Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.102
      1 /*	$NetBSD: sbdsp.c,v 1.102 1999/11/01 18:12:20 augustss Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include "midi.h"
     84 #include "mpu.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/errno.h>
     89 #include <sys/ioctl.h>
     90 #include <sys/syslog.h>
     91 #include <sys/device.h>
     92 #include <sys/proc.h>
     93 #include <sys/buf.h>
     94 #include <vm/vm.h>
     95 
     96 #include <machine/cpu.h>
     97 #include <machine/intr.h>
     98 #include <machine/bus.h>
     99 
    100 #include <sys/audioio.h>
    101 #include <dev/audio_if.h>
    102 #include <dev/midi_if.h>
    103 #include <dev/mulaw.h>
    104 #include <dev/auconv.h>
    105 
    106 #include <dev/isa/isavar.h>
    107 #include <dev/isa/isadmavar.h>
    108 
    109 #include <dev/isa/sbreg.h>
    110 #include <dev/isa/sbdspvar.h>
    111 
    112 
    113 #ifdef AUDIO_DEBUG
    114 #define DPRINTF(x)	if (sbdspdebug) printf x
    115 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    116 int	sbdspdebug = 0;
    117 #else
    118 #define DPRINTF(x)
    119 #define DPRINTFN(n,x)
    120 #endif
    121 
    122 #ifndef SBDSP_NPOLL
    123 #define SBDSP_NPOLL 3000
    124 #endif
    125 
    126 struct {
    127 	int wdsp;
    128 	int rdsp;
    129 	int wmidi;
    130 } sberr;
    131 
    132 /*
    133  * Time constant routines follow.  See SBK, section 12.
    134  * Although they don't come out and say it (in the docs),
    135  * the card clearly uses a 1MHz countdown timer, as the
    136  * low-speed formula (p. 12-4) is:
    137  *	tc = 256 - 10^6 / sr
    138  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    139  * and a 256MHz clock is used:
    140  *	tc = 65536 - 256 * 10^ 6 / sr
    141  * Since we can only use the upper byte of the HS TC, the two formulae
    142  * are equivalent.  (Why didn't they say so?)  E.g.,
    143  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    144  *
    145  * The crossover point (from low- to high-speed modes) is different
    146  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    147  *
    148  *				SBPRO			SB20
    149  *				-----			--------
    150  * input ls min			4	KHz		4	KHz
    151  * input ls max			23	KHz		13	KHz
    152  * input hs max			44.1	KHz		15	KHz
    153  * output ls min		4	KHz		4	KHz
    154  * output ls max		23	KHz		23	KHz
    155  * output hs max		44.1	KHz		44.1	KHz
    156  */
    157 /* XXX Should we round the tc?
    158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    159 */
    160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    162 
    163 struct sbmode {
    164 	short	model;
    165 	u_char	channels;
    166 	u_char	precision;
    167 	u_short	lowrate, highrate;
    168 	u_char	cmd;
    169 	u_char	halt, cont;
    170 	u_char	cmdchan;
    171 };
    172 static struct sbmode sbpmodes[] = {
    173  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    174  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    175  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    176  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    181  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    182  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    183  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    184  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    185  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    186  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    187  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    188  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    189 #define PLAY16 15 /* must be the index of the next entry in the table */
    190  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    191  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    192  { -1 }
    193 };
    194 static struct sbmode sbrmodes[] = {
    195  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    196  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    197  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    198  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    200  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    201  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    202  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    206  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    207  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    208  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    209  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    210  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    211  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    212  { -1 }
    213 };
    214 
    215 void	sbversion __P((struct sbdsp_softc *));
    216 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    217 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    218 void	sbdsp_to __P((void *));
    219 void	sbdsp_pause __P((struct sbdsp_softc *));
    220 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    221 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    222 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    223 void	sbdsp_set_ifilter __P((void *, int));
    224 int	sbdsp_get_ifilter __P((void *));
    225 
    226 int	sbdsp_block_output __P((void *));
    227 int	sbdsp_block_input __P((void *));
    228 static	int sbdsp_adjust __P((int, int));
    229 
    230 int	sbdsp_midi_intr __P((void *));
    231 
    232 #ifdef AUDIO_DEBUG
    233 void	sb_printsc __P((struct sbdsp_softc *));
    234 
    235 void
    236 sb_printsc(sc)
    237 	struct sbdsp_softc *sc;
    238 {
    239 	int i;
    240 
    241 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
    242 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    243 	    sc->sc_drq8, sc->sc_drq16,
    244 	    sc->sc_iobase, sc->sc_irq);
    245 	printf("irate %d itc %x orate %d otc %x\n",
    246 	    sc->sc_i.rate, sc->sc_i.tc,
    247 	    sc->sc_o.rate, sc->sc_o.tc);
    248 	printf("spkron %u nintr %lu\n",
    249 	    sc->spkr_state, sc->sc_interrupts);
    250 	printf("intr8 %p intr16 %p\n",
    251 	    sc->sc_intr8, sc->sc_intr16);
    252 	printf("gain:");
    253 	for (i = 0; i < SB_NDEVS; i++)
    254 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    255 	printf("\n");
    256 }
    257 #endif /* AUDIO_DEBUG */
    258 
    259 /*
    260  * Probe / attach routines.
    261  */
    262 
    263 /*
    264  * Probe for the soundblaster hardware.
    265  */
    266 int
    267 sbdsp_probe(sc)
    268 	struct sbdsp_softc *sc;
    269 {
    270 
    271 	if (sbdsp_reset(sc) < 0) {
    272 		DPRINTF(("sbdsp: couldn't reset card\n"));
    273 		return 0;
    274 	}
    275 	/* if flags set, go and probe the jazz16 stuff */
    276 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    277 		sbdsp_jazz16_probe(sc);
    278 	else
    279 		sbversion(sc);
    280 	if (sc->sc_model == SB_UNK) {
    281 		/* Unknown SB model found. */
    282 		DPRINTF(("sbdsp: unknown SB model found\n"));
    283 		return 0;
    284 	}
    285 	return 1;
    286 }
    287 
    288 /*
    289  * Try add-on stuff for Jazz16.
    290  */
    291 void
    292 sbdsp_jazz16_probe(sc)
    293 	struct sbdsp_softc *sc;
    294 {
    295 	static u_char jazz16_irq_conf[16] = {
    296 	    -1, -1, 0x02, 0x03,
    297 	    -1, 0x01, -1, 0x04,
    298 	    -1, 0x02, 0x05, -1,
    299 	    -1, -1, -1, 0x06};
    300 	static u_char jazz16_drq_conf[8] = {
    301 	    -1, 0x01, -1, 0x02,
    302 	    -1, 0x03, -1, 0x04};
    303 
    304 	bus_space_tag_t iot = sc->sc_iot;
    305 	bus_space_handle_t ioh;
    306 
    307 	sbversion(sc);
    308 
    309 	DPRINTF(("jazz16 probe\n"));
    310 
    311 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    312 		DPRINTF(("bus map failed\n"));
    313 		return;
    314 	}
    315 
    316 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    317 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    318 		DPRINTF(("drq/irq check failed\n"));
    319 		goto done;		/* give up, we can't do it. */
    320 	}
    321 
    322 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    323 	delay(10000);			/* delay 10 ms */
    324 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    325 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    326 
    327 	if (sbdsp_reset(sc) < 0) {
    328 		DPRINTF(("sbdsp_reset check failed\n"));
    329 		goto done;		/* XXX? what else could we do? */
    330 	}
    331 
    332 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    333 		DPRINTF(("read16 setup failed\n"));
    334 		goto done;
    335 	}
    336 
    337 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    338 		DPRINTF(("read16 failed\n"));
    339 		goto done;
    340 	}
    341 
    342 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    343 	sc->sc_drq16 = sc->sc_drq8;
    344 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    345 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    346 		jazz16_drq_conf[sc->sc_drq8]) ||
    347 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    348 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    349 	} else {
    350 		DPRINTF(("jazz16 detected!\n"));
    351 		sc->sc_model = SB_JAZZ;
    352 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    353 	}
    354 
    355 done:
    356 	bus_space_unmap(iot, ioh, 1);
    357 }
    358 
    359 /*
    360  * Attach hardware to driver, attach hardware driver to audio
    361  * pseudo-device driver .
    362  */
    363 void
    364 sbdsp_attach(sc)
    365 	struct sbdsp_softc *sc;
    366 {
    367 	struct audio_params pparams, rparams;
    368 	int i;
    369 	u_int v;
    370 
    371 	pparams = audio_default;
    372 	rparams = audio_default;
    373 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    374 
    375 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    376 
    377 	if (sc->sc_mixer_model != SBM_NONE) {
    378 		/* Reset the mixer.*/
    379 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    380 		/* And set our own default values */
    381 		for (i = 0; i < SB_NDEVS; i++) {
    382 			switch(i) {
    383 			case SB_MIC_VOL:
    384 			case SB_LINE_IN_VOL:
    385 				v = 0;
    386 				break;
    387 			case SB_BASS:
    388 			case SB_TREBLE:
    389 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    390 				break;
    391 			case SB_CD_IN_MUTE:
    392 			case SB_MIC_IN_MUTE:
    393 			case SB_LINE_IN_MUTE:
    394 			case SB_MIDI_IN_MUTE:
    395 			case SB_CD_SWAP:
    396 			case SB_MIC_SWAP:
    397 			case SB_LINE_SWAP:
    398 			case SB_MIDI_SWAP:
    399 			case SB_CD_OUT_MUTE:
    400 			case SB_MIC_OUT_MUTE:
    401 			case SB_LINE_OUT_MUTE:
    402 				v = 0;
    403 				break;
    404 			default:
    405 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    406 				break;
    407 			}
    408 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    409 			sbdsp_set_mixer_gain(sc, i);
    410 		}
    411 		sc->in_filter = 0;	/* no filters turned on, please */
    412 	}
    413 
    414 	printf(": dsp v%d.%02d%s\n",
    415 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    416 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    417 
    418 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    419 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    420 	    sc->sc_drq8 != sc->sc_drq16;
    421 }
    422 
    423 void
    424 sbdsp_mix_write(sc, mixerport, val)
    425 	struct sbdsp_softc *sc;
    426 	int mixerport;
    427 	int val;
    428 {
    429 	bus_space_tag_t iot = sc->sc_iot;
    430 	bus_space_handle_t ioh = sc->sc_ioh;
    431 	int s;
    432 
    433 	s = splaudio();
    434 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    435 	delay(20);
    436 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    437 	delay(30);
    438 	splx(s);
    439 }
    440 
    441 int
    442 sbdsp_mix_read(sc, mixerport)
    443 	struct sbdsp_softc *sc;
    444 	int mixerport;
    445 {
    446 	bus_space_tag_t iot = sc->sc_iot;
    447 	bus_space_handle_t ioh = sc->sc_ioh;
    448 	int val;
    449 	int s;
    450 
    451 	s = splaudio();
    452 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    453 	delay(20);
    454 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    455 	delay(30);
    456 	splx(s);
    457 	return val;
    458 }
    459 
    460 /*
    461  * Various routines to interface to higher level audio driver
    462  */
    463 
    464 int
    465 sbdsp_query_encoding(addr, fp)
    466 	void *addr;
    467 	struct audio_encoding *fp;
    468 {
    469 	struct sbdsp_softc *sc = addr;
    470 	int emul;
    471 
    472 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    473 
    474 	switch (fp->index) {
    475 	case 0:
    476 		strcpy(fp->name, AudioEulinear);
    477 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    478 		fp->precision = 8;
    479 		fp->flags = 0;
    480 		return 0;
    481 	case 1:
    482 		strcpy(fp->name, AudioEmulaw);
    483 		fp->encoding = AUDIO_ENCODING_ULAW;
    484 		fp->precision = 8;
    485 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    486 		return 0;
    487 	case 2:
    488 		strcpy(fp->name, AudioEalaw);
    489 		fp->encoding = AUDIO_ENCODING_ALAW;
    490 		fp->precision = 8;
    491 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    492 		return 0;
    493 	case 3:
    494 		strcpy(fp->name, AudioEslinear);
    495 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    496 		fp->precision = 8;
    497 		fp->flags = emul;
    498 		return 0;
    499 	}
    500 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    501 		return EINVAL;
    502 
    503 	switch(fp->index) {
    504 	case 4:
    505 		strcpy(fp->name, AudioEslinear_le);
    506 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    507 		fp->precision = 16;
    508 		fp->flags = 0;
    509 		return 0;
    510 	case 5:
    511 		strcpy(fp->name, AudioEulinear_le);
    512 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    513 		fp->precision = 16;
    514 		fp->flags = emul;
    515 		return 0;
    516 	case 6:
    517 		strcpy(fp->name, AudioEslinear_be);
    518 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    519 		fp->precision = 16;
    520 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    521 		return 0;
    522 	case 7:
    523 		strcpy(fp->name, AudioEulinear_be);
    524 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    525 		fp->precision = 16;
    526 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    527 		return 0;
    528 	default:
    529 		return EINVAL;
    530 	}
    531 	return 0;
    532 }
    533 
    534 int
    535 sbdsp_set_params(addr, setmode, usemode, play, rec)
    536 	void *addr;
    537 	int setmode, usemode;
    538 	struct audio_params *play, *rec;
    539 {
    540 	struct sbdsp_softc *sc = addr;
    541 	struct sbmode *m;
    542 	u_int rate, tc, bmode;
    543 	void (*swcode) __P((void *, u_char *buf, int cnt));
    544 	int factor;
    545 	int model;
    546 	int chan;
    547 	struct audio_params *p;
    548 	int mode;
    549 
    550 	if (sc->sc_open == SB_OPEN_MIDI)
    551 		return EBUSY;
    552 
    553 	/* Later models work like SB16. */
    554 	model = min(sc->sc_model, SB_16);
    555 
    556 	/*
    557 	 * Prior to the SB16, we have only one clock, so make the sample
    558 	 * rates match.
    559 	 */
    560 	if (!ISSB16CLASS(sc) &&
    561 	    play->sample_rate != rec->sample_rate &&
    562 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    563 		if (setmode == AUMODE_PLAY) {
    564 			rec->sample_rate = play->sample_rate;
    565 			setmode |= AUMODE_RECORD;
    566 		} else if (setmode == AUMODE_RECORD) {
    567 			play->sample_rate = rec->sample_rate;
    568 			setmode |= AUMODE_PLAY;
    569 		} else
    570 			return (EINVAL);
    571 	}
    572 
    573 	/* Set first record info, then play info */
    574 	for (mode = AUMODE_RECORD; mode != -1;
    575 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    576 		if ((setmode & mode) == 0)
    577 			continue;
    578 
    579 		p = mode == AUMODE_PLAY ? play : rec;
    580 		/* Locate proper commands */
    581 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    582 		    m->model != -1; m++) {
    583 			if (model == m->model &&
    584 			    p->channels == m->channels &&
    585 			    p->precision == m->precision &&
    586 			    p->sample_rate >= m->lowrate &&
    587 			    p->sample_rate <= m->highrate)
    588 				break;
    589 		}
    590 		if (m->model == -1)
    591 			return EINVAL;
    592 		rate = p->sample_rate;
    593 		swcode = 0;
    594 		factor = 1;
    595 		tc = 1;
    596 		bmode = -1;
    597 		if (model == SB_16) {
    598 			switch (p->encoding) {
    599 			case AUDIO_ENCODING_SLINEAR_BE:
    600 				if (p->precision == 16)
    601 					swcode = swap_bytes;
    602 				/* fall into */
    603 			case AUDIO_ENCODING_SLINEAR_LE:
    604 				bmode = SB_BMODE_SIGNED;
    605 				break;
    606 			case AUDIO_ENCODING_ULINEAR_BE:
    607 				if (p->precision == 16)
    608 					swcode = swap_bytes;
    609 				/* fall into */
    610 			case AUDIO_ENCODING_ULINEAR_LE:
    611 				bmode = SB_BMODE_UNSIGNED;
    612 				break;
    613 			case AUDIO_ENCODING_ULAW:
    614 				if (mode == AUMODE_PLAY) {
    615 					swcode = mulaw_to_ulinear16_le;
    616 					factor = 2;
    617 					m = &sbpmodes[PLAY16];
    618 				} else
    619 					swcode = ulinear8_to_mulaw;
    620 				bmode = SB_BMODE_UNSIGNED;
    621 				break;
    622 			case AUDIO_ENCODING_ALAW:
    623 				if (mode == AUMODE_PLAY) {
    624 					swcode = alaw_to_ulinear16_le;
    625 					factor = 2;
    626 					m = &sbpmodes[PLAY16];
    627 				} else
    628 					swcode = ulinear8_to_alaw;
    629 				bmode = SB_BMODE_UNSIGNED;
    630 				break;
    631 			default:
    632 				return EINVAL;
    633 			}
    634 			if (p->channels == 2)
    635 				bmode |= SB_BMODE_STEREO;
    636 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    637 			switch (p->encoding) {
    638 			case AUDIO_ENCODING_SLINEAR_LE:
    639 				break;
    640 			case AUDIO_ENCODING_ULINEAR_LE:
    641 				swcode = change_sign16_le;
    642 				break;
    643 			case AUDIO_ENCODING_SLINEAR_BE:
    644 				swcode = swap_bytes;
    645 				break;
    646 			case AUDIO_ENCODING_ULINEAR_BE:
    647 				swcode = mode == AUMODE_PLAY ?
    648 					swap_bytes_change_sign16_le :
    649 					change_sign16_swap_bytes_le;
    650 				break;
    651 			case AUDIO_ENCODING_ULAW:
    652 				swcode = mode == AUMODE_PLAY ?
    653 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    654 				break;
    655 			case AUDIO_ENCODING_ALAW:
    656 				swcode = mode == AUMODE_PLAY ?
    657 					alaw_to_ulinear8 : ulinear8_to_alaw;
    658 				break;
    659 			default:
    660 				return EINVAL;
    661 			}
    662 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    663 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    664 		} else {
    665 			switch (p->encoding) {
    666 			case AUDIO_ENCODING_SLINEAR_BE:
    667 			case AUDIO_ENCODING_SLINEAR_LE:
    668 				swcode = change_sign8;
    669 				break;
    670 			case AUDIO_ENCODING_ULINEAR_BE:
    671 			case AUDIO_ENCODING_ULINEAR_LE:
    672 				break;
    673 			case AUDIO_ENCODING_ULAW:
    674 				swcode = mode == AUMODE_PLAY ?
    675 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    676 				break;
    677 			case AUDIO_ENCODING_ALAW:
    678 				swcode = mode == AUMODE_PLAY ?
    679 					alaw_to_ulinear8 : ulinear8_to_alaw;
    680 				break;
    681 			default:
    682 				return EINVAL;
    683 			}
    684 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    685 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    686 		}
    687 
    688 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    689 		if (mode == AUMODE_PLAY) {
    690 			sc->sc_o.rate = rate;
    691 			sc->sc_o.tc = tc;
    692 			sc->sc_o.modep = m;
    693 			sc->sc_o.bmode = bmode;
    694 			sc->sc_o.dmachan = chan;
    695 		} else {
    696 			sc->sc_i.rate = rate;
    697 			sc->sc_i.tc = tc;
    698 			sc->sc_i.modep = m;
    699 			sc->sc_i.bmode = bmode;
    700 			sc->sc_i.dmachan = chan;
    701 		}
    702 
    703 		p->sw_code = swcode;
    704 		p->factor = factor;
    705 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    706 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    707 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    708 
    709 	}
    710 
    711 	if (sc->sc_fullduplex &&
    712 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    713 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    714 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    715 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    716 			/* Use 16 bit DMA for playing by expanding the samples. */
    717 			play->sw_code = linear8_to_linear16_le;
    718 			play->factor = 2;
    719 			sc->sc_o.modep = &sbpmodes[PLAY16];
    720 			sc->sc_o.dmachan = sc->sc_drq16;
    721 		} else {
    722 			return EINVAL;
    723 		}
    724 	}
    725 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    726 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    727 
    728 	return (0);
    729 }
    730 
    731 void
    732 sbdsp_set_ifilter(addr, which)
    733 	void *addr;
    734 	int which;
    735 {
    736 	struct sbdsp_softc *sc = addr;
    737 	int mixval;
    738 
    739 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    740 	switch (which) {
    741 	case 0:
    742 		mixval |= SBP_FILTER_OFF;
    743 		break;
    744 	case SB_TREBLE:
    745 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    746 		break;
    747 	case SB_BASS:
    748 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    749 		break;
    750 	default:
    751 		return;
    752 	}
    753 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    754 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    755 }
    756 
    757 int
    758 sbdsp_get_ifilter(addr)
    759 	void *addr;
    760 {
    761 	struct sbdsp_softc *sc = addr;
    762 
    763 	sc->in_filter =
    764 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    765 	switch (sc->in_filter) {
    766 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    767 		return SB_TREBLE;
    768 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    769 		return SB_BASS;
    770 	default:
    771 		return 0;
    772 	}
    773 }
    774 
    775 int
    776 sbdsp_set_in_ports(sc, mask)
    777 	struct sbdsp_softc *sc;
    778 	int mask;
    779 {
    780 	int bitsl, bitsr;
    781 	int sbport;
    782 
    783 	if (sc->sc_open == SB_OPEN_MIDI)
    784 		return EBUSY;
    785 
    786 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    787 		 sc->sc_mixer_model, mask));
    788 
    789 	switch(sc->sc_mixer_model) {
    790 	case SBM_NONE:
    791 		return EINVAL;
    792 	case SBM_CT1335:
    793 		if (mask != (1 << SB_MIC_VOL))
    794 			return EINVAL;
    795 		break;
    796 	case SBM_CT1345:
    797 		switch (mask) {
    798 		case 1 << SB_MIC_VOL:
    799 			sbport = SBP_FROM_MIC;
    800 			break;
    801 		case 1 << SB_LINE_IN_VOL:
    802 			sbport = SBP_FROM_LINE;
    803 			break;
    804 		case 1 << SB_CD_VOL:
    805 			sbport = SBP_FROM_CD;
    806 			break;
    807 		default:
    808 			return (EINVAL);
    809 		}
    810 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    811 		break;
    812 	case SBM_CT1XX5:
    813 	case SBM_CT1745:
    814 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    815 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    816 			return EINVAL;
    817 		bitsr = 0;
    818 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    819 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    820 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    821 		bitsl = SB_SRC_R_TO_L(bitsr);
    822 		if (mask & (1<<SB_MIC_VOL)) {
    823 			bitsl |= SBP_MIC_SRC;
    824 			bitsr |= SBP_MIC_SRC;
    825 		}
    826 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    827 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    828 		break;
    829 	}
    830 	sc->in_mask = mask;
    831 
    832 	return 0;
    833 }
    834 
    835 int
    836 sbdsp_speaker_ctl(addr, newstate)
    837 	void *addr;
    838 	int newstate;
    839 {
    840 	struct sbdsp_softc *sc = addr;
    841 
    842 	if (sc->sc_open == SB_OPEN_MIDI)
    843 		return EBUSY;
    844 
    845 	if ((newstate == SPKR_ON) &&
    846 	    (sc->spkr_state == SPKR_OFF)) {
    847 		sbdsp_spkron(sc);
    848 		sc->spkr_state = SPKR_ON;
    849 	}
    850 	if ((newstate == SPKR_OFF) &&
    851 	    (sc->spkr_state == SPKR_ON)) {
    852 		sbdsp_spkroff(sc);
    853 		sc->spkr_state = SPKR_OFF;
    854 	}
    855 	return 0;
    856 }
    857 
    858 int
    859 sbdsp_round_blocksize(addr, blk)
    860 	void *addr;
    861 	int blk;
    862 {
    863 	return blk & -4;	/* round to biggest sample size */
    864 }
    865 
    866 int
    867 sbdsp_open(addr, flags)
    868 	void *addr;
    869 	int flags;
    870 {
    871 	struct sbdsp_softc *sc = addr;
    872 	int error, state;
    873 
    874 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    875 
    876 	if (sc->sc_open != SB_CLOSED)
    877 		return (EBUSY);
    878 	sc->sc_open = SB_OPEN_AUDIO;
    879 	sc->sc_openflags = flags;
    880 	state = 0;
    881 
    882 	if (sc->sc_drq8 != -1) {
    883 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    884 		    MAX_ISADMA, BUS_DMA_NOWAIT);
    885 		if (error) {
    886 			printf("%s: can't create map for drq %d\n",
    887 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    888 			goto bad;
    889 		}
    890 		state |= 1;
    891 	}
    892 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    893 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    894 		    MAX_ISADMA, BUS_DMA_NOWAIT);
    895 		if (error) {
    896 			printf("%s: can't create map for drq %d\n",
    897 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    898 			goto bad;
    899 		}
    900 		state |= 2;
    901 	}
    902 
    903 	if (sbdsp_reset(sc) != 0) {
    904 		error = EIO;
    905 		goto bad;
    906 	}
    907 
    908 	if (ISSBPRO(sc) &&
    909 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    910 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    911 		/* we'll readjust when it's time for DMA. */
    912 	}
    913 
    914 	/*
    915 	 * Leave most things as they were; users must change things if
    916 	 * the previous process didn't leave it they way they wanted.
    917 	 * Looked at another way, it's easy to set up a configuration
    918 	 * in one program and leave it for another to inherit.
    919 	 */
    920 	DPRINTF(("sbdsp_open: opened\n"));
    921 
    922 	return (0);
    923 
    924 bad:
    925 	if (state & 1)
    926 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    927 	if (state & 2)
    928 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    929 
    930 	sc->sc_open = SB_CLOSED;
    931 	return (error);
    932 }
    933 
    934 void
    935 sbdsp_close(addr)
    936 	void *addr;
    937 {
    938 	struct sbdsp_softc *sc = addr;
    939 
    940 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    941 
    942 	sbdsp_spkroff(sc);
    943 	sc->spkr_state = SPKR_OFF;
    944 
    945 	sbdsp_halt_output(sc);
    946 	sbdsp_halt_input(sc);
    947 
    948 	sc->sc_intr8 = 0;
    949 	sc->sc_intr16 = 0;
    950 
    951 	if (sc->sc_drq8 != -1)
    952 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    953 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    954 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    955 
    956 	sc->sc_open = SB_CLOSED;
    957 	DPRINTF(("sbdsp_close: closed\n"));
    958 }
    959 
    960 /*
    961  * Lower-level routines
    962  */
    963 
    964 /*
    965  * Reset the card.
    966  * Return non-zero if the card isn't detected.
    967  */
    968 int
    969 sbdsp_reset(sc)
    970 	struct sbdsp_softc *sc;
    971 {
    972 	bus_space_tag_t iot = sc->sc_iot;
    973 	bus_space_handle_t ioh = sc->sc_ioh;
    974 
    975 	sc->sc_intr8 = 0;
    976 	sc->sc_intr16 = 0;
    977 	sc->sc_intrm = 0;
    978 
    979 	/*
    980 	 * See SBK, section 11.3.
    981 	 * We pulse a reset signal into the card.
    982 	 * Gee, what a brilliant hardware design.
    983 	 */
    984 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
    985 	delay(10);
    986 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
    987 	delay(30);
    988 	if (sbdsp_rdsp(sc) != SB_MAGIC)
    989 		return -1;
    990 
    991 	return 0;
    992 }
    993 
    994 /*
    995  * Write a byte to the dsp.
    996  * We are at the mercy of the card as we use a
    997  * polling loop and wait until it can take the byte.
    998  */
    999 int
   1000 sbdsp_wdsp(sc, v)
   1001 	struct sbdsp_softc *sc;
   1002 	int v;
   1003 {
   1004 	bus_space_tag_t iot = sc->sc_iot;
   1005 	bus_space_handle_t ioh = sc->sc_ioh;
   1006 	int i;
   1007 	u_char x;
   1008 
   1009 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1010 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1011 		delay(10);
   1012 		if ((x & SB_DSP_BUSY) == 0) {
   1013 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1014 			delay(10);
   1015 			return 0;
   1016 		}
   1017 	}
   1018 	++sberr.wdsp;
   1019 	return -1;
   1020 }
   1021 
   1022 /*
   1023  * Read a byte from the DSP, using polling.
   1024  */
   1025 int
   1026 sbdsp_rdsp(sc)
   1027 	struct sbdsp_softc *sc;
   1028 {
   1029 	bus_space_tag_t iot = sc->sc_iot;
   1030 	bus_space_handle_t ioh = sc->sc_ioh;
   1031 	int i;
   1032 	u_char x;
   1033 
   1034 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1035 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1036 		delay(10);
   1037 		if (x & SB_DSP_READY) {
   1038 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1039 			delay(10);
   1040 			return x;
   1041 		}
   1042 	}
   1043 	++sberr.rdsp;
   1044 	return -1;
   1045 }
   1046 
   1047 /*
   1048  * Doing certain things (like toggling the speaker) make
   1049  * the SB hardware go away for a while, so pause a little.
   1050  */
   1051 void
   1052 sbdsp_to(arg)
   1053 	void *arg;
   1054 {
   1055 	wakeup(arg);
   1056 }
   1057 
   1058 void
   1059 sbdsp_pause(sc)
   1060 	struct sbdsp_softc *sc;
   1061 {
   1062 	extern int hz;
   1063 
   1064 	timeout(sbdsp_to, sbdsp_to, hz/8);
   1065 	(void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
   1066 }
   1067 
   1068 /*
   1069  * Turn on the speaker.  The SBK documention says this operation
   1070  * can take up to 1/10 of a second.  Higher level layers should
   1071  * probably let the task sleep for this amount of time after
   1072  * calling here.  Otherwise, things might not work (because
   1073  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1074  *
   1075  * These engineers had their heads up their ass when
   1076  * they designed this card.
   1077  */
   1078 void
   1079 sbdsp_spkron(sc)
   1080 	struct sbdsp_softc *sc;
   1081 {
   1082 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1083 	sbdsp_pause(sc);
   1084 }
   1085 
   1086 /*
   1087  * Turn off the speaker; see comment above.
   1088  */
   1089 void
   1090 sbdsp_spkroff(sc)
   1091 	struct sbdsp_softc *sc;
   1092 {
   1093 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1094 	sbdsp_pause(sc);
   1095 }
   1096 
   1097 /*
   1098  * Read the version number out of the card.
   1099  * Store version information in the softc.
   1100  */
   1101 void
   1102 sbversion(sc)
   1103 	struct sbdsp_softc *sc;
   1104 {
   1105 	int v;
   1106 
   1107 	sc->sc_model = SB_UNK;
   1108 	sc->sc_version = 0;
   1109 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1110 		return;
   1111 	v = sbdsp_rdsp(sc) << 8;
   1112 	v |= sbdsp_rdsp(sc);
   1113 	if (v < 0)
   1114 		return;
   1115 	sc->sc_version = v;
   1116 	switch(SBVER_MAJOR(v)) {
   1117 	case 1:
   1118 		sc->sc_mixer_model = SBM_NONE;
   1119 		sc->sc_model = SB_1;
   1120 		break;
   1121 	case 2:
   1122 		/* Some SB2 have a mixer, some don't. */
   1123 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1124 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1125 		/* Check if we can read back the mixer values. */
   1126 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1127 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1128 			sc->sc_mixer_model = SBM_CT1335;
   1129 		else
   1130 			sc->sc_mixer_model = SBM_NONE;
   1131 		if (SBVER_MINOR(v) == 0)
   1132 			sc->sc_model = SB_20;
   1133 		else
   1134 			sc->sc_model = SB_2x;
   1135 		break;
   1136 	case 3:
   1137 		sc->sc_mixer_model = SBM_CT1345;
   1138 		sc->sc_model = SB_PRO;
   1139 		break;
   1140 	case 4:
   1141 #if 0
   1142 /* XXX This does not work */
   1143 		/* Most SB16 have a tone controls, but some don't. */
   1144 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1145 		/* Check if we can read back the mixer value. */
   1146 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1147 			sc->sc_mixer_model = SBM_CT1745;
   1148 		else
   1149 			sc->sc_mixer_model = SBM_CT1XX5;
   1150 #else
   1151 		sc->sc_mixer_model = SBM_CT1745;
   1152 #endif
   1153 #if 0
   1154 /* XXX figure out a good way of determining the model */
   1155 		/* XXX what about SB_32 */
   1156 		if (SBVER_MINOR(v) == 16)
   1157 			sc->sc_model = SB_64;
   1158 		else
   1159 #endif
   1160 			sc->sc_model = SB_16;
   1161 		break;
   1162 	}
   1163 }
   1164 
   1165 int
   1166 sbdsp_set_timeconst(sc, tc)
   1167 	struct sbdsp_softc *sc;
   1168 	int tc;
   1169 {
   1170 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1171 
   1172 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1173 	    sbdsp_wdsp(sc, tc) < 0)
   1174 		return EIO;
   1175 
   1176 	return 0;
   1177 }
   1178 
   1179 int
   1180 sbdsp16_set_rate(sc, cmd, rate)
   1181 	struct sbdsp_softc *sc;
   1182 	int cmd, rate;
   1183 {
   1184 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1185 
   1186 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1187 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1188 	    sbdsp_wdsp(sc, rate) < 0)
   1189 		return EIO;
   1190 	return 0;
   1191 }
   1192 
   1193 int
   1194 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1195 	void *addr;
   1196 	void *start, *end;
   1197 	int blksize;
   1198 	void (*intr) __P((void *));
   1199 	void *arg;
   1200 	struct audio_params *param;
   1201 {
   1202 	struct sbdsp_softc *sc = addr;
   1203 	int stereo = param->channels == 2;
   1204 	int width = param->precision * param->factor;
   1205 	int filter;
   1206 
   1207 #ifdef DIAGNOSTIC
   1208 	if (stereo && (blksize & 1)) {
   1209 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1210 		return (EIO);
   1211 	}
   1212 	if (sc->sc_i.run != SB_NOTRUNNING)
   1213 		printf("sbdsp_trigger_input: already running\n");
   1214 #endif
   1215 
   1216 	sc->sc_intrr = intr;
   1217 	sc->sc_argr = arg;
   1218 
   1219 	if (width == 8) {
   1220 #ifdef DIAGNOSTIC
   1221 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1222 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1223 			    width, sc->sc_i.dmachan);
   1224 			return (EIO);
   1225 		}
   1226 #endif
   1227 		sc->sc_intr8 = sbdsp_block_input;
   1228 	} else {
   1229 #ifdef DIAGNOSTIC
   1230 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1231 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1232 			    width, sc->sc_i.dmachan);
   1233 			return (EIO);
   1234 		}
   1235 #endif
   1236 		sc->sc_intr16 = sbdsp_block_input;
   1237 	}
   1238 
   1239 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1240 		blksize >>= 1;
   1241 	--blksize;
   1242 	sc->sc_i.blksize = blksize;
   1243 
   1244 	if (ISSBPRO(sc)) {
   1245 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1246 			return (EIO);
   1247 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1248 		sbdsp_mix_write(sc, SBP_INFILTER,
   1249 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1250 		    filter);
   1251 	}
   1252 
   1253 	if (ISSB16CLASS(sc)) {
   1254 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1255 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1256 				 sc->sc_i.rate));
   1257 			return (EIO);
   1258 		}
   1259 	} else {
   1260 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1261 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1262 				 sc->sc_i.rate));
   1263 			return (EIO);
   1264 		}
   1265 	}
   1266 
   1267 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
   1268 	    start, end, sc->sc_i.dmachan));
   1269 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1270 	    (char *)end - (char *)start, NULL,
   1271 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1272 
   1273 	return sbdsp_block_input(addr);
   1274 }
   1275 
   1276 int
   1277 sbdsp_block_input(addr)
   1278 	void *addr;
   1279 {
   1280 	struct sbdsp_softc *sc = addr;
   1281 	int cc = sc->sc_i.blksize;
   1282 
   1283 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1284 
   1285 	if (sc->sc_i.run != SB_NOTRUNNING)
   1286 		sc->sc_intrr(sc->sc_argr);
   1287 
   1288 	if (sc->sc_model == SB_1) {
   1289 		/* Non-looping mode, start DMA */
   1290 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1291 		    sbdsp_wdsp(sc, cc) < 0 ||
   1292 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1293 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1294 			return (EIO);
   1295 		}
   1296 		sc->sc_i.run = SB_RUNNING;
   1297 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1298 		/* Initialize looping PCM */
   1299 		if (ISSB16CLASS(sc)) {
   1300 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1301 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1302 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1303 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1304 			    sbdsp_wdsp(sc, cc) < 0 ||
   1305 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1306 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1307 				return (EIO);
   1308 			}
   1309 		} else {
   1310 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1311 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1312 			    sbdsp_wdsp(sc, cc) < 0 ||
   1313 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1314 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1315 				return (EIO);
   1316 			}
   1317 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1318 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1319 				return (EIO);
   1320 			}
   1321 		}
   1322 		sc->sc_i.run = SB_LOOPING;
   1323 	}
   1324 
   1325 	return (0);
   1326 }
   1327 
   1328 int
   1329 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1330 	void *addr;
   1331 	void *start, *end;
   1332 	int blksize;
   1333 	void (*intr) __P((void *));
   1334 	void *arg;
   1335 	struct audio_params *param;
   1336 {
   1337 	struct sbdsp_softc *sc = addr;
   1338 	int stereo = param->channels == 2;
   1339 	int width = param->precision * param->factor;
   1340 	int cmd;
   1341 
   1342 #ifdef DIAGNOSTIC
   1343 	if (stereo && (blksize & 1)) {
   1344 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1345 		return (EIO);
   1346 	}
   1347 	if (sc->sc_o.run != SB_NOTRUNNING)
   1348 		printf("sbdsp_trigger_output: already running\n");
   1349 #endif
   1350 
   1351 	sc->sc_intrp = intr;
   1352 	sc->sc_argp = arg;
   1353 
   1354 	if (width == 8) {
   1355 #ifdef DIAGNOSTIC
   1356 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1357 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1358 			    width, sc->sc_o.dmachan);
   1359 			return (EIO);
   1360 		}
   1361 #endif
   1362 		sc->sc_intr8 = sbdsp_block_output;
   1363 	} else {
   1364 #ifdef DIAGNOSTIC
   1365 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1366 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1367 			    width, sc->sc_o.dmachan);
   1368 			return (EIO);
   1369 		}
   1370 #endif
   1371 		sc->sc_intr16 = sbdsp_block_output;
   1372 	}
   1373 
   1374 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1375 		blksize >>= 1;
   1376 	--blksize;
   1377 	sc->sc_o.blksize = blksize;
   1378 
   1379 	if (ISSBPRO(sc)) {
   1380 		/* make sure we re-set stereo mixer bit when we start output. */
   1381 		sbdsp_mix_write(sc, SBP_STEREO,
   1382 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1383 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1384 		cmd = sc->sc_o.modep->cmdchan;
   1385 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1386 			return (EIO);
   1387 	}
   1388 
   1389 	if (ISSB16CLASS(sc)) {
   1390 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1391 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1392 				 sc->sc_o.rate));
   1393 			return (EIO);
   1394 		}
   1395 	} else {
   1396 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1397 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1398 				 sc->sc_o.rate));
   1399 			return (EIO);
   1400 		}
   1401 	}
   1402 
   1403 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
   1404 	    start, end, sc->sc_o.dmachan));
   1405 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1406 	    (char *)end - (char *)start, NULL,
   1407 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1408 
   1409 	return sbdsp_block_output(addr);
   1410 }
   1411 
   1412 int
   1413 sbdsp_block_output(addr)
   1414 	void *addr;
   1415 {
   1416 	struct sbdsp_softc *sc = addr;
   1417 	int cc = sc->sc_o.blksize;
   1418 
   1419 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1420 
   1421 	if (sc->sc_o.run != SB_NOTRUNNING)
   1422 		sc->sc_intrp(sc->sc_argp);
   1423 
   1424 	if (sc->sc_model == SB_1) {
   1425 		/* Non-looping mode, initialized. Start DMA and PCM */
   1426 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1427 		    sbdsp_wdsp(sc, cc) < 0 ||
   1428 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1429 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1430 			return (EIO);
   1431 		}
   1432 		sc->sc_o.run = SB_RUNNING;
   1433 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1434 		/* Initialize looping PCM */
   1435 		if (ISSB16CLASS(sc)) {
   1436 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1437 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1438 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1439 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1440 			    sbdsp_wdsp(sc, cc) < 0 ||
   1441 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1442 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1443 				return (EIO);
   1444 			}
   1445 		} else {
   1446 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1447 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1448 			    sbdsp_wdsp(sc, cc) < 0 ||
   1449 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1450 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1451 				return (EIO);
   1452 			}
   1453 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1454 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1455 				return (EIO);
   1456 			}
   1457 		}
   1458 		sc->sc_o.run = SB_LOOPING;
   1459 	}
   1460 
   1461 	return (0);
   1462 }
   1463 
   1464 int
   1465 sbdsp_halt_output(addr)
   1466 	void *addr;
   1467 {
   1468 	struct sbdsp_softc *sc = addr;
   1469 
   1470 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1471 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1472 			printf("sbdsp_halt_output: failed to halt\n");
   1473 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1474 		sc->sc_o.run = SB_NOTRUNNING;
   1475 	}
   1476 
   1477 	return (0);
   1478 }
   1479 
   1480 int
   1481 sbdsp_halt_input(addr)
   1482 	void *addr;
   1483 {
   1484 	struct sbdsp_softc *sc = addr;
   1485 
   1486 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1487 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1488 			printf("sbdsp_halt_input: failed to halt\n");
   1489 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1490 		sc->sc_i.run = SB_NOTRUNNING;
   1491 	}
   1492 
   1493 	return (0);
   1494 }
   1495 
   1496 /*
   1497  * Only the DSP unit on the sound blaster generates interrupts.
   1498  * There are three cases of interrupt: reception of a midi byte
   1499  * (when mode is enabled), completion of dma transmission, or
   1500  * completion of a dma reception.
   1501  *
   1502  * If there is interrupt sharing or a spurious interrupt occurs
   1503  * there is no way to distinguish this on an SB2.  So if you have
   1504  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1505  */
   1506 int
   1507 sbdsp_intr(arg)
   1508 	void *arg;
   1509 {
   1510 	struct sbdsp_softc *sc = arg;
   1511 	u_char irq;
   1512 
   1513 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1514 		   sc->sc_intr8, sc->sc_intr16));
   1515 	if (ISSB16CLASS(sc)) {
   1516 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1517 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1518 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1519 			return 0;
   1520 		}
   1521 	} else {
   1522 		/* XXXX CHECK FOR INTERRUPT */
   1523 		irq = SBP_IRQ_DMA8;
   1524 	}
   1525 
   1526 	sc->sc_interrupts++;
   1527 	delay(10);		/* XXX why? */
   1528 
   1529 	/* clear interrupt */
   1530 	if (irq & SBP_IRQ_DMA8) {
   1531 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1532 		if (sc->sc_intr8)
   1533 			sc->sc_intr8(arg);
   1534 	}
   1535 	if (irq & SBP_IRQ_DMA16) {
   1536 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1537 		if (sc->sc_intr16)
   1538 			sc->sc_intr16(arg);
   1539 	}
   1540 #if NMPU > 0
   1541 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1542 		mpu_intr(sc->sc_mpudev);
   1543 	}
   1544 #endif
   1545 	return 1;
   1546 }
   1547 
   1548 /* Like val & mask, but make sure the result is correctly rounded. */
   1549 #define MAXVAL 256
   1550 static int
   1551 sbdsp_adjust(val, mask)
   1552 	int val, mask;
   1553 {
   1554 	val += (MAXVAL - mask) >> 1;
   1555 	if (val >= MAXVAL)
   1556 		val = MAXVAL-1;
   1557 	return val & mask;
   1558 }
   1559 
   1560 void
   1561 sbdsp_set_mixer_gain(sc, port)
   1562 	struct sbdsp_softc *sc;
   1563 	int port;
   1564 {
   1565 	int src, gain;
   1566 
   1567 	switch(sc->sc_mixer_model) {
   1568 	case SBM_NONE:
   1569 		return;
   1570 	case SBM_CT1335:
   1571 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1572 		switch(port) {
   1573 		case SB_MASTER_VOL:
   1574 			src = SBP_1335_MASTER_VOL;
   1575 			break;
   1576 		case SB_MIDI_VOL:
   1577 			src = SBP_1335_MIDI_VOL;
   1578 			break;
   1579 		case SB_CD_VOL:
   1580 			src = SBP_1335_CD_VOL;
   1581 			break;
   1582 		case SB_VOICE_VOL:
   1583 			src = SBP_1335_VOICE_VOL;
   1584 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1585 			break;
   1586 		default:
   1587 			return;
   1588 		}
   1589 		sbdsp_mix_write(sc, src, gain);
   1590 		break;
   1591 	case SBM_CT1345:
   1592 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1593 				      sc->gain[port][SB_RIGHT]);
   1594 		switch (port) {
   1595 		case SB_MIC_VOL:
   1596 			src = SBP_MIC_VOL;
   1597 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1598 			break;
   1599 		case SB_MASTER_VOL:
   1600 			src = SBP_MASTER_VOL;
   1601 			break;
   1602 		case SB_LINE_IN_VOL:
   1603 			src = SBP_LINE_VOL;
   1604 			break;
   1605 		case SB_VOICE_VOL:
   1606 			src = SBP_VOICE_VOL;
   1607 			break;
   1608 		case SB_MIDI_VOL:
   1609 			src = SBP_MIDI_VOL;
   1610 			break;
   1611 		case SB_CD_VOL:
   1612 			src = SBP_CD_VOL;
   1613 			break;
   1614 		default:
   1615 			return;
   1616 		}
   1617 		sbdsp_mix_write(sc, src, gain);
   1618 		break;
   1619 	case SBM_CT1XX5:
   1620 	case SBM_CT1745:
   1621 		switch (port) {
   1622 		case SB_MIC_VOL:
   1623 			src = SB16P_MIC_L;
   1624 			break;
   1625 		case SB_MASTER_VOL:
   1626 			src = SB16P_MASTER_L;
   1627 			break;
   1628 		case SB_LINE_IN_VOL:
   1629 			src = SB16P_LINE_L;
   1630 			break;
   1631 		case SB_VOICE_VOL:
   1632 			src = SB16P_VOICE_L;
   1633 			break;
   1634 		case SB_MIDI_VOL:
   1635 			src = SB16P_MIDI_L;
   1636 			break;
   1637 		case SB_CD_VOL:
   1638 			src = SB16P_CD_L;
   1639 			break;
   1640 		case SB_INPUT_GAIN:
   1641 			src = SB16P_INPUT_GAIN_L;
   1642 			break;
   1643 		case SB_OUTPUT_GAIN:
   1644 			src = SB16P_OUTPUT_GAIN_L;
   1645 			break;
   1646 		case SB_TREBLE:
   1647 			src = SB16P_TREBLE_L;
   1648 			break;
   1649 		case SB_BASS:
   1650 			src = SB16P_BASS_L;
   1651 			break;
   1652 		case SB_PCSPEAKER:
   1653 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1654 			return;
   1655 		default:
   1656 			return;
   1657 		}
   1658 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1659 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1660 		break;
   1661 	}
   1662 }
   1663 
   1664 int
   1665 sbdsp_mixer_set_port(addr, cp)
   1666 	void *addr;
   1667 	mixer_ctrl_t *cp;
   1668 {
   1669 	struct sbdsp_softc *sc = addr;
   1670 	int lgain, rgain;
   1671 	int mask, bits;
   1672 	int lmask, rmask, lbits, rbits;
   1673 	int mute, swap;
   1674 
   1675 	if (sc->sc_open == SB_OPEN_MIDI)
   1676 		return EBUSY;
   1677 
   1678 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1679 	    cp->un.value.num_channels));
   1680 
   1681 	if (sc->sc_mixer_model == SBM_NONE)
   1682 		return EINVAL;
   1683 
   1684 	switch (cp->dev) {
   1685 	case SB_TREBLE:
   1686 	case SB_BASS:
   1687 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1688 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1689 			if (cp->type != AUDIO_MIXER_ENUM)
   1690 				return EINVAL;
   1691 			switch (cp->dev) {
   1692 			case SB_TREBLE:
   1693 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1694 				return 0;
   1695 			case SB_BASS:
   1696 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1697 				return 0;
   1698 			}
   1699 		}
   1700 	case SB_PCSPEAKER:
   1701 	case SB_INPUT_GAIN:
   1702 	case SB_OUTPUT_GAIN:
   1703 		if (!ISSBM1745(sc))
   1704 			return EINVAL;
   1705 	case SB_MIC_VOL:
   1706 	case SB_LINE_IN_VOL:
   1707 		if (sc->sc_mixer_model == SBM_CT1335)
   1708 			return EINVAL;
   1709 	case SB_VOICE_VOL:
   1710 	case SB_MIDI_VOL:
   1711 	case SB_CD_VOL:
   1712 	case SB_MASTER_VOL:
   1713 		if (cp->type != AUDIO_MIXER_VALUE)
   1714 			return EINVAL;
   1715 
   1716 		/*
   1717 		 * All the mixer ports are stereo except for the microphone.
   1718 		 * If we get a single-channel gain value passed in, then we
   1719 		 * duplicate it to both left and right channels.
   1720 		 */
   1721 
   1722 		switch (cp->dev) {
   1723 		case SB_MIC_VOL:
   1724 			if (cp->un.value.num_channels != 1)
   1725 				return EINVAL;
   1726 
   1727 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1728 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1729 			break;
   1730 		case SB_PCSPEAKER:
   1731 			if (cp->un.value.num_channels != 1)
   1732 				return EINVAL;
   1733 			/* fall into */
   1734 		case SB_INPUT_GAIN:
   1735 		case SB_OUTPUT_GAIN:
   1736 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1737 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1738 			break;
   1739 		default:
   1740 			switch (cp->un.value.num_channels) {
   1741 			case 1:
   1742 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1743 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1744 				break;
   1745 			case 2:
   1746 				if (sc->sc_mixer_model == SBM_CT1335)
   1747 					return EINVAL;
   1748 				lgain = SB_ADJUST_GAIN(sc,
   1749 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1750 				rgain = SB_ADJUST_GAIN(sc,
   1751 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1752 				break;
   1753 			default:
   1754 				return EINVAL;
   1755 			}
   1756 			break;
   1757 		}
   1758 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1759 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1760 
   1761 		sbdsp_set_mixer_gain(sc, cp->dev);
   1762 		break;
   1763 
   1764 	case SB_RECORD_SOURCE:
   1765 		if (ISSBM1745(sc)) {
   1766 			if (cp->type != AUDIO_MIXER_SET)
   1767 				return EINVAL;
   1768 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1769 		} else {
   1770 			if (cp->type != AUDIO_MIXER_ENUM)
   1771 				return EINVAL;
   1772 			sc->in_port = cp->un.ord;
   1773 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1774 		}
   1775 		break;
   1776 
   1777 	case SB_AGC:
   1778 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1779 			return EINVAL;
   1780 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1781 		break;
   1782 
   1783 	case SB_CD_OUT_MUTE:
   1784 		mask = SB16P_SW_CD;
   1785 		goto omute;
   1786 	case SB_MIC_OUT_MUTE:
   1787 		mask = SB16P_SW_MIC;
   1788 		goto omute;
   1789 	case SB_LINE_OUT_MUTE:
   1790 		mask = SB16P_SW_LINE;
   1791 	omute:
   1792 		if (cp->type != AUDIO_MIXER_ENUM)
   1793 			return EINVAL;
   1794 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1795 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1796 		if (cp->un.ord)
   1797 			bits = bits & ~mask;
   1798 		else
   1799 			bits = bits | mask;
   1800 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1801 		break;
   1802 
   1803 	case SB_MIC_IN_MUTE:
   1804 	case SB_MIC_SWAP:
   1805 		lmask = rmask = SB16P_SW_MIC;
   1806 		goto imute;
   1807 	case SB_CD_IN_MUTE:
   1808 	case SB_CD_SWAP:
   1809 		lmask = SB16P_SW_CD_L;
   1810 		rmask = SB16P_SW_CD_R;
   1811 		goto imute;
   1812 	case SB_LINE_IN_MUTE:
   1813 	case SB_LINE_SWAP:
   1814 		lmask = SB16P_SW_LINE_L;
   1815 		rmask = SB16P_SW_LINE_R;
   1816 		goto imute;
   1817 	case SB_MIDI_IN_MUTE:
   1818 	case SB_MIDI_SWAP:
   1819 		lmask = SB16P_SW_MIDI_L;
   1820 		rmask = SB16P_SW_MIDI_R;
   1821 	imute:
   1822 		if (cp->type != AUDIO_MIXER_ENUM)
   1823 			return EINVAL;
   1824 		mask = lmask | rmask;
   1825 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1826 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1827 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1828 		if (SB_IS_IN_MUTE(cp->dev)) {
   1829 			mute = cp->dev;
   1830 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1831 		} else {
   1832 			swap = cp->dev;
   1833 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1834 		}
   1835 		if (sc->gain[swap][SB_LR]) {
   1836 			mask = lmask;
   1837 			lmask = rmask;
   1838 			rmask = mask;
   1839 		}
   1840 		if (!sc->gain[mute][SB_LR]) {
   1841 			lbits = lbits | lmask;
   1842 			rbits = rbits | rmask;
   1843 		}
   1844 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1845 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1846 		break;
   1847 
   1848 	default:
   1849 		return EINVAL;
   1850 	}
   1851 
   1852 	return 0;
   1853 }
   1854 
   1855 int
   1856 sbdsp_mixer_get_port(addr, cp)
   1857 	void *addr;
   1858 	mixer_ctrl_t *cp;
   1859 {
   1860 	struct sbdsp_softc *sc = addr;
   1861 
   1862 	if (sc->sc_open == SB_OPEN_MIDI)
   1863 		return EBUSY;
   1864 
   1865 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1866 
   1867 	if (sc->sc_mixer_model == SBM_NONE)
   1868 		return EINVAL;
   1869 
   1870 	switch (cp->dev) {
   1871 	case SB_TREBLE:
   1872 	case SB_BASS:
   1873 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1874 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1875 			switch (cp->dev) {
   1876 			case SB_TREBLE:
   1877 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1878 				return 0;
   1879 			case SB_BASS:
   1880 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1881 				return 0;
   1882 			}
   1883 		}
   1884 	case SB_PCSPEAKER:
   1885 	case SB_INPUT_GAIN:
   1886 	case SB_OUTPUT_GAIN:
   1887 		if (!ISSBM1745(sc))
   1888 			return EINVAL;
   1889 	case SB_MIC_VOL:
   1890 	case SB_LINE_IN_VOL:
   1891 		if (sc->sc_mixer_model == SBM_CT1335)
   1892 			return EINVAL;
   1893 	case SB_VOICE_VOL:
   1894 	case SB_MIDI_VOL:
   1895 	case SB_CD_VOL:
   1896 	case SB_MASTER_VOL:
   1897 		switch (cp->dev) {
   1898 		case SB_MIC_VOL:
   1899 		case SB_PCSPEAKER:
   1900 			if (cp->un.value.num_channels != 1)
   1901 				return EINVAL;
   1902 			/* fall into */
   1903 		default:
   1904 			switch (cp->un.value.num_channels) {
   1905 			case 1:
   1906 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1907 					sc->gain[cp->dev][SB_LEFT];
   1908 				break;
   1909 			case 2:
   1910 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1911 					sc->gain[cp->dev][SB_LEFT];
   1912 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1913 					sc->gain[cp->dev][SB_RIGHT];
   1914 				break;
   1915 			default:
   1916 				return EINVAL;
   1917 			}
   1918 			break;
   1919 		}
   1920 		break;
   1921 
   1922 	case SB_RECORD_SOURCE:
   1923 		if (ISSBM1745(sc))
   1924 			cp->un.mask = sc->in_mask;
   1925 		else
   1926 			cp->un.ord = sc->in_port;
   1927 		break;
   1928 
   1929 	case SB_AGC:
   1930 		if (!ISSBM1745(sc))
   1931 			return EINVAL;
   1932 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1933 		break;
   1934 
   1935 	case SB_CD_IN_MUTE:
   1936 	case SB_MIC_IN_MUTE:
   1937 	case SB_LINE_IN_MUTE:
   1938 	case SB_MIDI_IN_MUTE:
   1939 	case SB_CD_SWAP:
   1940 	case SB_MIC_SWAP:
   1941 	case SB_LINE_SWAP:
   1942 	case SB_MIDI_SWAP:
   1943 	case SB_CD_OUT_MUTE:
   1944 	case SB_MIC_OUT_MUTE:
   1945 	case SB_LINE_OUT_MUTE:
   1946 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1947 		break;
   1948 
   1949 	default:
   1950 		return EINVAL;
   1951 	}
   1952 
   1953 	return 0;
   1954 }
   1955 
   1956 int
   1957 sbdsp_mixer_query_devinfo(addr, dip)
   1958 	void *addr;
   1959 	mixer_devinfo_t *dip;
   1960 {
   1961 	struct sbdsp_softc *sc = addr;
   1962 	int chan, class, is1745;
   1963 
   1964 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1965 		 sc->sc_mixer_model, dip->index));
   1966 
   1967 	if (sc->sc_mixer_model == SBM_NONE)
   1968 		return ENXIO;
   1969 
   1970 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1971 	is1745 = ISSBM1745(sc);
   1972 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1973 
   1974 	switch (dip->index) {
   1975 	case SB_MASTER_VOL:
   1976 		dip->type = AUDIO_MIXER_VALUE;
   1977 		dip->mixer_class = SB_OUTPUT_CLASS;
   1978 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1979 		strcpy(dip->label.name, AudioNmaster);
   1980 		dip->un.v.num_channels = chan;
   1981 		strcpy(dip->un.v.units.name, AudioNvolume);
   1982 		return 0;
   1983 	case SB_MIDI_VOL:
   1984 		dip->type = AUDIO_MIXER_VALUE;
   1985 		dip->mixer_class = class;
   1986 		dip->prev = AUDIO_MIXER_LAST;
   1987 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   1988 		strcpy(dip->label.name, AudioNfmsynth);
   1989 		dip->un.v.num_channels = chan;
   1990 		strcpy(dip->un.v.units.name, AudioNvolume);
   1991 		return 0;
   1992 	case SB_CD_VOL:
   1993 		dip->type = AUDIO_MIXER_VALUE;
   1994 		dip->mixer_class = class;
   1995 		dip->prev = AUDIO_MIXER_LAST;
   1996 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   1997 		strcpy(dip->label.name, AudioNcd);
   1998 		dip->un.v.num_channels = chan;
   1999 		strcpy(dip->un.v.units.name, AudioNvolume);
   2000 		return 0;
   2001 	case SB_VOICE_VOL:
   2002 		dip->type = AUDIO_MIXER_VALUE;
   2003 		dip->mixer_class = class;
   2004 		dip->prev = AUDIO_MIXER_LAST;
   2005 		dip->next = AUDIO_MIXER_LAST;
   2006 		strcpy(dip->label.name, AudioNdac);
   2007 		dip->un.v.num_channels = chan;
   2008 		strcpy(dip->un.v.units.name, AudioNvolume);
   2009 		return 0;
   2010 	case SB_OUTPUT_CLASS:
   2011 		dip->type = AUDIO_MIXER_CLASS;
   2012 		dip->mixer_class = SB_OUTPUT_CLASS;
   2013 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2014 		strcpy(dip->label.name, AudioCoutputs);
   2015 		return 0;
   2016 	}
   2017 
   2018 	if (sc->sc_mixer_model == SBM_CT1335)
   2019 		return ENXIO;
   2020 
   2021 	switch (dip->index) {
   2022 	case SB_MIC_VOL:
   2023 		dip->type = AUDIO_MIXER_VALUE;
   2024 		dip->mixer_class = class;
   2025 		dip->prev = AUDIO_MIXER_LAST;
   2026 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2027 		strcpy(dip->label.name, AudioNmicrophone);
   2028 		dip->un.v.num_channels = 1;
   2029 		strcpy(dip->un.v.units.name, AudioNvolume);
   2030 		return 0;
   2031 
   2032 	case SB_LINE_IN_VOL:
   2033 		dip->type = AUDIO_MIXER_VALUE;
   2034 		dip->mixer_class = class;
   2035 		dip->prev = AUDIO_MIXER_LAST;
   2036 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2037 		strcpy(dip->label.name, AudioNline);
   2038 		dip->un.v.num_channels = 2;
   2039 		strcpy(dip->un.v.units.name, AudioNvolume);
   2040 		return 0;
   2041 
   2042 	case SB_RECORD_SOURCE:
   2043 		dip->mixer_class = SB_RECORD_CLASS;
   2044 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2045 		strcpy(dip->label.name, AudioNsource);
   2046 		if (ISSBM1745(sc)) {
   2047 			dip->type = AUDIO_MIXER_SET;
   2048 			dip->un.s.num_mem = 4;
   2049 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2050 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2051 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2052 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2053 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2054 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2055 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2056 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2057 		} else {
   2058 			dip->type = AUDIO_MIXER_ENUM;
   2059 			dip->un.e.num_mem = 3;
   2060 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2061 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2062 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2063 			dip->un.e.member[1].ord = SB_CD_VOL;
   2064 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2065 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2066 		}
   2067 		return 0;
   2068 
   2069 	case SB_BASS:
   2070 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2071 		strcpy(dip->label.name, AudioNbass);
   2072 		if (sc->sc_mixer_model == SBM_CT1745) {
   2073 			dip->type = AUDIO_MIXER_VALUE;
   2074 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2075 			dip->un.v.num_channels = 2;
   2076 			strcpy(dip->un.v.units.name, AudioNbass);
   2077 		} else {
   2078 			dip->type = AUDIO_MIXER_ENUM;
   2079 			dip->mixer_class = SB_INPUT_CLASS;
   2080 			dip->un.e.num_mem = 2;
   2081 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2082 			dip->un.e.member[0].ord = 0;
   2083 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2084 			dip->un.e.member[1].ord = 1;
   2085 		}
   2086 		return 0;
   2087 
   2088 	case SB_TREBLE:
   2089 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2090 		strcpy(dip->label.name, AudioNtreble);
   2091 		if (sc->sc_mixer_model == SBM_CT1745) {
   2092 			dip->type = AUDIO_MIXER_VALUE;
   2093 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2094 			dip->un.v.num_channels = 2;
   2095 			strcpy(dip->un.v.units.name, AudioNtreble);
   2096 		} else {
   2097 			dip->type = AUDIO_MIXER_ENUM;
   2098 			dip->mixer_class = SB_INPUT_CLASS;
   2099 			dip->un.e.num_mem = 2;
   2100 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2101 			dip->un.e.member[0].ord = 0;
   2102 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2103 			dip->un.e.member[1].ord = 1;
   2104 		}
   2105 		return 0;
   2106 
   2107 	case SB_RECORD_CLASS:			/* record source class */
   2108 		dip->type = AUDIO_MIXER_CLASS;
   2109 		dip->mixer_class = SB_RECORD_CLASS;
   2110 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2111 		strcpy(dip->label.name, AudioCrecord);
   2112 		return 0;
   2113 
   2114 	case SB_INPUT_CLASS:
   2115 		dip->type = AUDIO_MIXER_CLASS;
   2116 		dip->mixer_class = SB_INPUT_CLASS;
   2117 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2118 		strcpy(dip->label.name, AudioCinputs);
   2119 		return 0;
   2120 
   2121 	}
   2122 
   2123 	if (sc->sc_mixer_model == SBM_CT1345)
   2124 		return ENXIO;
   2125 
   2126 	switch(dip->index) {
   2127 	case SB_PCSPEAKER:
   2128 		dip->type = AUDIO_MIXER_VALUE;
   2129 		dip->mixer_class = SB_INPUT_CLASS;
   2130 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2131 		strcpy(dip->label.name, "pc_speaker");
   2132 		dip->un.v.num_channels = 1;
   2133 		strcpy(dip->un.v.units.name, AudioNvolume);
   2134 		return 0;
   2135 
   2136 	case SB_INPUT_GAIN:
   2137 		dip->type = AUDIO_MIXER_VALUE;
   2138 		dip->mixer_class = SB_INPUT_CLASS;
   2139 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2140 		strcpy(dip->label.name, AudioNinput);
   2141 		dip->un.v.num_channels = 2;
   2142 		strcpy(dip->un.v.units.name, AudioNvolume);
   2143 		return 0;
   2144 
   2145 	case SB_OUTPUT_GAIN:
   2146 		dip->type = AUDIO_MIXER_VALUE;
   2147 		dip->mixer_class = SB_OUTPUT_CLASS;
   2148 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2149 		strcpy(dip->label.name, AudioNoutput);
   2150 		dip->un.v.num_channels = 2;
   2151 		strcpy(dip->un.v.units.name, AudioNvolume);
   2152 		return 0;
   2153 
   2154 	case SB_AGC:
   2155 		dip->type = AUDIO_MIXER_ENUM;
   2156 		dip->mixer_class = SB_INPUT_CLASS;
   2157 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2158 		strcpy(dip->label.name, "agc");
   2159 		dip->un.e.num_mem = 2;
   2160 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2161 		dip->un.e.member[0].ord = 0;
   2162 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2163 		dip->un.e.member[1].ord = 1;
   2164 		return 0;
   2165 
   2166 	case SB_EQUALIZATION_CLASS:
   2167 		dip->type = AUDIO_MIXER_CLASS;
   2168 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2169 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2170 		strcpy(dip->label.name, AudioCequalization);
   2171 		return 0;
   2172 
   2173 	case SB_CD_IN_MUTE:
   2174 		dip->prev = SB_CD_VOL;
   2175 		dip->next = SB_CD_SWAP;
   2176 		dip->mixer_class = SB_INPUT_CLASS;
   2177 		goto mute;
   2178 
   2179 	case SB_MIC_IN_MUTE:
   2180 		dip->prev = SB_MIC_VOL;
   2181 		dip->next = SB_MIC_SWAP;
   2182 		dip->mixer_class = SB_INPUT_CLASS;
   2183 		goto mute;
   2184 
   2185 	case SB_LINE_IN_MUTE:
   2186 		dip->prev = SB_LINE_IN_VOL;
   2187 		dip->next = SB_LINE_SWAP;
   2188 		dip->mixer_class = SB_INPUT_CLASS;
   2189 		goto mute;
   2190 
   2191 	case SB_MIDI_IN_MUTE:
   2192 		dip->prev = SB_MIDI_VOL;
   2193 		dip->next = SB_MIDI_SWAP;
   2194 		dip->mixer_class = SB_INPUT_CLASS;
   2195 		goto mute;
   2196 
   2197 	case SB_CD_SWAP:
   2198 		dip->prev = SB_CD_IN_MUTE;
   2199 		dip->next = SB_CD_OUT_MUTE;
   2200 		goto swap;
   2201 
   2202 	case SB_MIC_SWAP:
   2203 		dip->prev = SB_MIC_IN_MUTE;
   2204 		dip->next = SB_MIC_OUT_MUTE;
   2205 		goto swap;
   2206 
   2207 	case SB_LINE_SWAP:
   2208 		dip->prev = SB_LINE_IN_MUTE;
   2209 		dip->next = SB_LINE_OUT_MUTE;
   2210 		goto swap;
   2211 
   2212 	case SB_MIDI_SWAP:
   2213 		dip->prev = SB_MIDI_IN_MUTE;
   2214 		dip->next = AUDIO_MIXER_LAST;
   2215 	swap:
   2216 		dip->mixer_class = SB_INPUT_CLASS;
   2217 		strcpy(dip->label.name, AudioNswap);
   2218 		goto mute1;
   2219 
   2220 	case SB_CD_OUT_MUTE:
   2221 		dip->prev = SB_CD_SWAP;
   2222 		dip->next = AUDIO_MIXER_LAST;
   2223 		dip->mixer_class = SB_OUTPUT_CLASS;
   2224 		goto mute;
   2225 
   2226 	case SB_MIC_OUT_MUTE:
   2227 		dip->prev = SB_MIC_SWAP;
   2228 		dip->next = AUDIO_MIXER_LAST;
   2229 		dip->mixer_class = SB_OUTPUT_CLASS;
   2230 		goto mute;
   2231 
   2232 	case SB_LINE_OUT_MUTE:
   2233 		dip->prev = SB_LINE_SWAP;
   2234 		dip->next = AUDIO_MIXER_LAST;
   2235 		dip->mixer_class = SB_OUTPUT_CLASS;
   2236 	mute:
   2237 		strcpy(dip->label.name, AudioNmute);
   2238 	mute1:
   2239 		dip->type = AUDIO_MIXER_ENUM;
   2240 		dip->un.e.num_mem = 2;
   2241 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2242 		dip->un.e.member[0].ord = 0;
   2243 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2244 		dip->un.e.member[1].ord = 1;
   2245 		return 0;
   2246 
   2247 	}
   2248 
   2249 	return ENXIO;
   2250 }
   2251 
   2252 void *
   2253 sb_malloc(addr, direction, size, pool, flags)
   2254 	void *addr;
   2255 	int direction;
   2256 	size_t size;
   2257 	int pool, flags;
   2258 {
   2259 	struct sbdsp_softc *sc = addr;
   2260 	int drq;
   2261 
   2262 	if (sc->sc_drq8 != -1)
   2263 		drq = sc->sc_drq8;
   2264 	else
   2265 		drq = sc->sc_drq16;
   2266 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2267 }
   2268 
   2269 void
   2270 sb_free(addr, ptr, pool)
   2271 	void *addr;
   2272 	void *ptr;
   2273 	int pool;
   2274 {
   2275 	isa_free(ptr, pool);
   2276 }
   2277 
   2278 size_t
   2279 sb_round_buffersize(addr, direction, size)
   2280 	void *addr;
   2281 	int direction;
   2282 	size_t size;
   2283 {
   2284 	if (size > MAX_ISADMA)
   2285 		size = MAX_ISADMA;
   2286 	return (size);
   2287 }
   2288 
   2289 int
   2290 sb_mappage(addr, mem, off, prot)
   2291 	void *addr;
   2292 	void *mem;
   2293 	int off;
   2294 	int prot;
   2295 {
   2296 	return isa_mappage(mem, off, prot);
   2297 }
   2298 
   2299 int
   2300 sbdsp_get_props(addr)
   2301 	void *addr;
   2302 {
   2303 	struct sbdsp_softc *sc = addr;
   2304 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2305 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2306 }
   2307 
   2308 #if NMPU > 0
   2309 /*
   2310  * MIDI related routines.
   2311  */
   2312 
   2313 int
   2314 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2315 	void *addr;
   2316 	int flags;
   2317 	void (*iintr)__P((void *, int));
   2318 	void (*ointr)__P((void *));
   2319 	void *arg;
   2320 {
   2321 	struct sbdsp_softc *sc = addr;
   2322 
   2323 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2324 
   2325 	if (sc->sc_open != SB_CLOSED)
   2326 		return EBUSY;
   2327 	if (sbdsp_reset(sc) != 0)
   2328 		return EIO;
   2329 
   2330 	sc->sc_open = SB_OPEN_MIDI;
   2331 	sc->sc_openflags = flags;
   2332 
   2333 	if (sc->sc_model >= SB_20)
   2334 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2335 			return EIO;
   2336 
   2337 	sc->sc_intr8 = sbdsp_midi_intr;
   2338 	sc->sc_intrm = iintr;
   2339 	sc->sc_argm = arg;
   2340 
   2341 	return 0;
   2342 }
   2343 
   2344 void
   2345 sbdsp_midi_close(addr)
   2346 	void *addr;
   2347 {
   2348 	struct sbdsp_softc *sc = addr;
   2349 
   2350 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2351 
   2352 	if (sc->sc_model >= SB_20)
   2353 		sbdsp_reset(sc); /* exit UART mode */
   2354 
   2355 	sc->sc_intrm = 0;
   2356 	sc->sc_open = SB_CLOSED;
   2357 }
   2358 
   2359 int
   2360 sbdsp_midi_output(addr, d)
   2361 	void *addr;
   2362 	int d;
   2363 {
   2364 	struct sbdsp_softc *sc = addr;
   2365 
   2366 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2367 		return EIO;
   2368 	if (sbdsp_wdsp(sc, d))
   2369 		return EIO;
   2370 	return 0;
   2371 }
   2372 
   2373 void
   2374 sbdsp_midi_getinfo(addr, mi)
   2375 	void *addr;
   2376 	struct midi_info *mi;
   2377 {
   2378 	struct sbdsp_softc *sc = addr;
   2379 
   2380 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2381 	mi->props = MIDI_PROP_CAN_INPUT;
   2382 }
   2383 
   2384 int
   2385 sbdsp_midi_intr(addr)
   2386 	void *addr;
   2387 {
   2388 	struct sbdsp_softc *sc = addr;
   2389 
   2390 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2391 	return (0);
   2392 }
   2393 
   2394 #endif
   2395 
   2396