sbdsp.c revision 1.105 1 /* $NetBSD: sbdsp.c,v 1.105 2000/06/26 04:56:21 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84 #include "mpu.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95 #include <vm/vm.h>
96
97 #include <machine/cpu.h>
98 #include <machine/intr.h>
99 #include <machine/bus.h>
100
101 #include <sys/audioio.h>
102 #include <dev/audio_if.h>
103 #include <dev/midi_if.h>
104 #include <dev/mulaw.h>
105 #include <dev/auconv.h>
106
107 #include <dev/isa/isavar.h>
108 #include <dev/isa/isadmavar.h>
109
110 #include <dev/isa/sbreg.h>
111 #include <dev/isa/sbdspvar.h>
112
113
114 #ifdef AUDIO_DEBUG
115 #define DPRINTF(x) if (sbdspdebug) printf x
116 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
117 int sbdspdebug = 0;
118 #else
119 #define DPRINTF(x)
120 #define DPRINTFN(n,x)
121 #endif
122
123 #ifndef SBDSP_NPOLL
124 #define SBDSP_NPOLL 3000
125 #endif
126
127 struct {
128 int wdsp;
129 int rdsp;
130 int wmidi;
131 } sberr;
132
133 /*
134 * Time constant routines follow. See SBK, section 12.
135 * Although they don't come out and say it (in the docs),
136 * the card clearly uses a 1MHz countdown timer, as the
137 * low-speed formula (p. 12-4) is:
138 * tc = 256 - 10^6 / sr
139 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
140 * and a 256MHz clock is used:
141 * tc = 65536 - 256 * 10^ 6 / sr
142 * Since we can only use the upper byte of the HS TC, the two formulae
143 * are equivalent. (Why didn't they say so?) E.g.,
144 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
145 *
146 * The crossover point (from low- to high-speed modes) is different
147 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
148 *
149 * SBPRO SB20
150 * ----- --------
151 * input ls min 4 KHz 4 KHz
152 * input ls max 23 KHz 13 KHz
153 * input hs max 44.1 KHz 15 KHz
154 * output ls min 4 KHz 4 KHz
155 * output ls max 23 KHz 23 KHz
156 * output hs max 44.1 KHz 44.1 KHz
157 */
158 /* XXX Should we round the tc?
159 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
160 */
161 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
162 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
163
164 struct sbmode {
165 short model;
166 u_char channels;
167 u_char precision;
168 u_short lowrate, highrate;
169 u_char cmd;
170 u_char halt, cont;
171 u_char cmdchan;
172 };
173 static struct sbmode sbpmodes[] = {
174 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
180 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
181 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
182 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
183 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
184 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
185 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
186 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
187 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
188 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
189 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
190 #define PLAY16 15 /* must be the index of the next entry in the table */
191 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
193 { -1 }
194 };
195 static struct sbmode sbrmodes[] = {
196 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
200 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
201 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
202 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
203 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
205 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
206 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
207 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
208 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
209 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
210 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
211 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
213 { -1 }
214 };
215
216 void sbversion __P((struct sbdsp_softc *));
217 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
218 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
219 void sbdsp_pause __P((struct sbdsp_softc *));
220 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
221 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
222 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
223 void sbdsp_set_ifilter __P((void *, int));
224 int sbdsp_get_ifilter __P((void *));
225
226 int sbdsp_block_output __P((void *));
227 int sbdsp_block_input __P((void *));
228 static int sbdsp_adjust __P((int, int));
229
230 int sbdsp_midi_intr __P((void *));
231
232 #ifdef AUDIO_DEBUG
233 void sb_printsc __P((struct sbdsp_softc *));
234
235 void
236 sb_printsc(sc)
237 struct sbdsp_softc *sc;
238 {
239 int i;
240
241 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
242 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
243 sc->sc_drq8, sc->sc_drq16,
244 sc->sc_iobase, sc->sc_irq);
245 printf("irate %d itc %x orate %d otc %x\n",
246 sc->sc_i.rate, sc->sc_i.tc,
247 sc->sc_o.rate, sc->sc_o.tc);
248 printf("spkron %u nintr %lu\n",
249 sc->spkr_state, sc->sc_interrupts);
250 printf("intr8 %p intr16 %p\n",
251 sc->sc_intr8, sc->sc_intr16);
252 printf("gain:");
253 for (i = 0; i < SB_NDEVS; i++)
254 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
255 printf("\n");
256 }
257 #endif /* AUDIO_DEBUG */
258
259 /*
260 * Probe / attach routines.
261 */
262
263 /*
264 * Probe for the soundblaster hardware.
265 */
266 int
267 sbdsp_probe(sc)
268 struct sbdsp_softc *sc;
269 {
270
271 if (sbdsp_reset(sc) < 0) {
272 DPRINTF(("sbdsp: couldn't reset card\n"));
273 return 0;
274 }
275 /* if flags set, go and probe the jazz16 stuff */
276 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
277 sbdsp_jazz16_probe(sc);
278 else
279 sbversion(sc);
280 if (sc->sc_model == SB_UNK) {
281 /* Unknown SB model found. */
282 DPRINTF(("sbdsp: unknown SB model found\n"));
283 return 0;
284 }
285 return 1;
286 }
287
288 /*
289 * Try add-on stuff for Jazz16.
290 */
291 void
292 sbdsp_jazz16_probe(sc)
293 struct sbdsp_softc *sc;
294 {
295 static u_char jazz16_irq_conf[16] = {
296 -1, -1, 0x02, 0x03,
297 -1, 0x01, -1, 0x04,
298 -1, 0x02, 0x05, -1,
299 -1, -1, -1, 0x06};
300 static u_char jazz16_drq_conf[8] = {
301 -1, 0x01, -1, 0x02,
302 -1, 0x03, -1, 0x04};
303
304 bus_space_tag_t iot = sc->sc_iot;
305 bus_space_handle_t ioh;
306
307 sbversion(sc);
308
309 DPRINTF(("jazz16 probe\n"));
310
311 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
312 DPRINTF(("bus map failed\n"));
313 return;
314 }
315
316 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
317 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
318 DPRINTF(("drq/irq check failed\n"));
319 goto done; /* give up, we can't do it. */
320 }
321
322 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
323 delay(10000); /* delay 10 ms */
324 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
325 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
326
327 if (sbdsp_reset(sc) < 0) {
328 DPRINTF(("sbdsp_reset check failed\n"));
329 goto done; /* XXX? what else could we do? */
330 }
331
332 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
333 DPRINTF(("read16 setup failed\n"));
334 goto done;
335 }
336
337 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
338 DPRINTF(("read16 failed\n"));
339 goto done;
340 }
341
342 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
343 sc->sc_drq16 = sc->sc_drq8;
344 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
345 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
346 jazz16_drq_conf[sc->sc_drq8]) ||
347 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
348 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
349 } else {
350 DPRINTF(("jazz16 detected!\n"));
351 sc->sc_model = SB_JAZZ;
352 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
353 }
354
355 done:
356 bus_space_unmap(iot, ioh, 1);
357 }
358
359 /*
360 * Attach hardware to driver, attach hardware driver to audio
361 * pseudo-device driver .
362 */
363 void
364 sbdsp_attach(sc)
365 struct sbdsp_softc *sc;
366 {
367 struct audio_params pparams, rparams;
368 int i;
369 u_int v;
370
371 pparams = audio_default;
372 rparams = audio_default;
373 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
374
375 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
376
377 if (sc->sc_mixer_model != SBM_NONE) {
378 /* Reset the mixer.*/
379 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
380 /* And set our own default values */
381 for (i = 0; i < SB_NDEVS; i++) {
382 switch(i) {
383 case SB_MIC_VOL:
384 case SB_LINE_IN_VOL:
385 v = 0;
386 break;
387 case SB_BASS:
388 case SB_TREBLE:
389 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
390 break;
391 case SB_CD_IN_MUTE:
392 case SB_MIC_IN_MUTE:
393 case SB_LINE_IN_MUTE:
394 case SB_MIDI_IN_MUTE:
395 case SB_CD_SWAP:
396 case SB_MIC_SWAP:
397 case SB_LINE_SWAP:
398 case SB_MIDI_SWAP:
399 case SB_CD_OUT_MUTE:
400 case SB_MIC_OUT_MUTE:
401 case SB_LINE_OUT_MUTE:
402 v = 0;
403 break;
404 default:
405 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
406 break;
407 }
408 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
409 sbdsp_set_mixer_gain(sc, i);
410 }
411 sc->in_filter = 0; /* no filters turned on, please */
412 }
413
414 printf(": dsp v%d.%02d%s\n",
415 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
416 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
417
418 sc->sc_fullduplex = ISSB16CLASS(sc) &&
419 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
420 sc->sc_drq8 != sc->sc_drq16;
421
422 if (sc->sc_drq8 != -1)
423 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
424 sc->sc_drq8);
425
426 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
427 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
428 sc->sc_drq16);
429 }
430
431 void
432 sbdsp_mix_write(sc, mixerport, val)
433 struct sbdsp_softc *sc;
434 int mixerport;
435 int val;
436 {
437 bus_space_tag_t iot = sc->sc_iot;
438 bus_space_handle_t ioh = sc->sc_ioh;
439 int s;
440
441 s = splaudio();
442 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
443 delay(20);
444 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
445 delay(30);
446 splx(s);
447 }
448
449 int
450 sbdsp_mix_read(sc, mixerport)
451 struct sbdsp_softc *sc;
452 int mixerport;
453 {
454 bus_space_tag_t iot = sc->sc_iot;
455 bus_space_handle_t ioh = sc->sc_ioh;
456 int val;
457 int s;
458
459 s = splaudio();
460 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
461 delay(20);
462 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
463 delay(30);
464 splx(s);
465 return val;
466 }
467
468 /*
469 * Various routines to interface to higher level audio driver
470 */
471
472 int
473 sbdsp_query_encoding(addr, fp)
474 void *addr;
475 struct audio_encoding *fp;
476 {
477 struct sbdsp_softc *sc = addr;
478 int emul;
479
480 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
481
482 switch (fp->index) {
483 case 0:
484 strcpy(fp->name, AudioEulinear);
485 fp->encoding = AUDIO_ENCODING_ULINEAR;
486 fp->precision = 8;
487 fp->flags = 0;
488 return 0;
489 case 1:
490 strcpy(fp->name, AudioEmulaw);
491 fp->encoding = AUDIO_ENCODING_ULAW;
492 fp->precision = 8;
493 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
494 return 0;
495 case 2:
496 strcpy(fp->name, AudioEalaw);
497 fp->encoding = AUDIO_ENCODING_ALAW;
498 fp->precision = 8;
499 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
500 return 0;
501 case 3:
502 strcpy(fp->name, AudioEslinear);
503 fp->encoding = AUDIO_ENCODING_SLINEAR;
504 fp->precision = 8;
505 fp->flags = emul;
506 return 0;
507 }
508 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
509 return EINVAL;
510
511 switch(fp->index) {
512 case 4:
513 strcpy(fp->name, AudioEslinear_le);
514 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
515 fp->precision = 16;
516 fp->flags = 0;
517 return 0;
518 case 5:
519 strcpy(fp->name, AudioEulinear_le);
520 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
521 fp->precision = 16;
522 fp->flags = emul;
523 return 0;
524 case 6:
525 strcpy(fp->name, AudioEslinear_be);
526 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
527 fp->precision = 16;
528 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
529 return 0;
530 case 7:
531 strcpy(fp->name, AudioEulinear_be);
532 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
533 fp->precision = 16;
534 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
535 return 0;
536 default:
537 return EINVAL;
538 }
539 return 0;
540 }
541
542 int
543 sbdsp_set_params(addr, setmode, usemode, play, rec)
544 void *addr;
545 int setmode, usemode;
546 struct audio_params *play, *rec;
547 {
548 struct sbdsp_softc *sc = addr;
549 struct sbmode *m;
550 u_int rate, tc, bmode;
551 void (*swcode) __P((void *, u_char *buf, int cnt));
552 int factor;
553 int model;
554 int chan;
555 struct audio_params *p;
556 int mode;
557
558 if (sc->sc_open == SB_OPEN_MIDI)
559 return EBUSY;
560
561 /* Later models work like SB16. */
562 model = min(sc->sc_model, SB_16);
563
564 /*
565 * Prior to the SB16, we have only one clock, so make the sample
566 * rates match.
567 */
568 if (!ISSB16CLASS(sc) &&
569 play->sample_rate != rec->sample_rate &&
570 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
571 if (setmode == AUMODE_PLAY) {
572 rec->sample_rate = play->sample_rate;
573 setmode |= AUMODE_RECORD;
574 } else if (setmode == AUMODE_RECORD) {
575 play->sample_rate = rec->sample_rate;
576 setmode |= AUMODE_PLAY;
577 } else
578 return (EINVAL);
579 }
580
581 /* Set first record info, then play info */
582 for (mode = AUMODE_RECORD; mode != -1;
583 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
584 if ((setmode & mode) == 0)
585 continue;
586
587 p = mode == AUMODE_PLAY ? play : rec;
588 /* Locate proper commands */
589 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
590 m->model != -1; m++) {
591 if (model == m->model &&
592 p->channels == m->channels &&
593 p->precision == m->precision &&
594 p->sample_rate >= m->lowrate &&
595 p->sample_rate <= m->highrate)
596 break;
597 }
598 if (m->model == -1)
599 return EINVAL;
600 rate = p->sample_rate;
601 swcode = 0;
602 factor = 1;
603 tc = 1;
604 bmode = -1;
605 if (model == SB_16) {
606 switch (p->encoding) {
607 case AUDIO_ENCODING_SLINEAR_BE:
608 if (p->precision == 16)
609 swcode = swap_bytes;
610 /* fall into */
611 case AUDIO_ENCODING_SLINEAR_LE:
612 bmode = SB_BMODE_SIGNED;
613 break;
614 case AUDIO_ENCODING_ULINEAR_BE:
615 if (p->precision == 16)
616 swcode = swap_bytes;
617 /* fall into */
618 case AUDIO_ENCODING_ULINEAR_LE:
619 bmode = SB_BMODE_UNSIGNED;
620 break;
621 case AUDIO_ENCODING_ULAW:
622 if (mode == AUMODE_PLAY) {
623 swcode = mulaw_to_ulinear16_le;
624 factor = 2;
625 m = &sbpmodes[PLAY16];
626 } else
627 swcode = ulinear8_to_mulaw;
628 bmode = SB_BMODE_UNSIGNED;
629 break;
630 case AUDIO_ENCODING_ALAW:
631 if (mode == AUMODE_PLAY) {
632 swcode = alaw_to_ulinear16_le;
633 factor = 2;
634 m = &sbpmodes[PLAY16];
635 } else
636 swcode = ulinear8_to_alaw;
637 bmode = SB_BMODE_UNSIGNED;
638 break;
639 default:
640 return EINVAL;
641 }
642 if (p->channels == 2)
643 bmode |= SB_BMODE_STEREO;
644 } else if (m->model == SB_JAZZ && m->precision == 16) {
645 switch (p->encoding) {
646 case AUDIO_ENCODING_SLINEAR_LE:
647 break;
648 case AUDIO_ENCODING_ULINEAR_LE:
649 swcode = change_sign16_le;
650 break;
651 case AUDIO_ENCODING_SLINEAR_BE:
652 swcode = swap_bytes;
653 break;
654 case AUDIO_ENCODING_ULINEAR_BE:
655 swcode = mode == AUMODE_PLAY ?
656 swap_bytes_change_sign16_le :
657 change_sign16_swap_bytes_le;
658 break;
659 case AUDIO_ENCODING_ULAW:
660 swcode = mode == AUMODE_PLAY ?
661 mulaw_to_ulinear8 : ulinear8_to_mulaw;
662 break;
663 case AUDIO_ENCODING_ALAW:
664 swcode = mode == AUMODE_PLAY ?
665 alaw_to_ulinear8 : ulinear8_to_alaw;
666 break;
667 default:
668 return EINVAL;
669 }
670 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
671 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
672 } else {
673 switch (p->encoding) {
674 case AUDIO_ENCODING_SLINEAR_BE:
675 case AUDIO_ENCODING_SLINEAR_LE:
676 swcode = change_sign8;
677 break;
678 case AUDIO_ENCODING_ULINEAR_BE:
679 case AUDIO_ENCODING_ULINEAR_LE:
680 break;
681 case AUDIO_ENCODING_ULAW:
682 swcode = mode == AUMODE_PLAY ?
683 mulaw_to_ulinear8 : ulinear8_to_mulaw;
684 break;
685 case AUDIO_ENCODING_ALAW:
686 swcode = mode == AUMODE_PLAY ?
687 alaw_to_ulinear8 : ulinear8_to_alaw;
688 break;
689 default:
690 return EINVAL;
691 }
692 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
693 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
694 }
695
696 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
697 if (mode == AUMODE_PLAY) {
698 sc->sc_o.rate = rate;
699 sc->sc_o.tc = tc;
700 sc->sc_o.modep = m;
701 sc->sc_o.bmode = bmode;
702 sc->sc_o.dmachan = chan;
703 } else {
704 sc->sc_i.rate = rate;
705 sc->sc_i.tc = tc;
706 sc->sc_i.modep = m;
707 sc->sc_i.bmode = bmode;
708 sc->sc_i.dmachan = chan;
709 }
710
711 p->sw_code = swcode;
712 p->factor = factor;
713 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
714 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
715 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
716
717 }
718
719 if (sc->sc_fullduplex &&
720 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
721 sc->sc_i.dmachan == sc->sc_o.dmachan) {
722 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
723 if (sc->sc_o.dmachan == sc->sc_drq8) {
724 /* Use 16 bit DMA for playing by expanding the samples. */
725 play->sw_code = linear8_to_linear16_le;
726 play->factor = 2;
727 sc->sc_o.modep = &sbpmodes[PLAY16];
728 sc->sc_o.dmachan = sc->sc_drq16;
729 } else {
730 return EINVAL;
731 }
732 }
733 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
734 sc->sc_i.dmachan, sc->sc_o.dmachan));
735
736 return (0);
737 }
738
739 void
740 sbdsp_set_ifilter(addr, which)
741 void *addr;
742 int which;
743 {
744 struct sbdsp_softc *sc = addr;
745 int mixval;
746
747 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
748 switch (which) {
749 case 0:
750 mixval |= SBP_FILTER_OFF;
751 break;
752 case SB_TREBLE:
753 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
754 break;
755 case SB_BASS:
756 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
757 break;
758 default:
759 return;
760 }
761 sc->in_filter = mixval & SBP_IFILTER_MASK;
762 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
763 }
764
765 int
766 sbdsp_get_ifilter(addr)
767 void *addr;
768 {
769 struct sbdsp_softc *sc = addr;
770
771 sc->in_filter =
772 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
773 switch (sc->in_filter) {
774 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
775 return SB_TREBLE;
776 case SBP_FILTER_ON|SBP_IFILTER_LOW:
777 return SB_BASS;
778 default:
779 return 0;
780 }
781 }
782
783 int
784 sbdsp_set_in_ports(sc, mask)
785 struct sbdsp_softc *sc;
786 int mask;
787 {
788 int bitsl, bitsr;
789 int sbport;
790
791 if (sc->sc_open == SB_OPEN_MIDI)
792 return EBUSY;
793
794 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
795 sc->sc_mixer_model, mask));
796
797 switch(sc->sc_mixer_model) {
798 case SBM_NONE:
799 return EINVAL;
800 case SBM_CT1335:
801 if (mask != (1 << SB_MIC_VOL))
802 return EINVAL;
803 break;
804 case SBM_CT1345:
805 switch (mask) {
806 case 1 << SB_MIC_VOL:
807 sbport = SBP_FROM_MIC;
808 break;
809 case 1 << SB_LINE_IN_VOL:
810 sbport = SBP_FROM_LINE;
811 break;
812 case 1 << SB_CD_VOL:
813 sbport = SBP_FROM_CD;
814 break;
815 default:
816 return (EINVAL);
817 }
818 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
819 break;
820 case SBM_CT1XX5:
821 case SBM_CT1745:
822 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
823 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
824 return EINVAL;
825 bitsr = 0;
826 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
827 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
828 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
829 bitsl = SB_SRC_R_TO_L(bitsr);
830 if (mask & (1<<SB_MIC_VOL)) {
831 bitsl |= SBP_MIC_SRC;
832 bitsr |= SBP_MIC_SRC;
833 }
834 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
835 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
836 break;
837 }
838 sc->in_mask = mask;
839
840 return 0;
841 }
842
843 int
844 sbdsp_speaker_ctl(addr, newstate)
845 void *addr;
846 int newstate;
847 {
848 struct sbdsp_softc *sc = addr;
849
850 if (sc->sc_open == SB_OPEN_MIDI)
851 return EBUSY;
852
853 if ((newstate == SPKR_ON) &&
854 (sc->spkr_state == SPKR_OFF)) {
855 sbdsp_spkron(sc);
856 sc->spkr_state = SPKR_ON;
857 }
858 if ((newstate == SPKR_OFF) &&
859 (sc->spkr_state == SPKR_ON)) {
860 sbdsp_spkroff(sc);
861 sc->spkr_state = SPKR_OFF;
862 }
863 return 0;
864 }
865
866 int
867 sbdsp_round_blocksize(addr, blk)
868 void *addr;
869 int blk;
870 {
871 return blk & -4; /* round to biggest sample size */
872 }
873
874 int
875 sbdsp_open(addr, flags)
876 void *addr;
877 int flags;
878 {
879 struct sbdsp_softc *sc = addr;
880 int error, state;
881
882 DPRINTF(("sbdsp_open: sc=%p\n", sc));
883
884 if (sc->sc_open != SB_CLOSED)
885 return (EBUSY);
886 sc->sc_open = SB_OPEN_AUDIO;
887 sc->sc_openflags = flags;
888 state = 0;
889
890 if (sc->sc_drq8 != -1) {
891 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
892 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
893 if (error) {
894 printf("%s: can't create map for drq %d\n",
895 sc->sc_dev.dv_xname, sc->sc_drq8);
896 goto bad;
897 }
898 state |= 1;
899 }
900 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
901 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
902 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
903 if (error) {
904 printf("%s: can't create map for drq %d\n",
905 sc->sc_dev.dv_xname, sc->sc_drq16);
906 goto bad;
907 }
908 state |= 2;
909 }
910
911 if (sbdsp_reset(sc) != 0) {
912 error = EIO;
913 goto bad;
914 }
915
916 if (ISSBPRO(sc) &&
917 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
918 DPRINTF(("sbdsp_open: can't set mono mode\n"));
919 /* we'll readjust when it's time for DMA. */
920 }
921
922 /*
923 * Leave most things as they were; users must change things if
924 * the previous process didn't leave it they way they wanted.
925 * Looked at another way, it's easy to set up a configuration
926 * in one program and leave it for another to inherit.
927 */
928 DPRINTF(("sbdsp_open: opened\n"));
929
930 return (0);
931
932 bad:
933 if (state & 1)
934 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
935 if (state & 2)
936 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
937
938 sc->sc_open = SB_CLOSED;
939 return (error);
940 }
941
942 void
943 sbdsp_close(addr)
944 void *addr;
945 {
946 struct sbdsp_softc *sc = addr;
947
948 DPRINTF(("sbdsp_close: sc=%p\n", sc));
949
950 sbdsp_spkroff(sc);
951 sc->spkr_state = SPKR_OFF;
952
953 sbdsp_halt_output(sc);
954 sbdsp_halt_input(sc);
955
956 sc->sc_intr8 = 0;
957 sc->sc_intr16 = 0;
958
959 if (sc->sc_drq8 != -1)
960 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
961 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
962 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
963
964 sc->sc_open = SB_CLOSED;
965 DPRINTF(("sbdsp_close: closed\n"));
966 }
967
968 /*
969 * Lower-level routines
970 */
971
972 /*
973 * Reset the card.
974 * Return non-zero if the card isn't detected.
975 */
976 int
977 sbdsp_reset(sc)
978 struct sbdsp_softc *sc;
979 {
980 bus_space_tag_t iot = sc->sc_iot;
981 bus_space_handle_t ioh = sc->sc_ioh;
982
983 sc->sc_intr8 = 0;
984 sc->sc_intr16 = 0;
985 sc->sc_intrm = 0;
986
987 /*
988 * See SBK, section 11.3.
989 * We pulse a reset signal into the card.
990 * Gee, what a brilliant hardware design.
991 */
992 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
993 delay(10);
994 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
995 delay(30);
996 if (sbdsp_rdsp(sc) != SB_MAGIC)
997 return -1;
998
999 return 0;
1000 }
1001
1002 /*
1003 * Write a byte to the dsp.
1004 * We are at the mercy of the card as we use a
1005 * polling loop and wait until it can take the byte.
1006 */
1007 int
1008 sbdsp_wdsp(sc, v)
1009 struct sbdsp_softc *sc;
1010 int v;
1011 {
1012 bus_space_tag_t iot = sc->sc_iot;
1013 bus_space_handle_t ioh = sc->sc_ioh;
1014 int i;
1015 u_char x;
1016
1017 for (i = SBDSP_NPOLL; --i >= 0; ) {
1018 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1019 delay(10);
1020 if ((x & SB_DSP_BUSY) == 0) {
1021 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1022 delay(10);
1023 return 0;
1024 }
1025 }
1026 ++sberr.wdsp;
1027 return -1;
1028 }
1029
1030 /*
1031 * Read a byte from the DSP, using polling.
1032 */
1033 int
1034 sbdsp_rdsp(sc)
1035 struct sbdsp_softc *sc;
1036 {
1037 bus_space_tag_t iot = sc->sc_iot;
1038 bus_space_handle_t ioh = sc->sc_ioh;
1039 int i;
1040 u_char x;
1041
1042 for (i = SBDSP_NPOLL; --i >= 0; ) {
1043 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1044 delay(10);
1045 if (x & SB_DSP_READY) {
1046 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1047 delay(10);
1048 return x;
1049 }
1050 }
1051 ++sberr.rdsp;
1052 return -1;
1053 }
1054
1055 void
1056 sbdsp_pause(sc)
1057 struct sbdsp_softc *sc;
1058 {
1059
1060 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1061 }
1062
1063 /*
1064 * Turn on the speaker. The SBK documention says this operation
1065 * can take up to 1/10 of a second. Higher level layers should
1066 * probably let the task sleep for this amount of time after
1067 * calling here. Otherwise, things might not work (because
1068 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1069 *
1070 * These engineers had their heads up their ass when
1071 * they designed this card.
1072 */
1073 void
1074 sbdsp_spkron(sc)
1075 struct sbdsp_softc *sc;
1076 {
1077 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1078 sbdsp_pause(sc);
1079 }
1080
1081 /*
1082 * Turn off the speaker; see comment above.
1083 */
1084 void
1085 sbdsp_spkroff(sc)
1086 struct sbdsp_softc *sc;
1087 {
1088 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1089 sbdsp_pause(sc);
1090 }
1091
1092 /*
1093 * Read the version number out of the card.
1094 * Store version information in the softc.
1095 */
1096 void
1097 sbversion(sc)
1098 struct sbdsp_softc *sc;
1099 {
1100 int v;
1101
1102 sc->sc_model = SB_UNK;
1103 sc->sc_version = 0;
1104 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1105 return;
1106 v = sbdsp_rdsp(sc) << 8;
1107 v |= sbdsp_rdsp(sc);
1108 if (v < 0)
1109 return;
1110 sc->sc_version = v;
1111 switch(SBVER_MAJOR(v)) {
1112 case 1:
1113 sc->sc_mixer_model = SBM_NONE;
1114 sc->sc_model = SB_1;
1115 break;
1116 case 2:
1117 /* Some SB2 have a mixer, some don't. */
1118 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1119 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1120 /* Check if we can read back the mixer values. */
1121 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1122 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1123 sc->sc_mixer_model = SBM_CT1335;
1124 else
1125 sc->sc_mixer_model = SBM_NONE;
1126 if (SBVER_MINOR(v) == 0)
1127 sc->sc_model = SB_20;
1128 else
1129 sc->sc_model = SB_2x;
1130 break;
1131 case 3:
1132 sc->sc_mixer_model = SBM_CT1345;
1133 sc->sc_model = SB_PRO;
1134 break;
1135 case 4:
1136 #if 0
1137 /* XXX This does not work */
1138 /* Most SB16 have a tone controls, but some don't. */
1139 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1140 /* Check if we can read back the mixer value. */
1141 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1142 sc->sc_mixer_model = SBM_CT1745;
1143 else
1144 sc->sc_mixer_model = SBM_CT1XX5;
1145 #else
1146 sc->sc_mixer_model = SBM_CT1745;
1147 #endif
1148 #if 0
1149 /* XXX figure out a good way of determining the model */
1150 /* XXX what about SB_32 */
1151 if (SBVER_MINOR(v) == 16)
1152 sc->sc_model = SB_64;
1153 else
1154 #endif
1155 sc->sc_model = SB_16;
1156 break;
1157 }
1158 }
1159
1160 int
1161 sbdsp_set_timeconst(sc, tc)
1162 struct sbdsp_softc *sc;
1163 int tc;
1164 {
1165 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1166
1167 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1168 sbdsp_wdsp(sc, tc) < 0)
1169 return EIO;
1170
1171 return 0;
1172 }
1173
1174 int
1175 sbdsp16_set_rate(sc, cmd, rate)
1176 struct sbdsp_softc *sc;
1177 int cmd, rate;
1178 {
1179 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1180
1181 if (sbdsp_wdsp(sc, cmd) < 0 ||
1182 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1183 sbdsp_wdsp(sc, rate) < 0)
1184 return EIO;
1185 return 0;
1186 }
1187
1188 int
1189 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1190 void *addr;
1191 void *start, *end;
1192 int blksize;
1193 void (*intr) __P((void *));
1194 void *arg;
1195 struct audio_params *param;
1196 {
1197 struct sbdsp_softc *sc = addr;
1198 int stereo = param->channels == 2;
1199 int width = param->precision * param->factor;
1200 int filter;
1201
1202 #ifdef DIAGNOSTIC
1203 if (stereo && (blksize & 1)) {
1204 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1205 return (EIO);
1206 }
1207 if (sc->sc_i.run != SB_NOTRUNNING)
1208 printf("sbdsp_trigger_input: already running\n");
1209 #endif
1210
1211 sc->sc_intrr = intr;
1212 sc->sc_argr = arg;
1213
1214 if (width == 8) {
1215 #ifdef DIAGNOSTIC
1216 if (sc->sc_i.dmachan != sc->sc_drq8) {
1217 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1218 width, sc->sc_i.dmachan);
1219 return (EIO);
1220 }
1221 #endif
1222 sc->sc_intr8 = sbdsp_block_input;
1223 } else {
1224 #ifdef DIAGNOSTIC
1225 if (sc->sc_i.dmachan != sc->sc_drq16) {
1226 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1227 width, sc->sc_i.dmachan);
1228 return (EIO);
1229 }
1230 #endif
1231 sc->sc_intr16 = sbdsp_block_input;
1232 }
1233
1234 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1235 blksize >>= 1;
1236 --blksize;
1237 sc->sc_i.blksize = blksize;
1238
1239 if (ISSBPRO(sc)) {
1240 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1241 return (EIO);
1242 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1243 sbdsp_mix_write(sc, SBP_INFILTER,
1244 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1245 filter);
1246 }
1247
1248 if (ISSB16CLASS(sc)) {
1249 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1250 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1251 sc->sc_i.rate));
1252 return (EIO);
1253 }
1254 } else {
1255 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1256 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1257 sc->sc_i.rate));
1258 return (EIO);
1259 }
1260 }
1261
1262 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1263 start, end, sc->sc_i.dmachan));
1264 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1265 (char *)end - (char *)start, NULL,
1266 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1267
1268 return sbdsp_block_input(addr);
1269 }
1270
1271 int
1272 sbdsp_block_input(addr)
1273 void *addr;
1274 {
1275 struct sbdsp_softc *sc = addr;
1276 int cc = sc->sc_i.blksize;
1277
1278 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1279
1280 if (sc->sc_i.run != SB_NOTRUNNING)
1281 sc->sc_intrr(sc->sc_argr);
1282
1283 if (sc->sc_model == SB_1) {
1284 /* Non-looping mode, start DMA */
1285 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1286 sbdsp_wdsp(sc, cc) < 0 ||
1287 sbdsp_wdsp(sc, cc >> 8) < 0) {
1288 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1289 return (EIO);
1290 }
1291 sc->sc_i.run = SB_RUNNING;
1292 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1293 /* Initialize looping PCM */
1294 if (ISSB16CLASS(sc)) {
1295 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1296 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1297 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1298 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1299 sbdsp_wdsp(sc, cc) < 0 ||
1300 sbdsp_wdsp(sc, cc >> 8) < 0) {
1301 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1302 return (EIO);
1303 }
1304 } else {
1305 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1306 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1307 sbdsp_wdsp(sc, cc) < 0 ||
1308 sbdsp_wdsp(sc, cc >> 8) < 0) {
1309 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1310 return (EIO);
1311 }
1312 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1313 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1314 return (EIO);
1315 }
1316 }
1317 sc->sc_i.run = SB_LOOPING;
1318 }
1319
1320 return (0);
1321 }
1322
1323 int
1324 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1325 void *addr;
1326 void *start, *end;
1327 int blksize;
1328 void (*intr) __P((void *));
1329 void *arg;
1330 struct audio_params *param;
1331 {
1332 struct sbdsp_softc *sc = addr;
1333 int stereo = param->channels == 2;
1334 int width = param->precision * param->factor;
1335 int cmd;
1336
1337 #ifdef DIAGNOSTIC
1338 if (stereo && (blksize & 1)) {
1339 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1340 return (EIO);
1341 }
1342 if (sc->sc_o.run != SB_NOTRUNNING)
1343 printf("sbdsp_trigger_output: already running\n");
1344 #endif
1345
1346 sc->sc_intrp = intr;
1347 sc->sc_argp = arg;
1348
1349 if (width == 8) {
1350 #ifdef DIAGNOSTIC
1351 if (sc->sc_o.dmachan != sc->sc_drq8) {
1352 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1353 width, sc->sc_o.dmachan);
1354 return (EIO);
1355 }
1356 #endif
1357 sc->sc_intr8 = sbdsp_block_output;
1358 } else {
1359 #ifdef DIAGNOSTIC
1360 if (sc->sc_o.dmachan != sc->sc_drq16) {
1361 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1362 width, sc->sc_o.dmachan);
1363 return (EIO);
1364 }
1365 #endif
1366 sc->sc_intr16 = sbdsp_block_output;
1367 }
1368
1369 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1370 blksize >>= 1;
1371 --blksize;
1372 sc->sc_o.blksize = blksize;
1373
1374 if (ISSBPRO(sc)) {
1375 /* make sure we re-set stereo mixer bit when we start output. */
1376 sbdsp_mix_write(sc, SBP_STEREO,
1377 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1378 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1379 cmd = sc->sc_o.modep->cmdchan;
1380 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1381 return (EIO);
1382 }
1383
1384 if (ISSB16CLASS(sc)) {
1385 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1386 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1387 sc->sc_o.rate));
1388 return (EIO);
1389 }
1390 } else {
1391 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1392 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1393 sc->sc_o.rate));
1394 return (EIO);
1395 }
1396 }
1397
1398 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1399 start, end, sc->sc_o.dmachan));
1400 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1401 (char *)end - (char *)start, NULL,
1402 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1403
1404 return sbdsp_block_output(addr);
1405 }
1406
1407 int
1408 sbdsp_block_output(addr)
1409 void *addr;
1410 {
1411 struct sbdsp_softc *sc = addr;
1412 int cc = sc->sc_o.blksize;
1413
1414 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1415
1416 if (sc->sc_o.run != SB_NOTRUNNING)
1417 sc->sc_intrp(sc->sc_argp);
1418
1419 if (sc->sc_model == SB_1) {
1420 /* Non-looping mode, initialized. Start DMA and PCM */
1421 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1422 sbdsp_wdsp(sc, cc) < 0 ||
1423 sbdsp_wdsp(sc, cc >> 8) < 0) {
1424 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1425 return (EIO);
1426 }
1427 sc->sc_o.run = SB_RUNNING;
1428 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1429 /* Initialize looping PCM */
1430 if (ISSB16CLASS(sc)) {
1431 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1432 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1433 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1434 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1435 sbdsp_wdsp(sc, cc) < 0 ||
1436 sbdsp_wdsp(sc, cc >> 8) < 0) {
1437 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1438 return (EIO);
1439 }
1440 } else {
1441 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1442 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1443 sbdsp_wdsp(sc, cc) < 0 ||
1444 sbdsp_wdsp(sc, cc >> 8) < 0) {
1445 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1446 return (EIO);
1447 }
1448 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1449 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1450 return (EIO);
1451 }
1452 }
1453 sc->sc_o.run = SB_LOOPING;
1454 }
1455
1456 return (0);
1457 }
1458
1459 int
1460 sbdsp_halt_output(addr)
1461 void *addr;
1462 {
1463 struct sbdsp_softc *sc = addr;
1464
1465 if (sc->sc_o.run != SB_NOTRUNNING) {
1466 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1467 printf("sbdsp_halt_output: failed to halt\n");
1468 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1469 sc->sc_o.run = SB_NOTRUNNING;
1470 }
1471
1472 return (0);
1473 }
1474
1475 int
1476 sbdsp_halt_input(addr)
1477 void *addr;
1478 {
1479 struct sbdsp_softc *sc = addr;
1480
1481 if (sc->sc_i.run != SB_NOTRUNNING) {
1482 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1483 printf("sbdsp_halt_input: failed to halt\n");
1484 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1485 sc->sc_i.run = SB_NOTRUNNING;
1486 }
1487
1488 return (0);
1489 }
1490
1491 /*
1492 * Only the DSP unit on the sound blaster generates interrupts.
1493 * There are three cases of interrupt: reception of a midi byte
1494 * (when mode is enabled), completion of dma transmission, or
1495 * completion of a dma reception.
1496 *
1497 * If there is interrupt sharing or a spurious interrupt occurs
1498 * there is no way to distinguish this on an SB2. So if you have
1499 * an SB2 and experience problems, buy an SB16 (it's only $40).
1500 */
1501 int
1502 sbdsp_intr(arg)
1503 void *arg;
1504 {
1505 struct sbdsp_softc *sc = arg;
1506 u_char irq;
1507
1508 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1509 sc->sc_intr8, sc->sc_intr16));
1510 if (ISSB16CLASS(sc)) {
1511 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1512 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1513 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1514 return 0;
1515 }
1516 } else {
1517 /* XXXX CHECK FOR INTERRUPT */
1518 irq = SBP_IRQ_DMA8;
1519 }
1520
1521 sc->sc_interrupts++;
1522 delay(10); /* XXX why? */
1523
1524 /* clear interrupt */
1525 if (irq & SBP_IRQ_DMA8) {
1526 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1527 if (sc->sc_intr8)
1528 sc->sc_intr8(arg);
1529 }
1530 if (irq & SBP_IRQ_DMA16) {
1531 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1532 if (sc->sc_intr16)
1533 sc->sc_intr16(arg);
1534 }
1535 #if NMPU > 0
1536 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1537 mpu_intr(sc->sc_mpudev);
1538 }
1539 #endif
1540 return 1;
1541 }
1542
1543 /* Like val & mask, but make sure the result is correctly rounded. */
1544 #define MAXVAL 256
1545 static int
1546 sbdsp_adjust(val, mask)
1547 int val, mask;
1548 {
1549 val += (MAXVAL - mask) >> 1;
1550 if (val >= MAXVAL)
1551 val = MAXVAL-1;
1552 return val & mask;
1553 }
1554
1555 void
1556 sbdsp_set_mixer_gain(sc, port)
1557 struct sbdsp_softc *sc;
1558 int port;
1559 {
1560 int src, gain;
1561
1562 switch(sc->sc_mixer_model) {
1563 case SBM_NONE:
1564 return;
1565 case SBM_CT1335:
1566 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1567 switch(port) {
1568 case SB_MASTER_VOL:
1569 src = SBP_1335_MASTER_VOL;
1570 break;
1571 case SB_MIDI_VOL:
1572 src = SBP_1335_MIDI_VOL;
1573 break;
1574 case SB_CD_VOL:
1575 src = SBP_1335_CD_VOL;
1576 break;
1577 case SB_VOICE_VOL:
1578 src = SBP_1335_VOICE_VOL;
1579 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1580 break;
1581 default:
1582 return;
1583 }
1584 sbdsp_mix_write(sc, src, gain);
1585 break;
1586 case SBM_CT1345:
1587 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1588 sc->gain[port][SB_RIGHT]);
1589 switch (port) {
1590 case SB_MIC_VOL:
1591 src = SBP_MIC_VOL;
1592 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1593 break;
1594 case SB_MASTER_VOL:
1595 src = SBP_MASTER_VOL;
1596 break;
1597 case SB_LINE_IN_VOL:
1598 src = SBP_LINE_VOL;
1599 break;
1600 case SB_VOICE_VOL:
1601 src = SBP_VOICE_VOL;
1602 break;
1603 case SB_MIDI_VOL:
1604 src = SBP_MIDI_VOL;
1605 break;
1606 case SB_CD_VOL:
1607 src = SBP_CD_VOL;
1608 break;
1609 default:
1610 return;
1611 }
1612 sbdsp_mix_write(sc, src, gain);
1613 break;
1614 case SBM_CT1XX5:
1615 case SBM_CT1745:
1616 switch (port) {
1617 case SB_MIC_VOL:
1618 src = SB16P_MIC_L;
1619 break;
1620 case SB_MASTER_VOL:
1621 src = SB16P_MASTER_L;
1622 break;
1623 case SB_LINE_IN_VOL:
1624 src = SB16P_LINE_L;
1625 break;
1626 case SB_VOICE_VOL:
1627 src = SB16P_VOICE_L;
1628 break;
1629 case SB_MIDI_VOL:
1630 src = SB16P_MIDI_L;
1631 break;
1632 case SB_CD_VOL:
1633 src = SB16P_CD_L;
1634 break;
1635 case SB_INPUT_GAIN:
1636 src = SB16P_INPUT_GAIN_L;
1637 break;
1638 case SB_OUTPUT_GAIN:
1639 src = SB16P_OUTPUT_GAIN_L;
1640 break;
1641 case SB_TREBLE:
1642 src = SB16P_TREBLE_L;
1643 break;
1644 case SB_BASS:
1645 src = SB16P_BASS_L;
1646 break;
1647 case SB_PCSPEAKER:
1648 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1649 return;
1650 default:
1651 return;
1652 }
1653 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1654 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1655 break;
1656 }
1657 }
1658
1659 int
1660 sbdsp_mixer_set_port(addr, cp)
1661 void *addr;
1662 mixer_ctrl_t *cp;
1663 {
1664 struct sbdsp_softc *sc = addr;
1665 int lgain, rgain;
1666 int mask, bits;
1667 int lmask, rmask, lbits, rbits;
1668 int mute, swap;
1669
1670 if (sc->sc_open == SB_OPEN_MIDI)
1671 return EBUSY;
1672
1673 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1674 cp->un.value.num_channels));
1675
1676 if (sc->sc_mixer_model == SBM_NONE)
1677 return EINVAL;
1678
1679 switch (cp->dev) {
1680 case SB_TREBLE:
1681 case SB_BASS:
1682 if (sc->sc_mixer_model == SBM_CT1345 ||
1683 sc->sc_mixer_model == SBM_CT1XX5) {
1684 if (cp->type != AUDIO_MIXER_ENUM)
1685 return EINVAL;
1686 switch (cp->dev) {
1687 case SB_TREBLE:
1688 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1689 return 0;
1690 case SB_BASS:
1691 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1692 return 0;
1693 }
1694 }
1695 case SB_PCSPEAKER:
1696 case SB_INPUT_GAIN:
1697 case SB_OUTPUT_GAIN:
1698 if (!ISSBM1745(sc))
1699 return EINVAL;
1700 case SB_MIC_VOL:
1701 case SB_LINE_IN_VOL:
1702 if (sc->sc_mixer_model == SBM_CT1335)
1703 return EINVAL;
1704 case SB_VOICE_VOL:
1705 case SB_MIDI_VOL:
1706 case SB_CD_VOL:
1707 case SB_MASTER_VOL:
1708 if (cp->type != AUDIO_MIXER_VALUE)
1709 return EINVAL;
1710
1711 /*
1712 * All the mixer ports are stereo except for the microphone.
1713 * If we get a single-channel gain value passed in, then we
1714 * duplicate it to both left and right channels.
1715 */
1716
1717 switch (cp->dev) {
1718 case SB_MIC_VOL:
1719 if (cp->un.value.num_channels != 1)
1720 return EINVAL;
1721
1722 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1723 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1724 break;
1725 case SB_PCSPEAKER:
1726 if (cp->un.value.num_channels != 1)
1727 return EINVAL;
1728 /* fall into */
1729 case SB_INPUT_GAIN:
1730 case SB_OUTPUT_GAIN:
1731 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1732 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1733 break;
1734 default:
1735 switch (cp->un.value.num_channels) {
1736 case 1:
1737 lgain = rgain = SB_ADJUST_GAIN(sc,
1738 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1739 break;
1740 case 2:
1741 if (sc->sc_mixer_model == SBM_CT1335)
1742 return EINVAL;
1743 lgain = SB_ADJUST_GAIN(sc,
1744 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1745 rgain = SB_ADJUST_GAIN(sc,
1746 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1747 break;
1748 default:
1749 return EINVAL;
1750 }
1751 break;
1752 }
1753 sc->gain[cp->dev][SB_LEFT] = lgain;
1754 sc->gain[cp->dev][SB_RIGHT] = rgain;
1755
1756 sbdsp_set_mixer_gain(sc, cp->dev);
1757 break;
1758
1759 case SB_RECORD_SOURCE:
1760 if (ISSBM1745(sc)) {
1761 if (cp->type != AUDIO_MIXER_SET)
1762 return EINVAL;
1763 return sbdsp_set_in_ports(sc, cp->un.mask);
1764 } else {
1765 if (cp->type != AUDIO_MIXER_ENUM)
1766 return EINVAL;
1767 sc->in_port = cp->un.ord;
1768 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1769 }
1770 break;
1771
1772 case SB_AGC:
1773 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1774 return EINVAL;
1775 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1776 break;
1777
1778 case SB_CD_OUT_MUTE:
1779 mask = SB16P_SW_CD;
1780 goto omute;
1781 case SB_MIC_OUT_MUTE:
1782 mask = SB16P_SW_MIC;
1783 goto omute;
1784 case SB_LINE_OUT_MUTE:
1785 mask = SB16P_SW_LINE;
1786 omute:
1787 if (cp->type != AUDIO_MIXER_ENUM)
1788 return EINVAL;
1789 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1790 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1791 if (cp->un.ord)
1792 bits = bits & ~mask;
1793 else
1794 bits = bits | mask;
1795 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1796 break;
1797
1798 case SB_MIC_IN_MUTE:
1799 case SB_MIC_SWAP:
1800 lmask = rmask = SB16P_SW_MIC;
1801 goto imute;
1802 case SB_CD_IN_MUTE:
1803 case SB_CD_SWAP:
1804 lmask = SB16P_SW_CD_L;
1805 rmask = SB16P_SW_CD_R;
1806 goto imute;
1807 case SB_LINE_IN_MUTE:
1808 case SB_LINE_SWAP:
1809 lmask = SB16P_SW_LINE_L;
1810 rmask = SB16P_SW_LINE_R;
1811 goto imute;
1812 case SB_MIDI_IN_MUTE:
1813 case SB_MIDI_SWAP:
1814 lmask = SB16P_SW_MIDI_L;
1815 rmask = SB16P_SW_MIDI_R;
1816 imute:
1817 if (cp->type != AUDIO_MIXER_ENUM)
1818 return EINVAL;
1819 mask = lmask | rmask;
1820 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1821 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1822 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1823 if (SB_IS_IN_MUTE(cp->dev)) {
1824 mute = cp->dev;
1825 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1826 } else {
1827 swap = cp->dev;
1828 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1829 }
1830 if (sc->gain[swap][SB_LR]) {
1831 mask = lmask;
1832 lmask = rmask;
1833 rmask = mask;
1834 }
1835 if (!sc->gain[mute][SB_LR]) {
1836 lbits = lbits | lmask;
1837 rbits = rbits | rmask;
1838 }
1839 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1840 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1841 break;
1842
1843 default:
1844 return EINVAL;
1845 }
1846
1847 return 0;
1848 }
1849
1850 int
1851 sbdsp_mixer_get_port(addr, cp)
1852 void *addr;
1853 mixer_ctrl_t *cp;
1854 {
1855 struct sbdsp_softc *sc = addr;
1856
1857 if (sc->sc_open == SB_OPEN_MIDI)
1858 return EBUSY;
1859
1860 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1861
1862 if (sc->sc_mixer_model == SBM_NONE)
1863 return EINVAL;
1864
1865 switch (cp->dev) {
1866 case SB_TREBLE:
1867 case SB_BASS:
1868 if (sc->sc_mixer_model == SBM_CT1345 ||
1869 sc->sc_mixer_model == SBM_CT1XX5) {
1870 switch (cp->dev) {
1871 case SB_TREBLE:
1872 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1873 return 0;
1874 case SB_BASS:
1875 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1876 return 0;
1877 }
1878 }
1879 case SB_PCSPEAKER:
1880 case SB_INPUT_GAIN:
1881 case SB_OUTPUT_GAIN:
1882 if (!ISSBM1745(sc))
1883 return EINVAL;
1884 case SB_MIC_VOL:
1885 case SB_LINE_IN_VOL:
1886 if (sc->sc_mixer_model == SBM_CT1335)
1887 return EINVAL;
1888 case SB_VOICE_VOL:
1889 case SB_MIDI_VOL:
1890 case SB_CD_VOL:
1891 case SB_MASTER_VOL:
1892 switch (cp->dev) {
1893 case SB_MIC_VOL:
1894 case SB_PCSPEAKER:
1895 if (cp->un.value.num_channels != 1)
1896 return EINVAL;
1897 /* fall into */
1898 default:
1899 switch (cp->un.value.num_channels) {
1900 case 1:
1901 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1902 sc->gain[cp->dev][SB_LEFT];
1903 break;
1904 case 2:
1905 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1906 sc->gain[cp->dev][SB_LEFT];
1907 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1908 sc->gain[cp->dev][SB_RIGHT];
1909 break;
1910 default:
1911 return EINVAL;
1912 }
1913 break;
1914 }
1915 break;
1916
1917 case SB_RECORD_SOURCE:
1918 if (ISSBM1745(sc))
1919 cp->un.mask = sc->in_mask;
1920 else
1921 cp->un.ord = sc->in_port;
1922 break;
1923
1924 case SB_AGC:
1925 if (!ISSBM1745(sc))
1926 return EINVAL;
1927 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1928 break;
1929
1930 case SB_CD_IN_MUTE:
1931 case SB_MIC_IN_MUTE:
1932 case SB_LINE_IN_MUTE:
1933 case SB_MIDI_IN_MUTE:
1934 case SB_CD_SWAP:
1935 case SB_MIC_SWAP:
1936 case SB_LINE_SWAP:
1937 case SB_MIDI_SWAP:
1938 case SB_CD_OUT_MUTE:
1939 case SB_MIC_OUT_MUTE:
1940 case SB_LINE_OUT_MUTE:
1941 cp->un.ord = sc->gain[cp->dev][SB_LR];
1942 break;
1943
1944 default:
1945 return EINVAL;
1946 }
1947
1948 return 0;
1949 }
1950
1951 int
1952 sbdsp_mixer_query_devinfo(addr, dip)
1953 void *addr;
1954 mixer_devinfo_t *dip;
1955 {
1956 struct sbdsp_softc *sc = addr;
1957 int chan, class, is1745;
1958
1959 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1960 sc->sc_mixer_model, dip->index));
1961
1962 if (sc->sc_mixer_model == SBM_NONE)
1963 return ENXIO;
1964
1965 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1966 is1745 = ISSBM1745(sc);
1967 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1968
1969 switch (dip->index) {
1970 case SB_MASTER_VOL:
1971 dip->type = AUDIO_MIXER_VALUE;
1972 dip->mixer_class = SB_OUTPUT_CLASS;
1973 dip->prev = dip->next = AUDIO_MIXER_LAST;
1974 strcpy(dip->label.name, AudioNmaster);
1975 dip->un.v.num_channels = chan;
1976 strcpy(dip->un.v.units.name, AudioNvolume);
1977 return 0;
1978 case SB_MIDI_VOL:
1979 dip->type = AUDIO_MIXER_VALUE;
1980 dip->mixer_class = class;
1981 dip->prev = AUDIO_MIXER_LAST;
1982 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1983 strcpy(dip->label.name, AudioNfmsynth);
1984 dip->un.v.num_channels = chan;
1985 strcpy(dip->un.v.units.name, AudioNvolume);
1986 return 0;
1987 case SB_CD_VOL:
1988 dip->type = AUDIO_MIXER_VALUE;
1989 dip->mixer_class = class;
1990 dip->prev = AUDIO_MIXER_LAST;
1991 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1992 strcpy(dip->label.name, AudioNcd);
1993 dip->un.v.num_channels = chan;
1994 strcpy(dip->un.v.units.name, AudioNvolume);
1995 return 0;
1996 case SB_VOICE_VOL:
1997 dip->type = AUDIO_MIXER_VALUE;
1998 dip->mixer_class = class;
1999 dip->prev = AUDIO_MIXER_LAST;
2000 dip->next = AUDIO_MIXER_LAST;
2001 strcpy(dip->label.name, AudioNdac);
2002 dip->un.v.num_channels = chan;
2003 strcpy(dip->un.v.units.name, AudioNvolume);
2004 return 0;
2005 case SB_OUTPUT_CLASS:
2006 dip->type = AUDIO_MIXER_CLASS;
2007 dip->mixer_class = SB_OUTPUT_CLASS;
2008 dip->next = dip->prev = AUDIO_MIXER_LAST;
2009 strcpy(dip->label.name, AudioCoutputs);
2010 return 0;
2011 }
2012
2013 if (sc->sc_mixer_model == SBM_CT1335)
2014 return ENXIO;
2015
2016 switch (dip->index) {
2017 case SB_MIC_VOL:
2018 dip->type = AUDIO_MIXER_VALUE;
2019 dip->mixer_class = class;
2020 dip->prev = AUDIO_MIXER_LAST;
2021 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2022 strcpy(dip->label.name, AudioNmicrophone);
2023 dip->un.v.num_channels = 1;
2024 strcpy(dip->un.v.units.name, AudioNvolume);
2025 return 0;
2026
2027 case SB_LINE_IN_VOL:
2028 dip->type = AUDIO_MIXER_VALUE;
2029 dip->mixer_class = class;
2030 dip->prev = AUDIO_MIXER_LAST;
2031 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2032 strcpy(dip->label.name, AudioNline);
2033 dip->un.v.num_channels = 2;
2034 strcpy(dip->un.v.units.name, AudioNvolume);
2035 return 0;
2036
2037 case SB_RECORD_SOURCE:
2038 dip->mixer_class = SB_RECORD_CLASS;
2039 dip->prev = dip->next = AUDIO_MIXER_LAST;
2040 strcpy(dip->label.name, AudioNsource);
2041 if (ISSBM1745(sc)) {
2042 dip->type = AUDIO_MIXER_SET;
2043 dip->un.s.num_mem = 4;
2044 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2045 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2046 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2047 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2048 strcpy(dip->un.s.member[2].label.name, AudioNline);
2049 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2050 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2051 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2052 } else {
2053 dip->type = AUDIO_MIXER_ENUM;
2054 dip->un.e.num_mem = 3;
2055 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2056 dip->un.e.member[0].ord = SB_MIC_VOL;
2057 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2058 dip->un.e.member[1].ord = SB_CD_VOL;
2059 strcpy(dip->un.e.member[2].label.name, AudioNline);
2060 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2061 }
2062 return 0;
2063
2064 case SB_BASS:
2065 dip->prev = dip->next = AUDIO_MIXER_LAST;
2066 strcpy(dip->label.name, AudioNbass);
2067 if (sc->sc_mixer_model == SBM_CT1745) {
2068 dip->type = AUDIO_MIXER_VALUE;
2069 dip->mixer_class = SB_EQUALIZATION_CLASS;
2070 dip->un.v.num_channels = 2;
2071 strcpy(dip->un.v.units.name, AudioNbass);
2072 } else {
2073 dip->type = AUDIO_MIXER_ENUM;
2074 dip->mixer_class = SB_INPUT_CLASS;
2075 dip->un.e.num_mem = 2;
2076 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2077 dip->un.e.member[0].ord = 0;
2078 strcpy(dip->un.e.member[1].label.name, AudioNon);
2079 dip->un.e.member[1].ord = 1;
2080 }
2081 return 0;
2082
2083 case SB_TREBLE:
2084 dip->prev = dip->next = AUDIO_MIXER_LAST;
2085 strcpy(dip->label.name, AudioNtreble);
2086 if (sc->sc_mixer_model == SBM_CT1745) {
2087 dip->type = AUDIO_MIXER_VALUE;
2088 dip->mixer_class = SB_EQUALIZATION_CLASS;
2089 dip->un.v.num_channels = 2;
2090 strcpy(dip->un.v.units.name, AudioNtreble);
2091 } else {
2092 dip->type = AUDIO_MIXER_ENUM;
2093 dip->mixer_class = SB_INPUT_CLASS;
2094 dip->un.e.num_mem = 2;
2095 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2096 dip->un.e.member[0].ord = 0;
2097 strcpy(dip->un.e.member[1].label.name, AudioNon);
2098 dip->un.e.member[1].ord = 1;
2099 }
2100 return 0;
2101
2102 case SB_RECORD_CLASS: /* record source class */
2103 dip->type = AUDIO_MIXER_CLASS;
2104 dip->mixer_class = SB_RECORD_CLASS;
2105 dip->next = dip->prev = AUDIO_MIXER_LAST;
2106 strcpy(dip->label.name, AudioCrecord);
2107 return 0;
2108
2109 case SB_INPUT_CLASS:
2110 dip->type = AUDIO_MIXER_CLASS;
2111 dip->mixer_class = SB_INPUT_CLASS;
2112 dip->next = dip->prev = AUDIO_MIXER_LAST;
2113 strcpy(dip->label.name, AudioCinputs);
2114 return 0;
2115
2116 }
2117
2118 if (sc->sc_mixer_model == SBM_CT1345)
2119 return ENXIO;
2120
2121 switch(dip->index) {
2122 case SB_PCSPEAKER:
2123 dip->type = AUDIO_MIXER_VALUE;
2124 dip->mixer_class = SB_INPUT_CLASS;
2125 dip->prev = dip->next = AUDIO_MIXER_LAST;
2126 strcpy(dip->label.name, "pc_speaker");
2127 dip->un.v.num_channels = 1;
2128 strcpy(dip->un.v.units.name, AudioNvolume);
2129 return 0;
2130
2131 case SB_INPUT_GAIN:
2132 dip->type = AUDIO_MIXER_VALUE;
2133 dip->mixer_class = SB_INPUT_CLASS;
2134 dip->prev = dip->next = AUDIO_MIXER_LAST;
2135 strcpy(dip->label.name, AudioNinput);
2136 dip->un.v.num_channels = 2;
2137 strcpy(dip->un.v.units.name, AudioNvolume);
2138 return 0;
2139
2140 case SB_OUTPUT_GAIN:
2141 dip->type = AUDIO_MIXER_VALUE;
2142 dip->mixer_class = SB_OUTPUT_CLASS;
2143 dip->prev = dip->next = AUDIO_MIXER_LAST;
2144 strcpy(dip->label.name, AudioNoutput);
2145 dip->un.v.num_channels = 2;
2146 strcpy(dip->un.v.units.name, AudioNvolume);
2147 return 0;
2148
2149 case SB_AGC:
2150 dip->type = AUDIO_MIXER_ENUM;
2151 dip->mixer_class = SB_INPUT_CLASS;
2152 dip->prev = dip->next = AUDIO_MIXER_LAST;
2153 strcpy(dip->label.name, "agc");
2154 dip->un.e.num_mem = 2;
2155 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2156 dip->un.e.member[0].ord = 0;
2157 strcpy(dip->un.e.member[1].label.name, AudioNon);
2158 dip->un.e.member[1].ord = 1;
2159 return 0;
2160
2161 case SB_EQUALIZATION_CLASS:
2162 dip->type = AUDIO_MIXER_CLASS;
2163 dip->mixer_class = SB_EQUALIZATION_CLASS;
2164 dip->next = dip->prev = AUDIO_MIXER_LAST;
2165 strcpy(dip->label.name, AudioCequalization);
2166 return 0;
2167
2168 case SB_CD_IN_MUTE:
2169 dip->prev = SB_CD_VOL;
2170 dip->next = SB_CD_SWAP;
2171 dip->mixer_class = SB_INPUT_CLASS;
2172 goto mute;
2173
2174 case SB_MIC_IN_MUTE:
2175 dip->prev = SB_MIC_VOL;
2176 dip->next = SB_MIC_SWAP;
2177 dip->mixer_class = SB_INPUT_CLASS;
2178 goto mute;
2179
2180 case SB_LINE_IN_MUTE:
2181 dip->prev = SB_LINE_IN_VOL;
2182 dip->next = SB_LINE_SWAP;
2183 dip->mixer_class = SB_INPUT_CLASS;
2184 goto mute;
2185
2186 case SB_MIDI_IN_MUTE:
2187 dip->prev = SB_MIDI_VOL;
2188 dip->next = SB_MIDI_SWAP;
2189 dip->mixer_class = SB_INPUT_CLASS;
2190 goto mute;
2191
2192 case SB_CD_SWAP:
2193 dip->prev = SB_CD_IN_MUTE;
2194 dip->next = SB_CD_OUT_MUTE;
2195 goto swap;
2196
2197 case SB_MIC_SWAP:
2198 dip->prev = SB_MIC_IN_MUTE;
2199 dip->next = SB_MIC_OUT_MUTE;
2200 goto swap;
2201
2202 case SB_LINE_SWAP:
2203 dip->prev = SB_LINE_IN_MUTE;
2204 dip->next = SB_LINE_OUT_MUTE;
2205 goto swap;
2206
2207 case SB_MIDI_SWAP:
2208 dip->prev = SB_MIDI_IN_MUTE;
2209 dip->next = AUDIO_MIXER_LAST;
2210 swap:
2211 dip->mixer_class = SB_INPUT_CLASS;
2212 strcpy(dip->label.name, AudioNswap);
2213 goto mute1;
2214
2215 case SB_CD_OUT_MUTE:
2216 dip->prev = SB_CD_SWAP;
2217 dip->next = AUDIO_MIXER_LAST;
2218 dip->mixer_class = SB_OUTPUT_CLASS;
2219 goto mute;
2220
2221 case SB_MIC_OUT_MUTE:
2222 dip->prev = SB_MIC_SWAP;
2223 dip->next = AUDIO_MIXER_LAST;
2224 dip->mixer_class = SB_OUTPUT_CLASS;
2225 goto mute;
2226
2227 case SB_LINE_OUT_MUTE:
2228 dip->prev = SB_LINE_SWAP;
2229 dip->next = AUDIO_MIXER_LAST;
2230 dip->mixer_class = SB_OUTPUT_CLASS;
2231 mute:
2232 strcpy(dip->label.name, AudioNmute);
2233 mute1:
2234 dip->type = AUDIO_MIXER_ENUM;
2235 dip->un.e.num_mem = 2;
2236 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2237 dip->un.e.member[0].ord = 0;
2238 strcpy(dip->un.e.member[1].label.name, AudioNon);
2239 dip->un.e.member[1].ord = 1;
2240 return 0;
2241
2242 }
2243
2244 return ENXIO;
2245 }
2246
2247 void *
2248 sb_malloc(addr, direction, size, pool, flags)
2249 void *addr;
2250 int direction;
2251 size_t size;
2252 int pool, flags;
2253 {
2254 struct sbdsp_softc *sc = addr;
2255 int drq;
2256
2257 if (sc->sc_drq8 != -1)
2258 drq = sc->sc_drq8;
2259 else
2260 drq = sc->sc_drq16;
2261 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2262 }
2263
2264 void
2265 sb_free(addr, ptr, pool)
2266 void *addr;
2267 void *ptr;
2268 int pool;
2269 {
2270 isa_free(ptr, pool);
2271 }
2272
2273 size_t
2274 sb_round_buffersize(addr, direction, size)
2275 void *addr;
2276 int direction;
2277 size_t size;
2278 {
2279 struct sbdsp_softc *sc = addr;
2280 bus_size_t maxsize;
2281
2282 if (sc->sc_drq8 != -1)
2283 maxsize = sc->sc_drq8_maxsize;
2284 else
2285 maxsize = sc->sc_drq16_maxsize;
2286
2287 if (size > maxsize)
2288 size = maxsize;
2289 return (size);
2290 }
2291
2292 paddr_t
2293 sb_mappage(addr, mem, off, prot)
2294 void *addr;
2295 void *mem;
2296 off_t off;
2297 int prot;
2298 {
2299 return isa_mappage(mem, off, prot);
2300 }
2301
2302 int
2303 sbdsp_get_props(addr)
2304 void *addr;
2305 {
2306 struct sbdsp_softc *sc = addr;
2307 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2308 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2309 }
2310
2311 #if NMPU > 0
2312 /*
2313 * MIDI related routines.
2314 */
2315
2316 int
2317 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2318 void *addr;
2319 int flags;
2320 void (*iintr)__P((void *, int));
2321 void (*ointr)__P((void *));
2322 void *arg;
2323 {
2324 struct sbdsp_softc *sc = addr;
2325
2326 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2327
2328 if (sc->sc_open != SB_CLOSED)
2329 return EBUSY;
2330 if (sbdsp_reset(sc) != 0)
2331 return EIO;
2332
2333 sc->sc_open = SB_OPEN_MIDI;
2334 sc->sc_openflags = flags;
2335
2336 if (sc->sc_model >= SB_20)
2337 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2338 return EIO;
2339
2340 sc->sc_intr8 = sbdsp_midi_intr;
2341 sc->sc_intrm = iintr;
2342 sc->sc_argm = arg;
2343
2344 return 0;
2345 }
2346
2347 void
2348 sbdsp_midi_close(addr)
2349 void *addr;
2350 {
2351 struct sbdsp_softc *sc = addr;
2352
2353 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2354
2355 if (sc->sc_model >= SB_20)
2356 sbdsp_reset(sc); /* exit UART mode */
2357
2358 sc->sc_intrm = 0;
2359 sc->sc_open = SB_CLOSED;
2360 }
2361
2362 int
2363 sbdsp_midi_output(addr, d)
2364 void *addr;
2365 int d;
2366 {
2367 struct sbdsp_softc *sc = addr;
2368
2369 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2370 return EIO;
2371 if (sbdsp_wdsp(sc, d))
2372 return EIO;
2373 return 0;
2374 }
2375
2376 void
2377 sbdsp_midi_getinfo(addr, mi)
2378 void *addr;
2379 struct midi_info *mi;
2380 {
2381 struct sbdsp_softc *sc = addr;
2382
2383 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2384 mi->props = MIDI_PROP_CAN_INPUT;
2385 }
2386
2387 int
2388 sbdsp_midi_intr(addr)
2389 void *addr;
2390 {
2391 struct sbdsp_softc *sc = addr;
2392
2393 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2394 return (0);
2395 }
2396
2397 #endif
2398
2399