ctrl_t *cp;
1667 {
1668 struct sbdsp_softc *sc = addr;
1669 int lgain, rgain;
1670 int mask, bits;
1671 int lmask, rmask, lbits, rbits;
1672 int mute, swap;
1673
1674 if (sc->sc_open == SB_OPEN_MIDI)
1675 return EBUSY;
1676
1677 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1678 cp->un.value.num_channels));
1679
1680 if (sc->sc_mixer_model == SBM_NONE)
1681 return EINVAL;
1682
1683 switch (cp->dev) {
1684 case SB_TREBLE:
1685 case SB_BASS:
1686 if (sc->sc_mixer_model == SBM_CT1345 ||
1687 sc->sc_mixer_model == SBM_CT1XX5) {
1688 if (cp->type != AUDIO_MIXER_ENUM)
1689 return EINVAL;
1690 switch (cp->dev) {
1691 case SB_TREBLE:
1692 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1693 return 0;
1694 case SB_BASS:
1695 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1696 return 0;
1697 }
1698 }
1699 case SB_PCSPEAKER:
1700 case SB_INPUT_GAIN:
1701 case SB_OUTPUT_GAIN:
1702 if (!ISSBM1745(sc))
1703 return EINVAL;
1704 case SB_MIC_VOL:
1705 case SB_LINE_IN_VOL:
1706 if (sc->sc_mixer_model == SBM_CT1335)
1707 return EINVAL;
1708 case SB_VOICE_VOL:
1709 case SB_MIDI_VOL:
1710 case SB_CD_VOL:
1711 case SB_MASTER_VOL:
1712 if (cp->type != AUDIO_MIXER_VALUE)
1713 return EINVAL;
1714
1715 /*
1716 * All the mixer ports are stereo except for the microphone.
1717 * If we get a single-channel gain value passed in, then we
1718 * duplicate it to both left and right channels.
1719 */
1720
1721 switch (cp->dev) {
1722 case SB_MIC_VOL:
1723 if (cp->un.value.num_channels != 1)
1724 return EINVAL;
1725
1726 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1727 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1728 break;
1729 case SB_PCSPEAKER:
1730 if (cp->un.value.num_channels != 1)
1731 return EINVAL;
1732 /* fall into */
1733 case SB_INPUT_GAIN:
1734 case SB_OUTPUT_GAIN:
1735 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1736 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1737 break;
1738 default:
1739 switch (cp->un.value.num_channels) {
1740 case 1:
1741 lgain = rgain = SB_ADJUST_GAIN(sc,
1742 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1743 break;
1744 case 2:
1745 if (sc->sc_mixer_model == SBM_CT1335)
1746 return EINVAL;
1747 lgain = SB_ADJUST_GAIN(sc,
1748 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1749 rgain = SB_ADJUST_GAIN(sc,
1750 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1751 break;
1752 default:
1753 return EINVAL;
1754 }
1755 break;
1756 }
1757 sc->gain[cp->dev][SB_LEFT] = lgain;
1758 sc->gain[cp->dev][SB_RIGHT] = rgain;
1759
1760 sbdsp_set_mixer_gain(sc, cp->dev);
1761 break;
1762
1763 case SB_RECORD_SOURCE:
1764 if (ISSBM1745(sc)) {
1765 if (cp->type != AUDIO_MIXER_SET)
1766 return EINVAL;
1767 return sbdsp_set_in_ports(sc, cp->un.mask);
1768 } else {
1769 if (cp->type != AUDIO_MIXER_ENUM)
1770 return EINVAL;
1771 sc->in_port = cp->un.ord;
1772 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1773 }
1774 break;
1775
1776 case SB_AGC:
1777 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1778 return EINVAL;
1779 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1780 break;
1781
1782 case SB_CD_OUT_MUTE:
1783 mask = SB16P_SW_CD;
1784 goto omute;
1785 case SB_MIC_OUT_MUTE:
1786 mask = SB16P_SW_MIC;
1787 goto omute;
1788 case SB_LINE_OUT_MUTE:
1789 mask = SB16P_SW_LINE;
1790 omute:
1791 if (cp->type != AUDIO_MIXER_ENUM)
1792 return EINVAL;
1793 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1794 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1795 if (cp->un.ord)
1796 bits = bits & ~mask;
1797 else
1798 bits = bits | mask;
1799 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1800 break;
1801
1802 case SB_MIC_IN_MUTE:
1803 case SB_MIC_SWAP:
1804 lmask = rmask = SB16P_SW_MIC;
1805 goto imute;
1806 case SB_CD_IN_MUTE:
1807 case SB_CD_SWAP:
1808 lmask = SB16P_SW_CD_L;
1809 rmask = SB16P_SW_CD_R;
1810 goto imute;
1811 case SB_LINE_IN_MUTE:
1812 case SB_LINE_SWAP:
1813 lmask = SB16P_SW_LINE_L;
1814 rmask = SB16P_SW_LINE_R;
1815 goto imute;
1816 case SB_MIDI_IN_MUTE:
1817 case SB_MIDI_SWAP:
1818 lmask = SB16P_SW_MIDI_L;
1819 rmask = SB16P_SW_MIDI_R;
1820 imute:
1821 if (cp->type != AUDIO_MIXER_ENUM)
1822 return EINVAL;
1823 mask = lmask | rmask;
1824 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1825 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1826 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1827 if (SB_IS_IN_MUTE(cp->dev)) {
1828 mute = cp->dev;
1829 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1830 } else {
1831 swap = cp->dev;
1832 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1833 }
1834 if (sc->gain[swap][SB_LR]) {
1835 mask = lmask;
1836 lmask = rmask;
1837 rmask = mask;
1838 }
1839 if (!sc->gain[mute][SB_LR]) {
1840 lbits = lbits | lmask;
1841 rbits = rbits | rmask;
1842 }
1843 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1844 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1845 break;
1846
1847 default:
1848 return EINVAL;
1849 }
1850
1851 return 0;
1852 }
1853
1854 int
1855 sbdsp_mixer_get_port(addr, cp)
1856 void *addr;
1857 mixer_ctrl_t *cp;
1858 {
1859 struct sbdsp_softc *sc = addr;
1860
1861 if (sc->sc_open == SB_OPEN_MIDI)
1862 return EBUSY;
1863
1864 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1865
1866 if (sc->sc_mixer_model == SBM_NONE)
1867 return EINVAL;
1868
1869 switch (cp->dev) {
1870 case SB_TREBLE:
1871 case SB_BASS:
1872 if (sc->sc_mixer_model == SBM_CT1345 ||
1873 sc->sc_mixer_model == SBM_CT1XX5) {
1874 switch (cp->dev) {
1875 case SB_TREBLE:
1876 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1877 return 0;
1878 case SB_BASS:
1879 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1880 return 0;
1881 }
1882 }
1883 case SB_PCSPEAKER:
1884 case SB_INPUT_GAIN:
1885 case SB_OUTPUT_GAIN:
1886 if (!ISSBM1745(sc))
1887 return EINVAL;
1888 case SB_MIC_VOL:
1889 case SB_LINE_IN_VOL:
1890 if (sc->sc_mixer_model == SBM_CT1335)
1891 return EINVAL;
1892 case SB_VOICE_VOL:
1893 case SB_MIDI_VOL:
1894 case SB_CD_VOL:
1895 case SB_MASTER_VOL:
1896 switch (cp->dev) {
1897 case SB_MIC_VOL:
1898 case SB_PCSPEAKER:
1899 if (cp->un.value.num_channels != 1)
1900 return EINVAL;
1901 /* fall into */
1902 default:
1903 switch (cp->un.value.num_channels) {
1904 case 1:
1905 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1906 sc->gain[cp->dev][SB_LEFT];
1907 break;
1908 case 2:
1909 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1910 sc->gain[cp->dev][SB_LEFT];
1911 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1912 sc->gain[cp->dev][SB_RIGHT];
1913 break;
1914 default:
1915 return EINVAL;
1916 }
1917 break;
1918 }
1919 break;
1920
1921 case SB_RECORD_SOURCE:
1922 if (ISSBM1745(sc))
1923 cp->un.mask = sc->in_mask;
1924 else
1925 cp->un.ord = sc->in_port;
1926 break;
1927
1928 case SB_AGC:
1929 if (!ISSBM1745(sc))
1930 return EINVAL;
1931 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1932 break;
1933
1934 case SB_CD_IN_MUTE:
1935 case SB_MIC_IN_MUTE:
1936 case SB_LINE_IN_MUTE:
1937 case SB_MIDI_IN_MUTE:
1938 case SB_CD_SWAP:
1939 case SB_MIC_SWAP:
1940 case SB_LINE_SWAP:
1941 case SB_MIDI_SWAP:
1942 case SB_CD_OUT_MUTE:
1943 case SB_MIC_OUT_MUTE:
1944 case SB_LINE_OUT_MUTE:
1945 cp->un.ord = sc->gain[cp->dev][SB_LR];
1946 break;
1947
1948 default:
1949 return EINVAL;
1950 }
1951
1952 return 0;
1953 }
1954
1955 int
1956 sbdsp_mixer_query_devinfo(addr, dip)
1957 void *addr;
1958 mixer_devinfo_t *dip;
1959 {
1960 struct sbdsp_softc *sc = addr;
1961 int chan, class, is1745;
1962
1963 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1964 sc->sc_mixer_model, dip->index));
1965
1966 if (sc->sc_mixer_model == SBM_NONE)
1967 return ENXIO;
1968
1969 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1970 is1745 = ISSBM1745(sc);
1971 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1972
1973 switch (dip->index) {
1974 case SB_MASTER_VOL:
1975 dip->type = AUDIO_MIXER_VALUE;
1976 dip->mixer_class = SB_OUTPUT_CLASS;
1977 dip->prev = dip->next = AUDIO_MIXER_LAST;
1978 strcpy(dip->label.name, AudioNmaster);
1979 dip->un.v.num_channels = chan;
1980 strcpy(dip->un.v.units.name, AudioNvolume);
1981 return 0;
1982 case SB_MIDI_VOL:
1983 dip->type = AUDIO_MIXER_VALUE;
1984 dip->mixer_class = class;
1985 dip->prev = AUDIO_MIXER_LAST;
1986 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1987 strcpy(dip->label.name, AudioNfmsynth);
1988 dip->un.v.num_channels = chan;
1989 strcpy(dip->un.v.units.name, AudioNvolume);
1990 return 0;
1991 case SB_CD_VOL:
1992 dip->type = AUDIO_MIXER_VALUE;
1993 dip->mixer_class = class;
1994 dip->prev = AUDIO_MIXER_LAST;
1995 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1996 strcpy(dip->label.name, AudioNcd);
1997 dip->un.v.num_channels = chan;
1998 strcpy(dip->un.v.units.name, AudioNvolume);
1999 return 0;
2000 case SB_VOICE_VOL:
2001 dip->type = AUDIO_MIXER_VALUE;
2002 dip->mixer_class = class;
2003 dip->prev = AUDIO_MIXER_LAST;
2004 dip->next = AUDIO_MIXER_LAST;
2005 strcpy(dip->label.name, AudioNdac);
2006 dip->un.v.num_channels = chan;
2007 strcpy(dip->un.v.units.name, AudioNvolume);
2008 return 0;
2009 case SB_OUTPUT_CLASS:
2010 dip->type = AUDIO_MIXER_CLASS;
2011 dip->mixer_class = SB_OUTPUT_CLASS;
2012 dip->next = dip->prev = AUDIO_MIXER_LAST;
2013 strcpy(dip->label.name, AudioCoutputs);
2014 return 0;
2015 }
2016
2017 if (sc->sc_mixer_model == SBM_CT1335)
2018 return ENXIO;
2019
2020 switch (dip->index) {
2021 case SB_MIC_VOL:
2022 dip->type = AUDIO_MIXER_VALUE;
2023 dip->mixer_class = class;
2024 dip->prev = AUDIO_MIXER_LAST;
2025 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2026 strcpy(dip->label.name, AudioNmicrophone);
2027 dip->un.v.num_channels = 1;
2028 strcpy(dip->un.v.units.name, AudioNvolume);
2029 return 0;
2030
2031 case SB_LINE_IN_VOL:
2032 dip->type = AUDIO_MIXER_VALUE;
2033 dip->mixer_class = class;
2034 dip->prev = AUDIO_MIXER_LAST;
2035 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2036 strcpy(dip->label.name, AudioNline);
2037 dip->un.v.num_channels = 2;
2038 strcpy(dip->un.v.units.name, AudioNvolume);
2039 return 0;
2040
2041 case SB_RECORD_SOURCE:
2042 dip->mixer_class = SB_RECORD_CLASS;
2043 dip->prev = dip->next = AUDIO_MIXER_LAST;
2044 strcpy(dip->label.name, AudioNsource);
2045 if (ISSBM1745(sc)) {
2046 dip->type = AUDIO_MIXER_SET;
2047 dip->un.s.num_mem = 4;
2048 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2049 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2050 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2051 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2052 strcpy(dip->un.s.member[2].label.name, AudioNline);
2053 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2054 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2055 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2056 } else {
2057 dip->type = AUDIO_MIXER_ENUM;
2058 dip->un.e.num_mem = 3;
2059 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2060 dip->un.e.member[0].ord = SB_MIC_VOL;
2061 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2062 dip->un.e.member[1].ord = SB_CD_VOL;
2063 strcpy(dip->un.e.member[2].label.name, AudioNline);
2064 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2065 }
2066 return 0;
2067
2068 case SB_BASS:
2069 dip->prev = dip->next = AUDIO_MIXER_LAST;
2070 strcpy(dip->label.name, AudioNbass);
2071 if (sc->sc_mixer_model == SBM_CT1745) {
2072 dip->type = AUDIO_MIXER_VALUE;
2073 dip->mixer_class = SB_EQUALIZATION_CLASS;
2074 dip->un.v.num_channels = 2;
2075 strcpy(dip->un.v.units.name, AudioNbass);
2076 } else {
2077 dip->type = AUDIO_MIXER_ENUM;
2078 dip->mixer_class = SB_INPUT_CLASS;
2079 dip->un.e.num_mem = 2;
2080 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2081 dip->un.e.member[0].ord = 0;
2082 strcpy(dip->un.e.member[1].label.name, AudioNon);
2083 dip->un.e.member[1].ord = 1;
2084 }
2085 return 0;
2086
2087 case SB_TREBLE:
2088 dip->prev = dip->next = AUDIO_MIXER_LAST;
2089 strcpy(dip->label.name, AudioNtreble);
2090 if (sc->sc_mixer_model == SBM_CT1745) {
2091 dip->type = AUDIO_MIXER_VALUE;
2092 dip->mixer_class = SB_EQUALIZATION_CLASS;
2093 dip->un.v.num_channels = 2;
2094 strcpy(dip->un.v.units.name, AudioNtreble);
2095 } else {
2096 dip->type = AUDIO_MIXER_ENUM;
2097 dip->mixer_class = SB_INPUT_CLASS;
2098 dip->un.e.num_mem = 2;
2099 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2100 dip->un.e.member[0].ord = 0;
2101 strcpy(dip->un.e.member[1].label.name, AudioNon);
2102 dip->un.e.member[1].ord = 1;
2103 }
2104 return 0;
2105
2106 case SB_RECORD_CLASS: /* record source class */
2107 dip->type = AUDIO_MIXER_CLASS;
2108 dip->mixer_class = SB_RECORD_CLASS;
2109 dip->next = dip->prev = AUDIO_MIXER_LAST;
2110 strcpy(dip->label.name, AudioCrecord);
2111 return 0;
2112
2113 case SB_INPUT_CLASS:
2114 dip->type = AUDIO_MIXER_CLASS;
2115 dip->mixer_class = SB_INPUT_CLASS;
2116 dip->next = dip->prev = AUDIO_MIXER_LAST;
2117 strcpy(dip->label.name, AudioCinputs);
2118 return 0;
2119
2120 }
2121
2122 if (sc->sc_mixer_model == SBM_CT1345)
2123 return ENXIO;
2124
2125 switch(dip->index) {
2126 case SB_PCSPEAKER:
2127 dip->type = AUDIO_MIXER_VALUE;
2128 dip->mixer_class = SB_INPUT_CLASS;
2129 dip->prev = dip->next = AUDIO_MIXER_LAST;
2130 strcpy(dip->label.name, "pc_speaker");
2131 dip->un.v.num_channels = 1;
2132 strcpy(dip->un.v.units.name, AudioNvolume);
2133 return 0;
2134
2135 case SB_INPUT_GAIN:
2136 dip->type = AUDIO_MIXER_VALUE;
2137 dip->mixer_class = SB_INPUT_CLASS;
2138 dip->prev = dip->next = AUDIO_MIXER_LAST;
2139 strcpy(dip->label.name, AudioNinput);
2140 dip->un.v.num_channels = 2;
2141 strcpy(dip->un.v.units.name, AudioNvolume);
2142 return 0;
2143
2144 case SB_OUTPUT_GAIN:
2145 dip->type = AUDIO_MIXER_VALUE;
2146 dip->mixer_class = SB_OUTPUT_CLASS;
2147 dip->prev = dip->next = AUDIO_MIXER_LAST;
2148 strcpy(dip->label.name, AudioNoutput);
2149 dip->un.v.num_channels = 2;
2150 strcpy(dip->un.v.units.name, AudioNvolume);
2151 return 0;
2152
2153 case SB_AGC:
2154 dip->type = AUDIO_MIXER_ENUM;
2155 dip->mixer_class = SB_INPUT_CLASS;
2156 dip->prev = dip->next = AUDIO_MIXER_LAST;
2157 strcpy(dip->label.name, "agc");
2158 dip->un.e.num_mem = 2;
2159 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2160 dip->un.e.member[0].ord = 0;
2161 strcpy(dip->un.e.member[1].label.name, AudioNon);
2162 dip->un.e.member[1].ord = 1;
2163 return 0;
2164
2165 case SB_EQUALIZATION_CLASS:
2166 dip->type = AUDIO_MIXER_CLASS;
2167 dip->mixer_class = SB_EQUALIZATION_CLASS;
2168 dip->next = dip->prev = AUDIO_MIXER_LAST;
2169 strcpy(dip->label.name, AudioCequalization);
2170 return 0;
2171
2172 case SB_CD_IN_MUTE:
2173 dip->prev = SB_CD_VOL;
2174 dip->next = SB_CD_SWAP;
2175 dip->mixer_class = SB_INPUT_CLASS;
2176 goto mute;
2177
2178 case SB_MIC_IN_MUTE:
2179 dip->prev = SB_MIC_VOL;
2180 dip->next = SB_MIC_SWAP;
2181 dip->mixer_class = SB_INPUT_CLASS;
2182 goto mute;
2183
2184 case SB_LINE_IN_MUTE:
2185 dip->prev = SB_LINE_IN_VOL;
2186 dip->next = SB_LINE_SWAP;
2187 dip->mixer_class = SB_INPUT_CLASS;
2188 goto mute;
2189
2190 case SB_MIDI_IN_MUTE:
2191 dip->prev = SB_MIDI_VOL;
2192 dip->next = SB_MIDI_SWAP;
2193 dip->mixer_class = SB_INPUT_CLASS;
2194 goto mute;
2195
2196 case SB_CD_SWAP:
2197 dip->prev = SB_CD_IN_MUTE;
2198 dip->next = SB_CD_OUT_MUTE;
2199 goto swap;
2200
2201 case SB_MIC_SWAP:
2202 dip->prev = SB_MIC_IN_MUTE;
2203 dip->next = SB_MIC_OUT_MUTE;
2204 goto swap;
2205
2206 case SB_LINE_SWAP:
2207 dip->prev = SB_LINE_IN_MUTE;
2208 dip->next = SB_LINE_OUT_MUTE;
2209 goto swap;
2210
2211 case SB_MIDI_SWAP:
2212 dip->prev = SB_MIDI_IN_MUTE;
2213 dip->next = AUDIO_MIXER_LAST;
2214 swap:
2215 dip->mixer_class = SB_INPUT_CLASS;
2216 strcpy(dip->label.name, AudioNswap);
2217 goto mute1;
2218
2219 case SB_CD_OUT_MUTE:
2220 dip->prev = SB_CD_SWAP;
2221 dip->next = AUDIO_MIXER_LAST;
2222 dip->mixer_class = SB_OUTPUT_CLASS;
2223 goto mute;
2224
2225 case SB_MIC_OUT_MUTE:
2226 dip->prev = SB_MIC_SWAP;
2227 dip->next = AUDIO_MIXER_LAST;
2228 dip->mixer_class = SB_OUTPUT_CLASS;
2229 goto mute;
2230
2231 case SB_LINE_OUT_MUTE:
2232 dip->prev = SB_LINE_SWAP;
2233 dip->next = AUDIO_MIXER_LAST;
2234 dip->mixer_class = SB_OUTPUT_CLASS;
2235 mute:
2236 strcpy(dip->label.name, AudioNmute);
2237 mute1:
2238 dip->type = AUDIO_MIXER_ENUM;
2239 dip->un.e.num_mem = 2;
2240 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2241 dip->un.e.member[0].ord = 0;
2242 strcpy(dip->un.e.member[1].label.name, AudioNon);
2243 dip->un.e.member[1].ord = 1;
2244 return 0;
2245
2246 }
2247
2248 return ENXIO;
2249 }
2250
2251 void *
2252 sb_malloc(addr, direction, size, pool, flags)
2253 void *addr;
2254 int direction;
2255 size_t size;
2256 int pool, flags;
2257 {
2258 struct sbdsp_softc *sc = addr;
2259 int drq;
2260
2261 if (sc->sc_drq8 != -1)
2262 drq = sc->sc_drq8;
2263 else
2264 drq = sc->sc_drq16;
2265 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2266 }
2267
2268 void
2269 sb_free(addr, ptr, pool)
2270 void *addr;
2271 void *ptr;
2272 int pool;
2273 {
2274 isa_free(ptr, pool);
2275 }
2276
2277 size_t
2278 sb_round_buffersize(addr, direction, size)
2279 void *addr;
2280 int direction;
2281 size_t size;
2282 {
2283 if (size > MAX_ISADMA)
2284 size = MAX_ISADMA;
2285 return (size);
2286 }
2287
2288 int
2289 sb_mappage(addr, mem, off, prot)
2290 void *addr;
2291 void *mem;
2292 int off;
2293 int prot;
2294 {
2295 return isa_mappage(mem, off, prot);
2296 }
2297
2298 int
2299 sbdsp_get_props(addr)
2300 void *addr;
2301 {
2302 struct sbdsp_softc *sc = addr;
2303 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2304 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2305 }
2306
2307 #if NMIDI > 0
2308 /*
2309 * MIDI related routines.
2310 */
2311
2312 int
2313 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2314 void *addr;
2315 int flags;
2316 void (*iintr)__P((void *, int));
2317 void (*ointr)__P((void *));
2318 void *arg;
2319 {
2320 struct sbdsp_softc *sc = addr;
2321
2322 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2323
2324 if (sc->sc_open != SB_CLOSED)
2325 return EBUSY;
2326 if (sbdsp_reset(sc) != 0)
2327 return EIO;
2328
2329 sc->sc_open = SB_OPEN_MIDI;
2330 sc->sc_openflags = flags;
2331
2332 if (sc->sc_model >= SB_20)
2333 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2334 return EIO;
2335
2336 sc->sc_intr8 = sbdsp_midi_intr;
2337 sc->sc_intrm = iintr;
2338 sc->sc_argm = arg;
2339
2340 return 0;
2341 }
2342
2343 void
2344 sbdsp_midi_close(addr)
2345 void *addr;
2346 {
2347 struct sbdsp_softc *sc = addr;
2348
2349 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2350
2351 if (sc->sc_model >= SB_20)
2352 sbdsp_reset(sc); /* exit UART mode */
2353
2354 sc->sc_intrm = 0;
2355 sc->sc_open = SB_CLOSED;
2356 }
2357
2358 int
2359 sbdsp_midi_output(addr, d)
2360 void *addr;
2361 int d;
2362 {
2363 struct sbdsp_softc *sc = addr;
2364
2365 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2366 return EIO;
2367 if (sbdsp_wdsp(sc, d))
2368 return EIO;
2369 return 0;
2370 }
2371
2372 void
2373 sbdsp_midi_getinfo(addr, mi)
2374 void *addr;
2375 struct midi_info *mi;
2376 {
2377 struct sbdsp_softc *sc = addr;
2378
2379 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2380 mi->props = MIDI_PROP_CAN_INPUT;
2381 }
2382
2383 int
2384 sbdsp_midi_intr(addr)
2385 void *addr;
2386 {
2387 struct sbdsp_softc *sc = addr;
2388
2389 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2390 return (0);
2391 }
2392
2393 #endif
2394
2395