Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.105
      1 /*	$NetBSD: sbdsp.c,v 1.105 2000/06/26 04:56:21 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include "midi.h"
     84 #include "mpu.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/errno.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/syslog.h>
     92 #include <sys/device.h>
     93 #include <sys/proc.h>
     94 #include <sys/buf.h>
     95 #include <vm/vm.h>
     96 
     97 #include <machine/cpu.h>
     98 #include <machine/intr.h>
     99 #include <machine/bus.h>
    100 
    101 #include <sys/audioio.h>
    102 #include <dev/audio_if.h>
    103 #include <dev/midi_if.h>
    104 #include <dev/mulaw.h>
    105 #include <dev/auconv.h>
    106 
    107 #include <dev/isa/isavar.h>
    108 #include <dev/isa/isadmavar.h>
    109 
    110 #include <dev/isa/sbreg.h>
    111 #include <dev/isa/sbdspvar.h>
    112 
    113 
    114 #ifdef AUDIO_DEBUG
    115 #define DPRINTF(x)	if (sbdspdebug) printf x
    116 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    117 int	sbdspdebug = 0;
    118 #else
    119 #define DPRINTF(x)
    120 #define DPRINTFN(n,x)
    121 #endif
    122 
    123 #ifndef SBDSP_NPOLL
    124 #define SBDSP_NPOLL 3000
    125 #endif
    126 
    127 struct {
    128 	int wdsp;
    129 	int rdsp;
    130 	int wmidi;
    131 } sberr;
    132 
    133 /*
    134  * Time constant routines follow.  See SBK, section 12.
    135  * Although they don't come out and say it (in the docs),
    136  * the card clearly uses a 1MHz countdown timer, as the
    137  * low-speed formula (p. 12-4) is:
    138  *	tc = 256 - 10^6 / sr
    139  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    140  * and a 256MHz clock is used:
    141  *	tc = 65536 - 256 * 10^ 6 / sr
    142  * Since we can only use the upper byte of the HS TC, the two formulae
    143  * are equivalent.  (Why didn't they say so?)  E.g.,
    144  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    145  *
    146  * The crossover point (from low- to high-speed modes) is different
    147  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    148  *
    149  *				SBPRO			SB20
    150  *				-----			--------
    151  * input ls min			4	KHz		4	KHz
    152  * input ls max			23	KHz		13	KHz
    153  * input hs max			44.1	KHz		15	KHz
    154  * output ls min		4	KHz		4	KHz
    155  * output ls max		23	KHz		23	KHz
    156  * output hs max		44.1	KHz		44.1	KHz
    157  */
    158 /* XXX Should we round the tc?
    159 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    160 */
    161 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    162 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    163 
    164 struct sbmode {
    165 	short	model;
    166 	u_char	channels;
    167 	u_char	precision;
    168 	u_short	lowrate, highrate;
    169 	u_char	cmd;
    170 	u_char	halt, cont;
    171 	u_char	cmdchan;
    172 };
    173 static struct sbmode sbpmodes[] = {
    174  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    175  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    176  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    181  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    182  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    183  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    184  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    185  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    186  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    187  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    188  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    189  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    190 #define PLAY16 15 /* must be the index of the next entry in the table */
    191  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    192  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    193  { -1 }
    194 };
    195 static struct sbmode sbrmodes[] = {
    196  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    197  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    198  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    200  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    201  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    202  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    203  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    205  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    206  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    207  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    208  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    209  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    210  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    211  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    212  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    213  { -1 }
    214 };
    215 
    216 void	sbversion __P((struct sbdsp_softc *));
    217 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    218 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    219 void	sbdsp_pause __P((struct sbdsp_softc *));
    220 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    221 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    222 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    223 void	sbdsp_set_ifilter __P((void *, int));
    224 int	sbdsp_get_ifilter __P((void *));
    225 
    226 int	sbdsp_block_output __P((void *));
    227 int	sbdsp_block_input __P((void *));
    228 static	int sbdsp_adjust __P((int, int));
    229 
    230 int	sbdsp_midi_intr __P((void *));
    231 
    232 #ifdef AUDIO_DEBUG
    233 void	sb_printsc __P((struct sbdsp_softc *));
    234 
    235 void
    236 sb_printsc(sc)
    237 	struct sbdsp_softc *sc;
    238 {
    239 	int i;
    240 
    241 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
    242 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    243 	    sc->sc_drq8, sc->sc_drq16,
    244 	    sc->sc_iobase, sc->sc_irq);
    245 	printf("irate %d itc %x orate %d otc %x\n",
    246 	    sc->sc_i.rate, sc->sc_i.tc,
    247 	    sc->sc_o.rate, sc->sc_o.tc);
    248 	printf("spkron %u nintr %lu\n",
    249 	    sc->spkr_state, sc->sc_interrupts);
    250 	printf("intr8 %p intr16 %p\n",
    251 	    sc->sc_intr8, sc->sc_intr16);
    252 	printf("gain:");
    253 	for (i = 0; i < SB_NDEVS; i++)
    254 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    255 	printf("\n");
    256 }
    257 #endif /* AUDIO_DEBUG */
    258 
    259 /*
    260  * Probe / attach routines.
    261  */
    262 
    263 /*
    264  * Probe for the soundblaster hardware.
    265  */
    266 int
    267 sbdsp_probe(sc)
    268 	struct sbdsp_softc *sc;
    269 {
    270 
    271 	if (sbdsp_reset(sc) < 0) {
    272 		DPRINTF(("sbdsp: couldn't reset card\n"));
    273 		return 0;
    274 	}
    275 	/* if flags set, go and probe the jazz16 stuff */
    276 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    277 		sbdsp_jazz16_probe(sc);
    278 	else
    279 		sbversion(sc);
    280 	if (sc->sc_model == SB_UNK) {
    281 		/* Unknown SB model found. */
    282 		DPRINTF(("sbdsp: unknown SB model found\n"));
    283 		return 0;
    284 	}
    285 	return 1;
    286 }
    287 
    288 /*
    289  * Try add-on stuff for Jazz16.
    290  */
    291 void
    292 sbdsp_jazz16_probe(sc)
    293 	struct sbdsp_softc *sc;
    294 {
    295 	static u_char jazz16_irq_conf[16] = {
    296 	    -1, -1, 0x02, 0x03,
    297 	    -1, 0x01, -1, 0x04,
    298 	    -1, 0x02, 0x05, -1,
    299 	    -1, -1, -1, 0x06};
    300 	static u_char jazz16_drq_conf[8] = {
    301 	    -1, 0x01, -1, 0x02,
    302 	    -1, 0x03, -1, 0x04};
    303 
    304 	bus_space_tag_t iot = sc->sc_iot;
    305 	bus_space_handle_t ioh;
    306 
    307 	sbversion(sc);
    308 
    309 	DPRINTF(("jazz16 probe\n"));
    310 
    311 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    312 		DPRINTF(("bus map failed\n"));
    313 		return;
    314 	}
    315 
    316 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    317 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    318 		DPRINTF(("drq/irq check failed\n"));
    319 		goto done;		/* give up, we can't do it. */
    320 	}
    321 
    322 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    323 	delay(10000);			/* delay 10 ms */
    324 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    325 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    326 
    327 	if (sbdsp_reset(sc) < 0) {
    328 		DPRINTF(("sbdsp_reset check failed\n"));
    329 		goto done;		/* XXX? what else could we do? */
    330 	}
    331 
    332 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    333 		DPRINTF(("read16 setup failed\n"));
    334 		goto done;
    335 	}
    336 
    337 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    338 		DPRINTF(("read16 failed\n"));
    339 		goto done;
    340 	}
    341 
    342 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    343 	sc->sc_drq16 = sc->sc_drq8;
    344 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    345 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    346 		jazz16_drq_conf[sc->sc_drq8]) ||
    347 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    348 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    349 	} else {
    350 		DPRINTF(("jazz16 detected!\n"));
    351 		sc->sc_model = SB_JAZZ;
    352 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    353 	}
    354 
    355 done:
    356 	bus_space_unmap(iot, ioh, 1);
    357 }
    358 
    359 /*
    360  * Attach hardware to driver, attach hardware driver to audio
    361  * pseudo-device driver .
    362  */
    363 void
    364 sbdsp_attach(sc)
    365 	struct sbdsp_softc *sc;
    366 {
    367 	struct audio_params pparams, rparams;
    368 	int i;
    369 	u_int v;
    370 
    371 	pparams = audio_default;
    372 	rparams = audio_default;
    373 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    374 
    375 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    376 
    377 	if (sc->sc_mixer_model != SBM_NONE) {
    378 		/* Reset the mixer.*/
    379 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    380 		/* And set our own default values */
    381 		for (i = 0; i < SB_NDEVS; i++) {
    382 			switch(i) {
    383 			case SB_MIC_VOL:
    384 			case SB_LINE_IN_VOL:
    385 				v = 0;
    386 				break;
    387 			case SB_BASS:
    388 			case SB_TREBLE:
    389 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    390 				break;
    391 			case SB_CD_IN_MUTE:
    392 			case SB_MIC_IN_MUTE:
    393 			case SB_LINE_IN_MUTE:
    394 			case SB_MIDI_IN_MUTE:
    395 			case SB_CD_SWAP:
    396 			case SB_MIC_SWAP:
    397 			case SB_LINE_SWAP:
    398 			case SB_MIDI_SWAP:
    399 			case SB_CD_OUT_MUTE:
    400 			case SB_MIC_OUT_MUTE:
    401 			case SB_LINE_OUT_MUTE:
    402 				v = 0;
    403 				break;
    404 			default:
    405 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    406 				break;
    407 			}
    408 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    409 			sbdsp_set_mixer_gain(sc, i);
    410 		}
    411 		sc->in_filter = 0;	/* no filters turned on, please */
    412 	}
    413 
    414 	printf(": dsp v%d.%02d%s\n",
    415 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    416 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    417 
    418 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    419 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    420 	    sc->sc_drq8 != sc->sc_drq16;
    421 
    422 	if (sc->sc_drq8 != -1)
    423 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    424 		    sc->sc_drq8);
    425 
    426 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    427 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    428 		    sc->sc_drq16);
    429 }
    430 
    431 void
    432 sbdsp_mix_write(sc, mixerport, val)
    433 	struct sbdsp_softc *sc;
    434 	int mixerport;
    435 	int val;
    436 {
    437 	bus_space_tag_t iot = sc->sc_iot;
    438 	bus_space_handle_t ioh = sc->sc_ioh;
    439 	int s;
    440 
    441 	s = splaudio();
    442 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    443 	delay(20);
    444 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    445 	delay(30);
    446 	splx(s);
    447 }
    448 
    449 int
    450 sbdsp_mix_read(sc, mixerport)
    451 	struct sbdsp_softc *sc;
    452 	int mixerport;
    453 {
    454 	bus_space_tag_t iot = sc->sc_iot;
    455 	bus_space_handle_t ioh = sc->sc_ioh;
    456 	int val;
    457 	int s;
    458 
    459 	s = splaudio();
    460 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    461 	delay(20);
    462 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    463 	delay(30);
    464 	splx(s);
    465 	return val;
    466 }
    467 
    468 /*
    469  * Various routines to interface to higher level audio driver
    470  */
    471 
    472 int
    473 sbdsp_query_encoding(addr, fp)
    474 	void *addr;
    475 	struct audio_encoding *fp;
    476 {
    477 	struct sbdsp_softc *sc = addr;
    478 	int emul;
    479 
    480 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    481 
    482 	switch (fp->index) {
    483 	case 0:
    484 		strcpy(fp->name, AudioEulinear);
    485 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    486 		fp->precision = 8;
    487 		fp->flags = 0;
    488 		return 0;
    489 	case 1:
    490 		strcpy(fp->name, AudioEmulaw);
    491 		fp->encoding = AUDIO_ENCODING_ULAW;
    492 		fp->precision = 8;
    493 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    494 		return 0;
    495 	case 2:
    496 		strcpy(fp->name, AudioEalaw);
    497 		fp->encoding = AUDIO_ENCODING_ALAW;
    498 		fp->precision = 8;
    499 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    500 		return 0;
    501 	case 3:
    502 		strcpy(fp->name, AudioEslinear);
    503 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    504 		fp->precision = 8;
    505 		fp->flags = emul;
    506 		return 0;
    507 	}
    508 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    509 		return EINVAL;
    510 
    511 	switch(fp->index) {
    512 	case 4:
    513 		strcpy(fp->name, AudioEslinear_le);
    514 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    515 		fp->precision = 16;
    516 		fp->flags = 0;
    517 		return 0;
    518 	case 5:
    519 		strcpy(fp->name, AudioEulinear_le);
    520 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    521 		fp->precision = 16;
    522 		fp->flags = emul;
    523 		return 0;
    524 	case 6:
    525 		strcpy(fp->name, AudioEslinear_be);
    526 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    527 		fp->precision = 16;
    528 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    529 		return 0;
    530 	case 7:
    531 		strcpy(fp->name, AudioEulinear_be);
    532 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    533 		fp->precision = 16;
    534 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    535 		return 0;
    536 	default:
    537 		return EINVAL;
    538 	}
    539 	return 0;
    540 }
    541 
    542 int
    543 sbdsp_set_params(addr, setmode, usemode, play, rec)
    544 	void *addr;
    545 	int setmode, usemode;
    546 	struct audio_params *play, *rec;
    547 {
    548 	struct sbdsp_softc *sc = addr;
    549 	struct sbmode *m;
    550 	u_int rate, tc, bmode;
    551 	void (*swcode) __P((void *, u_char *buf, int cnt));
    552 	int factor;
    553 	int model;
    554 	int chan;
    555 	struct audio_params *p;
    556 	int mode;
    557 
    558 	if (sc->sc_open == SB_OPEN_MIDI)
    559 		return EBUSY;
    560 
    561 	/* Later models work like SB16. */
    562 	model = min(sc->sc_model, SB_16);
    563 
    564 	/*
    565 	 * Prior to the SB16, we have only one clock, so make the sample
    566 	 * rates match.
    567 	 */
    568 	if (!ISSB16CLASS(sc) &&
    569 	    play->sample_rate != rec->sample_rate &&
    570 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    571 		if (setmode == AUMODE_PLAY) {
    572 			rec->sample_rate = play->sample_rate;
    573 			setmode |= AUMODE_RECORD;
    574 		} else if (setmode == AUMODE_RECORD) {
    575 			play->sample_rate = rec->sample_rate;
    576 			setmode |= AUMODE_PLAY;
    577 		} else
    578 			return (EINVAL);
    579 	}
    580 
    581 	/* Set first record info, then play info */
    582 	for (mode = AUMODE_RECORD; mode != -1;
    583 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    584 		if ((setmode & mode) == 0)
    585 			continue;
    586 
    587 		p = mode == AUMODE_PLAY ? play : rec;
    588 		/* Locate proper commands */
    589 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    590 		    m->model != -1; m++) {
    591 			if (model == m->model &&
    592 			    p->channels == m->channels &&
    593 			    p->precision == m->precision &&
    594 			    p->sample_rate >= m->lowrate &&
    595 			    p->sample_rate <= m->highrate)
    596 				break;
    597 		}
    598 		if (m->model == -1)
    599 			return EINVAL;
    600 		rate = p->sample_rate;
    601 		swcode = 0;
    602 		factor = 1;
    603 		tc = 1;
    604 		bmode = -1;
    605 		if (model == SB_16) {
    606 			switch (p->encoding) {
    607 			case AUDIO_ENCODING_SLINEAR_BE:
    608 				if (p->precision == 16)
    609 					swcode = swap_bytes;
    610 				/* fall into */
    611 			case AUDIO_ENCODING_SLINEAR_LE:
    612 				bmode = SB_BMODE_SIGNED;
    613 				break;
    614 			case AUDIO_ENCODING_ULINEAR_BE:
    615 				if (p->precision == 16)
    616 					swcode = swap_bytes;
    617 				/* fall into */
    618 			case AUDIO_ENCODING_ULINEAR_LE:
    619 				bmode = SB_BMODE_UNSIGNED;
    620 				break;
    621 			case AUDIO_ENCODING_ULAW:
    622 				if (mode == AUMODE_PLAY) {
    623 					swcode = mulaw_to_ulinear16_le;
    624 					factor = 2;
    625 					m = &sbpmodes[PLAY16];
    626 				} else
    627 					swcode = ulinear8_to_mulaw;
    628 				bmode = SB_BMODE_UNSIGNED;
    629 				break;
    630 			case AUDIO_ENCODING_ALAW:
    631 				if (mode == AUMODE_PLAY) {
    632 					swcode = alaw_to_ulinear16_le;
    633 					factor = 2;
    634 					m = &sbpmodes[PLAY16];
    635 				} else
    636 					swcode = ulinear8_to_alaw;
    637 				bmode = SB_BMODE_UNSIGNED;
    638 				break;
    639 			default:
    640 				return EINVAL;
    641 			}
    642 			if (p->channels == 2)
    643 				bmode |= SB_BMODE_STEREO;
    644 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    645 			switch (p->encoding) {
    646 			case AUDIO_ENCODING_SLINEAR_LE:
    647 				break;
    648 			case AUDIO_ENCODING_ULINEAR_LE:
    649 				swcode = change_sign16_le;
    650 				break;
    651 			case AUDIO_ENCODING_SLINEAR_BE:
    652 				swcode = swap_bytes;
    653 				break;
    654 			case AUDIO_ENCODING_ULINEAR_BE:
    655 				swcode = mode == AUMODE_PLAY ?
    656 					swap_bytes_change_sign16_le :
    657 					change_sign16_swap_bytes_le;
    658 				break;
    659 			case AUDIO_ENCODING_ULAW:
    660 				swcode = mode == AUMODE_PLAY ?
    661 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    662 				break;
    663 			case AUDIO_ENCODING_ALAW:
    664 				swcode = mode == AUMODE_PLAY ?
    665 					alaw_to_ulinear8 : ulinear8_to_alaw;
    666 				break;
    667 			default:
    668 				return EINVAL;
    669 			}
    670 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    671 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    672 		} else {
    673 			switch (p->encoding) {
    674 			case AUDIO_ENCODING_SLINEAR_BE:
    675 			case AUDIO_ENCODING_SLINEAR_LE:
    676 				swcode = change_sign8;
    677 				break;
    678 			case AUDIO_ENCODING_ULINEAR_BE:
    679 			case AUDIO_ENCODING_ULINEAR_LE:
    680 				break;
    681 			case AUDIO_ENCODING_ULAW:
    682 				swcode = mode == AUMODE_PLAY ?
    683 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    684 				break;
    685 			case AUDIO_ENCODING_ALAW:
    686 				swcode = mode == AUMODE_PLAY ?
    687 					alaw_to_ulinear8 : ulinear8_to_alaw;
    688 				break;
    689 			default:
    690 				return EINVAL;
    691 			}
    692 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    693 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    694 		}
    695 
    696 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    697 		if (mode == AUMODE_PLAY) {
    698 			sc->sc_o.rate = rate;
    699 			sc->sc_o.tc = tc;
    700 			sc->sc_o.modep = m;
    701 			sc->sc_o.bmode = bmode;
    702 			sc->sc_o.dmachan = chan;
    703 		} else {
    704 			sc->sc_i.rate = rate;
    705 			sc->sc_i.tc = tc;
    706 			sc->sc_i.modep = m;
    707 			sc->sc_i.bmode = bmode;
    708 			sc->sc_i.dmachan = chan;
    709 		}
    710 
    711 		p->sw_code = swcode;
    712 		p->factor = factor;
    713 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    714 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    715 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    716 
    717 	}
    718 
    719 	if (sc->sc_fullduplex &&
    720 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    721 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    722 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    723 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    724 			/* Use 16 bit DMA for playing by expanding the samples. */
    725 			play->sw_code = linear8_to_linear16_le;
    726 			play->factor = 2;
    727 			sc->sc_o.modep = &sbpmodes[PLAY16];
    728 			sc->sc_o.dmachan = sc->sc_drq16;
    729 		} else {
    730 			return EINVAL;
    731 		}
    732 	}
    733 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    734 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    735 
    736 	return (0);
    737 }
    738 
    739 void
    740 sbdsp_set_ifilter(addr, which)
    741 	void *addr;
    742 	int which;
    743 {
    744 	struct sbdsp_softc *sc = addr;
    745 	int mixval;
    746 
    747 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    748 	switch (which) {
    749 	case 0:
    750 		mixval |= SBP_FILTER_OFF;
    751 		break;
    752 	case SB_TREBLE:
    753 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    754 		break;
    755 	case SB_BASS:
    756 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    757 		break;
    758 	default:
    759 		return;
    760 	}
    761 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    762 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    763 }
    764 
    765 int
    766 sbdsp_get_ifilter(addr)
    767 	void *addr;
    768 {
    769 	struct sbdsp_softc *sc = addr;
    770 
    771 	sc->in_filter =
    772 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    773 	switch (sc->in_filter) {
    774 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    775 		return SB_TREBLE;
    776 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    777 		return SB_BASS;
    778 	default:
    779 		return 0;
    780 	}
    781 }
    782 
    783 int
    784 sbdsp_set_in_ports(sc, mask)
    785 	struct sbdsp_softc *sc;
    786 	int mask;
    787 {
    788 	int bitsl, bitsr;
    789 	int sbport;
    790 
    791 	if (sc->sc_open == SB_OPEN_MIDI)
    792 		return EBUSY;
    793 
    794 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    795 		 sc->sc_mixer_model, mask));
    796 
    797 	switch(sc->sc_mixer_model) {
    798 	case SBM_NONE:
    799 		return EINVAL;
    800 	case SBM_CT1335:
    801 		if (mask != (1 << SB_MIC_VOL))
    802 			return EINVAL;
    803 		break;
    804 	case SBM_CT1345:
    805 		switch (mask) {
    806 		case 1 << SB_MIC_VOL:
    807 			sbport = SBP_FROM_MIC;
    808 			break;
    809 		case 1 << SB_LINE_IN_VOL:
    810 			sbport = SBP_FROM_LINE;
    811 			break;
    812 		case 1 << SB_CD_VOL:
    813 			sbport = SBP_FROM_CD;
    814 			break;
    815 		default:
    816 			return (EINVAL);
    817 		}
    818 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    819 		break;
    820 	case SBM_CT1XX5:
    821 	case SBM_CT1745:
    822 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    823 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    824 			return EINVAL;
    825 		bitsr = 0;
    826 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    827 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    828 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    829 		bitsl = SB_SRC_R_TO_L(bitsr);
    830 		if (mask & (1<<SB_MIC_VOL)) {
    831 			bitsl |= SBP_MIC_SRC;
    832 			bitsr |= SBP_MIC_SRC;
    833 		}
    834 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    835 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    836 		break;
    837 	}
    838 	sc->in_mask = mask;
    839 
    840 	return 0;
    841 }
    842 
    843 int
    844 sbdsp_speaker_ctl(addr, newstate)
    845 	void *addr;
    846 	int newstate;
    847 {
    848 	struct sbdsp_softc *sc = addr;
    849 
    850 	if (sc->sc_open == SB_OPEN_MIDI)
    851 		return EBUSY;
    852 
    853 	if ((newstate == SPKR_ON) &&
    854 	    (sc->spkr_state == SPKR_OFF)) {
    855 		sbdsp_spkron(sc);
    856 		sc->spkr_state = SPKR_ON;
    857 	}
    858 	if ((newstate == SPKR_OFF) &&
    859 	    (sc->spkr_state == SPKR_ON)) {
    860 		sbdsp_spkroff(sc);
    861 		sc->spkr_state = SPKR_OFF;
    862 	}
    863 	return 0;
    864 }
    865 
    866 int
    867 sbdsp_round_blocksize(addr, blk)
    868 	void *addr;
    869 	int blk;
    870 {
    871 	return blk & -4;	/* round to biggest sample size */
    872 }
    873 
    874 int
    875 sbdsp_open(addr, flags)
    876 	void *addr;
    877 	int flags;
    878 {
    879 	struct sbdsp_softc *sc = addr;
    880 	int error, state;
    881 
    882 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    883 
    884 	if (sc->sc_open != SB_CLOSED)
    885 		return (EBUSY);
    886 	sc->sc_open = SB_OPEN_AUDIO;
    887 	sc->sc_openflags = flags;
    888 	state = 0;
    889 
    890 	if (sc->sc_drq8 != -1) {
    891 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    892 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
    893 		if (error) {
    894 			printf("%s: can't create map for drq %d\n",
    895 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    896 			goto bad;
    897 		}
    898 		state |= 1;
    899 	}
    900 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    901 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    902 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
    903 		if (error) {
    904 			printf("%s: can't create map for drq %d\n",
    905 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    906 			goto bad;
    907 		}
    908 		state |= 2;
    909 	}
    910 
    911 	if (sbdsp_reset(sc) != 0) {
    912 		error = EIO;
    913 		goto bad;
    914 	}
    915 
    916 	if (ISSBPRO(sc) &&
    917 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    918 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    919 		/* we'll readjust when it's time for DMA. */
    920 	}
    921 
    922 	/*
    923 	 * Leave most things as they were; users must change things if
    924 	 * the previous process didn't leave it they way they wanted.
    925 	 * Looked at another way, it's easy to set up a configuration
    926 	 * in one program and leave it for another to inherit.
    927 	 */
    928 	DPRINTF(("sbdsp_open: opened\n"));
    929 
    930 	return (0);
    931 
    932 bad:
    933 	if (state & 1)
    934 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    935 	if (state & 2)
    936 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    937 
    938 	sc->sc_open = SB_CLOSED;
    939 	return (error);
    940 }
    941 
    942 void
    943 sbdsp_close(addr)
    944 	void *addr;
    945 {
    946 	struct sbdsp_softc *sc = addr;
    947 
    948 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    949 
    950 	sbdsp_spkroff(sc);
    951 	sc->spkr_state = SPKR_OFF;
    952 
    953 	sbdsp_halt_output(sc);
    954 	sbdsp_halt_input(sc);
    955 
    956 	sc->sc_intr8 = 0;
    957 	sc->sc_intr16 = 0;
    958 
    959 	if (sc->sc_drq8 != -1)
    960 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    961 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    962 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    963 
    964 	sc->sc_open = SB_CLOSED;
    965 	DPRINTF(("sbdsp_close: closed\n"));
    966 }
    967 
    968 /*
    969  * Lower-level routines
    970  */
    971 
    972 /*
    973  * Reset the card.
    974  * Return non-zero if the card isn't detected.
    975  */
    976 int
    977 sbdsp_reset(sc)
    978 	struct sbdsp_softc *sc;
    979 {
    980 	bus_space_tag_t iot = sc->sc_iot;
    981 	bus_space_handle_t ioh = sc->sc_ioh;
    982 
    983 	sc->sc_intr8 = 0;
    984 	sc->sc_intr16 = 0;
    985 	sc->sc_intrm = 0;
    986 
    987 	/*
    988 	 * See SBK, section 11.3.
    989 	 * We pulse a reset signal into the card.
    990 	 * Gee, what a brilliant hardware design.
    991 	 */
    992 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
    993 	delay(10);
    994 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
    995 	delay(30);
    996 	if (sbdsp_rdsp(sc) != SB_MAGIC)
    997 		return -1;
    998 
    999 	return 0;
   1000 }
   1001 
   1002 /*
   1003  * Write a byte to the dsp.
   1004  * We are at the mercy of the card as we use a
   1005  * polling loop and wait until it can take the byte.
   1006  */
   1007 int
   1008 sbdsp_wdsp(sc, v)
   1009 	struct sbdsp_softc *sc;
   1010 	int v;
   1011 {
   1012 	bus_space_tag_t iot = sc->sc_iot;
   1013 	bus_space_handle_t ioh = sc->sc_ioh;
   1014 	int i;
   1015 	u_char x;
   1016 
   1017 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1018 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1019 		delay(10);
   1020 		if ((x & SB_DSP_BUSY) == 0) {
   1021 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1022 			delay(10);
   1023 			return 0;
   1024 		}
   1025 	}
   1026 	++sberr.wdsp;
   1027 	return -1;
   1028 }
   1029 
   1030 /*
   1031  * Read a byte from the DSP, using polling.
   1032  */
   1033 int
   1034 sbdsp_rdsp(sc)
   1035 	struct sbdsp_softc *sc;
   1036 {
   1037 	bus_space_tag_t iot = sc->sc_iot;
   1038 	bus_space_handle_t ioh = sc->sc_ioh;
   1039 	int i;
   1040 	u_char x;
   1041 
   1042 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1043 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1044 		delay(10);
   1045 		if (x & SB_DSP_READY) {
   1046 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1047 			delay(10);
   1048 			return x;
   1049 		}
   1050 	}
   1051 	++sberr.rdsp;
   1052 	return -1;
   1053 }
   1054 
   1055 void
   1056 sbdsp_pause(sc)
   1057 	struct sbdsp_softc *sc;
   1058 {
   1059 
   1060 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1061 }
   1062 
   1063 /*
   1064  * Turn on the speaker.  The SBK documention says this operation
   1065  * can take up to 1/10 of a second.  Higher level layers should
   1066  * probably let the task sleep for this amount of time after
   1067  * calling here.  Otherwise, things might not work (because
   1068  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1069  *
   1070  * These engineers had their heads up their ass when
   1071  * they designed this card.
   1072  */
   1073 void
   1074 sbdsp_spkron(sc)
   1075 	struct sbdsp_softc *sc;
   1076 {
   1077 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1078 	sbdsp_pause(sc);
   1079 }
   1080 
   1081 /*
   1082  * Turn off the speaker; see comment above.
   1083  */
   1084 void
   1085 sbdsp_spkroff(sc)
   1086 	struct sbdsp_softc *sc;
   1087 {
   1088 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1089 	sbdsp_pause(sc);
   1090 }
   1091 
   1092 /*
   1093  * Read the version number out of the card.
   1094  * Store version information in the softc.
   1095  */
   1096 void
   1097 sbversion(sc)
   1098 	struct sbdsp_softc *sc;
   1099 {
   1100 	int v;
   1101 
   1102 	sc->sc_model = SB_UNK;
   1103 	sc->sc_version = 0;
   1104 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1105 		return;
   1106 	v = sbdsp_rdsp(sc) << 8;
   1107 	v |= sbdsp_rdsp(sc);
   1108 	if (v < 0)
   1109 		return;
   1110 	sc->sc_version = v;
   1111 	switch(SBVER_MAJOR(v)) {
   1112 	case 1:
   1113 		sc->sc_mixer_model = SBM_NONE;
   1114 		sc->sc_model = SB_1;
   1115 		break;
   1116 	case 2:
   1117 		/* Some SB2 have a mixer, some don't. */
   1118 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1119 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1120 		/* Check if we can read back the mixer values. */
   1121 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1122 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1123 			sc->sc_mixer_model = SBM_CT1335;
   1124 		else
   1125 			sc->sc_mixer_model = SBM_NONE;
   1126 		if (SBVER_MINOR(v) == 0)
   1127 			sc->sc_model = SB_20;
   1128 		else
   1129 			sc->sc_model = SB_2x;
   1130 		break;
   1131 	case 3:
   1132 		sc->sc_mixer_model = SBM_CT1345;
   1133 		sc->sc_model = SB_PRO;
   1134 		break;
   1135 	case 4:
   1136 #if 0
   1137 /* XXX This does not work */
   1138 		/* Most SB16 have a tone controls, but some don't. */
   1139 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1140 		/* Check if we can read back the mixer value. */
   1141 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1142 			sc->sc_mixer_model = SBM_CT1745;
   1143 		else
   1144 			sc->sc_mixer_model = SBM_CT1XX5;
   1145 #else
   1146 		sc->sc_mixer_model = SBM_CT1745;
   1147 #endif
   1148 #if 0
   1149 /* XXX figure out a good way of determining the model */
   1150 		/* XXX what about SB_32 */
   1151 		if (SBVER_MINOR(v) == 16)
   1152 			sc->sc_model = SB_64;
   1153 		else
   1154 #endif
   1155 			sc->sc_model = SB_16;
   1156 		break;
   1157 	}
   1158 }
   1159 
   1160 int
   1161 sbdsp_set_timeconst(sc, tc)
   1162 	struct sbdsp_softc *sc;
   1163 	int tc;
   1164 {
   1165 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1166 
   1167 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1168 	    sbdsp_wdsp(sc, tc) < 0)
   1169 		return EIO;
   1170 
   1171 	return 0;
   1172 }
   1173 
   1174 int
   1175 sbdsp16_set_rate(sc, cmd, rate)
   1176 	struct sbdsp_softc *sc;
   1177 	int cmd, rate;
   1178 {
   1179 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1180 
   1181 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1182 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1183 	    sbdsp_wdsp(sc, rate) < 0)
   1184 		return EIO;
   1185 	return 0;
   1186 }
   1187 
   1188 int
   1189 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1190 	void *addr;
   1191 	void *start, *end;
   1192 	int blksize;
   1193 	void (*intr) __P((void *));
   1194 	void *arg;
   1195 	struct audio_params *param;
   1196 {
   1197 	struct sbdsp_softc *sc = addr;
   1198 	int stereo = param->channels == 2;
   1199 	int width = param->precision * param->factor;
   1200 	int filter;
   1201 
   1202 #ifdef DIAGNOSTIC
   1203 	if (stereo && (blksize & 1)) {
   1204 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1205 		return (EIO);
   1206 	}
   1207 	if (sc->sc_i.run != SB_NOTRUNNING)
   1208 		printf("sbdsp_trigger_input: already running\n");
   1209 #endif
   1210 
   1211 	sc->sc_intrr = intr;
   1212 	sc->sc_argr = arg;
   1213 
   1214 	if (width == 8) {
   1215 #ifdef DIAGNOSTIC
   1216 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1217 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1218 			    width, sc->sc_i.dmachan);
   1219 			return (EIO);
   1220 		}
   1221 #endif
   1222 		sc->sc_intr8 = sbdsp_block_input;
   1223 	} else {
   1224 #ifdef DIAGNOSTIC
   1225 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1226 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1227 			    width, sc->sc_i.dmachan);
   1228 			return (EIO);
   1229 		}
   1230 #endif
   1231 		sc->sc_intr16 = sbdsp_block_input;
   1232 	}
   1233 
   1234 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1235 		blksize >>= 1;
   1236 	--blksize;
   1237 	sc->sc_i.blksize = blksize;
   1238 
   1239 	if (ISSBPRO(sc)) {
   1240 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1241 			return (EIO);
   1242 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1243 		sbdsp_mix_write(sc, SBP_INFILTER,
   1244 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1245 		    filter);
   1246 	}
   1247 
   1248 	if (ISSB16CLASS(sc)) {
   1249 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1250 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1251 				 sc->sc_i.rate));
   1252 			return (EIO);
   1253 		}
   1254 	} else {
   1255 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1256 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1257 				 sc->sc_i.rate));
   1258 			return (EIO);
   1259 		}
   1260 	}
   1261 
   1262 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
   1263 	    start, end, sc->sc_i.dmachan));
   1264 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1265 	    (char *)end - (char *)start, NULL,
   1266 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1267 
   1268 	return sbdsp_block_input(addr);
   1269 }
   1270 
   1271 int
   1272 sbdsp_block_input(addr)
   1273 	void *addr;
   1274 {
   1275 	struct sbdsp_softc *sc = addr;
   1276 	int cc = sc->sc_i.blksize;
   1277 
   1278 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1279 
   1280 	if (sc->sc_i.run != SB_NOTRUNNING)
   1281 		sc->sc_intrr(sc->sc_argr);
   1282 
   1283 	if (sc->sc_model == SB_1) {
   1284 		/* Non-looping mode, start DMA */
   1285 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1286 		    sbdsp_wdsp(sc, cc) < 0 ||
   1287 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1288 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1289 			return (EIO);
   1290 		}
   1291 		sc->sc_i.run = SB_RUNNING;
   1292 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1293 		/* Initialize looping PCM */
   1294 		if (ISSB16CLASS(sc)) {
   1295 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1296 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1297 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1298 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1299 			    sbdsp_wdsp(sc, cc) < 0 ||
   1300 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1301 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1302 				return (EIO);
   1303 			}
   1304 		} else {
   1305 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1306 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1307 			    sbdsp_wdsp(sc, cc) < 0 ||
   1308 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1309 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1310 				return (EIO);
   1311 			}
   1312 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1313 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1314 				return (EIO);
   1315 			}
   1316 		}
   1317 		sc->sc_i.run = SB_LOOPING;
   1318 	}
   1319 
   1320 	return (0);
   1321 }
   1322 
   1323 int
   1324 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1325 	void *addr;
   1326 	void *start, *end;
   1327 	int blksize;
   1328 	void (*intr) __P((void *));
   1329 	void *arg;
   1330 	struct audio_params *param;
   1331 {
   1332 	struct sbdsp_softc *sc = addr;
   1333 	int stereo = param->channels == 2;
   1334 	int width = param->precision * param->factor;
   1335 	int cmd;
   1336 
   1337 #ifdef DIAGNOSTIC
   1338 	if (stereo && (blksize & 1)) {
   1339 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1340 		return (EIO);
   1341 	}
   1342 	if (sc->sc_o.run != SB_NOTRUNNING)
   1343 		printf("sbdsp_trigger_output: already running\n");
   1344 #endif
   1345 
   1346 	sc->sc_intrp = intr;
   1347 	sc->sc_argp = arg;
   1348 
   1349 	if (width == 8) {
   1350 #ifdef DIAGNOSTIC
   1351 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1352 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1353 			    width, sc->sc_o.dmachan);
   1354 			return (EIO);
   1355 		}
   1356 #endif
   1357 		sc->sc_intr8 = sbdsp_block_output;
   1358 	} else {
   1359 #ifdef DIAGNOSTIC
   1360 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1361 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1362 			    width, sc->sc_o.dmachan);
   1363 			return (EIO);
   1364 		}
   1365 #endif
   1366 		sc->sc_intr16 = sbdsp_block_output;
   1367 	}
   1368 
   1369 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1370 		blksize >>= 1;
   1371 	--blksize;
   1372 	sc->sc_o.blksize = blksize;
   1373 
   1374 	if (ISSBPRO(sc)) {
   1375 		/* make sure we re-set stereo mixer bit when we start output. */
   1376 		sbdsp_mix_write(sc, SBP_STEREO,
   1377 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1378 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1379 		cmd = sc->sc_o.modep->cmdchan;
   1380 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1381 			return (EIO);
   1382 	}
   1383 
   1384 	if (ISSB16CLASS(sc)) {
   1385 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1386 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1387 				 sc->sc_o.rate));
   1388 			return (EIO);
   1389 		}
   1390 	} else {
   1391 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1392 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1393 				 sc->sc_o.rate));
   1394 			return (EIO);
   1395 		}
   1396 	}
   1397 
   1398 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
   1399 	    start, end, sc->sc_o.dmachan));
   1400 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1401 	    (char *)end - (char *)start, NULL,
   1402 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1403 
   1404 	return sbdsp_block_output(addr);
   1405 }
   1406 
   1407 int
   1408 sbdsp_block_output(addr)
   1409 	void *addr;
   1410 {
   1411 	struct sbdsp_softc *sc = addr;
   1412 	int cc = sc->sc_o.blksize;
   1413 
   1414 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1415 
   1416 	if (sc->sc_o.run != SB_NOTRUNNING)
   1417 		sc->sc_intrp(sc->sc_argp);
   1418 
   1419 	if (sc->sc_model == SB_1) {
   1420 		/* Non-looping mode, initialized. Start DMA and PCM */
   1421 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1422 		    sbdsp_wdsp(sc, cc) < 0 ||
   1423 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1424 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1425 			return (EIO);
   1426 		}
   1427 		sc->sc_o.run = SB_RUNNING;
   1428 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1429 		/* Initialize looping PCM */
   1430 		if (ISSB16CLASS(sc)) {
   1431 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1432 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1433 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1434 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1435 			    sbdsp_wdsp(sc, cc) < 0 ||
   1436 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1437 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1438 				return (EIO);
   1439 			}
   1440 		} else {
   1441 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1442 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1443 			    sbdsp_wdsp(sc, cc) < 0 ||
   1444 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1445 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1446 				return (EIO);
   1447 			}
   1448 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1449 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1450 				return (EIO);
   1451 			}
   1452 		}
   1453 		sc->sc_o.run = SB_LOOPING;
   1454 	}
   1455 
   1456 	return (0);
   1457 }
   1458 
   1459 int
   1460 sbdsp_halt_output(addr)
   1461 	void *addr;
   1462 {
   1463 	struct sbdsp_softc *sc = addr;
   1464 
   1465 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1466 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1467 			printf("sbdsp_halt_output: failed to halt\n");
   1468 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1469 		sc->sc_o.run = SB_NOTRUNNING;
   1470 	}
   1471 
   1472 	return (0);
   1473 }
   1474 
   1475 int
   1476 sbdsp_halt_input(addr)
   1477 	void *addr;
   1478 {
   1479 	struct sbdsp_softc *sc = addr;
   1480 
   1481 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1482 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1483 			printf("sbdsp_halt_input: failed to halt\n");
   1484 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1485 		sc->sc_i.run = SB_NOTRUNNING;
   1486 	}
   1487 
   1488 	return (0);
   1489 }
   1490 
   1491 /*
   1492  * Only the DSP unit on the sound blaster generates interrupts.
   1493  * There are three cases of interrupt: reception of a midi byte
   1494  * (when mode is enabled), completion of dma transmission, or
   1495  * completion of a dma reception.
   1496  *
   1497  * If there is interrupt sharing or a spurious interrupt occurs
   1498  * there is no way to distinguish this on an SB2.  So if you have
   1499  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1500  */
   1501 int
   1502 sbdsp_intr(arg)
   1503 	void *arg;
   1504 {
   1505 	struct sbdsp_softc *sc = arg;
   1506 	u_char irq;
   1507 
   1508 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1509 		   sc->sc_intr8, sc->sc_intr16));
   1510 	if (ISSB16CLASS(sc)) {
   1511 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1512 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1513 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1514 			return 0;
   1515 		}
   1516 	} else {
   1517 		/* XXXX CHECK FOR INTERRUPT */
   1518 		irq = SBP_IRQ_DMA8;
   1519 	}
   1520 
   1521 	sc->sc_interrupts++;
   1522 	delay(10);		/* XXX why? */
   1523 
   1524 	/* clear interrupt */
   1525 	if (irq & SBP_IRQ_DMA8) {
   1526 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1527 		if (sc->sc_intr8)
   1528 			sc->sc_intr8(arg);
   1529 	}
   1530 	if (irq & SBP_IRQ_DMA16) {
   1531 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1532 		if (sc->sc_intr16)
   1533 			sc->sc_intr16(arg);
   1534 	}
   1535 #if NMPU > 0
   1536 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1537 		mpu_intr(sc->sc_mpudev);
   1538 	}
   1539 #endif
   1540 	return 1;
   1541 }
   1542 
   1543 /* Like val & mask, but make sure the result is correctly rounded. */
   1544 #define MAXVAL 256
   1545 static int
   1546 sbdsp_adjust(val, mask)
   1547 	int val, mask;
   1548 {
   1549 	val += (MAXVAL - mask) >> 1;
   1550 	if (val >= MAXVAL)
   1551 		val = MAXVAL-1;
   1552 	return val & mask;
   1553 }
   1554 
   1555 void
   1556 sbdsp_set_mixer_gain(sc, port)
   1557 	struct sbdsp_softc *sc;
   1558 	int port;
   1559 {
   1560 	int src, gain;
   1561 
   1562 	switch(sc->sc_mixer_model) {
   1563 	case SBM_NONE:
   1564 		return;
   1565 	case SBM_CT1335:
   1566 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1567 		switch(port) {
   1568 		case SB_MASTER_VOL:
   1569 			src = SBP_1335_MASTER_VOL;
   1570 			break;
   1571 		case SB_MIDI_VOL:
   1572 			src = SBP_1335_MIDI_VOL;
   1573 			break;
   1574 		case SB_CD_VOL:
   1575 			src = SBP_1335_CD_VOL;
   1576 			break;
   1577 		case SB_VOICE_VOL:
   1578 			src = SBP_1335_VOICE_VOL;
   1579 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1580 			break;
   1581 		default:
   1582 			return;
   1583 		}
   1584 		sbdsp_mix_write(sc, src, gain);
   1585 		break;
   1586 	case SBM_CT1345:
   1587 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1588 				      sc->gain[port][SB_RIGHT]);
   1589 		switch (port) {
   1590 		case SB_MIC_VOL:
   1591 			src = SBP_MIC_VOL;
   1592 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1593 			break;
   1594 		case SB_MASTER_VOL:
   1595 			src = SBP_MASTER_VOL;
   1596 			break;
   1597 		case SB_LINE_IN_VOL:
   1598 			src = SBP_LINE_VOL;
   1599 			break;
   1600 		case SB_VOICE_VOL:
   1601 			src = SBP_VOICE_VOL;
   1602 			break;
   1603 		case SB_MIDI_VOL:
   1604 			src = SBP_MIDI_VOL;
   1605 			break;
   1606 		case SB_CD_VOL:
   1607 			src = SBP_CD_VOL;
   1608 			break;
   1609 		default:
   1610 			return;
   1611 		}
   1612 		sbdsp_mix_write(sc, src, gain);
   1613 		break;
   1614 	case SBM_CT1XX5:
   1615 	case SBM_CT1745:
   1616 		switch (port) {
   1617 		case SB_MIC_VOL:
   1618 			src = SB16P_MIC_L;
   1619 			break;
   1620 		case SB_MASTER_VOL:
   1621 			src = SB16P_MASTER_L;
   1622 			break;
   1623 		case SB_LINE_IN_VOL:
   1624 			src = SB16P_LINE_L;
   1625 			break;
   1626 		case SB_VOICE_VOL:
   1627 			src = SB16P_VOICE_L;
   1628 			break;
   1629 		case SB_MIDI_VOL:
   1630 			src = SB16P_MIDI_L;
   1631 			break;
   1632 		case SB_CD_VOL:
   1633 			src = SB16P_CD_L;
   1634 			break;
   1635 		case SB_INPUT_GAIN:
   1636 			src = SB16P_INPUT_GAIN_L;
   1637 			break;
   1638 		case SB_OUTPUT_GAIN:
   1639 			src = SB16P_OUTPUT_GAIN_L;
   1640 			break;
   1641 		case SB_TREBLE:
   1642 			src = SB16P_TREBLE_L;
   1643 			break;
   1644 		case SB_BASS:
   1645 			src = SB16P_BASS_L;
   1646 			break;
   1647 		case SB_PCSPEAKER:
   1648 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1649 			return;
   1650 		default:
   1651 			return;
   1652 		}
   1653 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1654 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1655 		break;
   1656 	}
   1657 }
   1658 
   1659 int
   1660 sbdsp_mixer_set_port(addr, cp)
   1661 	void *addr;
   1662 	mixer_ctrl_t *cp;
   1663 {
   1664 	struct sbdsp_softc *sc = addr;
   1665 	int lgain, rgain;
   1666 	int mask, bits;
   1667 	int lmask, rmask, lbits, rbits;
   1668 	int mute, swap;
   1669 
   1670 	if (sc->sc_open == SB_OPEN_MIDI)
   1671 		return EBUSY;
   1672 
   1673 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1674 	    cp->un.value.num_channels));
   1675 
   1676 	if (sc->sc_mixer_model == SBM_NONE)
   1677 		return EINVAL;
   1678 
   1679 	switch (cp->dev) {
   1680 	case SB_TREBLE:
   1681 	case SB_BASS:
   1682 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1683 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1684 			if (cp->type != AUDIO_MIXER_ENUM)
   1685 				return EINVAL;
   1686 			switch (cp->dev) {
   1687 			case SB_TREBLE:
   1688 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1689 				return 0;
   1690 			case SB_BASS:
   1691 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1692 				return 0;
   1693 			}
   1694 		}
   1695 	case SB_PCSPEAKER:
   1696 	case SB_INPUT_GAIN:
   1697 	case SB_OUTPUT_GAIN:
   1698 		if (!ISSBM1745(sc))
   1699 			return EINVAL;
   1700 	case SB_MIC_VOL:
   1701 	case SB_LINE_IN_VOL:
   1702 		if (sc->sc_mixer_model == SBM_CT1335)
   1703 			return EINVAL;
   1704 	case SB_VOICE_VOL:
   1705 	case SB_MIDI_VOL:
   1706 	case SB_CD_VOL:
   1707 	case SB_MASTER_VOL:
   1708 		if (cp->type != AUDIO_MIXER_VALUE)
   1709 			return EINVAL;
   1710 
   1711 		/*
   1712 		 * All the mixer ports are stereo except for the microphone.
   1713 		 * If we get a single-channel gain value passed in, then we
   1714 		 * duplicate it to both left and right channels.
   1715 		 */
   1716 
   1717 		switch (cp->dev) {
   1718 		case SB_MIC_VOL:
   1719 			if (cp->un.value.num_channels != 1)
   1720 				return EINVAL;
   1721 
   1722 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1723 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1724 			break;
   1725 		case SB_PCSPEAKER:
   1726 			if (cp->un.value.num_channels != 1)
   1727 				return EINVAL;
   1728 			/* fall into */
   1729 		case SB_INPUT_GAIN:
   1730 		case SB_OUTPUT_GAIN:
   1731 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1732 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1733 			break;
   1734 		default:
   1735 			switch (cp->un.value.num_channels) {
   1736 			case 1:
   1737 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1738 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1739 				break;
   1740 			case 2:
   1741 				if (sc->sc_mixer_model == SBM_CT1335)
   1742 					return EINVAL;
   1743 				lgain = SB_ADJUST_GAIN(sc,
   1744 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1745 				rgain = SB_ADJUST_GAIN(sc,
   1746 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1747 				break;
   1748 			default:
   1749 				return EINVAL;
   1750 			}
   1751 			break;
   1752 		}
   1753 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1754 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1755 
   1756 		sbdsp_set_mixer_gain(sc, cp->dev);
   1757 		break;
   1758 
   1759 	case SB_RECORD_SOURCE:
   1760 		if (ISSBM1745(sc)) {
   1761 			if (cp->type != AUDIO_MIXER_SET)
   1762 				return EINVAL;
   1763 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1764 		} else {
   1765 			if (cp->type != AUDIO_MIXER_ENUM)
   1766 				return EINVAL;
   1767 			sc->in_port = cp->un.ord;
   1768 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1769 		}
   1770 		break;
   1771 
   1772 	case SB_AGC:
   1773 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1774 			return EINVAL;
   1775 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1776 		break;
   1777 
   1778 	case SB_CD_OUT_MUTE:
   1779 		mask = SB16P_SW_CD;
   1780 		goto omute;
   1781 	case SB_MIC_OUT_MUTE:
   1782 		mask = SB16P_SW_MIC;
   1783 		goto omute;
   1784 	case SB_LINE_OUT_MUTE:
   1785 		mask = SB16P_SW_LINE;
   1786 	omute:
   1787 		if (cp->type != AUDIO_MIXER_ENUM)
   1788 			return EINVAL;
   1789 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1790 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1791 		if (cp->un.ord)
   1792 			bits = bits & ~mask;
   1793 		else
   1794 			bits = bits | mask;
   1795 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1796 		break;
   1797 
   1798 	case SB_MIC_IN_MUTE:
   1799 	case SB_MIC_SWAP:
   1800 		lmask = rmask = SB16P_SW_MIC;
   1801 		goto imute;
   1802 	case SB_CD_IN_MUTE:
   1803 	case SB_CD_SWAP:
   1804 		lmask = SB16P_SW_CD_L;
   1805 		rmask = SB16P_SW_CD_R;
   1806 		goto imute;
   1807 	case SB_LINE_IN_MUTE:
   1808 	case SB_LINE_SWAP:
   1809 		lmask = SB16P_SW_LINE_L;
   1810 		rmask = SB16P_SW_LINE_R;
   1811 		goto imute;
   1812 	case SB_MIDI_IN_MUTE:
   1813 	case SB_MIDI_SWAP:
   1814 		lmask = SB16P_SW_MIDI_L;
   1815 		rmask = SB16P_SW_MIDI_R;
   1816 	imute:
   1817 		if (cp->type != AUDIO_MIXER_ENUM)
   1818 			return EINVAL;
   1819 		mask = lmask | rmask;
   1820 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1821 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1822 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1823 		if (SB_IS_IN_MUTE(cp->dev)) {
   1824 			mute = cp->dev;
   1825 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1826 		} else {
   1827 			swap = cp->dev;
   1828 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1829 		}
   1830 		if (sc->gain[swap][SB_LR]) {
   1831 			mask = lmask;
   1832 			lmask = rmask;
   1833 			rmask = mask;
   1834 		}
   1835 		if (!sc->gain[mute][SB_LR]) {
   1836 			lbits = lbits | lmask;
   1837 			rbits = rbits | rmask;
   1838 		}
   1839 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1840 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1841 		break;
   1842 
   1843 	default:
   1844 		return EINVAL;
   1845 	}
   1846 
   1847 	return 0;
   1848 }
   1849 
   1850 int
   1851 sbdsp_mixer_get_port(addr, cp)
   1852 	void *addr;
   1853 	mixer_ctrl_t *cp;
   1854 {
   1855 	struct sbdsp_softc *sc = addr;
   1856 
   1857 	if (sc->sc_open == SB_OPEN_MIDI)
   1858 		return EBUSY;
   1859 
   1860 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1861 
   1862 	if (sc->sc_mixer_model == SBM_NONE)
   1863 		return EINVAL;
   1864 
   1865 	switch (cp->dev) {
   1866 	case SB_TREBLE:
   1867 	case SB_BASS:
   1868 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1869 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1870 			switch (cp->dev) {
   1871 			case SB_TREBLE:
   1872 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1873 				return 0;
   1874 			case SB_BASS:
   1875 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1876 				return 0;
   1877 			}
   1878 		}
   1879 	case SB_PCSPEAKER:
   1880 	case SB_INPUT_GAIN:
   1881 	case SB_OUTPUT_GAIN:
   1882 		if (!ISSBM1745(sc))
   1883 			return EINVAL;
   1884 	case SB_MIC_VOL:
   1885 	case SB_LINE_IN_VOL:
   1886 		if (sc->sc_mixer_model == SBM_CT1335)
   1887 			return EINVAL;
   1888 	case SB_VOICE_VOL:
   1889 	case SB_MIDI_VOL:
   1890 	case SB_CD_VOL:
   1891 	case SB_MASTER_VOL:
   1892 		switch (cp->dev) {
   1893 		case SB_MIC_VOL:
   1894 		case SB_PCSPEAKER:
   1895 			if (cp->un.value.num_channels != 1)
   1896 				return EINVAL;
   1897 			/* fall into */
   1898 		default:
   1899 			switch (cp->un.value.num_channels) {
   1900 			case 1:
   1901 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1902 					sc->gain[cp->dev][SB_LEFT];
   1903 				break;
   1904 			case 2:
   1905 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1906 					sc->gain[cp->dev][SB_LEFT];
   1907 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1908 					sc->gain[cp->dev][SB_RIGHT];
   1909 				break;
   1910 			default:
   1911 				return EINVAL;
   1912 			}
   1913 			break;
   1914 		}
   1915 		break;
   1916 
   1917 	case SB_RECORD_SOURCE:
   1918 		if (ISSBM1745(sc))
   1919 			cp->un.mask = sc->in_mask;
   1920 		else
   1921 			cp->un.ord = sc->in_port;
   1922 		break;
   1923 
   1924 	case SB_AGC:
   1925 		if (!ISSBM1745(sc))
   1926 			return EINVAL;
   1927 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1928 		break;
   1929 
   1930 	case SB_CD_IN_MUTE:
   1931 	case SB_MIC_IN_MUTE:
   1932 	case SB_LINE_IN_MUTE:
   1933 	case SB_MIDI_IN_MUTE:
   1934 	case SB_CD_SWAP:
   1935 	case SB_MIC_SWAP:
   1936 	case SB_LINE_SWAP:
   1937 	case SB_MIDI_SWAP:
   1938 	case SB_CD_OUT_MUTE:
   1939 	case SB_MIC_OUT_MUTE:
   1940 	case SB_LINE_OUT_MUTE:
   1941 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1942 		break;
   1943 
   1944 	default:
   1945 		return EINVAL;
   1946 	}
   1947 
   1948 	return 0;
   1949 }
   1950 
   1951 int
   1952 sbdsp_mixer_query_devinfo(addr, dip)
   1953 	void *addr;
   1954 	mixer_devinfo_t *dip;
   1955 {
   1956 	struct sbdsp_softc *sc = addr;
   1957 	int chan, class, is1745;
   1958 
   1959 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1960 		 sc->sc_mixer_model, dip->index));
   1961 
   1962 	if (sc->sc_mixer_model == SBM_NONE)
   1963 		return ENXIO;
   1964 
   1965 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1966 	is1745 = ISSBM1745(sc);
   1967 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1968 
   1969 	switch (dip->index) {
   1970 	case SB_MASTER_VOL:
   1971 		dip->type = AUDIO_MIXER_VALUE;
   1972 		dip->mixer_class = SB_OUTPUT_CLASS;
   1973 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1974 		strcpy(dip->label.name, AudioNmaster);
   1975 		dip->un.v.num_channels = chan;
   1976 		strcpy(dip->un.v.units.name, AudioNvolume);
   1977 		return 0;
   1978 	case SB_MIDI_VOL:
   1979 		dip->type = AUDIO_MIXER_VALUE;
   1980 		dip->mixer_class = class;
   1981 		dip->prev = AUDIO_MIXER_LAST;
   1982 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   1983 		strcpy(dip->label.name, AudioNfmsynth);
   1984 		dip->un.v.num_channels = chan;
   1985 		strcpy(dip->un.v.units.name, AudioNvolume);
   1986 		return 0;
   1987 	case SB_CD_VOL:
   1988 		dip->type = AUDIO_MIXER_VALUE;
   1989 		dip->mixer_class = class;
   1990 		dip->prev = AUDIO_MIXER_LAST;
   1991 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   1992 		strcpy(dip->label.name, AudioNcd);
   1993 		dip->un.v.num_channels = chan;
   1994 		strcpy(dip->un.v.units.name, AudioNvolume);
   1995 		return 0;
   1996 	case SB_VOICE_VOL:
   1997 		dip->type = AUDIO_MIXER_VALUE;
   1998 		dip->mixer_class = class;
   1999 		dip->prev = AUDIO_MIXER_LAST;
   2000 		dip->next = AUDIO_MIXER_LAST;
   2001 		strcpy(dip->label.name, AudioNdac);
   2002 		dip->un.v.num_channels = chan;
   2003 		strcpy(dip->un.v.units.name, AudioNvolume);
   2004 		return 0;
   2005 	case SB_OUTPUT_CLASS:
   2006 		dip->type = AUDIO_MIXER_CLASS;
   2007 		dip->mixer_class = SB_OUTPUT_CLASS;
   2008 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2009 		strcpy(dip->label.name, AudioCoutputs);
   2010 		return 0;
   2011 	}
   2012 
   2013 	if (sc->sc_mixer_model == SBM_CT1335)
   2014 		return ENXIO;
   2015 
   2016 	switch (dip->index) {
   2017 	case SB_MIC_VOL:
   2018 		dip->type = AUDIO_MIXER_VALUE;
   2019 		dip->mixer_class = class;
   2020 		dip->prev = AUDIO_MIXER_LAST;
   2021 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2022 		strcpy(dip->label.name, AudioNmicrophone);
   2023 		dip->un.v.num_channels = 1;
   2024 		strcpy(dip->un.v.units.name, AudioNvolume);
   2025 		return 0;
   2026 
   2027 	case SB_LINE_IN_VOL:
   2028 		dip->type = AUDIO_MIXER_VALUE;
   2029 		dip->mixer_class = class;
   2030 		dip->prev = AUDIO_MIXER_LAST;
   2031 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2032 		strcpy(dip->label.name, AudioNline);
   2033 		dip->un.v.num_channels = 2;
   2034 		strcpy(dip->un.v.units.name, AudioNvolume);
   2035 		return 0;
   2036 
   2037 	case SB_RECORD_SOURCE:
   2038 		dip->mixer_class = SB_RECORD_CLASS;
   2039 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2040 		strcpy(dip->label.name, AudioNsource);
   2041 		if (ISSBM1745(sc)) {
   2042 			dip->type = AUDIO_MIXER_SET;
   2043 			dip->un.s.num_mem = 4;
   2044 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2045 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2046 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2047 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2048 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2049 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2050 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2051 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2052 		} else {
   2053 			dip->type = AUDIO_MIXER_ENUM;
   2054 			dip->un.e.num_mem = 3;
   2055 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2056 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2057 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2058 			dip->un.e.member[1].ord = SB_CD_VOL;
   2059 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2060 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2061 		}
   2062 		return 0;
   2063 
   2064 	case SB_BASS:
   2065 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2066 		strcpy(dip->label.name, AudioNbass);
   2067 		if (sc->sc_mixer_model == SBM_CT1745) {
   2068 			dip->type = AUDIO_MIXER_VALUE;
   2069 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2070 			dip->un.v.num_channels = 2;
   2071 			strcpy(dip->un.v.units.name, AudioNbass);
   2072 		} else {
   2073 			dip->type = AUDIO_MIXER_ENUM;
   2074 			dip->mixer_class = SB_INPUT_CLASS;
   2075 			dip->un.e.num_mem = 2;
   2076 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2077 			dip->un.e.member[0].ord = 0;
   2078 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2079 			dip->un.e.member[1].ord = 1;
   2080 		}
   2081 		return 0;
   2082 
   2083 	case SB_TREBLE:
   2084 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2085 		strcpy(dip->label.name, AudioNtreble);
   2086 		if (sc->sc_mixer_model == SBM_CT1745) {
   2087 			dip->type = AUDIO_MIXER_VALUE;
   2088 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2089 			dip->un.v.num_channels = 2;
   2090 			strcpy(dip->un.v.units.name, AudioNtreble);
   2091 		} else {
   2092 			dip->type = AUDIO_MIXER_ENUM;
   2093 			dip->mixer_class = SB_INPUT_CLASS;
   2094 			dip->un.e.num_mem = 2;
   2095 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2096 			dip->un.e.member[0].ord = 0;
   2097 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2098 			dip->un.e.member[1].ord = 1;
   2099 		}
   2100 		return 0;
   2101 
   2102 	case SB_RECORD_CLASS:			/* record source class */
   2103 		dip->type = AUDIO_MIXER_CLASS;
   2104 		dip->mixer_class = SB_RECORD_CLASS;
   2105 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2106 		strcpy(dip->label.name, AudioCrecord);
   2107 		return 0;
   2108 
   2109 	case SB_INPUT_CLASS:
   2110 		dip->type = AUDIO_MIXER_CLASS;
   2111 		dip->mixer_class = SB_INPUT_CLASS;
   2112 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2113 		strcpy(dip->label.name, AudioCinputs);
   2114 		return 0;
   2115 
   2116 	}
   2117 
   2118 	if (sc->sc_mixer_model == SBM_CT1345)
   2119 		return ENXIO;
   2120 
   2121 	switch(dip->index) {
   2122 	case SB_PCSPEAKER:
   2123 		dip->type = AUDIO_MIXER_VALUE;
   2124 		dip->mixer_class = SB_INPUT_CLASS;
   2125 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2126 		strcpy(dip->label.name, "pc_speaker");
   2127 		dip->un.v.num_channels = 1;
   2128 		strcpy(dip->un.v.units.name, AudioNvolume);
   2129 		return 0;
   2130 
   2131 	case SB_INPUT_GAIN:
   2132 		dip->type = AUDIO_MIXER_VALUE;
   2133 		dip->mixer_class = SB_INPUT_CLASS;
   2134 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2135 		strcpy(dip->label.name, AudioNinput);
   2136 		dip->un.v.num_channels = 2;
   2137 		strcpy(dip->un.v.units.name, AudioNvolume);
   2138 		return 0;
   2139 
   2140 	case SB_OUTPUT_GAIN:
   2141 		dip->type = AUDIO_MIXER_VALUE;
   2142 		dip->mixer_class = SB_OUTPUT_CLASS;
   2143 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2144 		strcpy(dip->label.name, AudioNoutput);
   2145 		dip->un.v.num_channels = 2;
   2146 		strcpy(dip->un.v.units.name, AudioNvolume);
   2147 		return 0;
   2148 
   2149 	case SB_AGC:
   2150 		dip->type = AUDIO_MIXER_ENUM;
   2151 		dip->mixer_class = SB_INPUT_CLASS;
   2152 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2153 		strcpy(dip->label.name, "agc");
   2154 		dip->un.e.num_mem = 2;
   2155 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2156 		dip->un.e.member[0].ord = 0;
   2157 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2158 		dip->un.e.member[1].ord = 1;
   2159 		return 0;
   2160 
   2161 	case SB_EQUALIZATION_CLASS:
   2162 		dip->type = AUDIO_MIXER_CLASS;
   2163 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2164 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2165 		strcpy(dip->label.name, AudioCequalization);
   2166 		return 0;
   2167 
   2168 	case SB_CD_IN_MUTE:
   2169 		dip->prev = SB_CD_VOL;
   2170 		dip->next = SB_CD_SWAP;
   2171 		dip->mixer_class = SB_INPUT_CLASS;
   2172 		goto mute;
   2173 
   2174 	case SB_MIC_IN_MUTE:
   2175 		dip->prev = SB_MIC_VOL;
   2176 		dip->next = SB_MIC_SWAP;
   2177 		dip->mixer_class = SB_INPUT_CLASS;
   2178 		goto mute;
   2179 
   2180 	case SB_LINE_IN_MUTE:
   2181 		dip->prev = SB_LINE_IN_VOL;
   2182 		dip->next = SB_LINE_SWAP;
   2183 		dip->mixer_class = SB_INPUT_CLASS;
   2184 		goto mute;
   2185 
   2186 	case SB_MIDI_IN_MUTE:
   2187 		dip->prev = SB_MIDI_VOL;
   2188 		dip->next = SB_MIDI_SWAP;
   2189 		dip->mixer_class = SB_INPUT_CLASS;
   2190 		goto mute;
   2191 
   2192 	case SB_CD_SWAP:
   2193 		dip->prev = SB_CD_IN_MUTE;
   2194 		dip->next = SB_CD_OUT_MUTE;
   2195 		goto swap;
   2196 
   2197 	case SB_MIC_SWAP:
   2198 		dip->prev = SB_MIC_IN_MUTE;
   2199 		dip->next = SB_MIC_OUT_MUTE;
   2200 		goto swap;
   2201 
   2202 	case SB_LINE_SWAP:
   2203 		dip->prev = SB_LINE_IN_MUTE;
   2204 		dip->next = SB_LINE_OUT_MUTE;
   2205 		goto swap;
   2206 
   2207 	case SB_MIDI_SWAP:
   2208 		dip->prev = SB_MIDI_IN_MUTE;
   2209 		dip->next = AUDIO_MIXER_LAST;
   2210 	swap:
   2211 		dip->mixer_class = SB_INPUT_CLASS;
   2212 		strcpy(dip->label.name, AudioNswap);
   2213 		goto mute1;
   2214 
   2215 	case SB_CD_OUT_MUTE:
   2216 		dip->prev = SB_CD_SWAP;
   2217 		dip->next = AUDIO_MIXER_LAST;
   2218 		dip->mixer_class = SB_OUTPUT_CLASS;
   2219 		goto mute;
   2220 
   2221 	case SB_MIC_OUT_MUTE:
   2222 		dip->prev = SB_MIC_SWAP;
   2223 		dip->next = AUDIO_MIXER_LAST;
   2224 		dip->mixer_class = SB_OUTPUT_CLASS;
   2225 		goto mute;
   2226 
   2227 	case SB_LINE_OUT_MUTE:
   2228 		dip->prev = SB_LINE_SWAP;
   2229 		dip->next = AUDIO_MIXER_LAST;
   2230 		dip->mixer_class = SB_OUTPUT_CLASS;
   2231 	mute:
   2232 		strcpy(dip->label.name, AudioNmute);
   2233 	mute1:
   2234 		dip->type = AUDIO_MIXER_ENUM;
   2235 		dip->un.e.num_mem = 2;
   2236 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2237 		dip->un.e.member[0].ord = 0;
   2238 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2239 		dip->un.e.member[1].ord = 1;
   2240 		return 0;
   2241 
   2242 	}
   2243 
   2244 	return ENXIO;
   2245 }
   2246 
   2247 void *
   2248 sb_malloc(addr, direction, size, pool, flags)
   2249 	void *addr;
   2250 	int direction;
   2251 	size_t size;
   2252 	int pool, flags;
   2253 {
   2254 	struct sbdsp_softc *sc = addr;
   2255 	int drq;
   2256 
   2257 	if (sc->sc_drq8 != -1)
   2258 		drq = sc->sc_drq8;
   2259 	else
   2260 		drq = sc->sc_drq16;
   2261 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2262 }
   2263 
   2264 void
   2265 sb_free(addr, ptr, pool)
   2266 	void *addr;
   2267 	void *ptr;
   2268 	int pool;
   2269 {
   2270 	isa_free(ptr, pool);
   2271 }
   2272 
   2273 size_t
   2274 sb_round_buffersize(addr, direction, size)
   2275 	void *addr;
   2276 	int direction;
   2277 	size_t size;
   2278 {
   2279 	struct sbdsp_softc *sc = addr;
   2280 	bus_size_t maxsize;
   2281 
   2282 	if (sc->sc_drq8 != -1)
   2283 		maxsize = sc->sc_drq8_maxsize;
   2284 	else
   2285 		maxsize = sc->sc_drq16_maxsize;
   2286 
   2287 	if (size > maxsize)
   2288 		size = maxsize;
   2289 	return (size);
   2290 }
   2291 
   2292 paddr_t
   2293 sb_mappage(addr, mem, off, prot)
   2294 	void *addr;
   2295 	void *mem;
   2296 	off_t off;
   2297 	int prot;
   2298 {
   2299 	return isa_mappage(mem, off, prot);
   2300 }
   2301 
   2302 int
   2303 sbdsp_get_props(addr)
   2304 	void *addr;
   2305 {
   2306 	struct sbdsp_softc *sc = addr;
   2307 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2308 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2309 }
   2310 
   2311 #if NMPU > 0
   2312 /*
   2313  * MIDI related routines.
   2314  */
   2315 
   2316 int
   2317 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2318 	void *addr;
   2319 	int flags;
   2320 	void (*iintr)__P((void *, int));
   2321 	void (*ointr)__P((void *));
   2322 	void *arg;
   2323 {
   2324 	struct sbdsp_softc *sc = addr;
   2325 
   2326 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2327 
   2328 	if (sc->sc_open != SB_CLOSED)
   2329 		return EBUSY;
   2330 	if (sbdsp_reset(sc) != 0)
   2331 		return EIO;
   2332 
   2333 	sc->sc_open = SB_OPEN_MIDI;
   2334 	sc->sc_openflags = flags;
   2335 
   2336 	if (sc->sc_model >= SB_20)
   2337 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2338 			return EIO;
   2339 
   2340 	sc->sc_intr8 = sbdsp_midi_intr;
   2341 	sc->sc_intrm = iintr;
   2342 	sc->sc_argm = arg;
   2343 
   2344 	return 0;
   2345 }
   2346 
   2347 void
   2348 sbdsp_midi_close(addr)
   2349 	void *addr;
   2350 {
   2351 	struct sbdsp_softc *sc = addr;
   2352 
   2353 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2354 
   2355 	if (sc->sc_model >= SB_20)
   2356 		sbdsp_reset(sc); /* exit UART mode */
   2357 
   2358 	sc->sc_intrm = 0;
   2359 	sc->sc_open = SB_CLOSED;
   2360 }
   2361 
   2362 int
   2363 sbdsp_midi_output(addr, d)
   2364 	void *addr;
   2365 	int d;
   2366 {
   2367 	struct sbdsp_softc *sc = addr;
   2368 
   2369 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2370 		return EIO;
   2371 	if (sbdsp_wdsp(sc, d))
   2372 		return EIO;
   2373 	return 0;
   2374 }
   2375 
   2376 void
   2377 sbdsp_midi_getinfo(addr, mi)
   2378 	void *addr;
   2379 	struct midi_info *mi;
   2380 {
   2381 	struct sbdsp_softc *sc = addr;
   2382 
   2383 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2384 	mi->props = MIDI_PROP_CAN_INPUT;
   2385 }
   2386 
   2387 int
   2388 sbdsp_midi_intr(addr)
   2389 	void *addr;
   2390 {
   2391 	struct sbdsp_softc *sc = addr;
   2392 
   2393 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2394 	return (0);
   2395 }
   2396 
   2397 #endif
   2398 
   2399