sbdsp.c revision 1.103 1 /* $NetBSD: sbdsp.c,v 1.103 2000/01/20 19:27:03 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84 #include "mpu.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95 #include <vm/vm.h>
96
97 #include <machine/cpu.h>
98 #include <machine/intr.h>
99 #include <machine/bus.h>
100
101 #include <sys/audioio.h>
102 #include <dev/audio_if.h>
103 #include <dev/midi_if.h>
104 #include <dev/mulaw.h>
105 #include <dev/auconv.h>
106
107 #include <dev/isa/isavar.h>
108 #include <dev/isa/isadmavar.h>
109
110 #include <dev/isa/sbreg.h>
111 #include <dev/isa/sbdspvar.h>
112
113
114 #ifdef AUDIO_DEBUG
115 #define DPRINTF(x) if (sbdspdebug) printf x
116 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
117 int sbdspdebug = 0;
118 #else
119 #define DPRINTF(x)
120 #define DPRINTFN(n,x)
121 #endif
122
123 #ifndef SBDSP_NPOLL
124 #define SBDSP_NPOLL 3000
125 #endif
126
127 struct {
128 int wdsp;
129 int rdsp;
130 int wmidi;
131 } sberr;
132
133 /*
134 * Time constant routines follow. See SBK, section 12.
135 * Although they don't come out and say it (in the docs),
136 * the card clearly uses a 1MHz countdown timer, as the
137 * low-speed formula (p. 12-4) is:
138 * tc = 256 - 10^6 / sr
139 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
140 * and a 256MHz clock is used:
141 * tc = 65536 - 256 * 10^ 6 / sr
142 * Since we can only use the upper byte of the HS TC, the two formulae
143 * are equivalent. (Why didn't they say so?) E.g.,
144 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
145 *
146 * The crossover point (from low- to high-speed modes) is different
147 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
148 *
149 * SBPRO SB20
150 * ----- --------
151 * input ls min 4 KHz 4 KHz
152 * input ls max 23 KHz 13 KHz
153 * input hs max 44.1 KHz 15 KHz
154 * output ls min 4 KHz 4 KHz
155 * output ls max 23 KHz 23 KHz
156 * output hs max 44.1 KHz 44.1 KHz
157 */
158 /* XXX Should we round the tc?
159 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
160 */
161 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
162 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
163
164 struct sbmode {
165 short model;
166 u_char channels;
167 u_char precision;
168 u_short lowrate, highrate;
169 u_char cmd;
170 u_char halt, cont;
171 u_char cmdchan;
172 };
173 static struct sbmode sbpmodes[] = {
174 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
180 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
181 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
182 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
183 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
184 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
185 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
186 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
187 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
188 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
189 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
190 #define PLAY16 15 /* must be the index of the next entry in the table */
191 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
193 { -1 }
194 };
195 static struct sbmode sbrmodes[] = {
196 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
200 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
201 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
202 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
203 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
205 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
206 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
207 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
208 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
209 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
210 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
211 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
213 { -1 }
214 };
215
216 void sbversion __P((struct sbdsp_softc *));
217 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
218 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
219 void sbdsp_pause __P((struct sbdsp_softc *));
220 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
221 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
222 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
223 void sbdsp_set_ifilter __P((void *, int));
224 int sbdsp_get_ifilter __P((void *));
225
226 int sbdsp_block_output __P((void *));
227 int sbdsp_block_input __P((void *));
228 static int sbdsp_adjust __P((int, int));
229
230 int sbdsp_midi_intr __P((void *));
231
232 #ifdef AUDIO_DEBUG
233 void sb_printsc __P((struct sbdsp_softc *));
234
235 void
236 sb_printsc(sc)
237 struct sbdsp_softc *sc;
238 {
239 int i;
240
241 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
242 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
243 sc->sc_drq8, sc->sc_drq16,
244 sc->sc_iobase, sc->sc_irq);
245 printf("irate %d itc %x orate %d otc %x\n",
246 sc->sc_i.rate, sc->sc_i.tc,
247 sc->sc_o.rate, sc->sc_o.tc);
248 printf("spkron %u nintr %lu\n",
249 sc->spkr_state, sc->sc_interrupts);
250 printf("intr8 %p intr16 %p\n",
251 sc->sc_intr8, sc->sc_intr16);
252 printf("gain:");
253 for (i = 0; i < SB_NDEVS; i++)
254 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
255 printf("\n");
256 }
257 #endif /* AUDIO_DEBUG */
258
259 /*
260 * Probe / attach routines.
261 */
262
263 /*
264 * Probe for the soundblaster hardware.
265 */
266 int
267 sbdsp_probe(sc)
268 struct sbdsp_softc *sc;
269 {
270
271 if (sbdsp_reset(sc) < 0) {
272 DPRINTF(("sbdsp: couldn't reset card\n"));
273 return 0;
274 }
275 /* if flags set, go and probe the jazz16 stuff */
276 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
277 sbdsp_jazz16_probe(sc);
278 else
279 sbversion(sc);
280 if (sc->sc_model == SB_UNK) {
281 /* Unknown SB model found. */
282 DPRINTF(("sbdsp: unknown SB model found\n"));
283 return 0;
284 }
285 return 1;
286 }
287
288 /*
289 * Try add-on stuff for Jazz16.
290 */
291 void
292 sbdsp_jazz16_probe(sc)
293 struct sbdsp_softc *sc;
294 {
295 static u_char jazz16_irq_conf[16] = {
296 -1, -1, 0x02, 0x03,
297 -1, 0x01, -1, 0x04,
298 -1, 0x02, 0x05, -1,
299 -1, -1, -1, 0x06};
300 static u_char jazz16_drq_conf[8] = {
301 -1, 0x01, -1, 0x02,
302 -1, 0x03, -1, 0x04};
303
304 bus_space_tag_t iot = sc->sc_iot;
305 bus_space_handle_t ioh;
306
307 sbversion(sc);
308
309 DPRINTF(("jazz16 probe\n"));
310
311 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
312 DPRINTF(("bus map failed\n"));
313 return;
314 }
315
316 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
317 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
318 DPRINTF(("drq/irq check failed\n"));
319 goto done; /* give up, we can't do it. */
320 }
321
322 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
323 delay(10000); /* delay 10 ms */
324 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
325 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
326
327 if (sbdsp_reset(sc) < 0) {
328 DPRINTF(("sbdsp_reset check failed\n"));
329 goto done; /* XXX? what else could we do? */
330 }
331
332 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
333 DPRINTF(("read16 setup failed\n"));
334 goto done;
335 }
336
337 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
338 DPRINTF(("read16 failed\n"));
339 goto done;
340 }
341
342 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
343 sc->sc_drq16 = sc->sc_drq8;
344 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
345 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
346 jazz16_drq_conf[sc->sc_drq8]) ||
347 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
348 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
349 } else {
350 DPRINTF(("jazz16 detected!\n"));
351 sc->sc_model = SB_JAZZ;
352 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
353 }
354
355 done:
356 bus_space_unmap(iot, ioh, 1);
357 }
358
359 /*
360 * Attach hardware to driver, attach hardware driver to audio
361 * pseudo-device driver .
362 */
363 void
364 sbdsp_attach(sc)
365 struct sbdsp_softc *sc;
366 {
367 struct audio_params pparams, rparams;
368 int i;
369 u_int v;
370
371 pparams = audio_default;
372 rparams = audio_default;
373 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
374
375 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
376
377 if (sc->sc_mixer_model != SBM_NONE) {
378 /* Reset the mixer.*/
379 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
380 /* And set our own default values */
381 for (i = 0; i < SB_NDEVS; i++) {
382 switch(i) {
383 case SB_MIC_VOL:
384 case SB_LINE_IN_VOL:
385 v = 0;
386 break;
387 case SB_BASS:
388 case SB_TREBLE:
389 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
390 break;
391 case SB_CD_IN_MUTE:
392 case SB_MIC_IN_MUTE:
393 case SB_LINE_IN_MUTE:
394 case SB_MIDI_IN_MUTE:
395 case SB_CD_SWAP:
396 case SB_MIC_SWAP:
397 case SB_LINE_SWAP:
398 case SB_MIDI_SWAP:
399 case SB_CD_OUT_MUTE:
400 case SB_MIC_OUT_MUTE:
401 case SB_LINE_OUT_MUTE:
402 v = 0;
403 break;
404 default:
405 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
406 break;
407 }
408 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
409 sbdsp_set_mixer_gain(sc, i);
410 }
411 sc->in_filter = 0; /* no filters turned on, please */
412 }
413
414 printf(": dsp v%d.%02d%s\n",
415 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
416 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
417
418 sc->sc_fullduplex = ISSB16CLASS(sc) &&
419 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
420 sc->sc_drq8 != sc->sc_drq16;
421 }
422
423 void
424 sbdsp_mix_write(sc, mixerport, val)
425 struct sbdsp_softc *sc;
426 int mixerport;
427 int val;
428 {
429 bus_space_tag_t iot = sc->sc_iot;
430 bus_space_handle_t ioh = sc->sc_ioh;
431 int s;
432
433 s = splaudio();
434 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
435 delay(20);
436 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
437 delay(30);
438 splx(s);
439 }
440
441 int
442 sbdsp_mix_read(sc, mixerport)
443 struct sbdsp_softc *sc;
444 int mixerport;
445 {
446 bus_space_tag_t iot = sc->sc_iot;
447 bus_space_handle_t ioh = sc->sc_ioh;
448 int val;
449 int s;
450
451 s = splaudio();
452 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
453 delay(20);
454 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
455 delay(30);
456 splx(s);
457 return val;
458 }
459
460 /*
461 * Various routines to interface to higher level audio driver
462 */
463
464 int
465 sbdsp_query_encoding(addr, fp)
466 void *addr;
467 struct audio_encoding *fp;
468 {
469 struct sbdsp_softc *sc = addr;
470 int emul;
471
472 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
473
474 switch (fp->index) {
475 case 0:
476 strcpy(fp->name, AudioEulinear);
477 fp->encoding = AUDIO_ENCODING_ULINEAR;
478 fp->precision = 8;
479 fp->flags = 0;
480 return 0;
481 case 1:
482 strcpy(fp->name, AudioEmulaw);
483 fp->encoding = AUDIO_ENCODING_ULAW;
484 fp->precision = 8;
485 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
486 return 0;
487 case 2:
488 strcpy(fp->name, AudioEalaw);
489 fp->encoding = AUDIO_ENCODING_ALAW;
490 fp->precision = 8;
491 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
492 return 0;
493 case 3:
494 strcpy(fp->name, AudioEslinear);
495 fp->encoding = AUDIO_ENCODING_SLINEAR;
496 fp->precision = 8;
497 fp->flags = emul;
498 return 0;
499 }
500 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
501 return EINVAL;
502
503 switch(fp->index) {
504 case 4:
505 strcpy(fp->name, AudioEslinear_le);
506 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
507 fp->precision = 16;
508 fp->flags = 0;
509 return 0;
510 case 5:
511 strcpy(fp->name, AudioEulinear_le);
512 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
513 fp->precision = 16;
514 fp->flags = emul;
515 return 0;
516 case 6:
517 strcpy(fp->name, AudioEslinear_be);
518 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
519 fp->precision = 16;
520 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
521 return 0;
522 case 7:
523 strcpy(fp->name, AudioEulinear_be);
524 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
525 fp->precision = 16;
526 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
527 return 0;
528 default:
529 return EINVAL;
530 }
531 return 0;
532 }
533
534 int
535 sbdsp_set_params(addr, setmode, usemode, play, rec)
536 void *addr;
537 int setmode, usemode;
538 struct audio_params *play, *rec;
539 {
540 struct sbdsp_softc *sc = addr;
541 struct sbmode *m;
542 u_int rate, tc, bmode;
543 void (*swcode) __P((void *, u_char *buf, int cnt));
544 int factor;
545 int model;
546 int chan;
547 struct audio_params *p;
548 int mode;
549
550 if (sc->sc_open == SB_OPEN_MIDI)
551 return EBUSY;
552
553 /* Later models work like SB16. */
554 model = min(sc->sc_model, SB_16);
555
556 /*
557 * Prior to the SB16, we have only one clock, so make the sample
558 * rates match.
559 */
560 if (!ISSB16CLASS(sc) &&
561 play->sample_rate != rec->sample_rate &&
562 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
563 if (setmode == AUMODE_PLAY) {
564 rec->sample_rate = play->sample_rate;
565 setmode |= AUMODE_RECORD;
566 } else if (setmode == AUMODE_RECORD) {
567 play->sample_rate = rec->sample_rate;
568 setmode |= AUMODE_PLAY;
569 } else
570 return (EINVAL);
571 }
572
573 /* Set first record info, then play info */
574 for (mode = AUMODE_RECORD; mode != -1;
575 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
576 if ((setmode & mode) == 0)
577 continue;
578
579 p = mode == AUMODE_PLAY ? play : rec;
580 /* Locate proper commands */
581 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
582 m->model != -1; m++) {
583 if (model == m->model &&
584 p->channels == m->channels &&
585 p->precision == m->precision &&
586 p->sample_rate >= m->lowrate &&
587 p->sample_rate <= m->highrate)
588 break;
589 }
590 if (m->model == -1)
591 return EINVAL;
592 rate = p->sample_rate;
593 swcode = 0;
594 factor = 1;
595 tc = 1;
596 bmode = -1;
597 if (model == SB_16) {
598 switch (p->encoding) {
599 case AUDIO_ENCODING_SLINEAR_BE:
600 if (p->precision == 16)
601 swcode = swap_bytes;
602 /* fall into */
603 case AUDIO_ENCODING_SLINEAR_LE:
604 bmode = SB_BMODE_SIGNED;
605 break;
606 case AUDIO_ENCODING_ULINEAR_BE:
607 if (p->precision == 16)
608 swcode = swap_bytes;
609 /* fall into */
610 case AUDIO_ENCODING_ULINEAR_LE:
611 bmode = SB_BMODE_UNSIGNED;
612 break;
613 case AUDIO_ENCODING_ULAW:
614 if (mode == AUMODE_PLAY) {
615 swcode = mulaw_to_ulinear16_le;
616 factor = 2;
617 m = &sbpmodes[PLAY16];
618 } else
619 swcode = ulinear8_to_mulaw;
620 bmode = SB_BMODE_UNSIGNED;
621 break;
622 case AUDIO_ENCODING_ALAW:
623 if (mode == AUMODE_PLAY) {
624 swcode = alaw_to_ulinear16_le;
625 factor = 2;
626 m = &sbpmodes[PLAY16];
627 } else
628 swcode = ulinear8_to_alaw;
629 bmode = SB_BMODE_UNSIGNED;
630 break;
631 default:
632 return EINVAL;
633 }
634 if (p->channels == 2)
635 bmode |= SB_BMODE_STEREO;
636 } else if (m->model == SB_JAZZ && m->precision == 16) {
637 switch (p->encoding) {
638 case AUDIO_ENCODING_SLINEAR_LE:
639 break;
640 case AUDIO_ENCODING_ULINEAR_LE:
641 swcode = change_sign16_le;
642 break;
643 case AUDIO_ENCODING_SLINEAR_BE:
644 swcode = swap_bytes;
645 break;
646 case AUDIO_ENCODING_ULINEAR_BE:
647 swcode = mode == AUMODE_PLAY ?
648 swap_bytes_change_sign16_le :
649 change_sign16_swap_bytes_le;
650 break;
651 case AUDIO_ENCODING_ULAW:
652 swcode = mode == AUMODE_PLAY ?
653 mulaw_to_ulinear8 : ulinear8_to_mulaw;
654 break;
655 case AUDIO_ENCODING_ALAW:
656 swcode = mode == AUMODE_PLAY ?
657 alaw_to_ulinear8 : ulinear8_to_alaw;
658 break;
659 default:
660 return EINVAL;
661 }
662 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
663 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
664 } else {
665 switch (p->encoding) {
666 case AUDIO_ENCODING_SLINEAR_BE:
667 case AUDIO_ENCODING_SLINEAR_LE:
668 swcode = change_sign8;
669 break;
670 case AUDIO_ENCODING_ULINEAR_BE:
671 case AUDIO_ENCODING_ULINEAR_LE:
672 break;
673 case AUDIO_ENCODING_ULAW:
674 swcode = mode == AUMODE_PLAY ?
675 mulaw_to_ulinear8 : ulinear8_to_mulaw;
676 break;
677 case AUDIO_ENCODING_ALAW:
678 swcode = mode == AUMODE_PLAY ?
679 alaw_to_ulinear8 : ulinear8_to_alaw;
680 break;
681 default:
682 return EINVAL;
683 }
684 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
685 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
686 }
687
688 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
689 if (mode == AUMODE_PLAY) {
690 sc->sc_o.rate = rate;
691 sc->sc_o.tc = tc;
692 sc->sc_o.modep = m;
693 sc->sc_o.bmode = bmode;
694 sc->sc_o.dmachan = chan;
695 } else {
696 sc->sc_i.rate = rate;
697 sc->sc_i.tc = tc;
698 sc->sc_i.modep = m;
699 sc->sc_i.bmode = bmode;
700 sc->sc_i.dmachan = chan;
701 }
702
703 p->sw_code = swcode;
704 p->factor = factor;
705 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
706 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
707 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
708
709 }
710
711 if (sc->sc_fullduplex &&
712 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
713 sc->sc_i.dmachan == sc->sc_o.dmachan) {
714 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
715 if (sc->sc_o.dmachan == sc->sc_drq8) {
716 /* Use 16 bit DMA for playing by expanding the samples. */
717 play->sw_code = linear8_to_linear16_le;
718 play->factor = 2;
719 sc->sc_o.modep = &sbpmodes[PLAY16];
720 sc->sc_o.dmachan = sc->sc_drq16;
721 } else {
722 return EINVAL;
723 }
724 }
725 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
726 sc->sc_i.dmachan, sc->sc_o.dmachan));
727
728 return (0);
729 }
730
731 void
732 sbdsp_set_ifilter(addr, which)
733 void *addr;
734 int which;
735 {
736 struct sbdsp_softc *sc = addr;
737 int mixval;
738
739 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
740 switch (which) {
741 case 0:
742 mixval |= SBP_FILTER_OFF;
743 break;
744 case SB_TREBLE:
745 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
746 break;
747 case SB_BASS:
748 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
749 break;
750 default:
751 return;
752 }
753 sc->in_filter = mixval & SBP_IFILTER_MASK;
754 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
755 }
756
757 int
758 sbdsp_get_ifilter(addr)
759 void *addr;
760 {
761 struct sbdsp_softc *sc = addr;
762
763 sc->in_filter =
764 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
765 switch (sc->in_filter) {
766 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
767 return SB_TREBLE;
768 case SBP_FILTER_ON|SBP_IFILTER_LOW:
769 return SB_BASS;
770 default:
771 return 0;
772 }
773 }
774
775 int
776 sbdsp_set_in_ports(sc, mask)
777 struct sbdsp_softc *sc;
778 int mask;
779 {
780 int bitsl, bitsr;
781 int sbport;
782
783 if (sc->sc_open == SB_OPEN_MIDI)
784 return EBUSY;
785
786 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
787 sc->sc_mixer_model, mask));
788
789 switch(sc->sc_mixer_model) {
790 case SBM_NONE:
791 return EINVAL;
792 case SBM_CT1335:
793 if (mask != (1 << SB_MIC_VOL))
794 return EINVAL;
795 break;
796 case SBM_CT1345:
797 switch (mask) {
798 case 1 << SB_MIC_VOL:
799 sbport = SBP_FROM_MIC;
800 break;
801 case 1 << SB_LINE_IN_VOL:
802 sbport = SBP_FROM_LINE;
803 break;
804 case 1 << SB_CD_VOL:
805 sbport = SBP_FROM_CD;
806 break;
807 default:
808 return (EINVAL);
809 }
810 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
811 break;
812 case SBM_CT1XX5:
813 case SBM_CT1745:
814 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
815 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
816 return EINVAL;
817 bitsr = 0;
818 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
819 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
820 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
821 bitsl = SB_SRC_R_TO_L(bitsr);
822 if (mask & (1<<SB_MIC_VOL)) {
823 bitsl |= SBP_MIC_SRC;
824 bitsr |= SBP_MIC_SRC;
825 }
826 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
827 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
828 break;
829 }
830 sc->in_mask = mask;
831
832 return 0;
833 }
834
835 int
836 sbdsp_speaker_ctl(addr, newstate)
837 void *addr;
838 int newstate;
839 {
840 struct sbdsp_softc *sc = addr;
841
842 if (sc->sc_open == SB_OPEN_MIDI)
843 return EBUSY;
844
845 if ((newstate == SPKR_ON) &&
846 (sc->spkr_state == SPKR_OFF)) {
847 sbdsp_spkron(sc);
848 sc->spkr_state = SPKR_ON;
849 }
850 if ((newstate == SPKR_OFF) &&
851 (sc->spkr_state == SPKR_ON)) {
852 sbdsp_spkroff(sc);
853 sc->spkr_state = SPKR_OFF;
854 }
855 return 0;
856 }
857
858 int
859 sbdsp_round_blocksize(addr, blk)
860 void *addr;
861 int blk;
862 {
863 return blk & -4; /* round to biggest sample size */
864 }
865
866 int
867 sbdsp_open(addr, flags)
868 void *addr;
869 int flags;
870 {
871 struct sbdsp_softc *sc = addr;
872 int error, state;
873
874 DPRINTF(("sbdsp_open: sc=%p\n", sc));
875
876 if (sc->sc_open != SB_CLOSED)
877 return (EBUSY);
878 sc->sc_open = SB_OPEN_AUDIO;
879 sc->sc_openflags = flags;
880 state = 0;
881
882 if (sc->sc_drq8 != -1) {
883 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
884 MAX_ISADMA, BUS_DMA_NOWAIT);
885 if (error) {
886 printf("%s: can't create map for drq %d\n",
887 sc->sc_dev.dv_xname, sc->sc_drq8);
888 goto bad;
889 }
890 state |= 1;
891 }
892 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
893 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
894 MAX_ISADMA, BUS_DMA_NOWAIT);
895 if (error) {
896 printf("%s: can't create map for drq %d\n",
897 sc->sc_dev.dv_xname, sc->sc_drq16);
898 goto bad;
899 }
900 state |= 2;
901 }
902
903 if (sbdsp_reset(sc) != 0) {
904 error = EIO;
905 goto bad;
906 }
907
908 if (ISSBPRO(sc) &&
909 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
910 DPRINTF(("sbdsp_open: can't set mono mode\n"));
911 /* we'll readjust when it's time for DMA. */
912 }
913
914 /*
915 * Leave most things as they were; users must change things if
916 * the previous process didn't leave it they way they wanted.
917 * Looked at another way, it's easy to set up a configuration
918 * in one program and leave it for another to inherit.
919 */
920 DPRINTF(("sbdsp_open: opened\n"));
921
922 return (0);
923
924 bad:
925 if (state & 1)
926 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
927 if (state & 2)
928 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
929
930 sc->sc_open = SB_CLOSED;
931 return (error);
932 }
933
934 void
935 sbdsp_close(addr)
936 void *addr;
937 {
938 struct sbdsp_softc *sc = addr;
939
940 DPRINTF(("sbdsp_close: sc=%p\n", sc));
941
942 sbdsp_spkroff(sc);
943 sc->spkr_state = SPKR_OFF;
944
945 sbdsp_halt_output(sc);
946 sbdsp_halt_input(sc);
947
948 sc->sc_intr8 = 0;
949 sc->sc_intr16 = 0;
950
951 if (sc->sc_drq8 != -1)
952 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
953 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
954 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
955
956 sc->sc_open = SB_CLOSED;
957 DPRINTF(("sbdsp_close: closed\n"));
958 }
959
960 /*
961 * Lower-level routines
962 */
963
964 /*
965 * Reset the card.
966 * Return non-zero if the card isn't detected.
967 */
968 int
969 sbdsp_reset(sc)
970 struct sbdsp_softc *sc;
971 {
972 bus_space_tag_t iot = sc->sc_iot;
973 bus_space_handle_t ioh = sc->sc_ioh;
974
975 sc->sc_intr8 = 0;
976 sc->sc_intr16 = 0;
977 sc->sc_intrm = 0;
978
979 /*
980 * See SBK, section 11.3.
981 * We pulse a reset signal into the card.
982 * Gee, what a brilliant hardware design.
983 */
984 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
985 delay(10);
986 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
987 delay(30);
988 if (sbdsp_rdsp(sc) != SB_MAGIC)
989 return -1;
990
991 return 0;
992 }
993
994 /*
995 * Write a byte to the dsp.
996 * We are at the mercy of the card as we use a
997 * polling loop and wait until it can take the byte.
998 */
999 int
1000 sbdsp_wdsp(sc, v)
1001 struct sbdsp_softc *sc;
1002 int v;
1003 {
1004 bus_space_tag_t iot = sc->sc_iot;
1005 bus_space_handle_t ioh = sc->sc_ioh;
1006 int i;
1007 u_char x;
1008
1009 for (i = SBDSP_NPOLL; --i >= 0; ) {
1010 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1011 delay(10);
1012 if ((x & SB_DSP_BUSY) == 0) {
1013 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1014 delay(10);
1015 return 0;
1016 }
1017 }
1018 ++sberr.wdsp;
1019 return -1;
1020 }
1021
1022 /*
1023 * Read a byte from the DSP, using polling.
1024 */
1025 int
1026 sbdsp_rdsp(sc)
1027 struct sbdsp_softc *sc;
1028 {
1029 bus_space_tag_t iot = sc->sc_iot;
1030 bus_space_handle_t ioh = sc->sc_ioh;
1031 int i;
1032 u_char x;
1033
1034 for (i = SBDSP_NPOLL; --i >= 0; ) {
1035 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1036 delay(10);
1037 if (x & SB_DSP_READY) {
1038 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1039 delay(10);
1040 return x;
1041 }
1042 }
1043 ++sberr.rdsp;
1044 return -1;
1045 }
1046
1047 void
1048 sbdsp_pause(sc)
1049 struct sbdsp_softc *sc;
1050 {
1051
1052 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1053 }
1054
1055 /*
1056 * Turn on the speaker. The SBK documention says this operation
1057 * can take up to 1/10 of a second. Higher level layers should
1058 * probably let the task sleep for this amount of time after
1059 * calling here. Otherwise, things might not work (because
1060 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1061 *
1062 * These engineers had their heads up their ass when
1063 * they designed this card.
1064 */
1065 void
1066 sbdsp_spkron(sc)
1067 struct sbdsp_softc *sc;
1068 {
1069 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1070 sbdsp_pause(sc);
1071 }
1072
1073 /*
1074 * Turn off the speaker; see comment above.
1075 */
1076 void
1077 sbdsp_spkroff(sc)
1078 struct sbdsp_softc *sc;
1079 {
1080 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1081 sbdsp_pause(sc);
1082 }
1083
1084 /*
1085 * Read the version number out of the card.
1086 * Store version information in the softc.
1087 */
1088 void
1089 sbversion(sc)
1090 struct sbdsp_softc *sc;
1091 {
1092 int v;
1093
1094 sc->sc_model = SB_UNK;
1095 sc->sc_version = 0;
1096 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1097 return;
1098 v = sbdsp_rdsp(sc) << 8;
1099 v |= sbdsp_rdsp(sc);
1100 if (v < 0)
1101 return;
1102 sc->sc_version = v;
1103 switch(SBVER_MAJOR(v)) {
1104 case 1:
1105 sc->sc_mixer_model = SBM_NONE;
1106 sc->sc_model = SB_1;
1107 break;
1108 case 2:
1109 /* Some SB2 have a mixer, some don't. */
1110 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1111 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1112 /* Check if we can read back the mixer values. */
1113 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1114 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1115 sc->sc_mixer_model = SBM_CT1335;
1116 else
1117 sc->sc_mixer_model = SBM_NONE;
1118 if (SBVER_MINOR(v) == 0)
1119 sc->sc_model = SB_20;
1120 else
1121 sc->sc_model = SB_2x;
1122 break;
1123 case 3:
1124 sc->sc_mixer_model = SBM_CT1345;
1125 sc->sc_model = SB_PRO;
1126 break;
1127 case 4:
1128 #if 0
1129 /* XXX This does not work */
1130 /* Most SB16 have a tone controls, but some don't. */
1131 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1132 /* Check if we can read back the mixer value. */
1133 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1134 sc->sc_mixer_model = SBM_CT1745;
1135 else
1136 sc->sc_mixer_model = SBM_CT1XX5;
1137 #else
1138 sc->sc_mixer_model = SBM_CT1745;
1139 #endif
1140 #if 0
1141 /* XXX figure out a good way of determining the model */
1142 /* XXX what about SB_32 */
1143 if (SBVER_MINOR(v) == 16)
1144 sc->sc_model = SB_64;
1145 else
1146 #endif
1147 sc->sc_model = SB_16;
1148 break;
1149 }
1150 }
1151
1152 int
1153 sbdsp_set_timeconst(sc, tc)
1154 struct sbdsp_softc *sc;
1155 int tc;
1156 {
1157 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1158
1159 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1160 sbdsp_wdsp(sc, tc) < 0)
1161 return EIO;
1162
1163 return 0;
1164 }
1165
1166 int
1167 sbdsp16_set_rate(sc, cmd, rate)
1168 struct sbdsp_softc *sc;
1169 int cmd, rate;
1170 {
1171 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1172
1173 if (sbdsp_wdsp(sc, cmd) < 0 ||
1174 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1175 sbdsp_wdsp(sc, rate) < 0)
1176 return EIO;
1177 return 0;
1178 }
1179
1180 int
1181 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1182 void *addr;
1183 void *start, *end;
1184 int blksize;
1185 void (*intr) __P((void *));
1186 void *arg;
1187 struct audio_params *param;
1188 {
1189 struct sbdsp_softc *sc = addr;
1190 int stereo = param->channels == 2;
1191 int width = param->precision * param->factor;
1192 int filter;
1193
1194 #ifdef DIAGNOSTIC
1195 if (stereo && (blksize & 1)) {
1196 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1197 return (EIO);
1198 }
1199 if (sc->sc_i.run != SB_NOTRUNNING)
1200 printf("sbdsp_trigger_input: already running\n");
1201 #endif
1202
1203 sc->sc_intrr = intr;
1204 sc->sc_argr = arg;
1205
1206 if (width == 8) {
1207 #ifdef DIAGNOSTIC
1208 if (sc->sc_i.dmachan != sc->sc_drq8) {
1209 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1210 width, sc->sc_i.dmachan);
1211 return (EIO);
1212 }
1213 #endif
1214 sc->sc_intr8 = sbdsp_block_input;
1215 } else {
1216 #ifdef DIAGNOSTIC
1217 if (sc->sc_i.dmachan != sc->sc_drq16) {
1218 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1219 width, sc->sc_i.dmachan);
1220 return (EIO);
1221 }
1222 #endif
1223 sc->sc_intr16 = sbdsp_block_input;
1224 }
1225
1226 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1227 blksize >>= 1;
1228 --blksize;
1229 sc->sc_i.blksize = blksize;
1230
1231 if (ISSBPRO(sc)) {
1232 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1233 return (EIO);
1234 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1235 sbdsp_mix_write(sc, SBP_INFILTER,
1236 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1237 filter);
1238 }
1239
1240 if (ISSB16CLASS(sc)) {
1241 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1242 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1243 sc->sc_i.rate));
1244 return (EIO);
1245 }
1246 } else {
1247 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1248 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1249 sc->sc_i.rate));
1250 return (EIO);
1251 }
1252 }
1253
1254 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1255 start, end, sc->sc_i.dmachan));
1256 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1257 (char *)end - (char *)start, NULL,
1258 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1259
1260 return sbdsp_block_input(addr);
1261 }
1262
1263 int
1264 sbdsp_block_input(addr)
1265 void *addr;
1266 {
1267 struct sbdsp_softc *sc = addr;
1268 int cc = sc->sc_i.blksize;
1269
1270 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1271
1272 if (sc->sc_i.run != SB_NOTRUNNING)
1273 sc->sc_intrr(sc->sc_argr);
1274
1275 if (sc->sc_model == SB_1) {
1276 /* Non-looping mode, start DMA */
1277 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1278 sbdsp_wdsp(sc, cc) < 0 ||
1279 sbdsp_wdsp(sc, cc >> 8) < 0) {
1280 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1281 return (EIO);
1282 }
1283 sc->sc_i.run = SB_RUNNING;
1284 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1285 /* Initialize looping PCM */
1286 if (ISSB16CLASS(sc)) {
1287 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1288 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1289 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1290 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1291 sbdsp_wdsp(sc, cc) < 0 ||
1292 sbdsp_wdsp(sc, cc >> 8) < 0) {
1293 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1294 return (EIO);
1295 }
1296 } else {
1297 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1298 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1299 sbdsp_wdsp(sc, cc) < 0 ||
1300 sbdsp_wdsp(sc, cc >> 8) < 0) {
1301 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1302 return (EIO);
1303 }
1304 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1305 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1306 return (EIO);
1307 }
1308 }
1309 sc->sc_i.run = SB_LOOPING;
1310 }
1311
1312 return (0);
1313 }
1314
1315 int
1316 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1317 void *addr;
1318 void *start, *end;
1319 int blksize;
1320 void (*intr) __P((void *));
1321 void *arg;
1322 struct audio_params *param;
1323 {
1324 struct sbdsp_softc *sc = addr;
1325 int stereo = param->channels == 2;
1326 int width = param->precision * param->factor;
1327 int cmd;
1328
1329 #ifdef DIAGNOSTIC
1330 if (stereo && (blksize & 1)) {
1331 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1332 return (EIO);
1333 }
1334 if (sc->sc_o.run != SB_NOTRUNNING)
1335 printf("sbdsp_trigger_output: already running\n");
1336 #endif
1337
1338 sc->sc_intrp = intr;
1339 sc->sc_argp = arg;
1340
1341 if (width == 8) {
1342 #ifdef DIAGNOSTIC
1343 if (sc->sc_o.dmachan != sc->sc_drq8) {
1344 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1345 width, sc->sc_o.dmachan);
1346 return (EIO);
1347 }
1348 #endif
1349 sc->sc_intr8 = sbdsp_block_output;
1350 } else {
1351 #ifdef DIAGNOSTIC
1352 if (sc->sc_o.dmachan != sc->sc_drq16) {
1353 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1354 width, sc->sc_o.dmachan);
1355 return (EIO);
1356 }
1357 #endif
1358 sc->sc_intr16 = sbdsp_block_output;
1359 }
1360
1361 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1362 blksize >>= 1;
1363 --blksize;
1364 sc->sc_o.blksize = blksize;
1365
1366 if (ISSBPRO(sc)) {
1367 /* make sure we re-set stereo mixer bit when we start output. */
1368 sbdsp_mix_write(sc, SBP_STEREO,
1369 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1370 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1371 cmd = sc->sc_o.modep->cmdchan;
1372 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1373 return (EIO);
1374 }
1375
1376 if (ISSB16CLASS(sc)) {
1377 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1378 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1379 sc->sc_o.rate));
1380 return (EIO);
1381 }
1382 } else {
1383 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1384 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1385 sc->sc_o.rate));
1386 return (EIO);
1387 }
1388 }
1389
1390 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1391 start, end, sc->sc_o.dmachan));
1392 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1393 (char *)end - (char *)start, NULL,
1394 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1395
1396 return sbdsp_block_output(addr);
1397 }
1398
1399 int
1400 sbdsp_block_output(addr)
1401 void *addr;
1402 {
1403 struct sbdsp_softc *sc = addr;
1404 int cc = sc->sc_o.blksize;
1405
1406 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1407
1408 if (sc->sc_o.run != SB_NOTRUNNING)
1409 sc->sc_intrp(sc->sc_argp);
1410
1411 if (sc->sc_model == SB_1) {
1412 /* Non-looping mode, initialized. Start DMA and PCM */
1413 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1414 sbdsp_wdsp(sc, cc) < 0 ||
1415 sbdsp_wdsp(sc, cc >> 8) < 0) {
1416 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1417 return (EIO);
1418 }
1419 sc->sc_o.run = SB_RUNNING;
1420 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1421 /* Initialize looping PCM */
1422 if (ISSB16CLASS(sc)) {
1423 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1424 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1425 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1426 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1427 sbdsp_wdsp(sc, cc) < 0 ||
1428 sbdsp_wdsp(sc, cc >> 8) < 0) {
1429 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1430 return (EIO);
1431 }
1432 } else {
1433 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1434 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1435 sbdsp_wdsp(sc, cc) < 0 ||
1436 sbdsp_wdsp(sc, cc >> 8) < 0) {
1437 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1438 return (EIO);
1439 }
1440 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1441 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1442 return (EIO);
1443 }
1444 }
1445 sc->sc_o.run = SB_LOOPING;
1446 }
1447
1448 return (0);
1449 }
1450
1451 int
1452 sbdsp_halt_output(addr)
1453 void *addr;
1454 {
1455 struct sbdsp_softc *sc = addr;
1456
1457 if (sc->sc_o.run != SB_NOTRUNNING) {
1458 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1459 printf("sbdsp_halt_output: failed to halt\n");
1460 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1461 sc->sc_o.run = SB_NOTRUNNING;
1462 }
1463
1464 return (0);
1465 }
1466
1467 int
1468 sbdsp_halt_input(addr)
1469 void *addr;
1470 {
1471 struct sbdsp_softc *sc = addr;
1472
1473 if (sc->sc_i.run != SB_NOTRUNNING) {
1474 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1475 printf("sbdsp_halt_input: failed to halt\n");
1476 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1477 sc->sc_i.run = SB_NOTRUNNING;
1478 }
1479
1480 return (0);
1481 }
1482
1483 /*
1484 * Only the DSP unit on the sound blaster generates interrupts.
1485 * There are three cases of interrupt: reception of a midi byte
1486 * (when mode is enabled), completion of dma transmission, or
1487 * completion of a dma reception.
1488 *
1489 * If there is interrupt sharing or a spurious interrupt occurs
1490 * there is no way to distinguish this on an SB2. So if you have
1491 * an SB2 and experience problems, buy an SB16 (it's only $40).
1492 */
1493 int
1494 sbdsp_intr(arg)
1495 void *arg;
1496 {
1497 struct sbdsp_softc *sc = arg;
1498 u_char irq;
1499
1500 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1501 sc->sc_intr8, sc->sc_intr16));
1502 if (ISSB16CLASS(sc)) {
1503 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1504 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1505 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1506 return 0;
1507 }
1508 } else {
1509 /* XXXX CHECK FOR INTERRUPT */
1510 irq = SBP_IRQ_DMA8;
1511 }
1512
1513 sc->sc_interrupts++;
1514 delay(10); /* XXX why? */
1515
1516 /* clear interrupt */
1517 if (irq & SBP_IRQ_DMA8) {
1518 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1519 if (sc->sc_intr8)
1520 sc->sc_intr8(arg);
1521 }
1522 if (irq & SBP_IRQ_DMA16) {
1523 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1524 if (sc->sc_intr16)
1525 sc->sc_intr16(arg);
1526 }
1527 #if NMPU > 0
1528 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1529 mpu_intr(sc->sc_mpudev);
1530 }
1531 #endif
1532 return 1;
1533 }
1534
1535 /* Like val & mask, but make sure the result is correctly rounded. */
1536 #define MAXVAL 256
1537 static int
1538 sbdsp_adjust(val, mask)
1539 int val, mask;
1540 {
1541 val += (MAXVAL - mask) >> 1;
1542 if (val >= MAXVAL)
1543 val = MAXVAL-1;
1544 return val & mask;
1545 }
1546
1547 void
1548 sbdsp_set_mixer_gain(sc, port)
1549 struct sbdsp_softc *sc;
1550 int port;
1551 {
1552 int src, gain;
1553
1554 switch(sc->sc_mixer_model) {
1555 case SBM_NONE:
1556 return;
1557 case SBM_CT1335:
1558 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1559 switch(port) {
1560 case SB_MASTER_VOL:
1561 src = SBP_1335_MASTER_VOL;
1562 break;
1563 case SB_MIDI_VOL:
1564 src = SBP_1335_MIDI_VOL;
1565 break;
1566 case SB_CD_VOL:
1567 src = SBP_1335_CD_VOL;
1568 break;
1569 case SB_VOICE_VOL:
1570 src = SBP_1335_VOICE_VOL;
1571 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1572 break;
1573 default:
1574 return;
1575 }
1576 sbdsp_mix_write(sc, src, gain);
1577 break;
1578 case SBM_CT1345:
1579 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1580 sc->gain[port][SB_RIGHT]);
1581 switch (port) {
1582 case SB_MIC_VOL:
1583 src = SBP_MIC_VOL;
1584 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1585 break;
1586 case SB_MASTER_VOL:
1587 src = SBP_MASTER_VOL;
1588 break;
1589 case SB_LINE_IN_VOL:
1590 src = SBP_LINE_VOL;
1591 break;
1592 case SB_VOICE_VOL:
1593 src = SBP_VOICE_VOL;
1594 break;
1595 case SB_MIDI_VOL:
1596 src = SBP_MIDI_VOL;
1597 break;
1598 case SB_CD_VOL:
1599 src = SBP_CD_VOL;
1600 break;
1601 default:
1602 return;
1603 }
1604 sbdsp_mix_write(sc, src, gain);
1605 break;
1606 case SBM_CT1XX5:
1607 case SBM_CT1745:
1608 switch (port) {
1609 case SB_MIC_VOL:
1610 src = SB16P_MIC_L;
1611 break;
1612 case SB_MASTER_VOL:
1613 src = SB16P_MASTER_L;
1614 break;
1615 case SB_LINE_IN_VOL:
1616 src = SB16P_LINE_L;
1617 break;
1618 case SB_VOICE_VOL:
1619 src = SB16P_VOICE_L;
1620 break;
1621 case SB_MIDI_VOL:
1622 src = SB16P_MIDI_L;
1623 break;
1624 case SB_CD_VOL:
1625 src = SB16P_CD_L;
1626 break;
1627 case SB_INPUT_GAIN:
1628 src = SB16P_INPUT_GAIN_L;
1629 break;
1630 case SB_OUTPUT_GAIN:
1631 src = SB16P_OUTPUT_GAIN_L;
1632 break;
1633 case SB_TREBLE:
1634 src = SB16P_TREBLE_L;
1635 break;
1636 case SB_BASS:
1637 src = SB16P_BASS_L;
1638 break;
1639 case SB_PCSPEAKER:
1640 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1641 return;
1642 default:
1643 return;
1644 }
1645 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1646 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1647 break;
1648 }
1649 }
1650
1651 int
1652 sbdsp_mixer_set_port(addr, cp)
1653 void *addr;
1654 mixer_ctrl_t *cp;
1655 {
1656 struct sbdsp_softc *sc = addr;
1657 int lgain, rgain;
1658 int mask, bits;
1659 int lmask, rmask, lbits, rbits;
1660 int mute, swap;
1661
1662 if (sc->sc_open == SB_OPEN_MIDI)
1663 return EBUSY;
1664
1665 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1666 cp->un.value.num_channels));
1667
1668 if (sc->sc_mixer_model == SBM_NONE)
1669 return EINVAL;
1670
1671 switch (cp->dev) {
1672 case SB_TREBLE:
1673 case SB_BASS:
1674 if (sc->sc_mixer_model == SBM_CT1345 ||
1675 sc->sc_mixer_model == SBM_CT1XX5) {
1676 if (cp->type != AUDIO_MIXER_ENUM)
1677 return EINVAL;
1678 switch (cp->dev) {
1679 case SB_TREBLE:
1680 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1681 return 0;
1682 case SB_BASS:
1683 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1684 return 0;
1685 }
1686 }
1687 case SB_PCSPEAKER:
1688 case SB_INPUT_GAIN:
1689 case SB_OUTPUT_GAIN:
1690 if (!ISSBM1745(sc))
1691 return EINVAL;
1692 case SB_MIC_VOL:
1693 case SB_LINE_IN_VOL:
1694 if (sc->sc_mixer_model == SBM_CT1335)
1695 return EINVAL;
1696 case SB_VOICE_VOL:
1697 case SB_MIDI_VOL:
1698 case SB_CD_VOL:
1699 case SB_MASTER_VOL:
1700 if (cp->type != AUDIO_MIXER_VALUE)
1701 return EINVAL;
1702
1703 /*
1704 * All the mixer ports are stereo except for the microphone.
1705 * If we get a single-channel gain value passed in, then we
1706 * duplicate it to both left and right channels.
1707 */
1708
1709 switch (cp->dev) {
1710 case SB_MIC_VOL:
1711 if (cp->un.value.num_channels != 1)
1712 return EINVAL;
1713
1714 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1715 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1716 break;
1717 case SB_PCSPEAKER:
1718 if (cp->un.value.num_channels != 1)
1719 return EINVAL;
1720 /* fall into */
1721 case SB_INPUT_GAIN:
1722 case SB_OUTPUT_GAIN:
1723 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1724 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1725 break;
1726 default:
1727 switch (cp->un.value.num_channels) {
1728 case 1:
1729 lgain = rgain = SB_ADJUST_GAIN(sc,
1730 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1731 break;
1732 case 2:
1733 if (sc->sc_mixer_model == SBM_CT1335)
1734 return EINVAL;
1735 lgain = SB_ADJUST_GAIN(sc,
1736 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1737 rgain = SB_ADJUST_GAIN(sc,
1738 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1739 break;
1740 default:
1741 return EINVAL;
1742 }
1743 break;
1744 }
1745 sc->gain[cp->dev][SB_LEFT] = lgain;
1746 sc->gain[cp->dev][SB_RIGHT] = rgain;
1747
1748 sbdsp_set_mixer_gain(sc, cp->dev);
1749 break;
1750
1751 case SB_RECORD_SOURCE:
1752 if (ISSBM1745(sc)) {
1753 if (cp->type != AUDIO_MIXER_SET)
1754 return EINVAL;
1755 return sbdsp_set_in_ports(sc, cp->un.mask);
1756 } else {
1757 if (cp->type != AUDIO_MIXER_ENUM)
1758 return EINVAL;
1759 sc->in_port = cp->un.ord;
1760 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1761 }
1762 break;
1763
1764 case SB_AGC:
1765 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1766 return EINVAL;
1767 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1768 break;
1769
1770 case SB_CD_OUT_MUTE:
1771 mask = SB16P_SW_CD;
1772 goto omute;
1773 case SB_MIC_OUT_MUTE:
1774 mask = SB16P_SW_MIC;
1775 goto omute;
1776 case SB_LINE_OUT_MUTE:
1777 mask = SB16P_SW_LINE;
1778 omute:
1779 if (cp->type != AUDIO_MIXER_ENUM)
1780 return EINVAL;
1781 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1782 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1783 if (cp->un.ord)
1784 bits = bits & ~mask;
1785 else
1786 bits = bits | mask;
1787 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1788 break;
1789
1790 case SB_MIC_IN_MUTE:
1791 case SB_MIC_SWAP:
1792 lmask = rmask = SB16P_SW_MIC;
1793 goto imute;
1794 case SB_CD_IN_MUTE:
1795 case SB_CD_SWAP:
1796 lmask = SB16P_SW_CD_L;
1797 rmask = SB16P_SW_CD_R;
1798 goto imute;
1799 case SB_LINE_IN_MUTE:
1800 case SB_LINE_SWAP:
1801 lmask = SB16P_SW_LINE_L;
1802 rmask = SB16P_SW_LINE_R;
1803 goto imute;
1804 case SB_MIDI_IN_MUTE:
1805 case SB_MIDI_SWAP:
1806 lmask = SB16P_SW_MIDI_L;
1807 rmask = SB16P_SW_MIDI_R;
1808 imute:
1809 if (cp->type != AUDIO_MIXER_ENUM)
1810 return EINVAL;
1811 mask = lmask | rmask;
1812 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1813 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1814 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1815 if (SB_IS_IN_MUTE(cp->dev)) {
1816 mute = cp->dev;
1817 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1818 } else {
1819 swap = cp->dev;
1820 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1821 }
1822 if (sc->gain[swap][SB_LR]) {
1823 mask = lmask;
1824 lmask = rmask;
1825 rmask = mask;
1826 }
1827 if (!sc->gain[mute][SB_LR]) {
1828 lbits = lbits | lmask;
1829 rbits = rbits | rmask;
1830 }
1831 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1832 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1833 break;
1834
1835 default:
1836 return EINVAL;
1837 }
1838
1839 return 0;
1840 }
1841
1842 int
1843 sbdsp_mixer_get_port(addr, cp)
1844 void *addr;
1845 mixer_ctrl_t *cp;
1846 {
1847 struct sbdsp_softc *sc = addr;
1848
1849 if (sc->sc_open == SB_OPEN_MIDI)
1850 return EBUSY;
1851
1852 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1853
1854 if (sc->sc_mixer_model == SBM_NONE)
1855 return EINVAL;
1856
1857 switch (cp->dev) {
1858 case SB_TREBLE:
1859 case SB_BASS:
1860 if (sc->sc_mixer_model == SBM_CT1345 ||
1861 sc->sc_mixer_model == SBM_CT1XX5) {
1862 switch (cp->dev) {
1863 case SB_TREBLE:
1864 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1865 return 0;
1866 case SB_BASS:
1867 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1868 return 0;
1869 }
1870 }
1871 case SB_PCSPEAKER:
1872 case SB_INPUT_GAIN:
1873 case SB_OUTPUT_GAIN:
1874 if (!ISSBM1745(sc))
1875 return EINVAL;
1876 case SB_MIC_VOL:
1877 case SB_LINE_IN_VOL:
1878 if (sc->sc_mixer_model == SBM_CT1335)
1879 return EINVAL;
1880 case SB_VOICE_VOL:
1881 case SB_MIDI_VOL:
1882 case SB_CD_VOL:
1883 case SB_MASTER_VOL:
1884 switch (cp->dev) {
1885 case SB_MIC_VOL:
1886 case SB_PCSPEAKER:
1887 if (cp->un.value.num_channels != 1)
1888 return EINVAL;
1889 /* fall into */
1890 default:
1891 switch (cp->un.value.num_channels) {
1892 case 1:
1893 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1894 sc->gain[cp->dev][SB_LEFT];
1895 break;
1896 case 2:
1897 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1898 sc->gain[cp->dev][SB_LEFT];
1899 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1900 sc->gain[cp->dev][SB_RIGHT];
1901 break;
1902 default:
1903 return EINVAL;
1904 }
1905 break;
1906 }
1907 break;
1908
1909 case SB_RECORD_SOURCE:
1910 if (ISSBM1745(sc))
1911 cp->un.mask = sc->in_mask;
1912 else
1913 cp->un.ord = sc->in_port;
1914 break;
1915
1916 case SB_AGC:
1917 if (!ISSBM1745(sc))
1918 return EINVAL;
1919 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1920 break;
1921
1922 case SB_CD_IN_MUTE:
1923 case SB_MIC_IN_MUTE:
1924 case SB_LINE_IN_MUTE:
1925 case SB_MIDI_IN_MUTE:
1926 case SB_CD_SWAP:
1927 case SB_MIC_SWAP:
1928 case SB_LINE_SWAP:
1929 case SB_MIDI_SWAP:
1930 case SB_CD_OUT_MUTE:
1931 case SB_MIC_OUT_MUTE:
1932 case SB_LINE_OUT_MUTE:
1933 cp->un.ord = sc->gain[cp->dev][SB_LR];
1934 break;
1935
1936 default:
1937 return EINVAL;
1938 }
1939
1940 return 0;
1941 }
1942
1943 int
1944 sbdsp_mixer_query_devinfo(addr, dip)
1945 void *addr;
1946 mixer_devinfo_t *dip;
1947 {
1948 struct sbdsp_softc *sc = addr;
1949 int chan, class, is1745;
1950
1951 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1952 sc->sc_mixer_model, dip->index));
1953
1954 if (sc->sc_mixer_model == SBM_NONE)
1955 return ENXIO;
1956
1957 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1958 is1745 = ISSBM1745(sc);
1959 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1960
1961 switch (dip->index) {
1962 case SB_MASTER_VOL:
1963 dip->type = AUDIO_MIXER_VALUE;
1964 dip->mixer_class = SB_OUTPUT_CLASS;
1965 dip->prev = dip->next = AUDIO_MIXER_LAST;
1966 strcpy(dip->label.name, AudioNmaster);
1967 dip->un.v.num_channels = chan;
1968 strcpy(dip->un.v.units.name, AudioNvolume);
1969 return 0;
1970 case SB_MIDI_VOL:
1971 dip->type = AUDIO_MIXER_VALUE;
1972 dip->mixer_class = class;
1973 dip->prev = AUDIO_MIXER_LAST;
1974 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1975 strcpy(dip->label.name, AudioNfmsynth);
1976 dip->un.v.num_channels = chan;
1977 strcpy(dip->un.v.units.name, AudioNvolume);
1978 return 0;
1979 case SB_CD_VOL:
1980 dip->type = AUDIO_MIXER_VALUE;
1981 dip->mixer_class = class;
1982 dip->prev = AUDIO_MIXER_LAST;
1983 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1984 strcpy(dip->label.name, AudioNcd);
1985 dip->un.v.num_channels = chan;
1986 strcpy(dip->un.v.units.name, AudioNvolume);
1987 return 0;
1988 case SB_VOICE_VOL:
1989 dip->type = AUDIO_MIXER_VALUE;
1990 dip->mixer_class = class;
1991 dip->prev = AUDIO_MIXER_LAST;
1992 dip->next = AUDIO_MIXER_LAST;
1993 strcpy(dip->label.name, AudioNdac);
1994 dip->un.v.num_channels = chan;
1995 strcpy(dip->un.v.units.name, AudioNvolume);
1996 return 0;
1997 case SB_OUTPUT_CLASS:
1998 dip->type = AUDIO_MIXER_CLASS;
1999 dip->mixer_class = SB_OUTPUT_CLASS;
2000 dip->next = dip->prev = AUDIO_MIXER_LAST;
2001 strcpy(dip->label.name, AudioCoutputs);
2002 return 0;
2003 }
2004
2005 if (sc->sc_mixer_model == SBM_CT1335)
2006 return ENXIO;
2007
2008 switch (dip->index) {
2009 case SB_MIC_VOL:
2010 dip->type = AUDIO_MIXER_VALUE;
2011 dip->mixer_class = class;
2012 dip->prev = AUDIO_MIXER_LAST;
2013 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2014 strcpy(dip->label.name, AudioNmicrophone);
2015 dip->un.v.num_channels = 1;
2016 strcpy(dip->un.v.units.name, AudioNvolume);
2017 return 0;
2018
2019 case SB_LINE_IN_VOL:
2020 dip->type = AUDIO_MIXER_VALUE;
2021 dip->mixer_class = class;
2022 dip->prev = AUDIO_MIXER_LAST;
2023 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioNline);
2025 dip->un.v.num_channels = 2;
2026 strcpy(dip->un.v.units.name, AudioNvolume);
2027 return 0;
2028
2029 case SB_RECORD_SOURCE:
2030 dip->mixer_class = SB_RECORD_CLASS;
2031 dip->prev = dip->next = AUDIO_MIXER_LAST;
2032 strcpy(dip->label.name, AudioNsource);
2033 if (ISSBM1745(sc)) {
2034 dip->type = AUDIO_MIXER_SET;
2035 dip->un.s.num_mem = 4;
2036 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2037 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2038 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2039 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2040 strcpy(dip->un.s.member[2].label.name, AudioNline);
2041 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2042 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2043 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2044 } else {
2045 dip->type = AUDIO_MIXER_ENUM;
2046 dip->un.e.num_mem = 3;
2047 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2048 dip->un.e.member[0].ord = SB_MIC_VOL;
2049 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2050 dip->un.e.member[1].ord = SB_CD_VOL;
2051 strcpy(dip->un.e.member[2].label.name, AudioNline);
2052 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2053 }
2054 return 0;
2055
2056 case SB_BASS:
2057 dip->prev = dip->next = AUDIO_MIXER_LAST;
2058 strcpy(dip->label.name, AudioNbass);
2059 if (sc->sc_mixer_model == SBM_CT1745) {
2060 dip->type = AUDIO_MIXER_VALUE;
2061 dip->mixer_class = SB_EQUALIZATION_CLASS;
2062 dip->un.v.num_channels = 2;
2063 strcpy(dip->un.v.units.name, AudioNbass);
2064 } else {
2065 dip->type = AUDIO_MIXER_ENUM;
2066 dip->mixer_class = SB_INPUT_CLASS;
2067 dip->un.e.num_mem = 2;
2068 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2069 dip->un.e.member[0].ord = 0;
2070 strcpy(dip->un.e.member[1].label.name, AudioNon);
2071 dip->un.e.member[1].ord = 1;
2072 }
2073 return 0;
2074
2075 case SB_TREBLE:
2076 dip->prev = dip->next = AUDIO_MIXER_LAST;
2077 strcpy(dip->label.name, AudioNtreble);
2078 if (sc->sc_mixer_model == SBM_CT1745) {
2079 dip->type = AUDIO_MIXER_VALUE;
2080 dip->mixer_class = SB_EQUALIZATION_CLASS;
2081 dip->un.v.num_channels = 2;
2082 strcpy(dip->un.v.units.name, AudioNtreble);
2083 } else {
2084 dip->type = AUDIO_MIXER_ENUM;
2085 dip->mixer_class = SB_INPUT_CLASS;
2086 dip->un.e.num_mem = 2;
2087 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2088 dip->un.e.member[0].ord = 0;
2089 strcpy(dip->un.e.member[1].label.name, AudioNon);
2090 dip->un.e.member[1].ord = 1;
2091 }
2092 return 0;
2093
2094 case SB_RECORD_CLASS: /* record source class */
2095 dip->type = AUDIO_MIXER_CLASS;
2096 dip->mixer_class = SB_RECORD_CLASS;
2097 dip->next = dip->prev = AUDIO_MIXER_LAST;
2098 strcpy(dip->label.name, AudioCrecord);
2099 return 0;
2100
2101 case SB_INPUT_CLASS:
2102 dip->type = AUDIO_MIXER_CLASS;
2103 dip->mixer_class = SB_INPUT_CLASS;
2104 dip->next = dip->prev = AUDIO_MIXER_LAST;
2105 strcpy(dip->label.name, AudioCinputs);
2106 return 0;
2107
2108 }
2109
2110 if (sc->sc_mixer_model == SBM_CT1345)
2111 return ENXIO;
2112
2113 switch(dip->index) {
2114 case SB_PCSPEAKER:
2115 dip->type = AUDIO_MIXER_VALUE;
2116 dip->mixer_class = SB_INPUT_CLASS;
2117 dip->prev = dip->next = AUDIO_MIXER_LAST;
2118 strcpy(dip->label.name, "pc_speaker");
2119 dip->un.v.num_channels = 1;
2120 strcpy(dip->un.v.units.name, AudioNvolume);
2121 return 0;
2122
2123 case SB_INPUT_GAIN:
2124 dip->type = AUDIO_MIXER_VALUE;
2125 dip->mixer_class = SB_INPUT_CLASS;
2126 dip->prev = dip->next = AUDIO_MIXER_LAST;
2127 strcpy(dip->label.name, AudioNinput);
2128 dip->un.v.num_channels = 2;
2129 strcpy(dip->un.v.units.name, AudioNvolume);
2130 return 0;
2131
2132 case SB_OUTPUT_GAIN:
2133 dip->type = AUDIO_MIXER_VALUE;
2134 dip->mixer_class = SB_OUTPUT_CLASS;
2135 dip->prev = dip->next = AUDIO_MIXER_LAST;
2136 strcpy(dip->label.name, AudioNoutput);
2137 dip->un.v.num_channels = 2;
2138 strcpy(dip->un.v.units.name, AudioNvolume);
2139 return 0;
2140
2141 case SB_AGC:
2142 dip->type = AUDIO_MIXER_ENUM;
2143 dip->mixer_class = SB_INPUT_CLASS;
2144 dip->prev = dip->next = AUDIO_MIXER_LAST;
2145 strcpy(dip->label.name, "agc");
2146 dip->un.e.num_mem = 2;
2147 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2148 dip->un.e.member[0].ord = 0;
2149 strcpy(dip->un.e.member[1].label.name, AudioNon);
2150 dip->un.e.member[1].ord = 1;
2151 return 0;
2152
2153 case SB_EQUALIZATION_CLASS:
2154 dip->type = AUDIO_MIXER_CLASS;
2155 dip->mixer_class = SB_EQUALIZATION_CLASS;
2156 dip->next = dip->prev = AUDIO_MIXER_LAST;
2157 strcpy(dip->label.name, AudioCequalization);
2158 return 0;
2159
2160 case SB_CD_IN_MUTE:
2161 dip->prev = SB_CD_VOL;
2162 dip->next = SB_CD_SWAP;
2163 dip->mixer_class = SB_INPUT_CLASS;
2164 goto mute;
2165
2166 case SB_MIC_IN_MUTE:
2167 dip->prev = SB_MIC_VOL;
2168 dip->next = SB_MIC_SWAP;
2169 dip->mixer_class = SB_INPUT_CLASS;
2170 goto mute;
2171
2172 case SB_LINE_IN_MUTE:
2173 dip->prev = SB_LINE_IN_VOL;
2174 dip->next = SB_LINE_SWAP;
2175 dip->mixer_class = SB_INPUT_CLASS;
2176 goto mute;
2177
2178 case SB_MIDI_IN_MUTE:
2179 dip->prev = SB_MIDI_VOL;
2180 dip->next = SB_MIDI_SWAP;
2181 dip->mixer_class = SB_INPUT_CLASS;
2182 goto mute;
2183
2184 case SB_CD_SWAP:
2185 dip->prev = SB_CD_IN_MUTE;
2186 dip->next = SB_CD_OUT_MUTE;
2187 goto swap;
2188
2189 case SB_MIC_SWAP:
2190 dip->prev = SB_MIC_IN_MUTE;
2191 dip->next = SB_MIC_OUT_MUTE;
2192 goto swap;
2193
2194 case SB_LINE_SWAP:
2195 dip->prev = SB_LINE_IN_MUTE;
2196 dip->next = SB_LINE_OUT_MUTE;
2197 goto swap;
2198
2199 case SB_MIDI_SWAP:
2200 dip->prev = SB_MIDI_IN_MUTE;
2201 dip->next = AUDIO_MIXER_LAST;
2202 swap:
2203 dip->mixer_class = SB_INPUT_CLASS;
2204 strcpy(dip->label.name, AudioNswap);
2205 goto mute1;
2206
2207 case SB_CD_OUT_MUTE:
2208 dip->prev = SB_CD_SWAP;
2209 dip->next = AUDIO_MIXER_LAST;
2210 dip->mixer_class = SB_OUTPUT_CLASS;
2211 goto mute;
2212
2213 case SB_MIC_OUT_MUTE:
2214 dip->prev = SB_MIC_SWAP;
2215 dip->next = AUDIO_MIXER_LAST;
2216 dip->mixer_class = SB_OUTPUT_CLASS;
2217 goto mute;
2218
2219 case SB_LINE_OUT_MUTE:
2220 dip->prev = SB_LINE_SWAP;
2221 dip->next = AUDIO_MIXER_LAST;
2222 dip->mixer_class = SB_OUTPUT_CLASS;
2223 mute:
2224 strcpy(dip->label.name, AudioNmute);
2225 mute1:
2226 dip->type = AUDIO_MIXER_ENUM;
2227 dip->un.e.num_mem = 2;
2228 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2229 dip->un.e.member[0].ord = 0;
2230 strcpy(dip->un.e.member[1].label.name, AudioNon);
2231 dip->un.e.member[1].ord = 1;
2232 return 0;
2233
2234 }
2235
2236 return ENXIO;
2237 }
2238
2239 void *
2240 sb_malloc(addr, direction, size, pool, flags)
2241 void *addr;
2242 int direction;
2243 size_t size;
2244 int pool, flags;
2245 {
2246 struct sbdsp_softc *sc = addr;
2247 int drq;
2248
2249 if (sc->sc_drq8 != -1)
2250 drq = sc->sc_drq8;
2251 else
2252 drq = sc->sc_drq16;
2253 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2254 }
2255
2256 void
2257 sb_free(addr, ptr, pool)
2258 void *addr;
2259 void *ptr;
2260 int pool;
2261 {
2262 isa_free(ptr, pool);
2263 }
2264
2265 size_t
2266 sb_round_buffersize(addr, direction, size)
2267 void *addr;
2268 int direction;
2269 size_t size;
2270 {
2271 if (size > MAX_ISADMA)
2272 size = MAX_ISADMA;
2273 return (size);
2274 }
2275
2276 int
2277 sb_mappage(addr, mem, off, prot)
2278 void *addr;
2279 void *mem;
2280 int off;
2281 int prot;
2282 {
2283 return isa_mappage(mem, off, prot);
2284 }
2285
2286 int
2287 sbdsp_get_props(addr)
2288 void *addr;
2289 {
2290 struct sbdsp_softc *sc = addr;
2291 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2292 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2293 }
2294
2295 #if NMPU > 0
2296 /*
2297 * MIDI related routines.
2298 */
2299
2300 int
2301 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2302 void *addr;
2303 int flags;
2304 void (*iintr)__P((void *, int));
2305 void (*ointr)__P((void *));
2306 void *arg;
2307 {
2308 struct sbdsp_softc *sc = addr;
2309
2310 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2311
2312 if (sc->sc_open != SB_CLOSED)
2313 return EBUSY;
2314 if (sbdsp_reset(sc) != 0)
2315 return EIO;
2316
2317 sc->sc_open = SB_OPEN_MIDI;
2318 sc->sc_openflags = flags;
2319
2320 if (sc->sc_model >= SB_20)
2321 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2322 return EIO;
2323
2324 sc->sc_intr8 = sbdsp_midi_intr;
2325 sc->sc_intrm = iintr;
2326 sc->sc_argm = arg;
2327
2328 return 0;
2329 }
2330
2331 void
2332 sbdsp_midi_close(addr)
2333 void *addr;
2334 {
2335 struct sbdsp_softc *sc = addr;
2336
2337 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2338
2339 if (sc->sc_model >= SB_20)
2340 sbdsp_reset(sc); /* exit UART mode */
2341
2342 sc->sc_intrm = 0;
2343 sc->sc_open = SB_CLOSED;
2344 }
2345
2346 int
2347 sbdsp_midi_output(addr, d)
2348 void *addr;
2349 int d;
2350 {
2351 struct sbdsp_softc *sc = addr;
2352
2353 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2354 return EIO;
2355 if (sbdsp_wdsp(sc, d))
2356 return EIO;
2357 return 0;
2358 }
2359
2360 void
2361 sbdsp_midi_getinfo(addr, mi)
2362 void *addr;
2363 struct midi_info *mi;
2364 {
2365 struct sbdsp_softc *sc = addr;
2366
2367 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2368 mi->props = MIDI_PROP_CAN_INPUT;
2369 }
2370
2371 int
2372 sbdsp_midi_intr(addr)
2373 void *addr;
2374 {
2375 struct sbdsp_softc *sc = addr;
2376
2377 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2378 return (0);
2379 }
2380
2381 #endif
2382
2383