sbdsp.c revision 1.106 1 /* $NetBSD: sbdsp.c,v 1.106 2000/06/28 16:27:56 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84 #include "mpu.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95
96 #include <machine/cpu.h>
97 #include <machine/intr.h>
98 #include <machine/bus.h>
99
100 #include <sys/audioio.h>
101 #include <dev/audio_if.h>
102 #include <dev/midi_if.h>
103 #include <dev/mulaw.h>
104 #include <dev/auconv.h>
105
106 #include <dev/isa/isavar.h>
107 #include <dev/isa/isadmavar.h>
108
109 #include <dev/isa/sbreg.h>
110 #include <dev/isa/sbdspvar.h>
111
112
113 #ifdef AUDIO_DEBUG
114 #define DPRINTF(x) if (sbdspdebug) printf x
115 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
116 int sbdspdebug = 0;
117 #else
118 #define DPRINTF(x)
119 #define DPRINTFN(n,x)
120 #endif
121
122 #ifndef SBDSP_NPOLL
123 #define SBDSP_NPOLL 3000
124 #endif
125
126 struct {
127 int wdsp;
128 int rdsp;
129 int wmidi;
130 } sberr;
131
132 /*
133 * Time constant routines follow. See SBK, section 12.
134 * Although they don't come out and say it (in the docs),
135 * the card clearly uses a 1MHz countdown timer, as the
136 * low-speed formula (p. 12-4) is:
137 * tc = 256 - 10^6 / sr
138 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
139 * and a 256MHz clock is used:
140 * tc = 65536 - 256 * 10^ 6 / sr
141 * Since we can only use the upper byte of the HS TC, the two formulae
142 * are equivalent. (Why didn't they say so?) E.g.,
143 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
144 *
145 * The crossover point (from low- to high-speed modes) is different
146 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
147 *
148 * SBPRO SB20
149 * ----- --------
150 * input ls min 4 KHz 4 KHz
151 * input ls max 23 KHz 13 KHz
152 * input hs max 44.1 KHz 15 KHz
153 * output ls min 4 KHz 4 KHz
154 * output ls max 23 KHz 23 KHz
155 * output hs max 44.1 KHz 44.1 KHz
156 */
157 /* XXX Should we round the tc?
158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
159 */
160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
162
163 struct sbmode {
164 short model;
165 u_char channels;
166 u_char precision;
167 u_short lowrate, highrate;
168 u_char cmd;
169 u_char halt, cont;
170 u_char cmdchan;
171 };
172 static struct sbmode sbpmodes[] = {
173 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
180 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
181 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
183 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
184 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
186 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
187 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
189 #define PLAY16 15 /* must be the index of the next entry in the table */
190 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192 { -1 }
193 };
194 static struct sbmode sbrmodes[] = {
195 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
201 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
202 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
207 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
208 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
210 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212 { -1 }
213 };
214
215 void sbversion __P((struct sbdsp_softc *));
216 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
217 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
218 void sbdsp_pause __P((struct sbdsp_softc *));
219 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void sbdsp_set_ifilter __P((void *, int));
223 int sbdsp_get_ifilter __P((void *));
224
225 int sbdsp_block_output __P((void *));
226 int sbdsp_block_input __P((void *));
227 static int sbdsp_adjust __P((int, int));
228
229 int sbdsp_midi_intr __P((void *));
230
231 #ifdef AUDIO_DEBUG
232 void sb_printsc __P((struct sbdsp_softc *));
233
234 void
235 sb_printsc(sc)
236 struct sbdsp_softc *sc;
237 {
238 int i;
239
240 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
241 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
242 sc->sc_drq8, sc->sc_drq16,
243 sc->sc_iobase, sc->sc_irq);
244 printf("irate %d itc %x orate %d otc %x\n",
245 sc->sc_i.rate, sc->sc_i.tc,
246 sc->sc_o.rate, sc->sc_o.tc);
247 printf("spkron %u nintr %lu\n",
248 sc->spkr_state, sc->sc_interrupts);
249 printf("intr8 %p intr16 %p\n",
250 sc->sc_intr8, sc->sc_intr16);
251 printf("gain:");
252 for (i = 0; i < SB_NDEVS; i++)
253 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
254 printf("\n");
255 }
256 #endif /* AUDIO_DEBUG */
257
258 /*
259 * Probe / attach routines.
260 */
261
262 /*
263 * Probe for the soundblaster hardware.
264 */
265 int
266 sbdsp_probe(sc)
267 struct sbdsp_softc *sc;
268 {
269
270 if (sbdsp_reset(sc) < 0) {
271 DPRINTF(("sbdsp: couldn't reset card\n"));
272 return 0;
273 }
274 /* if flags set, go and probe the jazz16 stuff */
275 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
276 sbdsp_jazz16_probe(sc);
277 else
278 sbversion(sc);
279 if (sc->sc_model == SB_UNK) {
280 /* Unknown SB model found. */
281 DPRINTF(("sbdsp: unknown SB model found\n"));
282 return 0;
283 }
284 return 1;
285 }
286
287 /*
288 * Try add-on stuff for Jazz16.
289 */
290 void
291 sbdsp_jazz16_probe(sc)
292 struct sbdsp_softc *sc;
293 {
294 static u_char jazz16_irq_conf[16] = {
295 -1, -1, 0x02, 0x03,
296 -1, 0x01, -1, 0x04,
297 -1, 0x02, 0x05, -1,
298 -1, -1, -1, 0x06};
299 static u_char jazz16_drq_conf[8] = {
300 -1, 0x01, -1, 0x02,
301 -1, 0x03, -1, 0x04};
302
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh;
305
306 sbversion(sc);
307
308 DPRINTF(("jazz16 probe\n"));
309
310 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
311 DPRINTF(("bus map failed\n"));
312 return;
313 }
314
315 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
316 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
317 DPRINTF(("drq/irq check failed\n"));
318 goto done; /* give up, we can't do it. */
319 }
320
321 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
322 delay(10000); /* delay 10 ms */
323 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
324 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
325
326 if (sbdsp_reset(sc) < 0) {
327 DPRINTF(("sbdsp_reset check failed\n"));
328 goto done; /* XXX? what else could we do? */
329 }
330
331 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
332 DPRINTF(("read16 setup failed\n"));
333 goto done;
334 }
335
336 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
337 DPRINTF(("read16 failed\n"));
338 goto done;
339 }
340
341 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
342 sc->sc_drq16 = sc->sc_drq8;
343 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
344 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
345 jazz16_drq_conf[sc->sc_drq8]) ||
346 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
347 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
348 } else {
349 DPRINTF(("jazz16 detected!\n"));
350 sc->sc_model = SB_JAZZ;
351 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
352 }
353
354 done:
355 bus_space_unmap(iot, ioh, 1);
356 }
357
358 /*
359 * Attach hardware to driver, attach hardware driver to audio
360 * pseudo-device driver .
361 */
362 void
363 sbdsp_attach(sc)
364 struct sbdsp_softc *sc;
365 {
366 struct audio_params pparams, rparams;
367 int i;
368 u_int v;
369
370 pparams = audio_default;
371 rparams = audio_default;
372 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
373
374 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
375
376 if (sc->sc_mixer_model != SBM_NONE) {
377 /* Reset the mixer.*/
378 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
379 /* And set our own default values */
380 for (i = 0; i < SB_NDEVS; i++) {
381 switch(i) {
382 case SB_MIC_VOL:
383 case SB_LINE_IN_VOL:
384 v = 0;
385 break;
386 case SB_BASS:
387 case SB_TREBLE:
388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
389 break;
390 case SB_CD_IN_MUTE:
391 case SB_MIC_IN_MUTE:
392 case SB_LINE_IN_MUTE:
393 case SB_MIDI_IN_MUTE:
394 case SB_CD_SWAP:
395 case SB_MIC_SWAP:
396 case SB_LINE_SWAP:
397 case SB_MIDI_SWAP:
398 case SB_CD_OUT_MUTE:
399 case SB_MIC_OUT_MUTE:
400 case SB_LINE_OUT_MUTE:
401 v = 0;
402 break;
403 default:
404 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
405 break;
406 }
407 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
408 sbdsp_set_mixer_gain(sc, i);
409 }
410 sc->in_filter = 0; /* no filters turned on, please */
411 }
412
413 printf(": dsp v%d.%02d%s\n",
414 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
415 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
416
417 sc->sc_fullduplex = ISSB16CLASS(sc) &&
418 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
419 sc->sc_drq8 != sc->sc_drq16;
420
421 if (sc->sc_drq8 != -1)
422 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
423 sc->sc_drq8);
424
425 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
426 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
427 sc->sc_drq16);
428 }
429
430 void
431 sbdsp_mix_write(sc, mixerport, val)
432 struct sbdsp_softc *sc;
433 int mixerport;
434 int val;
435 {
436 bus_space_tag_t iot = sc->sc_iot;
437 bus_space_handle_t ioh = sc->sc_ioh;
438 int s;
439
440 s = splaudio();
441 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
442 delay(20);
443 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
444 delay(30);
445 splx(s);
446 }
447
448 int
449 sbdsp_mix_read(sc, mixerport)
450 struct sbdsp_softc *sc;
451 int mixerport;
452 {
453 bus_space_tag_t iot = sc->sc_iot;
454 bus_space_handle_t ioh = sc->sc_ioh;
455 int val;
456 int s;
457
458 s = splaudio();
459 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
460 delay(20);
461 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
462 delay(30);
463 splx(s);
464 return val;
465 }
466
467 /*
468 * Various routines to interface to higher level audio driver
469 */
470
471 int
472 sbdsp_query_encoding(addr, fp)
473 void *addr;
474 struct audio_encoding *fp;
475 {
476 struct sbdsp_softc *sc = addr;
477 int emul;
478
479 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
480
481 switch (fp->index) {
482 case 0:
483 strcpy(fp->name, AudioEulinear);
484 fp->encoding = AUDIO_ENCODING_ULINEAR;
485 fp->precision = 8;
486 fp->flags = 0;
487 return 0;
488 case 1:
489 strcpy(fp->name, AudioEmulaw);
490 fp->encoding = AUDIO_ENCODING_ULAW;
491 fp->precision = 8;
492 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
493 return 0;
494 case 2:
495 strcpy(fp->name, AudioEalaw);
496 fp->encoding = AUDIO_ENCODING_ALAW;
497 fp->precision = 8;
498 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
499 return 0;
500 case 3:
501 strcpy(fp->name, AudioEslinear);
502 fp->encoding = AUDIO_ENCODING_SLINEAR;
503 fp->precision = 8;
504 fp->flags = emul;
505 return 0;
506 }
507 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
508 return EINVAL;
509
510 switch(fp->index) {
511 case 4:
512 strcpy(fp->name, AudioEslinear_le);
513 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
514 fp->precision = 16;
515 fp->flags = 0;
516 return 0;
517 case 5:
518 strcpy(fp->name, AudioEulinear_le);
519 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
520 fp->precision = 16;
521 fp->flags = emul;
522 return 0;
523 case 6:
524 strcpy(fp->name, AudioEslinear_be);
525 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
526 fp->precision = 16;
527 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
528 return 0;
529 case 7:
530 strcpy(fp->name, AudioEulinear_be);
531 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
532 fp->precision = 16;
533 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
534 return 0;
535 default:
536 return EINVAL;
537 }
538 return 0;
539 }
540
541 int
542 sbdsp_set_params(addr, setmode, usemode, play, rec)
543 void *addr;
544 int setmode, usemode;
545 struct audio_params *play, *rec;
546 {
547 struct sbdsp_softc *sc = addr;
548 struct sbmode *m;
549 u_int rate, tc, bmode;
550 void (*swcode) __P((void *, u_char *buf, int cnt));
551 int factor;
552 int model;
553 int chan;
554 struct audio_params *p;
555 int mode;
556
557 if (sc->sc_open == SB_OPEN_MIDI)
558 return EBUSY;
559
560 /* Later models work like SB16. */
561 model = min(sc->sc_model, SB_16);
562
563 /*
564 * Prior to the SB16, we have only one clock, so make the sample
565 * rates match.
566 */
567 if (!ISSB16CLASS(sc) &&
568 play->sample_rate != rec->sample_rate &&
569 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
570 if (setmode == AUMODE_PLAY) {
571 rec->sample_rate = play->sample_rate;
572 setmode |= AUMODE_RECORD;
573 } else if (setmode == AUMODE_RECORD) {
574 play->sample_rate = rec->sample_rate;
575 setmode |= AUMODE_PLAY;
576 } else
577 return (EINVAL);
578 }
579
580 /* Set first record info, then play info */
581 for (mode = AUMODE_RECORD; mode != -1;
582 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
583 if ((setmode & mode) == 0)
584 continue;
585
586 p = mode == AUMODE_PLAY ? play : rec;
587 /* Locate proper commands */
588 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
589 m->model != -1; m++) {
590 if (model == m->model &&
591 p->channels == m->channels &&
592 p->precision == m->precision &&
593 p->sample_rate >= m->lowrate &&
594 p->sample_rate <= m->highrate)
595 break;
596 }
597 if (m->model == -1)
598 return EINVAL;
599 rate = p->sample_rate;
600 swcode = 0;
601 factor = 1;
602 tc = 1;
603 bmode = -1;
604 if (model == SB_16) {
605 switch (p->encoding) {
606 case AUDIO_ENCODING_SLINEAR_BE:
607 if (p->precision == 16)
608 swcode = swap_bytes;
609 /* fall into */
610 case AUDIO_ENCODING_SLINEAR_LE:
611 bmode = SB_BMODE_SIGNED;
612 break;
613 case AUDIO_ENCODING_ULINEAR_BE:
614 if (p->precision == 16)
615 swcode = swap_bytes;
616 /* fall into */
617 case AUDIO_ENCODING_ULINEAR_LE:
618 bmode = SB_BMODE_UNSIGNED;
619 break;
620 case AUDIO_ENCODING_ULAW:
621 if (mode == AUMODE_PLAY) {
622 swcode = mulaw_to_ulinear16_le;
623 factor = 2;
624 m = &sbpmodes[PLAY16];
625 } else
626 swcode = ulinear8_to_mulaw;
627 bmode = SB_BMODE_UNSIGNED;
628 break;
629 case AUDIO_ENCODING_ALAW:
630 if (mode == AUMODE_PLAY) {
631 swcode = alaw_to_ulinear16_le;
632 factor = 2;
633 m = &sbpmodes[PLAY16];
634 } else
635 swcode = ulinear8_to_alaw;
636 bmode = SB_BMODE_UNSIGNED;
637 break;
638 default:
639 return EINVAL;
640 }
641 if (p->channels == 2)
642 bmode |= SB_BMODE_STEREO;
643 } else if (m->model == SB_JAZZ && m->precision == 16) {
644 switch (p->encoding) {
645 case AUDIO_ENCODING_SLINEAR_LE:
646 break;
647 case AUDIO_ENCODING_ULINEAR_LE:
648 swcode = change_sign16_le;
649 break;
650 case AUDIO_ENCODING_SLINEAR_BE:
651 swcode = swap_bytes;
652 break;
653 case AUDIO_ENCODING_ULINEAR_BE:
654 swcode = mode == AUMODE_PLAY ?
655 swap_bytes_change_sign16_le :
656 change_sign16_swap_bytes_le;
657 break;
658 case AUDIO_ENCODING_ULAW:
659 swcode = mode == AUMODE_PLAY ?
660 mulaw_to_ulinear8 : ulinear8_to_mulaw;
661 break;
662 case AUDIO_ENCODING_ALAW:
663 swcode = mode == AUMODE_PLAY ?
664 alaw_to_ulinear8 : ulinear8_to_alaw;
665 break;
666 default:
667 return EINVAL;
668 }
669 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
670 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
671 } else {
672 switch (p->encoding) {
673 case AUDIO_ENCODING_SLINEAR_BE:
674 case AUDIO_ENCODING_SLINEAR_LE:
675 swcode = change_sign8;
676 break;
677 case AUDIO_ENCODING_ULINEAR_BE:
678 case AUDIO_ENCODING_ULINEAR_LE:
679 break;
680 case AUDIO_ENCODING_ULAW:
681 swcode = mode == AUMODE_PLAY ?
682 mulaw_to_ulinear8 : ulinear8_to_mulaw;
683 break;
684 case AUDIO_ENCODING_ALAW:
685 swcode = mode == AUMODE_PLAY ?
686 alaw_to_ulinear8 : ulinear8_to_alaw;
687 break;
688 default:
689 return EINVAL;
690 }
691 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
692 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
693 }
694
695 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
696 if (mode == AUMODE_PLAY) {
697 sc->sc_o.rate = rate;
698 sc->sc_o.tc = tc;
699 sc->sc_o.modep = m;
700 sc->sc_o.bmode = bmode;
701 sc->sc_o.dmachan = chan;
702 } else {
703 sc->sc_i.rate = rate;
704 sc->sc_i.tc = tc;
705 sc->sc_i.modep = m;
706 sc->sc_i.bmode = bmode;
707 sc->sc_i.dmachan = chan;
708 }
709
710 p->sw_code = swcode;
711 p->factor = factor;
712 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
713 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
714 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
715
716 }
717
718 if (sc->sc_fullduplex &&
719 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
720 sc->sc_i.dmachan == sc->sc_o.dmachan) {
721 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
722 if (sc->sc_o.dmachan == sc->sc_drq8) {
723 /* Use 16 bit DMA for playing by expanding the samples. */
724 play->sw_code = linear8_to_linear16_le;
725 play->factor = 2;
726 sc->sc_o.modep = &sbpmodes[PLAY16];
727 sc->sc_o.dmachan = sc->sc_drq16;
728 } else {
729 return EINVAL;
730 }
731 }
732 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
733 sc->sc_i.dmachan, sc->sc_o.dmachan));
734
735 return (0);
736 }
737
738 void
739 sbdsp_set_ifilter(addr, which)
740 void *addr;
741 int which;
742 {
743 struct sbdsp_softc *sc = addr;
744 int mixval;
745
746 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
747 switch (which) {
748 case 0:
749 mixval |= SBP_FILTER_OFF;
750 break;
751 case SB_TREBLE:
752 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
753 break;
754 case SB_BASS:
755 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
756 break;
757 default:
758 return;
759 }
760 sc->in_filter = mixval & SBP_IFILTER_MASK;
761 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
762 }
763
764 int
765 sbdsp_get_ifilter(addr)
766 void *addr;
767 {
768 struct sbdsp_softc *sc = addr;
769
770 sc->in_filter =
771 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
772 switch (sc->in_filter) {
773 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
774 return SB_TREBLE;
775 case SBP_FILTER_ON|SBP_IFILTER_LOW:
776 return SB_BASS;
777 default:
778 return 0;
779 }
780 }
781
782 int
783 sbdsp_set_in_ports(sc, mask)
784 struct sbdsp_softc *sc;
785 int mask;
786 {
787 int bitsl, bitsr;
788 int sbport;
789
790 if (sc->sc_open == SB_OPEN_MIDI)
791 return EBUSY;
792
793 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
794 sc->sc_mixer_model, mask));
795
796 switch(sc->sc_mixer_model) {
797 case SBM_NONE:
798 return EINVAL;
799 case SBM_CT1335:
800 if (mask != (1 << SB_MIC_VOL))
801 return EINVAL;
802 break;
803 case SBM_CT1345:
804 switch (mask) {
805 case 1 << SB_MIC_VOL:
806 sbport = SBP_FROM_MIC;
807 break;
808 case 1 << SB_LINE_IN_VOL:
809 sbport = SBP_FROM_LINE;
810 break;
811 case 1 << SB_CD_VOL:
812 sbport = SBP_FROM_CD;
813 break;
814 default:
815 return (EINVAL);
816 }
817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
818 break;
819 case SBM_CT1XX5:
820 case SBM_CT1745:
821 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
822 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
823 return EINVAL;
824 bitsr = 0;
825 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
826 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
827 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
828 bitsl = SB_SRC_R_TO_L(bitsr);
829 if (mask & (1<<SB_MIC_VOL)) {
830 bitsl |= SBP_MIC_SRC;
831 bitsr |= SBP_MIC_SRC;
832 }
833 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
834 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
835 break;
836 }
837 sc->in_mask = mask;
838
839 return 0;
840 }
841
842 int
843 sbdsp_speaker_ctl(addr, newstate)
844 void *addr;
845 int newstate;
846 {
847 struct sbdsp_softc *sc = addr;
848
849 if (sc->sc_open == SB_OPEN_MIDI)
850 return EBUSY;
851
852 if ((newstate == SPKR_ON) &&
853 (sc->spkr_state == SPKR_OFF)) {
854 sbdsp_spkron(sc);
855 sc->spkr_state = SPKR_ON;
856 }
857 if ((newstate == SPKR_OFF) &&
858 (sc->spkr_state == SPKR_ON)) {
859 sbdsp_spkroff(sc);
860 sc->spkr_state = SPKR_OFF;
861 }
862 return 0;
863 }
864
865 int
866 sbdsp_round_blocksize(addr, blk)
867 void *addr;
868 int blk;
869 {
870 return blk & -4; /* round to biggest sample size */
871 }
872
873 int
874 sbdsp_open(addr, flags)
875 void *addr;
876 int flags;
877 {
878 struct sbdsp_softc *sc = addr;
879 int error, state;
880
881 DPRINTF(("sbdsp_open: sc=%p\n", sc));
882
883 if (sc->sc_open != SB_CLOSED)
884 return (EBUSY);
885 sc->sc_open = SB_OPEN_AUDIO;
886 sc->sc_openflags = flags;
887 state = 0;
888
889 if (sc->sc_drq8 != -1) {
890 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
891 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
892 if (error) {
893 printf("%s: can't create map for drq %d\n",
894 sc->sc_dev.dv_xname, sc->sc_drq8);
895 goto bad;
896 }
897 state |= 1;
898 }
899 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
900 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
901 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
902 if (error) {
903 printf("%s: can't create map for drq %d\n",
904 sc->sc_dev.dv_xname, sc->sc_drq16);
905 goto bad;
906 }
907 state |= 2;
908 }
909
910 if (sbdsp_reset(sc) != 0) {
911 error = EIO;
912 goto bad;
913 }
914
915 if (ISSBPRO(sc) &&
916 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
917 DPRINTF(("sbdsp_open: can't set mono mode\n"));
918 /* we'll readjust when it's time for DMA. */
919 }
920
921 /*
922 * Leave most things as they were; users must change things if
923 * the previous process didn't leave it they way they wanted.
924 * Looked at another way, it's easy to set up a configuration
925 * in one program and leave it for another to inherit.
926 */
927 DPRINTF(("sbdsp_open: opened\n"));
928
929 return (0);
930
931 bad:
932 if (state & 1)
933 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
934 if (state & 2)
935 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
936
937 sc->sc_open = SB_CLOSED;
938 return (error);
939 }
940
941 void
942 sbdsp_close(addr)
943 void *addr;
944 {
945 struct sbdsp_softc *sc = addr;
946
947 DPRINTF(("sbdsp_close: sc=%p\n", sc));
948
949 sbdsp_spkroff(sc);
950 sc->spkr_state = SPKR_OFF;
951
952 sbdsp_halt_output(sc);
953 sbdsp_halt_input(sc);
954
955 sc->sc_intr8 = 0;
956 sc->sc_intr16 = 0;
957
958 if (sc->sc_drq8 != -1)
959 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
960 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
961 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
962
963 sc->sc_open = SB_CLOSED;
964 DPRINTF(("sbdsp_close: closed\n"));
965 }
966
967 /*
968 * Lower-level routines
969 */
970
971 /*
972 * Reset the card.
973 * Return non-zero if the card isn't detected.
974 */
975 int
976 sbdsp_reset(sc)
977 struct sbdsp_softc *sc;
978 {
979 bus_space_tag_t iot = sc->sc_iot;
980 bus_space_handle_t ioh = sc->sc_ioh;
981
982 sc->sc_intr8 = 0;
983 sc->sc_intr16 = 0;
984 sc->sc_intrm = 0;
985
986 /*
987 * See SBK, section 11.3.
988 * We pulse a reset signal into the card.
989 * Gee, what a brilliant hardware design.
990 */
991 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
992 delay(10);
993 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
994 delay(30);
995 if (sbdsp_rdsp(sc) != SB_MAGIC)
996 return -1;
997
998 return 0;
999 }
1000
1001 /*
1002 * Write a byte to the dsp.
1003 * We are at the mercy of the card as we use a
1004 * polling loop and wait until it can take the byte.
1005 */
1006 int
1007 sbdsp_wdsp(sc, v)
1008 struct sbdsp_softc *sc;
1009 int v;
1010 {
1011 bus_space_tag_t iot = sc->sc_iot;
1012 bus_space_handle_t ioh = sc->sc_ioh;
1013 int i;
1014 u_char x;
1015
1016 for (i = SBDSP_NPOLL; --i >= 0; ) {
1017 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1018 delay(10);
1019 if ((x & SB_DSP_BUSY) == 0) {
1020 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1021 delay(10);
1022 return 0;
1023 }
1024 }
1025 ++sberr.wdsp;
1026 return -1;
1027 }
1028
1029 /*
1030 * Read a byte from the DSP, using polling.
1031 */
1032 int
1033 sbdsp_rdsp(sc)
1034 struct sbdsp_softc *sc;
1035 {
1036 bus_space_tag_t iot = sc->sc_iot;
1037 bus_space_handle_t ioh = sc->sc_ioh;
1038 int i;
1039 u_char x;
1040
1041 for (i = SBDSP_NPOLL; --i >= 0; ) {
1042 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1043 delay(10);
1044 if (x & SB_DSP_READY) {
1045 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1046 delay(10);
1047 return x;
1048 }
1049 }
1050 ++sberr.rdsp;
1051 return -1;
1052 }
1053
1054 void
1055 sbdsp_pause(sc)
1056 struct sbdsp_softc *sc;
1057 {
1058
1059 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1060 }
1061
1062 /*
1063 * Turn on the speaker. The SBK documention says this operation
1064 * can take up to 1/10 of a second. Higher level layers should
1065 * probably let the task sleep for this amount of time after
1066 * calling here. Otherwise, things might not work (because
1067 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1068 *
1069 * These engineers had their heads up their ass when
1070 * they designed this card.
1071 */
1072 void
1073 sbdsp_spkron(sc)
1074 struct sbdsp_softc *sc;
1075 {
1076 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1077 sbdsp_pause(sc);
1078 }
1079
1080 /*
1081 * Turn off the speaker; see comment above.
1082 */
1083 void
1084 sbdsp_spkroff(sc)
1085 struct sbdsp_softc *sc;
1086 {
1087 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1088 sbdsp_pause(sc);
1089 }
1090
1091 /*
1092 * Read the version number out of the card.
1093 * Store version information in the softc.
1094 */
1095 void
1096 sbversion(sc)
1097 struct sbdsp_softc *sc;
1098 {
1099 int v;
1100
1101 sc->sc_model = SB_UNK;
1102 sc->sc_version = 0;
1103 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1104 return;
1105 v = sbdsp_rdsp(sc) << 8;
1106 v |= sbdsp_rdsp(sc);
1107 if (v < 0)
1108 return;
1109 sc->sc_version = v;
1110 switch(SBVER_MAJOR(v)) {
1111 case 1:
1112 sc->sc_mixer_model = SBM_NONE;
1113 sc->sc_model = SB_1;
1114 break;
1115 case 2:
1116 /* Some SB2 have a mixer, some don't. */
1117 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1118 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1119 /* Check if we can read back the mixer values. */
1120 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1121 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1122 sc->sc_mixer_model = SBM_CT1335;
1123 else
1124 sc->sc_mixer_model = SBM_NONE;
1125 if (SBVER_MINOR(v) == 0)
1126 sc->sc_model = SB_20;
1127 else
1128 sc->sc_model = SB_2x;
1129 break;
1130 case 3:
1131 sc->sc_mixer_model = SBM_CT1345;
1132 sc->sc_model = SB_PRO;
1133 break;
1134 case 4:
1135 #if 0
1136 /* XXX This does not work */
1137 /* Most SB16 have a tone controls, but some don't. */
1138 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1139 /* Check if we can read back the mixer value. */
1140 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1141 sc->sc_mixer_model = SBM_CT1745;
1142 else
1143 sc->sc_mixer_model = SBM_CT1XX5;
1144 #else
1145 sc->sc_mixer_model = SBM_CT1745;
1146 #endif
1147 #if 0
1148 /* XXX figure out a good way of determining the model */
1149 /* XXX what about SB_32 */
1150 if (SBVER_MINOR(v) == 16)
1151 sc->sc_model = SB_64;
1152 else
1153 #endif
1154 sc->sc_model = SB_16;
1155 break;
1156 }
1157 }
1158
1159 int
1160 sbdsp_set_timeconst(sc, tc)
1161 struct sbdsp_softc *sc;
1162 int tc;
1163 {
1164 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1165
1166 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1167 sbdsp_wdsp(sc, tc) < 0)
1168 return EIO;
1169
1170 return 0;
1171 }
1172
1173 int
1174 sbdsp16_set_rate(sc, cmd, rate)
1175 struct sbdsp_softc *sc;
1176 int cmd, rate;
1177 {
1178 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1179
1180 if (sbdsp_wdsp(sc, cmd) < 0 ||
1181 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1182 sbdsp_wdsp(sc, rate) < 0)
1183 return EIO;
1184 return 0;
1185 }
1186
1187 int
1188 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1189 void *addr;
1190 void *start, *end;
1191 int blksize;
1192 void (*intr) __P((void *));
1193 void *arg;
1194 struct audio_params *param;
1195 {
1196 struct sbdsp_softc *sc = addr;
1197 int stereo = param->channels == 2;
1198 int width = param->precision * param->factor;
1199 int filter;
1200
1201 #ifdef DIAGNOSTIC
1202 if (stereo && (blksize & 1)) {
1203 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1204 return (EIO);
1205 }
1206 if (sc->sc_i.run != SB_NOTRUNNING)
1207 printf("sbdsp_trigger_input: already running\n");
1208 #endif
1209
1210 sc->sc_intrr = intr;
1211 sc->sc_argr = arg;
1212
1213 if (width == 8) {
1214 #ifdef DIAGNOSTIC
1215 if (sc->sc_i.dmachan != sc->sc_drq8) {
1216 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1217 width, sc->sc_i.dmachan);
1218 return (EIO);
1219 }
1220 #endif
1221 sc->sc_intr8 = sbdsp_block_input;
1222 } else {
1223 #ifdef DIAGNOSTIC
1224 if (sc->sc_i.dmachan != sc->sc_drq16) {
1225 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1226 width, sc->sc_i.dmachan);
1227 return (EIO);
1228 }
1229 #endif
1230 sc->sc_intr16 = sbdsp_block_input;
1231 }
1232
1233 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1234 blksize >>= 1;
1235 --blksize;
1236 sc->sc_i.blksize = blksize;
1237
1238 if (ISSBPRO(sc)) {
1239 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1240 return (EIO);
1241 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1242 sbdsp_mix_write(sc, SBP_INFILTER,
1243 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1244 filter);
1245 }
1246
1247 if (ISSB16CLASS(sc)) {
1248 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1249 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1250 sc->sc_i.rate));
1251 return (EIO);
1252 }
1253 } else {
1254 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1255 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1256 sc->sc_i.rate));
1257 return (EIO);
1258 }
1259 }
1260
1261 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1262 start, end, sc->sc_i.dmachan));
1263 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1264 (char *)end - (char *)start, NULL,
1265 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1266
1267 return sbdsp_block_input(addr);
1268 }
1269
1270 int
1271 sbdsp_block_input(addr)
1272 void *addr;
1273 {
1274 struct sbdsp_softc *sc = addr;
1275 int cc = sc->sc_i.blksize;
1276
1277 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1278
1279 if (sc->sc_i.run != SB_NOTRUNNING)
1280 sc->sc_intrr(sc->sc_argr);
1281
1282 if (sc->sc_model == SB_1) {
1283 /* Non-looping mode, start DMA */
1284 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1285 sbdsp_wdsp(sc, cc) < 0 ||
1286 sbdsp_wdsp(sc, cc >> 8) < 0) {
1287 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1288 return (EIO);
1289 }
1290 sc->sc_i.run = SB_RUNNING;
1291 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1292 /* Initialize looping PCM */
1293 if (ISSB16CLASS(sc)) {
1294 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1295 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1296 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1297 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1298 sbdsp_wdsp(sc, cc) < 0 ||
1299 sbdsp_wdsp(sc, cc >> 8) < 0) {
1300 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1301 return (EIO);
1302 }
1303 } else {
1304 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1305 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1306 sbdsp_wdsp(sc, cc) < 0 ||
1307 sbdsp_wdsp(sc, cc >> 8) < 0) {
1308 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1309 return (EIO);
1310 }
1311 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1312 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1313 return (EIO);
1314 }
1315 }
1316 sc->sc_i.run = SB_LOOPING;
1317 }
1318
1319 return (0);
1320 }
1321
1322 int
1323 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1324 void *addr;
1325 void *start, *end;
1326 int blksize;
1327 void (*intr) __P((void *));
1328 void *arg;
1329 struct audio_params *param;
1330 {
1331 struct sbdsp_softc *sc = addr;
1332 int stereo = param->channels == 2;
1333 int width = param->precision * param->factor;
1334 int cmd;
1335
1336 #ifdef DIAGNOSTIC
1337 if (stereo && (blksize & 1)) {
1338 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1339 return (EIO);
1340 }
1341 if (sc->sc_o.run != SB_NOTRUNNING)
1342 printf("sbdsp_trigger_output: already running\n");
1343 #endif
1344
1345 sc->sc_intrp = intr;
1346 sc->sc_argp = arg;
1347
1348 if (width == 8) {
1349 #ifdef DIAGNOSTIC
1350 if (sc->sc_o.dmachan != sc->sc_drq8) {
1351 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1352 width, sc->sc_o.dmachan);
1353 return (EIO);
1354 }
1355 #endif
1356 sc->sc_intr8 = sbdsp_block_output;
1357 } else {
1358 #ifdef DIAGNOSTIC
1359 if (sc->sc_o.dmachan != sc->sc_drq16) {
1360 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1361 width, sc->sc_o.dmachan);
1362 return (EIO);
1363 }
1364 #endif
1365 sc->sc_intr16 = sbdsp_block_output;
1366 }
1367
1368 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1369 blksize >>= 1;
1370 --blksize;
1371 sc->sc_o.blksize = blksize;
1372
1373 if (ISSBPRO(sc)) {
1374 /* make sure we re-set stereo mixer bit when we start output. */
1375 sbdsp_mix_write(sc, SBP_STEREO,
1376 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1377 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1378 cmd = sc->sc_o.modep->cmdchan;
1379 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1380 return (EIO);
1381 }
1382
1383 if (ISSB16CLASS(sc)) {
1384 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1385 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1386 sc->sc_o.rate));
1387 return (EIO);
1388 }
1389 } else {
1390 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1391 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1392 sc->sc_o.rate));
1393 return (EIO);
1394 }
1395 }
1396
1397 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1398 start, end, sc->sc_o.dmachan));
1399 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1400 (char *)end - (char *)start, NULL,
1401 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1402
1403 return sbdsp_block_output(addr);
1404 }
1405
1406 int
1407 sbdsp_block_output(addr)
1408 void *addr;
1409 {
1410 struct sbdsp_softc *sc = addr;
1411 int cc = sc->sc_o.blksize;
1412
1413 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1414
1415 if (sc->sc_o.run != SB_NOTRUNNING)
1416 sc->sc_intrp(sc->sc_argp);
1417
1418 if (sc->sc_model == SB_1) {
1419 /* Non-looping mode, initialized. Start DMA and PCM */
1420 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1421 sbdsp_wdsp(sc, cc) < 0 ||
1422 sbdsp_wdsp(sc, cc >> 8) < 0) {
1423 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1424 return (EIO);
1425 }
1426 sc->sc_o.run = SB_RUNNING;
1427 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1428 /* Initialize looping PCM */
1429 if (ISSB16CLASS(sc)) {
1430 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1431 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1432 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1433 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1434 sbdsp_wdsp(sc, cc) < 0 ||
1435 sbdsp_wdsp(sc, cc >> 8) < 0) {
1436 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1437 return (EIO);
1438 }
1439 } else {
1440 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1441 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1442 sbdsp_wdsp(sc, cc) < 0 ||
1443 sbdsp_wdsp(sc, cc >> 8) < 0) {
1444 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1445 return (EIO);
1446 }
1447 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1448 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1449 return (EIO);
1450 }
1451 }
1452 sc->sc_o.run = SB_LOOPING;
1453 }
1454
1455 return (0);
1456 }
1457
1458 int
1459 sbdsp_halt_output(addr)
1460 void *addr;
1461 {
1462 struct sbdsp_softc *sc = addr;
1463
1464 if (sc->sc_o.run != SB_NOTRUNNING) {
1465 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1466 printf("sbdsp_halt_output: failed to halt\n");
1467 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1468 sc->sc_o.run = SB_NOTRUNNING;
1469 }
1470
1471 return (0);
1472 }
1473
1474 int
1475 sbdsp_halt_input(addr)
1476 void *addr;
1477 {
1478 struct sbdsp_softc *sc = addr;
1479
1480 if (sc->sc_i.run != SB_NOTRUNNING) {
1481 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1482 printf("sbdsp_halt_input: failed to halt\n");
1483 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1484 sc->sc_i.run = SB_NOTRUNNING;
1485 }
1486
1487 return (0);
1488 }
1489
1490 /*
1491 * Only the DSP unit on the sound blaster generates interrupts.
1492 * There are three cases of interrupt: reception of a midi byte
1493 * (when mode is enabled), completion of dma transmission, or
1494 * completion of a dma reception.
1495 *
1496 * If there is interrupt sharing or a spurious interrupt occurs
1497 * there is no way to distinguish this on an SB2. So if you have
1498 * an SB2 and experience problems, buy an SB16 (it's only $40).
1499 */
1500 int
1501 sbdsp_intr(arg)
1502 void *arg;
1503 {
1504 struct sbdsp_softc *sc = arg;
1505 u_char irq;
1506
1507 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1508 sc->sc_intr8, sc->sc_intr16));
1509 if (ISSB16CLASS(sc)) {
1510 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1511 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1512 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1513 return 0;
1514 }
1515 } else {
1516 /* XXXX CHECK FOR INTERRUPT */
1517 irq = SBP_IRQ_DMA8;
1518 }
1519
1520 sc->sc_interrupts++;
1521 delay(10); /* XXX why? */
1522
1523 /* clear interrupt */
1524 if (irq & SBP_IRQ_DMA8) {
1525 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1526 if (sc->sc_intr8)
1527 sc->sc_intr8(arg);
1528 }
1529 if (irq & SBP_IRQ_DMA16) {
1530 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1531 if (sc->sc_intr16)
1532 sc->sc_intr16(arg);
1533 }
1534 #if NMPU > 0
1535 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1536 mpu_intr(sc->sc_mpudev);
1537 }
1538 #endif
1539 return 1;
1540 }
1541
1542 /* Like val & mask, but make sure the result is correctly rounded. */
1543 #define MAXVAL 256
1544 static int
1545 sbdsp_adjust(val, mask)
1546 int val, mask;
1547 {
1548 val += (MAXVAL - mask) >> 1;
1549 if (val >= MAXVAL)
1550 val = MAXVAL-1;
1551 return val & mask;
1552 }
1553
1554 void
1555 sbdsp_set_mixer_gain(sc, port)
1556 struct sbdsp_softc *sc;
1557 int port;
1558 {
1559 int src, gain;
1560
1561 switch(sc->sc_mixer_model) {
1562 case SBM_NONE:
1563 return;
1564 case SBM_CT1335:
1565 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1566 switch(port) {
1567 case SB_MASTER_VOL:
1568 src = SBP_1335_MASTER_VOL;
1569 break;
1570 case SB_MIDI_VOL:
1571 src = SBP_1335_MIDI_VOL;
1572 break;
1573 case SB_CD_VOL:
1574 src = SBP_1335_CD_VOL;
1575 break;
1576 case SB_VOICE_VOL:
1577 src = SBP_1335_VOICE_VOL;
1578 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1579 break;
1580 default:
1581 return;
1582 }
1583 sbdsp_mix_write(sc, src, gain);
1584 break;
1585 case SBM_CT1345:
1586 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1587 sc->gain[port][SB_RIGHT]);
1588 switch (port) {
1589 case SB_MIC_VOL:
1590 src = SBP_MIC_VOL;
1591 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1592 break;
1593 case SB_MASTER_VOL:
1594 src = SBP_MASTER_VOL;
1595 break;
1596 case SB_LINE_IN_VOL:
1597 src = SBP_LINE_VOL;
1598 break;
1599 case SB_VOICE_VOL:
1600 src = SBP_VOICE_VOL;
1601 break;
1602 case SB_MIDI_VOL:
1603 src = SBP_MIDI_VOL;
1604 break;
1605 case SB_CD_VOL:
1606 src = SBP_CD_VOL;
1607 break;
1608 default:
1609 return;
1610 }
1611 sbdsp_mix_write(sc, src, gain);
1612 break;
1613 case SBM_CT1XX5:
1614 case SBM_CT1745:
1615 switch (port) {
1616 case SB_MIC_VOL:
1617 src = SB16P_MIC_L;
1618 break;
1619 case SB_MASTER_VOL:
1620 src = SB16P_MASTER_L;
1621 break;
1622 case SB_LINE_IN_VOL:
1623 src = SB16P_LINE_L;
1624 break;
1625 case SB_VOICE_VOL:
1626 src = SB16P_VOICE_L;
1627 break;
1628 case SB_MIDI_VOL:
1629 src = SB16P_MIDI_L;
1630 break;
1631 case SB_CD_VOL:
1632 src = SB16P_CD_L;
1633 break;
1634 case SB_INPUT_GAIN:
1635 src = SB16P_INPUT_GAIN_L;
1636 break;
1637 case SB_OUTPUT_GAIN:
1638 src = SB16P_OUTPUT_GAIN_L;
1639 break;
1640 case SB_TREBLE:
1641 src = SB16P_TREBLE_L;
1642 break;
1643 case SB_BASS:
1644 src = SB16P_BASS_L;
1645 break;
1646 case SB_PCSPEAKER:
1647 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1648 return;
1649 default:
1650 return;
1651 }
1652 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1653 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1654 break;
1655 }
1656 }
1657
1658 int
1659 sbdsp_mixer_set_port(addr, cp)
1660 void *addr;
1661 mixer_ctrl_t *cp;
1662 {
1663 struct sbdsp_softc *sc = addr;
1664 int lgain, rgain;
1665 int mask, bits;
1666 int lmask, rmask, lbits, rbits;
1667 int mute, swap;
1668
1669 if (sc->sc_open == SB_OPEN_MIDI)
1670 return EBUSY;
1671
1672 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1673 cp->un.value.num_channels));
1674
1675 if (sc->sc_mixer_model == SBM_NONE)
1676 return EINVAL;
1677
1678 switch (cp->dev) {
1679 case SB_TREBLE:
1680 case SB_BASS:
1681 if (sc->sc_mixer_model == SBM_CT1345 ||
1682 sc->sc_mixer_model == SBM_CT1XX5) {
1683 if (cp->type != AUDIO_MIXER_ENUM)
1684 return EINVAL;
1685 switch (cp->dev) {
1686 case SB_TREBLE:
1687 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1688 return 0;
1689 case SB_BASS:
1690 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1691 return 0;
1692 }
1693 }
1694 case SB_PCSPEAKER:
1695 case SB_INPUT_GAIN:
1696 case SB_OUTPUT_GAIN:
1697 if (!ISSBM1745(sc))
1698 return EINVAL;
1699 case SB_MIC_VOL:
1700 case SB_LINE_IN_VOL:
1701 if (sc->sc_mixer_model == SBM_CT1335)
1702 return EINVAL;
1703 case SB_VOICE_VOL:
1704 case SB_MIDI_VOL:
1705 case SB_CD_VOL:
1706 case SB_MASTER_VOL:
1707 if (cp->type != AUDIO_MIXER_VALUE)
1708 return EINVAL;
1709
1710 /*
1711 * All the mixer ports are stereo except for the microphone.
1712 * If we get a single-channel gain value passed in, then we
1713 * duplicate it to both left and right channels.
1714 */
1715
1716 switch (cp->dev) {
1717 case SB_MIC_VOL:
1718 if (cp->un.value.num_channels != 1)
1719 return EINVAL;
1720
1721 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1722 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1723 break;
1724 case SB_PCSPEAKER:
1725 if (cp->un.value.num_channels != 1)
1726 return EINVAL;
1727 /* fall into */
1728 case SB_INPUT_GAIN:
1729 case SB_OUTPUT_GAIN:
1730 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1731 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1732 break;
1733 default:
1734 switch (cp->un.value.num_channels) {
1735 case 1:
1736 lgain = rgain = SB_ADJUST_GAIN(sc,
1737 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1738 break;
1739 case 2:
1740 if (sc->sc_mixer_model == SBM_CT1335)
1741 return EINVAL;
1742 lgain = SB_ADJUST_GAIN(sc,
1743 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1744 rgain = SB_ADJUST_GAIN(sc,
1745 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1746 break;
1747 default:
1748 return EINVAL;
1749 }
1750 break;
1751 }
1752 sc->gain[cp->dev][SB_LEFT] = lgain;
1753 sc->gain[cp->dev][SB_RIGHT] = rgain;
1754
1755 sbdsp_set_mixer_gain(sc, cp->dev);
1756 break;
1757
1758 case SB_RECORD_SOURCE:
1759 if (ISSBM1745(sc)) {
1760 if (cp->type != AUDIO_MIXER_SET)
1761 return EINVAL;
1762 return sbdsp_set_in_ports(sc, cp->un.mask);
1763 } else {
1764 if (cp->type != AUDIO_MIXER_ENUM)
1765 return EINVAL;
1766 sc->in_port = cp->un.ord;
1767 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1768 }
1769 break;
1770
1771 case SB_AGC:
1772 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1773 return EINVAL;
1774 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1775 break;
1776
1777 case SB_CD_OUT_MUTE:
1778 mask = SB16P_SW_CD;
1779 goto omute;
1780 case SB_MIC_OUT_MUTE:
1781 mask = SB16P_SW_MIC;
1782 goto omute;
1783 case SB_LINE_OUT_MUTE:
1784 mask = SB16P_SW_LINE;
1785 omute:
1786 if (cp->type != AUDIO_MIXER_ENUM)
1787 return EINVAL;
1788 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1789 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1790 if (cp->un.ord)
1791 bits = bits & ~mask;
1792 else
1793 bits = bits | mask;
1794 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1795 break;
1796
1797 case SB_MIC_IN_MUTE:
1798 case SB_MIC_SWAP:
1799 lmask = rmask = SB16P_SW_MIC;
1800 goto imute;
1801 case SB_CD_IN_MUTE:
1802 case SB_CD_SWAP:
1803 lmask = SB16P_SW_CD_L;
1804 rmask = SB16P_SW_CD_R;
1805 goto imute;
1806 case SB_LINE_IN_MUTE:
1807 case SB_LINE_SWAP:
1808 lmask = SB16P_SW_LINE_L;
1809 rmask = SB16P_SW_LINE_R;
1810 goto imute;
1811 case SB_MIDI_IN_MUTE:
1812 case SB_MIDI_SWAP:
1813 lmask = SB16P_SW_MIDI_L;
1814 rmask = SB16P_SW_MIDI_R;
1815 imute:
1816 if (cp->type != AUDIO_MIXER_ENUM)
1817 return EINVAL;
1818 mask = lmask | rmask;
1819 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1820 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1821 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1822 if (SB_IS_IN_MUTE(cp->dev)) {
1823 mute = cp->dev;
1824 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1825 } else {
1826 swap = cp->dev;
1827 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1828 }
1829 if (sc->gain[swap][SB_LR]) {
1830 mask = lmask;
1831 lmask = rmask;
1832 rmask = mask;
1833 }
1834 if (!sc->gain[mute][SB_LR]) {
1835 lbits = lbits | lmask;
1836 rbits = rbits | rmask;
1837 }
1838 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1839 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1840 break;
1841
1842 default:
1843 return EINVAL;
1844 }
1845
1846 return 0;
1847 }
1848
1849 int
1850 sbdsp_mixer_get_port(addr, cp)
1851 void *addr;
1852 mixer_ctrl_t *cp;
1853 {
1854 struct sbdsp_softc *sc = addr;
1855
1856 if (sc->sc_open == SB_OPEN_MIDI)
1857 return EBUSY;
1858
1859 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1860
1861 if (sc->sc_mixer_model == SBM_NONE)
1862 return EINVAL;
1863
1864 switch (cp->dev) {
1865 case SB_TREBLE:
1866 case SB_BASS:
1867 if (sc->sc_mixer_model == SBM_CT1345 ||
1868 sc->sc_mixer_model == SBM_CT1XX5) {
1869 switch (cp->dev) {
1870 case SB_TREBLE:
1871 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1872 return 0;
1873 case SB_BASS:
1874 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1875 return 0;
1876 }
1877 }
1878 case SB_PCSPEAKER:
1879 case SB_INPUT_GAIN:
1880 case SB_OUTPUT_GAIN:
1881 if (!ISSBM1745(sc))
1882 return EINVAL;
1883 case SB_MIC_VOL:
1884 case SB_LINE_IN_VOL:
1885 if (sc->sc_mixer_model == SBM_CT1335)
1886 return EINVAL;
1887 case SB_VOICE_VOL:
1888 case SB_MIDI_VOL:
1889 case SB_CD_VOL:
1890 case SB_MASTER_VOL:
1891 switch (cp->dev) {
1892 case SB_MIC_VOL:
1893 case SB_PCSPEAKER:
1894 if (cp->un.value.num_channels != 1)
1895 return EINVAL;
1896 /* fall into */
1897 default:
1898 switch (cp->un.value.num_channels) {
1899 case 1:
1900 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1901 sc->gain[cp->dev][SB_LEFT];
1902 break;
1903 case 2:
1904 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1905 sc->gain[cp->dev][SB_LEFT];
1906 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1907 sc->gain[cp->dev][SB_RIGHT];
1908 break;
1909 default:
1910 return EINVAL;
1911 }
1912 break;
1913 }
1914 break;
1915
1916 case SB_RECORD_SOURCE:
1917 if (ISSBM1745(sc))
1918 cp->un.mask = sc->in_mask;
1919 else
1920 cp->un.ord = sc->in_port;
1921 break;
1922
1923 case SB_AGC:
1924 if (!ISSBM1745(sc))
1925 return EINVAL;
1926 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1927 break;
1928
1929 case SB_CD_IN_MUTE:
1930 case SB_MIC_IN_MUTE:
1931 case SB_LINE_IN_MUTE:
1932 case SB_MIDI_IN_MUTE:
1933 case SB_CD_SWAP:
1934 case SB_MIC_SWAP:
1935 case SB_LINE_SWAP:
1936 case SB_MIDI_SWAP:
1937 case SB_CD_OUT_MUTE:
1938 case SB_MIC_OUT_MUTE:
1939 case SB_LINE_OUT_MUTE:
1940 cp->un.ord = sc->gain[cp->dev][SB_LR];
1941 break;
1942
1943 default:
1944 return EINVAL;
1945 }
1946
1947 return 0;
1948 }
1949
1950 int
1951 sbdsp_mixer_query_devinfo(addr, dip)
1952 void *addr;
1953 mixer_devinfo_t *dip;
1954 {
1955 struct sbdsp_softc *sc = addr;
1956 int chan, class, is1745;
1957
1958 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1959 sc->sc_mixer_model, dip->index));
1960
1961 if (sc->sc_mixer_model == SBM_NONE)
1962 return ENXIO;
1963
1964 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1965 is1745 = ISSBM1745(sc);
1966 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1967
1968 switch (dip->index) {
1969 case SB_MASTER_VOL:
1970 dip->type = AUDIO_MIXER_VALUE;
1971 dip->mixer_class = SB_OUTPUT_CLASS;
1972 dip->prev = dip->next = AUDIO_MIXER_LAST;
1973 strcpy(dip->label.name, AudioNmaster);
1974 dip->un.v.num_channels = chan;
1975 strcpy(dip->un.v.units.name, AudioNvolume);
1976 return 0;
1977 case SB_MIDI_VOL:
1978 dip->type = AUDIO_MIXER_VALUE;
1979 dip->mixer_class = class;
1980 dip->prev = AUDIO_MIXER_LAST;
1981 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1982 strcpy(dip->label.name, AudioNfmsynth);
1983 dip->un.v.num_channels = chan;
1984 strcpy(dip->un.v.units.name, AudioNvolume);
1985 return 0;
1986 case SB_CD_VOL:
1987 dip->type = AUDIO_MIXER_VALUE;
1988 dip->mixer_class = class;
1989 dip->prev = AUDIO_MIXER_LAST;
1990 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1991 strcpy(dip->label.name, AudioNcd);
1992 dip->un.v.num_channels = chan;
1993 strcpy(dip->un.v.units.name, AudioNvolume);
1994 return 0;
1995 case SB_VOICE_VOL:
1996 dip->type = AUDIO_MIXER_VALUE;
1997 dip->mixer_class = class;
1998 dip->prev = AUDIO_MIXER_LAST;
1999 dip->next = AUDIO_MIXER_LAST;
2000 strcpy(dip->label.name, AudioNdac);
2001 dip->un.v.num_channels = chan;
2002 strcpy(dip->un.v.units.name, AudioNvolume);
2003 return 0;
2004 case SB_OUTPUT_CLASS:
2005 dip->type = AUDIO_MIXER_CLASS;
2006 dip->mixer_class = SB_OUTPUT_CLASS;
2007 dip->next = dip->prev = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioCoutputs);
2009 return 0;
2010 }
2011
2012 if (sc->sc_mixer_model == SBM_CT1335)
2013 return ENXIO;
2014
2015 switch (dip->index) {
2016 case SB_MIC_VOL:
2017 dip->type = AUDIO_MIXER_VALUE;
2018 dip->mixer_class = class;
2019 dip->prev = AUDIO_MIXER_LAST;
2020 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2021 strcpy(dip->label.name, AudioNmicrophone);
2022 dip->un.v.num_channels = 1;
2023 strcpy(dip->un.v.units.name, AudioNvolume);
2024 return 0;
2025
2026 case SB_LINE_IN_VOL:
2027 dip->type = AUDIO_MIXER_VALUE;
2028 dip->mixer_class = class;
2029 dip->prev = AUDIO_MIXER_LAST;
2030 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2031 strcpy(dip->label.name, AudioNline);
2032 dip->un.v.num_channels = 2;
2033 strcpy(dip->un.v.units.name, AudioNvolume);
2034 return 0;
2035
2036 case SB_RECORD_SOURCE:
2037 dip->mixer_class = SB_RECORD_CLASS;
2038 dip->prev = dip->next = AUDIO_MIXER_LAST;
2039 strcpy(dip->label.name, AudioNsource);
2040 if (ISSBM1745(sc)) {
2041 dip->type = AUDIO_MIXER_SET;
2042 dip->un.s.num_mem = 4;
2043 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2044 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2045 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2046 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2047 strcpy(dip->un.s.member[2].label.name, AudioNline);
2048 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2049 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2050 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2051 } else {
2052 dip->type = AUDIO_MIXER_ENUM;
2053 dip->un.e.num_mem = 3;
2054 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2055 dip->un.e.member[0].ord = SB_MIC_VOL;
2056 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2057 dip->un.e.member[1].ord = SB_CD_VOL;
2058 strcpy(dip->un.e.member[2].label.name, AudioNline);
2059 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2060 }
2061 return 0;
2062
2063 case SB_BASS:
2064 dip->prev = dip->next = AUDIO_MIXER_LAST;
2065 strcpy(dip->label.name, AudioNbass);
2066 if (sc->sc_mixer_model == SBM_CT1745) {
2067 dip->type = AUDIO_MIXER_VALUE;
2068 dip->mixer_class = SB_EQUALIZATION_CLASS;
2069 dip->un.v.num_channels = 2;
2070 strcpy(dip->un.v.units.name, AudioNbass);
2071 } else {
2072 dip->type = AUDIO_MIXER_ENUM;
2073 dip->mixer_class = SB_INPUT_CLASS;
2074 dip->un.e.num_mem = 2;
2075 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2076 dip->un.e.member[0].ord = 0;
2077 strcpy(dip->un.e.member[1].label.name, AudioNon);
2078 dip->un.e.member[1].ord = 1;
2079 }
2080 return 0;
2081
2082 case SB_TREBLE:
2083 dip->prev = dip->next = AUDIO_MIXER_LAST;
2084 strcpy(dip->label.name, AudioNtreble);
2085 if (sc->sc_mixer_model == SBM_CT1745) {
2086 dip->type = AUDIO_MIXER_VALUE;
2087 dip->mixer_class = SB_EQUALIZATION_CLASS;
2088 dip->un.v.num_channels = 2;
2089 strcpy(dip->un.v.units.name, AudioNtreble);
2090 } else {
2091 dip->type = AUDIO_MIXER_ENUM;
2092 dip->mixer_class = SB_INPUT_CLASS;
2093 dip->un.e.num_mem = 2;
2094 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2095 dip->un.e.member[0].ord = 0;
2096 strcpy(dip->un.e.member[1].label.name, AudioNon);
2097 dip->un.e.member[1].ord = 1;
2098 }
2099 return 0;
2100
2101 case SB_RECORD_CLASS: /* record source class */
2102 dip->type = AUDIO_MIXER_CLASS;
2103 dip->mixer_class = SB_RECORD_CLASS;
2104 dip->next = dip->prev = AUDIO_MIXER_LAST;
2105 strcpy(dip->label.name, AudioCrecord);
2106 return 0;
2107
2108 case SB_INPUT_CLASS:
2109 dip->type = AUDIO_MIXER_CLASS;
2110 dip->mixer_class = SB_INPUT_CLASS;
2111 dip->next = dip->prev = AUDIO_MIXER_LAST;
2112 strcpy(dip->label.name, AudioCinputs);
2113 return 0;
2114
2115 }
2116
2117 if (sc->sc_mixer_model == SBM_CT1345)
2118 return ENXIO;
2119
2120 switch(dip->index) {
2121 case SB_PCSPEAKER:
2122 dip->type = AUDIO_MIXER_VALUE;
2123 dip->mixer_class = SB_INPUT_CLASS;
2124 dip->prev = dip->next = AUDIO_MIXER_LAST;
2125 strcpy(dip->label.name, "pc_speaker");
2126 dip->un.v.num_channels = 1;
2127 strcpy(dip->un.v.units.name, AudioNvolume);
2128 return 0;
2129
2130 case SB_INPUT_GAIN:
2131 dip->type = AUDIO_MIXER_VALUE;
2132 dip->mixer_class = SB_INPUT_CLASS;
2133 dip->prev = dip->next = AUDIO_MIXER_LAST;
2134 strcpy(dip->label.name, AudioNinput);
2135 dip->un.v.num_channels = 2;
2136 strcpy(dip->un.v.units.name, AudioNvolume);
2137 return 0;
2138
2139 case SB_OUTPUT_GAIN:
2140 dip->type = AUDIO_MIXER_VALUE;
2141 dip->mixer_class = SB_OUTPUT_CLASS;
2142 dip->prev = dip->next = AUDIO_MIXER_LAST;
2143 strcpy(dip->label.name, AudioNoutput);
2144 dip->un.v.num_channels = 2;
2145 strcpy(dip->un.v.units.name, AudioNvolume);
2146 return 0;
2147
2148 case SB_AGC:
2149 dip->type = AUDIO_MIXER_ENUM;
2150 dip->mixer_class = SB_INPUT_CLASS;
2151 dip->prev = dip->next = AUDIO_MIXER_LAST;
2152 strcpy(dip->label.name, "agc");
2153 dip->un.e.num_mem = 2;
2154 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2155 dip->un.e.member[0].ord = 0;
2156 strcpy(dip->un.e.member[1].label.name, AudioNon);
2157 dip->un.e.member[1].ord = 1;
2158 return 0;
2159
2160 case SB_EQUALIZATION_CLASS:
2161 dip->type = AUDIO_MIXER_CLASS;
2162 dip->mixer_class = SB_EQUALIZATION_CLASS;
2163 dip->next = dip->prev = AUDIO_MIXER_LAST;
2164 strcpy(dip->label.name, AudioCequalization);
2165 return 0;
2166
2167 case SB_CD_IN_MUTE:
2168 dip->prev = SB_CD_VOL;
2169 dip->next = SB_CD_SWAP;
2170 dip->mixer_class = SB_INPUT_CLASS;
2171 goto mute;
2172
2173 case SB_MIC_IN_MUTE:
2174 dip->prev = SB_MIC_VOL;
2175 dip->next = SB_MIC_SWAP;
2176 dip->mixer_class = SB_INPUT_CLASS;
2177 goto mute;
2178
2179 case SB_LINE_IN_MUTE:
2180 dip->prev = SB_LINE_IN_VOL;
2181 dip->next = SB_LINE_SWAP;
2182 dip->mixer_class = SB_INPUT_CLASS;
2183 goto mute;
2184
2185 case SB_MIDI_IN_MUTE:
2186 dip->prev = SB_MIDI_VOL;
2187 dip->next = SB_MIDI_SWAP;
2188 dip->mixer_class = SB_INPUT_CLASS;
2189 goto mute;
2190
2191 case SB_CD_SWAP:
2192 dip->prev = SB_CD_IN_MUTE;
2193 dip->next = SB_CD_OUT_MUTE;
2194 goto swap;
2195
2196 case SB_MIC_SWAP:
2197 dip->prev = SB_MIC_IN_MUTE;
2198 dip->next = SB_MIC_OUT_MUTE;
2199 goto swap;
2200
2201 case SB_LINE_SWAP:
2202 dip->prev = SB_LINE_IN_MUTE;
2203 dip->next = SB_LINE_OUT_MUTE;
2204 goto swap;
2205
2206 case SB_MIDI_SWAP:
2207 dip->prev = SB_MIDI_IN_MUTE;
2208 dip->next = AUDIO_MIXER_LAST;
2209 swap:
2210 dip->mixer_class = SB_INPUT_CLASS;
2211 strcpy(dip->label.name, AudioNswap);
2212 goto mute1;
2213
2214 case SB_CD_OUT_MUTE:
2215 dip->prev = SB_CD_SWAP;
2216 dip->next = AUDIO_MIXER_LAST;
2217 dip->mixer_class = SB_OUTPUT_CLASS;
2218 goto mute;
2219
2220 case SB_MIC_OUT_MUTE:
2221 dip->prev = SB_MIC_SWAP;
2222 dip->next = AUDIO_MIXER_LAST;
2223 dip->mixer_class = SB_OUTPUT_CLASS;
2224 goto mute;
2225
2226 case SB_LINE_OUT_MUTE:
2227 dip->prev = SB_LINE_SWAP;
2228 dip->next = AUDIO_MIXER_LAST;
2229 dip->mixer_class = SB_OUTPUT_CLASS;
2230 mute:
2231 strcpy(dip->label.name, AudioNmute);
2232 mute1:
2233 dip->type = AUDIO_MIXER_ENUM;
2234 dip->un.e.num_mem = 2;
2235 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2236 dip->un.e.member[0].ord = 0;
2237 strcpy(dip->un.e.member[1].label.name, AudioNon);
2238 dip->un.e.member[1].ord = 1;
2239 return 0;
2240
2241 }
2242
2243 return ENXIO;
2244 }
2245
2246 void *
2247 sb_malloc(addr, direction, size, pool, flags)
2248 void *addr;
2249 int direction;
2250 size_t size;
2251 int pool, flags;
2252 {
2253 struct sbdsp_softc *sc = addr;
2254 int drq;
2255
2256 if (sc->sc_drq8 != -1)
2257 drq = sc->sc_drq8;
2258 else
2259 drq = sc->sc_drq16;
2260 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2261 }
2262
2263 void
2264 sb_free(addr, ptr, pool)
2265 void *addr;
2266 void *ptr;
2267 int pool;
2268 {
2269 isa_free(ptr, pool);
2270 }
2271
2272 size_t
2273 sb_round_buffersize(addr, direction, size)
2274 void *addr;
2275 int direction;
2276 size_t size;
2277 {
2278 struct sbdsp_softc *sc = addr;
2279 bus_size_t maxsize;
2280
2281 if (sc->sc_drq8 != -1)
2282 maxsize = sc->sc_drq8_maxsize;
2283 else
2284 maxsize = sc->sc_drq16_maxsize;
2285
2286 if (size > maxsize)
2287 size = maxsize;
2288 return (size);
2289 }
2290
2291 paddr_t
2292 sb_mappage(addr, mem, off, prot)
2293 void *addr;
2294 void *mem;
2295 off_t off;
2296 int prot;
2297 {
2298 return isa_mappage(mem, off, prot);
2299 }
2300
2301 int
2302 sbdsp_get_props(addr)
2303 void *addr;
2304 {
2305 struct sbdsp_softc *sc = addr;
2306 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2307 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2308 }
2309
2310 #if NMPU > 0
2311 /*
2312 * MIDI related routines.
2313 */
2314
2315 int
2316 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2317 void *addr;
2318 int flags;
2319 void (*iintr)__P((void *, int));
2320 void (*ointr)__P((void *));
2321 void *arg;
2322 {
2323 struct sbdsp_softc *sc = addr;
2324
2325 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2326
2327 if (sc->sc_open != SB_CLOSED)
2328 return EBUSY;
2329 if (sbdsp_reset(sc) != 0)
2330 return EIO;
2331
2332 sc->sc_open = SB_OPEN_MIDI;
2333 sc->sc_openflags = flags;
2334
2335 if (sc->sc_model >= SB_20)
2336 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2337 return EIO;
2338
2339 sc->sc_intr8 = sbdsp_midi_intr;
2340 sc->sc_intrm = iintr;
2341 sc->sc_argm = arg;
2342
2343 return 0;
2344 }
2345
2346 void
2347 sbdsp_midi_close(addr)
2348 void *addr;
2349 {
2350 struct sbdsp_softc *sc = addr;
2351
2352 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2353
2354 if (sc->sc_model >= SB_20)
2355 sbdsp_reset(sc); /* exit UART mode */
2356
2357 sc->sc_intrm = 0;
2358 sc->sc_open = SB_CLOSED;
2359 }
2360
2361 int
2362 sbdsp_midi_output(addr, d)
2363 void *addr;
2364 int d;
2365 {
2366 struct sbdsp_softc *sc = addr;
2367
2368 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2369 return EIO;
2370 if (sbdsp_wdsp(sc, d))
2371 return EIO;
2372 return 0;
2373 }
2374
2375 void
2376 sbdsp_midi_getinfo(addr, mi)
2377 void *addr;
2378 struct midi_info *mi;
2379 {
2380 struct sbdsp_softc *sc = addr;
2381
2382 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2383 mi->props = MIDI_PROP_CAN_INPUT;
2384 }
2385
2386 int
2387 sbdsp_midi_intr(addr)
2388 void *addr;
2389 {
2390 struct sbdsp_softc *sc = addr;
2391
2392 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2393 return (0);
2394 }
2395
2396 #endif
2397
2398