Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.106
      1 /*	$NetBSD: sbdsp.c,v 1.106 2000/06/28 16:27:56 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include "midi.h"
     84 #include "mpu.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/errno.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/syslog.h>
     92 #include <sys/device.h>
     93 #include <sys/proc.h>
     94 #include <sys/buf.h>
     95 
     96 #include <machine/cpu.h>
     97 #include <machine/intr.h>
     98 #include <machine/bus.h>
     99 
    100 #include <sys/audioio.h>
    101 #include <dev/audio_if.h>
    102 #include <dev/midi_if.h>
    103 #include <dev/mulaw.h>
    104 #include <dev/auconv.h>
    105 
    106 #include <dev/isa/isavar.h>
    107 #include <dev/isa/isadmavar.h>
    108 
    109 #include <dev/isa/sbreg.h>
    110 #include <dev/isa/sbdspvar.h>
    111 
    112 
    113 #ifdef AUDIO_DEBUG
    114 #define DPRINTF(x)	if (sbdspdebug) printf x
    115 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    116 int	sbdspdebug = 0;
    117 #else
    118 #define DPRINTF(x)
    119 #define DPRINTFN(n,x)
    120 #endif
    121 
    122 #ifndef SBDSP_NPOLL
    123 #define SBDSP_NPOLL 3000
    124 #endif
    125 
    126 struct {
    127 	int wdsp;
    128 	int rdsp;
    129 	int wmidi;
    130 } sberr;
    131 
    132 /*
    133  * Time constant routines follow.  See SBK, section 12.
    134  * Although they don't come out and say it (in the docs),
    135  * the card clearly uses a 1MHz countdown timer, as the
    136  * low-speed formula (p. 12-4) is:
    137  *	tc = 256 - 10^6 / sr
    138  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    139  * and a 256MHz clock is used:
    140  *	tc = 65536 - 256 * 10^ 6 / sr
    141  * Since we can only use the upper byte of the HS TC, the two formulae
    142  * are equivalent.  (Why didn't they say so?)  E.g.,
    143  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    144  *
    145  * The crossover point (from low- to high-speed modes) is different
    146  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    147  *
    148  *				SBPRO			SB20
    149  *				-----			--------
    150  * input ls min			4	KHz		4	KHz
    151  * input ls max			23	KHz		13	KHz
    152  * input hs max			44.1	KHz		15	KHz
    153  * output ls min		4	KHz		4	KHz
    154  * output ls max		23	KHz		23	KHz
    155  * output hs max		44.1	KHz		44.1	KHz
    156  */
    157 /* XXX Should we round the tc?
    158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    159 */
    160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    162 
    163 struct sbmode {
    164 	short	model;
    165 	u_char	channels;
    166 	u_char	precision;
    167 	u_short	lowrate, highrate;
    168 	u_char	cmd;
    169 	u_char	halt, cont;
    170 	u_char	cmdchan;
    171 };
    172 static struct sbmode sbpmodes[] = {
    173  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    174  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    175  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    176  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    181  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    182  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    183  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    184  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    185  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    186  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    187  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    188  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    189 #define PLAY16 15 /* must be the index of the next entry in the table */
    190  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    191  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    192  { -1 }
    193 };
    194 static struct sbmode sbrmodes[] = {
    195  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    196  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    197  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    198  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    200  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    201  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    202  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    206  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    207  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    208  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    209  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    210  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    211  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    212  { -1 }
    213 };
    214 
    215 void	sbversion __P((struct sbdsp_softc *));
    216 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    217 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    218 void	sbdsp_pause __P((struct sbdsp_softc *));
    219 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    220 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    221 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    222 void	sbdsp_set_ifilter __P((void *, int));
    223 int	sbdsp_get_ifilter __P((void *));
    224 
    225 int	sbdsp_block_output __P((void *));
    226 int	sbdsp_block_input __P((void *));
    227 static	int sbdsp_adjust __P((int, int));
    228 
    229 int	sbdsp_midi_intr __P((void *));
    230 
    231 #ifdef AUDIO_DEBUG
    232 void	sb_printsc __P((struct sbdsp_softc *));
    233 
    234 void
    235 sb_printsc(sc)
    236 	struct sbdsp_softc *sc;
    237 {
    238 	int i;
    239 
    240 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
    241 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    242 	    sc->sc_drq8, sc->sc_drq16,
    243 	    sc->sc_iobase, sc->sc_irq);
    244 	printf("irate %d itc %x orate %d otc %x\n",
    245 	    sc->sc_i.rate, sc->sc_i.tc,
    246 	    sc->sc_o.rate, sc->sc_o.tc);
    247 	printf("spkron %u nintr %lu\n",
    248 	    sc->spkr_state, sc->sc_interrupts);
    249 	printf("intr8 %p intr16 %p\n",
    250 	    sc->sc_intr8, sc->sc_intr16);
    251 	printf("gain:");
    252 	for (i = 0; i < SB_NDEVS; i++)
    253 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    254 	printf("\n");
    255 }
    256 #endif /* AUDIO_DEBUG */
    257 
    258 /*
    259  * Probe / attach routines.
    260  */
    261 
    262 /*
    263  * Probe for the soundblaster hardware.
    264  */
    265 int
    266 sbdsp_probe(sc)
    267 	struct sbdsp_softc *sc;
    268 {
    269 
    270 	if (sbdsp_reset(sc) < 0) {
    271 		DPRINTF(("sbdsp: couldn't reset card\n"));
    272 		return 0;
    273 	}
    274 	/* if flags set, go and probe the jazz16 stuff */
    275 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    276 		sbdsp_jazz16_probe(sc);
    277 	else
    278 		sbversion(sc);
    279 	if (sc->sc_model == SB_UNK) {
    280 		/* Unknown SB model found. */
    281 		DPRINTF(("sbdsp: unknown SB model found\n"));
    282 		return 0;
    283 	}
    284 	return 1;
    285 }
    286 
    287 /*
    288  * Try add-on stuff for Jazz16.
    289  */
    290 void
    291 sbdsp_jazz16_probe(sc)
    292 	struct sbdsp_softc *sc;
    293 {
    294 	static u_char jazz16_irq_conf[16] = {
    295 	    -1, -1, 0x02, 0x03,
    296 	    -1, 0x01, -1, 0x04,
    297 	    -1, 0x02, 0x05, -1,
    298 	    -1, -1, -1, 0x06};
    299 	static u_char jazz16_drq_conf[8] = {
    300 	    -1, 0x01, -1, 0x02,
    301 	    -1, 0x03, -1, 0x04};
    302 
    303 	bus_space_tag_t iot = sc->sc_iot;
    304 	bus_space_handle_t ioh;
    305 
    306 	sbversion(sc);
    307 
    308 	DPRINTF(("jazz16 probe\n"));
    309 
    310 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    311 		DPRINTF(("bus map failed\n"));
    312 		return;
    313 	}
    314 
    315 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    316 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    317 		DPRINTF(("drq/irq check failed\n"));
    318 		goto done;		/* give up, we can't do it. */
    319 	}
    320 
    321 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    322 	delay(10000);			/* delay 10 ms */
    323 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    324 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    325 
    326 	if (sbdsp_reset(sc) < 0) {
    327 		DPRINTF(("sbdsp_reset check failed\n"));
    328 		goto done;		/* XXX? what else could we do? */
    329 	}
    330 
    331 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    332 		DPRINTF(("read16 setup failed\n"));
    333 		goto done;
    334 	}
    335 
    336 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    337 		DPRINTF(("read16 failed\n"));
    338 		goto done;
    339 	}
    340 
    341 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    342 	sc->sc_drq16 = sc->sc_drq8;
    343 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    344 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    345 		jazz16_drq_conf[sc->sc_drq8]) ||
    346 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    347 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    348 	} else {
    349 		DPRINTF(("jazz16 detected!\n"));
    350 		sc->sc_model = SB_JAZZ;
    351 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    352 	}
    353 
    354 done:
    355 	bus_space_unmap(iot, ioh, 1);
    356 }
    357 
    358 /*
    359  * Attach hardware to driver, attach hardware driver to audio
    360  * pseudo-device driver .
    361  */
    362 void
    363 sbdsp_attach(sc)
    364 	struct sbdsp_softc *sc;
    365 {
    366 	struct audio_params pparams, rparams;
    367 	int i;
    368 	u_int v;
    369 
    370 	pparams = audio_default;
    371 	rparams = audio_default;
    372 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    373 
    374 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    375 
    376 	if (sc->sc_mixer_model != SBM_NONE) {
    377 		/* Reset the mixer.*/
    378 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    379 		/* And set our own default values */
    380 		for (i = 0; i < SB_NDEVS; i++) {
    381 			switch(i) {
    382 			case SB_MIC_VOL:
    383 			case SB_LINE_IN_VOL:
    384 				v = 0;
    385 				break;
    386 			case SB_BASS:
    387 			case SB_TREBLE:
    388 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    389 				break;
    390 			case SB_CD_IN_MUTE:
    391 			case SB_MIC_IN_MUTE:
    392 			case SB_LINE_IN_MUTE:
    393 			case SB_MIDI_IN_MUTE:
    394 			case SB_CD_SWAP:
    395 			case SB_MIC_SWAP:
    396 			case SB_LINE_SWAP:
    397 			case SB_MIDI_SWAP:
    398 			case SB_CD_OUT_MUTE:
    399 			case SB_MIC_OUT_MUTE:
    400 			case SB_LINE_OUT_MUTE:
    401 				v = 0;
    402 				break;
    403 			default:
    404 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    405 				break;
    406 			}
    407 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    408 			sbdsp_set_mixer_gain(sc, i);
    409 		}
    410 		sc->in_filter = 0;	/* no filters turned on, please */
    411 	}
    412 
    413 	printf(": dsp v%d.%02d%s\n",
    414 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    415 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    416 
    417 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    418 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    419 	    sc->sc_drq8 != sc->sc_drq16;
    420 
    421 	if (sc->sc_drq8 != -1)
    422 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    423 		    sc->sc_drq8);
    424 
    425 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    426 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    427 		    sc->sc_drq16);
    428 }
    429 
    430 void
    431 sbdsp_mix_write(sc, mixerport, val)
    432 	struct sbdsp_softc *sc;
    433 	int mixerport;
    434 	int val;
    435 {
    436 	bus_space_tag_t iot = sc->sc_iot;
    437 	bus_space_handle_t ioh = sc->sc_ioh;
    438 	int s;
    439 
    440 	s = splaudio();
    441 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    442 	delay(20);
    443 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    444 	delay(30);
    445 	splx(s);
    446 }
    447 
    448 int
    449 sbdsp_mix_read(sc, mixerport)
    450 	struct sbdsp_softc *sc;
    451 	int mixerport;
    452 {
    453 	bus_space_tag_t iot = sc->sc_iot;
    454 	bus_space_handle_t ioh = sc->sc_ioh;
    455 	int val;
    456 	int s;
    457 
    458 	s = splaudio();
    459 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    460 	delay(20);
    461 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    462 	delay(30);
    463 	splx(s);
    464 	return val;
    465 }
    466 
    467 /*
    468  * Various routines to interface to higher level audio driver
    469  */
    470 
    471 int
    472 sbdsp_query_encoding(addr, fp)
    473 	void *addr;
    474 	struct audio_encoding *fp;
    475 {
    476 	struct sbdsp_softc *sc = addr;
    477 	int emul;
    478 
    479 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    480 
    481 	switch (fp->index) {
    482 	case 0:
    483 		strcpy(fp->name, AudioEulinear);
    484 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    485 		fp->precision = 8;
    486 		fp->flags = 0;
    487 		return 0;
    488 	case 1:
    489 		strcpy(fp->name, AudioEmulaw);
    490 		fp->encoding = AUDIO_ENCODING_ULAW;
    491 		fp->precision = 8;
    492 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    493 		return 0;
    494 	case 2:
    495 		strcpy(fp->name, AudioEalaw);
    496 		fp->encoding = AUDIO_ENCODING_ALAW;
    497 		fp->precision = 8;
    498 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    499 		return 0;
    500 	case 3:
    501 		strcpy(fp->name, AudioEslinear);
    502 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    503 		fp->precision = 8;
    504 		fp->flags = emul;
    505 		return 0;
    506 	}
    507 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    508 		return EINVAL;
    509 
    510 	switch(fp->index) {
    511 	case 4:
    512 		strcpy(fp->name, AudioEslinear_le);
    513 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    514 		fp->precision = 16;
    515 		fp->flags = 0;
    516 		return 0;
    517 	case 5:
    518 		strcpy(fp->name, AudioEulinear_le);
    519 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    520 		fp->precision = 16;
    521 		fp->flags = emul;
    522 		return 0;
    523 	case 6:
    524 		strcpy(fp->name, AudioEslinear_be);
    525 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    526 		fp->precision = 16;
    527 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    528 		return 0;
    529 	case 7:
    530 		strcpy(fp->name, AudioEulinear_be);
    531 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    532 		fp->precision = 16;
    533 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    534 		return 0;
    535 	default:
    536 		return EINVAL;
    537 	}
    538 	return 0;
    539 }
    540 
    541 int
    542 sbdsp_set_params(addr, setmode, usemode, play, rec)
    543 	void *addr;
    544 	int setmode, usemode;
    545 	struct audio_params *play, *rec;
    546 {
    547 	struct sbdsp_softc *sc = addr;
    548 	struct sbmode *m;
    549 	u_int rate, tc, bmode;
    550 	void (*swcode) __P((void *, u_char *buf, int cnt));
    551 	int factor;
    552 	int model;
    553 	int chan;
    554 	struct audio_params *p;
    555 	int mode;
    556 
    557 	if (sc->sc_open == SB_OPEN_MIDI)
    558 		return EBUSY;
    559 
    560 	/* Later models work like SB16. */
    561 	model = min(sc->sc_model, SB_16);
    562 
    563 	/*
    564 	 * Prior to the SB16, we have only one clock, so make the sample
    565 	 * rates match.
    566 	 */
    567 	if (!ISSB16CLASS(sc) &&
    568 	    play->sample_rate != rec->sample_rate &&
    569 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    570 		if (setmode == AUMODE_PLAY) {
    571 			rec->sample_rate = play->sample_rate;
    572 			setmode |= AUMODE_RECORD;
    573 		} else if (setmode == AUMODE_RECORD) {
    574 			play->sample_rate = rec->sample_rate;
    575 			setmode |= AUMODE_PLAY;
    576 		} else
    577 			return (EINVAL);
    578 	}
    579 
    580 	/* Set first record info, then play info */
    581 	for (mode = AUMODE_RECORD; mode != -1;
    582 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    583 		if ((setmode & mode) == 0)
    584 			continue;
    585 
    586 		p = mode == AUMODE_PLAY ? play : rec;
    587 		/* Locate proper commands */
    588 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    589 		    m->model != -1; m++) {
    590 			if (model == m->model &&
    591 			    p->channels == m->channels &&
    592 			    p->precision == m->precision &&
    593 			    p->sample_rate >= m->lowrate &&
    594 			    p->sample_rate <= m->highrate)
    595 				break;
    596 		}
    597 		if (m->model == -1)
    598 			return EINVAL;
    599 		rate = p->sample_rate;
    600 		swcode = 0;
    601 		factor = 1;
    602 		tc = 1;
    603 		bmode = -1;
    604 		if (model == SB_16) {
    605 			switch (p->encoding) {
    606 			case AUDIO_ENCODING_SLINEAR_BE:
    607 				if (p->precision == 16)
    608 					swcode = swap_bytes;
    609 				/* fall into */
    610 			case AUDIO_ENCODING_SLINEAR_LE:
    611 				bmode = SB_BMODE_SIGNED;
    612 				break;
    613 			case AUDIO_ENCODING_ULINEAR_BE:
    614 				if (p->precision == 16)
    615 					swcode = swap_bytes;
    616 				/* fall into */
    617 			case AUDIO_ENCODING_ULINEAR_LE:
    618 				bmode = SB_BMODE_UNSIGNED;
    619 				break;
    620 			case AUDIO_ENCODING_ULAW:
    621 				if (mode == AUMODE_PLAY) {
    622 					swcode = mulaw_to_ulinear16_le;
    623 					factor = 2;
    624 					m = &sbpmodes[PLAY16];
    625 				} else
    626 					swcode = ulinear8_to_mulaw;
    627 				bmode = SB_BMODE_UNSIGNED;
    628 				break;
    629 			case AUDIO_ENCODING_ALAW:
    630 				if (mode == AUMODE_PLAY) {
    631 					swcode = alaw_to_ulinear16_le;
    632 					factor = 2;
    633 					m = &sbpmodes[PLAY16];
    634 				} else
    635 					swcode = ulinear8_to_alaw;
    636 				bmode = SB_BMODE_UNSIGNED;
    637 				break;
    638 			default:
    639 				return EINVAL;
    640 			}
    641 			if (p->channels == 2)
    642 				bmode |= SB_BMODE_STEREO;
    643 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    644 			switch (p->encoding) {
    645 			case AUDIO_ENCODING_SLINEAR_LE:
    646 				break;
    647 			case AUDIO_ENCODING_ULINEAR_LE:
    648 				swcode = change_sign16_le;
    649 				break;
    650 			case AUDIO_ENCODING_SLINEAR_BE:
    651 				swcode = swap_bytes;
    652 				break;
    653 			case AUDIO_ENCODING_ULINEAR_BE:
    654 				swcode = mode == AUMODE_PLAY ?
    655 					swap_bytes_change_sign16_le :
    656 					change_sign16_swap_bytes_le;
    657 				break;
    658 			case AUDIO_ENCODING_ULAW:
    659 				swcode = mode == AUMODE_PLAY ?
    660 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    661 				break;
    662 			case AUDIO_ENCODING_ALAW:
    663 				swcode = mode == AUMODE_PLAY ?
    664 					alaw_to_ulinear8 : ulinear8_to_alaw;
    665 				break;
    666 			default:
    667 				return EINVAL;
    668 			}
    669 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    670 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    671 		} else {
    672 			switch (p->encoding) {
    673 			case AUDIO_ENCODING_SLINEAR_BE:
    674 			case AUDIO_ENCODING_SLINEAR_LE:
    675 				swcode = change_sign8;
    676 				break;
    677 			case AUDIO_ENCODING_ULINEAR_BE:
    678 			case AUDIO_ENCODING_ULINEAR_LE:
    679 				break;
    680 			case AUDIO_ENCODING_ULAW:
    681 				swcode = mode == AUMODE_PLAY ?
    682 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    683 				break;
    684 			case AUDIO_ENCODING_ALAW:
    685 				swcode = mode == AUMODE_PLAY ?
    686 					alaw_to_ulinear8 : ulinear8_to_alaw;
    687 				break;
    688 			default:
    689 				return EINVAL;
    690 			}
    691 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    692 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    693 		}
    694 
    695 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    696 		if (mode == AUMODE_PLAY) {
    697 			sc->sc_o.rate = rate;
    698 			sc->sc_o.tc = tc;
    699 			sc->sc_o.modep = m;
    700 			sc->sc_o.bmode = bmode;
    701 			sc->sc_o.dmachan = chan;
    702 		} else {
    703 			sc->sc_i.rate = rate;
    704 			sc->sc_i.tc = tc;
    705 			sc->sc_i.modep = m;
    706 			sc->sc_i.bmode = bmode;
    707 			sc->sc_i.dmachan = chan;
    708 		}
    709 
    710 		p->sw_code = swcode;
    711 		p->factor = factor;
    712 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    713 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    714 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    715 
    716 	}
    717 
    718 	if (sc->sc_fullduplex &&
    719 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    720 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    721 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    722 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    723 			/* Use 16 bit DMA for playing by expanding the samples. */
    724 			play->sw_code = linear8_to_linear16_le;
    725 			play->factor = 2;
    726 			sc->sc_o.modep = &sbpmodes[PLAY16];
    727 			sc->sc_o.dmachan = sc->sc_drq16;
    728 		} else {
    729 			return EINVAL;
    730 		}
    731 	}
    732 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    733 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    734 
    735 	return (0);
    736 }
    737 
    738 void
    739 sbdsp_set_ifilter(addr, which)
    740 	void *addr;
    741 	int which;
    742 {
    743 	struct sbdsp_softc *sc = addr;
    744 	int mixval;
    745 
    746 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    747 	switch (which) {
    748 	case 0:
    749 		mixval |= SBP_FILTER_OFF;
    750 		break;
    751 	case SB_TREBLE:
    752 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    753 		break;
    754 	case SB_BASS:
    755 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    756 		break;
    757 	default:
    758 		return;
    759 	}
    760 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    761 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    762 }
    763 
    764 int
    765 sbdsp_get_ifilter(addr)
    766 	void *addr;
    767 {
    768 	struct sbdsp_softc *sc = addr;
    769 
    770 	sc->in_filter =
    771 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    772 	switch (sc->in_filter) {
    773 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    774 		return SB_TREBLE;
    775 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    776 		return SB_BASS;
    777 	default:
    778 		return 0;
    779 	}
    780 }
    781 
    782 int
    783 sbdsp_set_in_ports(sc, mask)
    784 	struct sbdsp_softc *sc;
    785 	int mask;
    786 {
    787 	int bitsl, bitsr;
    788 	int sbport;
    789 
    790 	if (sc->sc_open == SB_OPEN_MIDI)
    791 		return EBUSY;
    792 
    793 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    794 		 sc->sc_mixer_model, mask));
    795 
    796 	switch(sc->sc_mixer_model) {
    797 	case SBM_NONE:
    798 		return EINVAL;
    799 	case SBM_CT1335:
    800 		if (mask != (1 << SB_MIC_VOL))
    801 			return EINVAL;
    802 		break;
    803 	case SBM_CT1345:
    804 		switch (mask) {
    805 		case 1 << SB_MIC_VOL:
    806 			sbport = SBP_FROM_MIC;
    807 			break;
    808 		case 1 << SB_LINE_IN_VOL:
    809 			sbport = SBP_FROM_LINE;
    810 			break;
    811 		case 1 << SB_CD_VOL:
    812 			sbport = SBP_FROM_CD;
    813 			break;
    814 		default:
    815 			return (EINVAL);
    816 		}
    817 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    818 		break;
    819 	case SBM_CT1XX5:
    820 	case SBM_CT1745:
    821 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    822 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    823 			return EINVAL;
    824 		bitsr = 0;
    825 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    826 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    827 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    828 		bitsl = SB_SRC_R_TO_L(bitsr);
    829 		if (mask & (1<<SB_MIC_VOL)) {
    830 			bitsl |= SBP_MIC_SRC;
    831 			bitsr |= SBP_MIC_SRC;
    832 		}
    833 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    834 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    835 		break;
    836 	}
    837 	sc->in_mask = mask;
    838 
    839 	return 0;
    840 }
    841 
    842 int
    843 sbdsp_speaker_ctl(addr, newstate)
    844 	void *addr;
    845 	int newstate;
    846 {
    847 	struct sbdsp_softc *sc = addr;
    848 
    849 	if (sc->sc_open == SB_OPEN_MIDI)
    850 		return EBUSY;
    851 
    852 	if ((newstate == SPKR_ON) &&
    853 	    (sc->spkr_state == SPKR_OFF)) {
    854 		sbdsp_spkron(sc);
    855 		sc->spkr_state = SPKR_ON;
    856 	}
    857 	if ((newstate == SPKR_OFF) &&
    858 	    (sc->spkr_state == SPKR_ON)) {
    859 		sbdsp_spkroff(sc);
    860 		sc->spkr_state = SPKR_OFF;
    861 	}
    862 	return 0;
    863 }
    864 
    865 int
    866 sbdsp_round_blocksize(addr, blk)
    867 	void *addr;
    868 	int blk;
    869 {
    870 	return blk & -4;	/* round to biggest sample size */
    871 }
    872 
    873 int
    874 sbdsp_open(addr, flags)
    875 	void *addr;
    876 	int flags;
    877 {
    878 	struct sbdsp_softc *sc = addr;
    879 	int error, state;
    880 
    881 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    882 
    883 	if (sc->sc_open != SB_CLOSED)
    884 		return (EBUSY);
    885 	sc->sc_open = SB_OPEN_AUDIO;
    886 	sc->sc_openflags = flags;
    887 	state = 0;
    888 
    889 	if (sc->sc_drq8 != -1) {
    890 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    891 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
    892 		if (error) {
    893 			printf("%s: can't create map for drq %d\n",
    894 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    895 			goto bad;
    896 		}
    897 		state |= 1;
    898 	}
    899 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    900 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    901 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
    902 		if (error) {
    903 			printf("%s: can't create map for drq %d\n",
    904 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    905 			goto bad;
    906 		}
    907 		state |= 2;
    908 	}
    909 
    910 	if (sbdsp_reset(sc) != 0) {
    911 		error = EIO;
    912 		goto bad;
    913 	}
    914 
    915 	if (ISSBPRO(sc) &&
    916 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    917 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    918 		/* we'll readjust when it's time for DMA. */
    919 	}
    920 
    921 	/*
    922 	 * Leave most things as they were; users must change things if
    923 	 * the previous process didn't leave it they way they wanted.
    924 	 * Looked at another way, it's easy to set up a configuration
    925 	 * in one program and leave it for another to inherit.
    926 	 */
    927 	DPRINTF(("sbdsp_open: opened\n"));
    928 
    929 	return (0);
    930 
    931 bad:
    932 	if (state & 1)
    933 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    934 	if (state & 2)
    935 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    936 
    937 	sc->sc_open = SB_CLOSED;
    938 	return (error);
    939 }
    940 
    941 void
    942 sbdsp_close(addr)
    943 	void *addr;
    944 {
    945 	struct sbdsp_softc *sc = addr;
    946 
    947 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    948 
    949 	sbdsp_spkroff(sc);
    950 	sc->spkr_state = SPKR_OFF;
    951 
    952 	sbdsp_halt_output(sc);
    953 	sbdsp_halt_input(sc);
    954 
    955 	sc->sc_intr8 = 0;
    956 	sc->sc_intr16 = 0;
    957 
    958 	if (sc->sc_drq8 != -1)
    959 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    960 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    961 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    962 
    963 	sc->sc_open = SB_CLOSED;
    964 	DPRINTF(("sbdsp_close: closed\n"));
    965 }
    966 
    967 /*
    968  * Lower-level routines
    969  */
    970 
    971 /*
    972  * Reset the card.
    973  * Return non-zero if the card isn't detected.
    974  */
    975 int
    976 sbdsp_reset(sc)
    977 	struct sbdsp_softc *sc;
    978 {
    979 	bus_space_tag_t iot = sc->sc_iot;
    980 	bus_space_handle_t ioh = sc->sc_ioh;
    981 
    982 	sc->sc_intr8 = 0;
    983 	sc->sc_intr16 = 0;
    984 	sc->sc_intrm = 0;
    985 
    986 	/*
    987 	 * See SBK, section 11.3.
    988 	 * We pulse a reset signal into the card.
    989 	 * Gee, what a brilliant hardware design.
    990 	 */
    991 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
    992 	delay(10);
    993 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
    994 	delay(30);
    995 	if (sbdsp_rdsp(sc) != SB_MAGIC)
    996 		return -1;
    997 
    998 	return 0;
    999 }
   1000 
   1001 /*
   1002  * Write a byte to the dsp.
   1003  * We are at the mercy of the card as we use a
   1004  * polling loop and wait until it can take the byte.
   1005  */
   1006 int
   1007 sbdsp_wdsp(sc, v)
   1008 	struct sbdsp_softc *sc;
   1009 	int v;
   1010 {
   1011 	bus_space_tag_t iot = sc->sc_iot;
   1012 	bus_space_handle_t ioh = sc->sc_ioh;
   1013 	int i;
   1014 	u_char x;
   1015 
   1016 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1017 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1018 		delay(10);
   1019 		if ((x & SB_DSP_BUSY) == 0) {
   1020 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1021 			delay(10);
   1022 			return 0;
   1023 		}
   1024 	}
   1025 	++sberr.wdsp;
   1026 	return -1;
   1027 }
   1028 
   1029 /*
   1030  * Read a byte from the DSP, using polling.
   1031  */
   1032 int
   1033 sbdsp_rdsp(sc)
   1034 	struct sbdsp_softc *sc;
   1035 {
   1036 	bus_space_tag_t iot = sc->sc_iot;
   1037 	bus_space_handle_t ioh = sc->sc_ioh;
   1038 	int i;
   1039 	u_char x;
   1040 
   1041 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1042 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1043 		delay(10);
   1044 		if (x & SB_DSP_READY) {
   1045 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1046 			delay(10);
   1047 			return x;
   1048 		}
   1049 	}
   1050 	++sberr.rdsp;
   1051 	return -1;
   1052 }
   1053 
   1054 void
   1055 sbdsp_pause(sc)
   1056 	struct sbdsp_softc *sc;
   1057 {
   1058 
   1059 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1060 }
   1061 
   1062 /*
   1063  * Turn on the speaker.  The SBK documention says this operation
   1064  * can take up to 1/10 of a second.  Higher level layers should
   1065  * probably let the task sleep for this amount of time after
   1066  * calling here.  Otherwise, things might not work (because
   1067  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1068  *
   1069  * These engineers had their heads up their ass when
   1070  * they designed this card.
   1071  */
   1072 void
   1073 sbdsp_spkron(sc)
   1074 	struct sbdsp_softc *sc;
   1075 {
   1076 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1077 	sbdsp_pause(sc);
   1078 }
   1079 
   1080 /*
   1081  * Turn off the speaker; see comment above.
   1082  */
   1083 void
   1084 sbdsp_spkroff(sc)
   1085 	struct sbdsp_softc *sc;
   1086 {
   1087 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1088 	sbdsp_pause(sc);
   1089 }
   1090 
   1091 /*
   1092  * Read the version number out of the card.
   1093  * Store version information in the softc.
   1094  */
   1095 void
   1096 sbversion(sc)
   1097 	struct sbdsp_softc *sc;
   1098 {
   1099 	int v;
   1100 
   1101 	sc->sc_model = SB_UNK;
   1102 	sc->sc_version = 0;
   1103 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1104 		return;
   1105 	v = sbdsp_rdsp(sc) << 8;
   1106 	v |= sbdsp_rdsp(sc);
   1107 	if (v < 0)
   1108 		return;
   1109 	sc->sc_version = v;
   1110 	switch(SBVER_MAJOR(v)) {
   1111 	case 1:
   1112 		sc->sc_mixer_model = SBM_NONE;
   1113 		sc->sc_model = SB_1;
   1114 		break;
   1115 	case 2:
   1116 		/* Some SB2 have a mixer, some don't. */
   1117 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1118 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1119 		/* Check if we can read back the mixer values. */
   1120 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1121 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1122 			sc->sc_mixer_model = SBM_CT1335;
   1123 		else
   1124 			sc->sc_mixer_model = SBM_NONE;
   1125 		if (SBVER_MINOR(v) == 0)
   1126 			sc->sc_model = SB_20;
   1127 		else
   1128 			sc->sc_model = SB_2x;
   1129 		break;
   1130 	case 3:
   1131 		sc->sc_mixer_model = SBM_CT1345;
   1132 		sc->sc_model = SB_PRO;
   1133 		break;
   1134 	case 4:
   1135 #if 0
   1136 /* XXX This does not work */
   1137 		/* Most SB16 have a tone controls, but some don't. */
   1138 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1139 		/* Check if we can read back the mixer value. */
   1140 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1141 			sc->sc_mixer_model = SBM_CT1745;
   1142 		else
   1143 			sc->sc_mixer_model = SBM_CT1XX5;
   1144 #else
   1145 		sc->sc_mixer_model = SBM_CT1745;
   1146 #endif
   1147 #if 0
   1148 /* XXX figure out a good way of determining the model */
   1149 		/* XXX what about SB_32 */
   1150 		if (SBVER_MINOR(v) == 16)
   1151 			sc->sc_model = SB_64;
   1152 		else
   1153 #endif
   1154 			sc->sc_model = SB_16;
   1155 		break;
   1156 	}
   1157 }
   1158 
   1159 int
   1160 sbdsp_set_timeconst(sc, tc)
   1161 	struct sbdsp_softc *sc;
   1162 	int tc;
   1163 {
   1164 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1165 
   1166 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1167 	    sbdsp_wdsp(sc, tc) < 0)
   1168 		return EIO;
   1169 
   1170 	return 0;
   1171 }
   1172 
   1173 int
   1174 sbdsp16_set_rate(sc, cmd, rate)
   1175 	struct sbdsp_softc *sc;
   1176 	int cmd, rate;
   1177 {
   1178 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1179 
   1180 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1181 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1182 	    sbdsp_wdsp(sc, rate) < 0)
   1183 		return EIO;
   1184 	return 0;
   1185 }
   1186 
   1187 int
   1188 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1189 	void *addr;
   1190 	void *start, *end;
   1191 	int blksize;
   1192 	void (*intr) __P((void *));
   1193 	void *arg;
   1194 	struct audio_params *param;
   1195 {
   1196 	struct sbdsp_softc *sc = addr;
   1197 	int stereo = param->channels == 2;
   1198 	int width = param->precision * param->factor;
   1199 	int filter;
   1200 
   1201 #ifdef DIAGNOSTIC
   1202 	if (stereo && (blksize & 1)) {
   1203 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1204 		return (EIO);
   1205 	}
   1206 	if (sc->sc_i.run != SB_NOTRUNNING)
   1207 		printf("sbdsp_trigger_input: already running\n");
   1208 #endif
   1209 
   1210 	sc->sc_intrr = intr;
   1211 	sc->sc_argr = arg;
   1212 
   1213 	if (width == 8) {
   1214 #ifdef DIAGNOSTIC
   1215 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1216 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1217 			    width, sc->sc_i.dmachan);
   1218 			return (EIO);
   1219 		}
   1220 #endif
   1221 		sc->sc_intr8 = sbdsp_block_input;
   1222 	} else {
   1223 #ifdef DIAGNOSTIC
   1224 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1225 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1226 			    width, sc->sc_i.dmachan);
   1227 			return (EIO);
   1228 		}
   1229 #endif
   1230 		sc->sc_intr16 = sbdsp_block_input;
   1231 	}
   1232 
   1233 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1234 		blksize >>= 1;
   1235 	--blksize;
   1236 	sc->sc_i.blksize = blksize;
   1237 
   1238 	if (ISSBPRO(sc)) {
   1239 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1240 			return (EIO);
   1241 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1242 		sbdsp_mix_write(sc, SBP_INFILTER,
   1243 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1244 		    filter);
   1245 	}
   1246 
   1247 	if (ISSB16CLASS(sc)) {
   1248 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1249 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1250 				 sc->sc_i.rate));
   1251 			return (EIO);
   1252 		}
   1253 	} else {
   1254 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1255 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1256 				 sc->sc_i.rate));
   1257 			return (EIO);
   1258 		}
   1259 	}
   1260 
   1261 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
   1262 	    start, end, sc->sc_i.dmachan));
   1263 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1264 	    (char *)end - (char *)start, NULL,
   1265 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1266 
   1267 	return sbdsp_block_input(addr);
   1268 }
   1269 
   1270 int
   1271 sbdsp_block_input(addr)
   1272 	void *addr;
   1273 {
   1274 	struct sbdsp_softc *sc = addr;
   1275 	int cc = sc->sc_i.blksize;
   1276 
   1277 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1278 
   1279 	if (sc->sc_i.run != SB_NOTRUNNING)
   1280 		sc->sc_intrr(sc->sc_argr);
   1281 
   1282 	if (sc->sc_model == SB_1) {
   1283 		/* Non-looping mode, start DMA */
   1284 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1285 		    sbdsp_wdsp(sc, cc) < 0 ||
   1286 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1287 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1288 			return (EIO);
   1289 		}
   1290 		sc->sc_i.run = SB_RUNNING;
   1291 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1292 		/* Initialize looping PCM */
   1293 		if (ISSB16CLASS(sc)) {
   1294 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1295 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1296 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1297 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1298 			    sbdsp_wdsp(sc, cc) < 0 ||
   1299 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1300 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1301 				return (EIO);
   1302 			}
   1303 		} else {
   1304 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1305 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1306 			    sbdsp_wdsp(sc, cc) < 0 ||
   1307 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1308 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1309 				return (EIO);
   1310 			}
   1311 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1312 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1313 				return (EIO);
   1314 			}
   1315 		}
   1316 		sc->sc_i.run = SB_LOOPING;
   1317 	}
   1318 
   1319 	return (0);
   1320 }
   1321 
   1322 int
   1323 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1324 	void *addr;
   1325 	void *start, *end;
   1326 	int blksize;
   1327 	void (*intr) __P((void *));
   1328 	void *arg;
   1329 	struct audio_params *param;
   1330 {
   1331 	struct sbdsp_softc *sc = addr;
   1332 	int stereo = param->channels == 2;
   1333 	int width = param->precision * param->factor;
   1334 	int cmd;
   1335 
   1336 #ifdef DIAGNOSTIC
   1337 	if (stereo && (blksize & 1)) {
   1338 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1339 		return (EIO);
   1340 	}
   1341 	if (sc->sc_o.run != SB_NOTRUNNING)
   1342 		printf("sbdsp_trigger_output: already running\n");
   1343 #endif
   1344 
   1345 	sc->sc_intrp = intr;
   1346 	sc->sc_argp = arg;
   1347 
   1348 	if (width == 8) {
   1349 #ifdef DIAGNOSTIC
   1350 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1351 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1352 			    width, sc->sc_o.dmachan);
   1353 			return (EIO);
   1354 		}
   1355 #endif
   1356 		sc->sc_intr8 = sbdsp_block_output;
   1357 	} else {
   1358 #ifdef DIAGNOSTIC
   1359 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1360 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1361 			    width, sc->sc_o.dmachan);
   1362 			return (EIO);
   1363 		}
   1364 #endif
   1365 		sc->sc_intr16 = sbdsp_block_output;
   1366 	}
   1367 
   1368 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1369 		blksize >>= 1;
   1370 	--blksize;
   1371 	sc->sc_o.blksize = blksize;
   1372 
   1373 	if (ISSBPRO(sc)) {
   1374 		/* make sure we re-set stereo mixer bit when we start output. */
   1375 		sbdsp_mix_write(sc, SBP_STEREO,
   1376 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1377 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1378 		cmd = sc->sc_o.modep->cmdchan;
   1379 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1380 			return (EIO);
   1381 	}
   1382 
   1383 	if (ISSB16CLASS(sc)) {
   1384 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1385 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1386 				 sc->sc_o.rate));
   1387 			return (EIO);
   1388 		}
   1389 	} else {
   1390 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1391 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1392 				 sc->sc_o.rate));
   1393 			return (EIO);
   1394 		}
   1395 	}
   1396 
   1397 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
   1398 	    start, end, sc->sc_o.dmachan));
   1399 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1400 	    (char *)end - (char *)start, NULL,
   1401 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1402 
   1403 	return sbdsp_block_output(addr);
   1404 }
   1405 
   1406 int
   1407 sbdsp_block_output(addr)
   1408 	void *addr;
   1409 {
   1410 	struct sbdsp_softc *sc = addr;
   1411 	int cc = sc->sc_o.blksize;
   1412 
   1413 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1414 
   1415 	if (sc->sc_o.run != SB_NOTRUNNING)
   1416 		sc->sc_intrp(sc->sc_argp);
   1417 
   1418 	if (sc->sc_model == SB_1) {
   1419 		/* Non-looping mode, initialized. Start DMA and PCM */
   1420 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1421 		    sbdsp_wdsp(sc, cc) < 0 ||
   1422 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1423 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1424 			return (EIO);
   1425 		}
   1426 		sc->sc_o.run = SB_RUNNING;
   1427 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1428 		/* Initialize looping PCM */
   1429 		if (ISSB16CLASS(sc)) {
   1430 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1431 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1432 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1433 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1434 			    sbdsp_wdsp(sc, cc) < 0 ||
   1435 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1436 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1437 				return (EIO);
   1438 			}
   1439 		} else {
   1440 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1441 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1442 			    sbdsp_wdsp(sc, cc) < 0 ||
   1443 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1444 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1445 				return (EIO);
   1446 			}
   1447 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1448 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1449 				return (EIO);
   1450 			}
   1451 		}
   1452 		sc->sc_o.run = SB_LOOPING;
   1453 	}
   1454 
   1455 	return (0);
   1456 }
   1457 
   1458 int
   1459 sbdsp_halt_output(addr)
   1460 	void *addr;
   1461 {
   1462 	struct sbdsp_softc *sc = addr;
   1463 
   1464 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1465 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1466 			printf("sbdsp_halt_output: failed to halt\n");
   1467 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1468 		sc->sc_o.run = SB_NOTRUNNING;
   1469 	}
   1470 
   1471 	return (0);
   1472 }
   1473 
   1474 int
   1475 sbdsp_halt_input(addr)
   1476 	void *addr;
   1477 {
   1478 	struct sbdsp_softc *sc = addr;
   1479 
   1480 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1481 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1482 			printf("sbdsp_halt_input: failed to halt\n");
   1483 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1484 		sc->sc_i.run = SB_NOTRUNNING;
   1485 	}
   1486 
   1487 	return (0);
   1488 }
   1489 
   1490 /*
   1491  * Only the DSP unit on the sound blaster generates interrupts.
   1492  * There are three cases of interrupt: reception of a midi byte
   1493  * (when mode is enabled), completion of dma transmission, or
   1494  * completion of a dma reception.
   1495  *
   1496  * If there is interrupt sharing or a spurious interrupt occurs
   1497  * there is no way to distinguish this on an SB2.  So if you have
   1498  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1499  */
   1500 int
   1501 sbdsp_intr(arg)
   1502 	void *arg;
   1503 {
   1504 	struct sbdsp_softc *sc = arg;
   1505 	u_char irq;
   1506 
   1507 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1508 		   sc->sc_intr8, sc->sc_intr16));
   1509 	if (ISSB16CLASS(sc)) {
   1510 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1511 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1512 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1513 			return 0;
   1514 		}
   1515 	} else {
   1516 		/* XXXX CHECK FOR INTERRUPT */
   1517 		irq = SBP_IRQ_DMA8;
   1518 	}
   1519 
   1520 	sc->sc_interrupts++;
   1521 	delay(10);		/* XXX why? */
   1522 
   1523 	/* clear interrupt */
   1524 	if (irq & SBP_IRQ_DMA8) {
   1525 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1526 		if (sc->sc_intr8)
   1527 			sc->sc_intr8(arg);
   1528 	}
   1529 	if (irq & SBP_IRQ_DMA16) {
   1530 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1531 		if (sc->sc_intr16)
   1532 			sc->sc_intr16(arg);
   1533 	}
   1534 #if NMPU > 0
   1535 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1536 		mpu_intr(sc->sc_mpudev);
   1537 	}
   1538 #endif
   1539 	return 1;
   1540 }
   1541 
   1542 /* Like val & mask, but make sure the result is correctly rounded. */
   1543 #define MAXVAL 256
   1544 static int
   1545 sbdsp_adjust(val, mask)
   1546 	int val, mask;
   1547 {
   1548 	val += (MAXVAL - mask) >> 1;
   1549 	if (val >= MAXVAL)
   1550 		val = MAXVAL-1;
   1551 	return val & mask;
   1552 }
   1553 
   1554 void
   1555 sbdsp_set_mixer_gain(sc, port)
   1556 	struct sbdsp_softc *sc;
   1557 	int port;
   1558 {
   1559 	int src, gain;
   1560 
   1561 	switch(sc->sc_mixer_model) {
   1562 	case SBM_NONE:
   1563 		return;
   1564 	case SBM_CT1335:
   1565 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1566 		switch(port) {
   1567 		case SB_MASTER_VOL:
   1568 			src = SBP_1335_MASTER_VOL;
   1569 			break;
   1570 		case SB_MIDI_VOL:
   1571 			src = SBP_1335_MIDI_VOL;
   1572 			break;
   1573 		case SB_CD_VOL:
   1574 			src = SBP_1335_CD_VOL;
   1575 			break;
   1576 		case SB_VOICE_VOL:
   1577 			src = SBP_1335_VOICE_VOL;
   1578 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1579 			break;
   1580 		default:
   1581 			return;
   1582 		}
   1583 		sbdsp_mix_write(sc, src, gain);
   1584 		break;
   1585 	case SBM_CT1345:
   1586 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1587 				      sc->gain[port][SB_RIGHT]);
   1588 		switch (port) {
   1589 		case SB_MIC_VOL:
   1590 			src = SBP_MIC_VOL;
   1591 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1592 			break;
   1593 		case SB_MASTER_VOL:
   1594 			src = SBP_MASTER_VOL;
   1595 			break;
   1596 		case SB_LINE_IN_VOL:
   1597 			src = SBP_LINE_VOL;
   1598 			break;
   1599 		case SB_VOICE_VOL:
   1600 			src = SBP_VOICE_VOL;
   1601 			break;
   1602 		case SB_MIDI_VOL:
   1603 			src = SBP_MIDI_VOL;
   1604 			break;
   1605 		case SB_CD_VOL:
   1606 			src = SBP_CD_VOL;
   1607 			break;
   1608 		default:
   1609 			return;
   1610 		}
   1611 		sbdsp_mix_write(sc, src, gain);
   1612 		break;
   1613 	case SBM_CT1XX5:
   1614 	case SBM_CT1745:
   1615 		switch (port) {
   1616 		case SB_MIC_VOL:
   1617 			src = SB16P_MIC_L;
   1618 			break;
   1619 		case SB_MASTER_VOL:
   1620 			src = SB16P_MASTER_L;
   1621 			break;
   1622 		case SB_LINE_IN_VOL:
   1623 			src = SB16P_LINE_L;
   1624 			break;
   1625 		case SB_VOICE_VOL:
   1626 			src = SB16P_VOICE_L;
   1627 			break;
   1628 		case SB_MIDI_VOL:
   1629 			src = SB16P_MIDI_L;
   1630 			break;
   1631 		case SB_CD_VOL:
   1632 			src = SB16P_CD_L;
   1633 			break;
   1634 		case SB_INPUT_GAIN:
   1635 			src = SB16P_INPUT_GAIN_L;
   1636 			break;
   1637 		case SB_OUTPUT_GAIN:
   1638 			src = SB16P_OUTPUT_GAIN_L;
   1639 			break;
   1640 		case SB_TREBLE:
   1641 			src = SB16P_TREBLE_L;
   1642 			break;
   1643 		case SB_BASS:
   1644 			src = SB16P_BASS_L;
   1645 			break;
   1646 		case SB_PCSPEAKER:
   1647 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1648 			return;
   1649 		default:
   1650 			return;
   1651 		}
   1652 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1653 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1654 		break;
   1655 	}
   1656 }
   1657 
   1658 int
   1659 sbdsp_mixer_set_port(addr, cp)
   1660 	void *addr;
   1661 	mixer_ctrl_t *cp;
   1662 {
   1663 	struct sbdsp_softc *sc = addr;
   1664 	int lgain, rgain;
   1665 	int mask, bits;
   1666 	int lmask, rmask, lbits, rbits;
   1667 	int mute, swap;
   1668 
   1669 	if (sc->sc_open == SB_OPEN_MIDI)
   1670 		return EBUSY;
   1671 
   1672 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1673 	    cp->un.value.num_channels));
   1674 
   1675 	if (sc->sc_mixer_model == SBM_NONE)
   1676 		return EINVAL;
   1677 
   1678 	switch (cp->dev) {
   1679 	case SB_TREBLE:
   1680 	case SB_BASS:
   1681 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1682 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1683 			if (cp->type != AUDIO_MIXER_ENUM)
   1684 				return EINVAL;
   1685 			switch (cp->dev) {
   1686 			case SB_TREBLE:
   1687 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1688 				return 0;
   1689 			case SB_BASS:
   1690 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1691 				return 0;
   1692 			}
   1693 		}
   1694 	case SB_PCSPEAKER:
   1695 	case SB_INPUT_GAIN:
   1696 	case SB_OUTPUT_GAIN:
   1697 		if (!ISSBM1745(sc))
   1698 			return EINVAL;
   1699 	case SB_MIC_VOL:
   1700 	case SB_LINE_IN_VOL:
   1701 		if (sc->sc_mixer_model == SBM_CT1335)
   1702 			return EINVAL;
   1703 	case SB_VOICE_VOL:
   1704 	case SB_MIDI_VOL:
   1705 	case SB_CD_VOL:
   1706 	case SB_MASTER_VOL:
   1707 		if (cp->type != AUDIO_MIXER_VALUE)
   1708 			return EINVAL;
   1709 
   1710 		/*
   1711 		 * All the mixer ports are stereo except for the microphone.
   1712 		 * If we get a single-channel gain value passed in, then we
   1713 		 * duplicate it to both left and right channels.
   1714 		 */
   1715 
   1716 		switch (cp->dev) {
   1717 		case SB_MIC_VOL:
   1718 			if (cp->un.value.num_channels != 1)
   1719 				return EINVAL;
   1720 
   1721 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1722 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1723 			break;
   1724 		case SB_PCSPEAKER:
   1725 			if (cp->un.value.num_channels != 1)
   1726 				return EINVAL;
   1727 			/* fall into */
   1728 		case SB_INPUT_GAIN:
   1729 		case SB_OUTPUT_GAIN:
   1730 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1731 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1732 			break;
   1733 		default:
   1734 			switch (cp->un.value.num_channels) {
   1735 			case 1:
   1736 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1737 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1738 				break;
   1739 			case 2:
   1740 				if (sc->sc_mixer_model == SBM_CT1335)
   1741 					return EINVAL;
   1742 				lgain = SB_ADJUST_GAIN(sc,
   1743 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1744 				rgain = SB_ADJUST_GAIN(sc,
   1745 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1746 				break;
   1747 			default:
   1748 				return EINVAL;
   1749 			}
   1750 			break;
   1751 		}
   1752 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1753 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1754 
   1755 		sbdsp_set_mixer_gain(sc, cp->dev);
   1756 		break;
   1757 
   1758 	case SB_RECORD_SOURCE:
   1759 		if (ISSBM1745(sc)) {
   1760 			if (cp->type != AUDIO_MIXER_SET)
   1761 				return EINVAL;
   1762 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1763 		} else {
   1764 			if (cp->type != AUDIO_MIXER_ENUM)
   1765 				return EINVAL;
   1766 			sc->in_port = cp->un.ord;
   1767 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1768 		}
   1769 		break;
   1770 
   1771 	case SB_AGC:
   1772 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1773 			return EINVAL;
   1774 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1775 		break;
   1776 
   1777 	case SB_CD_OUT_MUTE:
   1778 		mask = SB16P_SW_CD;
   1779 		goto omute;
   1780 	case SB_MIC_OUT_MUTE:
   1781 		mask = SB16P_SW_MIC;
   1782 		goto omute;
   1783 	case SB_LINE_OUT_MUTE:
   1784 		mask = SB16P_SW_LINE;
   1785 	omute:
   1786 		if (cp->type != AUDIO_MIXER_ENUM)
   1787 			return EINVAL;
   1788 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1789 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1790 		if (cp->un.ord)
   1791 			bits = bits & ~mask;
   1792 		else
   1793 			bits = bits | mask;
   1794 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1795 		break;
   1796 
   1797 	case SB_MIC_IN_MUTE:
   1798 	case SB_MIC_SWAP:
   1799 		lmask = rmask = SB16P_SW_MIC;
   1800 		goto imute;
   1801 	case SB_CD_IN_MUTE:
   1802 	case SB_CD_SWAP:
   1803 		lmask = SB16P_SW_CD_L;
   1804 		rmask = SB16P_SW_CD_R;
   1805 		goto imute;
   1806 	case SB_LINE_IN_MUTE:
   1807 	case SB_LINE_SWAP:
   1808 		lmask = SB16P_SW_LINE_L;
   1809 		rmask = SB16P_SW_LINE_R;
   1810 		goto imute;
   1811 	case SB_MIDI_IN_MUTE:
   1812 	case SB_MIDI_SWAP:
   1813 		lmask = SB16P_SW_MIDI_L;
   1814 		rmask = SB16P_SW_MIDI_R;
   1815 	imute:
   1816 		if (cp->type != AUDIO_MIXER_ENUM)
   1817 			return EINVAL;
   1818 		mask = lmask | rmask;
   1819 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1820 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1821 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1822 		if (SB_IS_IN_MUTE(cp->dev)) {
   1823 			mute = cp->dev;
   1824 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1825 		} else {
   1826 			swap = cp->dev;
   1827 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1828 		}
   1829 		if (sc->gain[swap][SB_LR]) {
   1830 			mask = lmask;
   1831 			lmask = rmask;
   1832 			rmask = mask;
   1833 		}
   1834 		if (!sc->gain[mute][SB_LR]) {
   1835 			lbits = lbits | lmask;
   1836 			rbits = rbits | rmask;
   1837 		}
   1838 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1839 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1840 		break;
   1841 
   1842 	default:
   1843 		return EINVAL;
   1844 	}
   1845 
   1846 	return 0;
   1847 }
   1848 
   1849 int
   1850 sbdsp_mixer_get_port(addr, cp)
   1851 	void *addr;
   1852 	mixer_ctrl_t *cp;
   1853 {
   1854 	struct sbdsp_softc *sc = addr;
   1855 
   1856 	if (sc->sc_open == SB_OPEN_MIDI)
   1857 		return EBUSY;
   1858 
   1859 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1860 
   1861 	if (sc->sc_mixer_model == SBM_NONE)
   1862 		return EINVAL;
   1863 
   1864 	switch (cp->dev) {
   1865 	case SB_TREBLE:
   1866 	case SB_BASS:
   1867 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1868 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1869 			switch (cp->dev) {
   1870 			case SB_TREBLE:
   1871 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1872 				return 0;
   1873 			case SB_BASS:
   1874 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1875 				return 0;
   1876 			}
   1877 		}
   1878 	case SB_PCSPEAKER:
   1879 	case SB_INPUT_GAIN:
   1880 	case SB_OUTPUT_GAIN:
   1881 		if (!ISSBM1745(sc))
   1882 			return EINVAL;
   1883 	case SB_MIC_VOL:
   1884 	case SB_LINE_IN_VOL:
   1885 		if (sc->sc_mixer_model == SBM_CT1335)
   1886 			return EINVAL;
   1887 	case SB_VOICE_VOL:
   1888 	case SB_MIDI_VOL:
   1889 	case SB_CD_VOL:
   1890 	case SB_MASTER_VOL:
   1891 		switch (cp->dev) {
   1892 		case SB_MIC_VOL:
   1893 		case SB_PCSPEAKER:
   1894 			if (cp->un.value.num_channels != 1)
   1895 				return EINVAL;
   1896 			/* fall into */
   1897 		default:
   1898 			switch (cp->un.value.num_channels) {
   1899 			case 1:
   1900 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1901 					sc->gain[cp->dev][SB_LEFT];
   1902 				break;
   1903 			case 2:
   1904 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1905 					sc->gain[cp->dev][SB_LEFT];
   1906 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1907 					sc->gain[cp->dev][SB_RIGHT];
   1908 				break;
   1909 			default:
   1910 				return EINVAL;
   1911 			}
   1912 			break;
   1913 		}
   1914 		break;
   1915 
   1916 	case SB_RECORD_SOURCE:
   1917 		if (ISSBM1745(sc))
   1918 			cp->un.mask = sc->in_mask;
   1919 		else
   1920 			cp->un.ord = sc->in_port;
   1921 		break;
   1922 
   1923 	case SB_AGC:
   1924 		if (!ISSBM1745(sc))
   1925 			return EINVAL;
   1926 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1927 		break;
   1928 
   1929 	case SB_CD_IN_MUTE:
   1930 	case SB_MIC_IN_MUTE:
   1931 	case SB_LINE_IN_MUTE:
   1932 	case SB_MIDI_IN_MUTE:
   1933 	case SB_CD_SWAP:
   1934 	case SB_MIC_SWAP:
   1935 	case SB_LINE_SWAP:
   1936 	case SB_MIDI_SWAP:
   1937 	case SB_CD_OUT_MUTE:
   1938 	case SB_MIC_OUT_MUTE:
   1939 	case SB_LINE_OUT_MUTE:
   1940 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1941 		break;
   1942 
   1943 	default:
   1944 		return EINVAL;
   1945 	}
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 int
   1951 sbdsp_mixer_query_devinfo(addr, dip)
   1952 	void *addr;
   1953 	mixer_devinfo_t *dip;
   1954 {
   1955 	struct sbdsp_softc *sc = addr;
   1956 	int chan, class, is1745;
   1957 
   1958 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1959 		 sc->sc_mixer_model, dip->index));
   1960 
   1961 	if (sc->sc_mixer_model == SBM_NONE)
   1962 		return ENXIO;
   1963 
   1964 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1965 	is1745 = ISSBM1745(sc);
   1966 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1967 
   1968 	switch (dip->index) {
   1969 	case SB_MASTER_VOL:
   1970 		dip->type = AUDIO_MIXER_VALUE;
   1971 		dip->mixer_class = SB_OUTPUT_CLASS;
   1972 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1973 		strcpy(dip->label.name, AudioNmaster);
   1974 		dip->un.v.num_channels = chan;
   1975 		strcpy(dip->un.v.units.name, AudioNvolume);
   1976 		return 0;
   1977 	case SB_MIDI_VOL:
   1978 		dip->type = AUDIO_MIXER_VALUE;
   1979 		dip->mixer_class = class;
   1980 		dip->prev = AUDIO_MIXER_LAST;
   1981 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   1982 		strcpy(dip->label.name, AudioNfmsynth);
   1983 		dip->un.v.num_channels = chan;
   1984 		strcpy(dip->un.v.units.name, AudioNvolume);
   1985 		return 0;
   1986 	case SB_CD_VOL:
   1987 		dip->type = AUDIO_MIXER_VALUE;
   1988 		dip->mixer_class = class;
   1989 		dip->prev = AUDIO_MIXER_LAST;
   1990 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   1991 		strcpy(dip->label.name, AudioNcd);
   1992 		dip->un.v.num_channels = chan;
   1993 		strcpy(dip->un.v.units.name, AudioNvolume);
   1994 		return 0;
   1995 	case SB_VOICE_VOL:
   1996 		dip->type = AUDIO_MIXER_VALUE;
   1997 		dip->mixer_class = class;
   1998 		dip->prev = AUDIO_MIXER_LAST;
   1999 		dip->next = AUDIO_MIXER_LAST;
   2000 		strcpy(dip->label.name, AudioNdac);
   2001 		dip->un.v.num_channels = chan;
   2002 		strcpy(dip->un.v.units.name, AudioNvolume);
   2003 		return 0;
   2004 	case SB_OUTPUT_CLASS:
   2005 		dip->type = AUDIO_MIXER_CLASS;
   2006 		dip->mixer_class = SB_OUTPUT_CLASS;
   2007 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2008 		strcpy(dip->label.name, AudioCoutputs);
   2009 		return 0;
   2010 	}
   2011 
   2012 	if (sc->sc_mixer_model == SBM_CT1335)
   2013 		return ENXIO;
   2014 
   2015 	switch (dip->index) {
   2016 	case SB_MIC_VOL:
   2017 		dip->type = AUDIO_MIXER_VALUE;
   2018 		dip->mixer_class = class;
   2019 		dip->prev = AUDIO_MIXER_LAST;
   2020 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2021 		strcpy(dip->label.name, AudioNmicrophone);
   2022 		dip->un.v.num_channels = 1;
   2023 		strcpy(dip->un.v.units.name, AudioNvolume);
   2024 		return 0;
   2025 
   2026 	case SB_LINE_IN_VOL:
   2027 		dip->type = AUDIO_MIXER_VALUE;
   2028 		dip->mixer_class = class;
   2029 		dip->prev = AUDIO_MIXER_LAST;
   2030 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2031 		strcpy(dip->label.name, AudioNline);
   2032 		dip->un.v.num_channels = 2;
   2033 		strcpy(dip->un.v.units.name, AudioNvolume);
   2034 		return 0;
   2035 
   2036 	case SB_RECORD_SOURCE:
   2037 		dip->mixer_class = SB_RECORD_CLASS;
   2038 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2039 		strcpy(dip->label.name, AudioNsource);
   2040 		if (ISSBM1745(sc)) {
   2041 			dip->type = AUDIO_MIXER_SET;
   2042 			dip->un.s.num_mem = 4;
   2043 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2044 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2045 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2046 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2047 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2048 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2049 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2050 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2051 		} else {
   2052 			dip->type = AUDIO_MIXER_ENUM;
   2053 			dip->un.e.num_mem = 3;
   2054 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2055 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2056 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2057 			dip->un.e.member[1].ord = SB_CD_VOL;
   2058 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2059 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2060 		}
   2061 		return 0;
   2062 
   2063 	case SB_BASS:
   2064 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2065 		strcpy(dip->label.name, AudioNbass);
   2066 		if (sc->sc_mixer_model == SBM_CT1745) {
   2067 			dip->type = AUDIO_MIXER_VALUE;
   2068 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2069 			dip->un.v.num_channels = 2;
   2070 			strcpy(dip->un.v.units.name, AudioNbass);
   2071 		} else {
   2072 			dip->type = AUDIO_MIXER_ENUM;
   2073 			dip->mixer_class = SB_INPUT_CLASS;
   2074 			dip->un.e.num_mem = 2;
   2075 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2076 			dip->un.e.member[0].ord = 0;
   2077 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2078 			dip->un.e.member[1].ord = 1;
   2079 		}
   2080 		return 0;
   2081 
   2082 	case SB_TREBLE:
   2083 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2084 		strcpy(dip->label.name, AudioNtreble);
   2085 		if (sc->sc_mixer_model == SBM_CT1745) {
   2086 			dip->type = AUDIO_MIXER_VALUE;
   2087 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2088 			dip->un.v.num_channels = 2;
   2089 			strcpy(dip->un.v.units.name, AudioNtreble);
   2090 		} else {
   2091 			dip->type = AUDIO_MIXER_ENUM;
   2092 			dip->mixer_class = SB_INPUT_CLASS;
   2093 			dip->un.e.num_mem = 2;
   2094 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2095 			dip->un.e.member[0].ord = 0;
   2096 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2097 			dip->un.e.member[1].ord = 1;
   2098 		}
   2099 		return 0;
   2100 
   2101 	case SB_RECORD_CLASS:			/* record source class */
   2102 		dip->type = AUDIO_MIXER_CLASS;
   2103 		dip->mixer_class = SB_RECORD_CLASS;
   2104 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2105 		strcpy(dip->label.name, AudioCrecord);
   2106 		return 0;
   2107 
   2108 	case SB_INPUT_CLASS:
   2109 		dip->type = AUDIO_MIXER_CLASS;
   2110 		dip->mixer_class = SB_INPUT_CLASS;
   2111 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2112 		strcpy(dip->label.name, AudioCinputs);
   2113 		return 0;
   2114 
   2115 	}
   2116 
   2117 	if (sc->sc_mixer_model == SBM_CT1345)
   2118 		return ENXIO;
   2119 
   2120 	switch(dip->index) {
   2121 	case SB_PCSPEAKER:
   2122 		dip->type = AUDIO_MIXER_VALUE;
   2123 		dip->mixer_class = SB_INPUT_CLASS;
   2124 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2125 		strcpy(dip->label.name, "pc_speaker");
   2126 		dip->un.v.num_channels = 1;
   2127 		strcpy(dip->un.v.units.name, AudioNvolume);
   2128 		return 0;
   2129 
   2130 	case SB_INPUT_GAIN:
   2131 		dip->type = AUDIO_MIXER_VALUE;
   2132 		dip->mixer_class = SB_INPUT_CLASS;
   2133 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2134 		strcpy(dip->label.name, AudioNinput);
   2135 		dip->un.v.num_channels = 2;
   2136 		strcpy(dip->un.v.units.name, AudioNvolume);
   2137 		return 0;
   2138 
   2139 	case SB_OUTPUT_GAIN:
   2140 		dip->type = AUDIO_MIXER_VALUE;
   2141 		dip->mixer_class = SB_OUTPUT_CLASS;
   2142 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2143 		strcpy(dip->label.name, AudioNoutput);
   2144 		dip->un.v.num_channels = 2;
   2145 		strcpy(dip->un.v.units.name, AudioNvolume);
   2146 		return 0;
   2147 
   2148 	case SB_AGC:
   2149 		dip->type = AUDIO_MIXER_ENUM;
   2150 		dip->mixer_class = SB_INPUT_CLASS;
   2151 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2152 		strcpy(dip->label.name, "agc");
   2153 		dip->un.e.num_mem = 2;
   2154 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2155 		dip->un.e.member[0].ord = 0;
   2156 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2157 		dip->un.e.member[1].ord = 1;
   2158 		return 0;
   2159 
   2160 	case SB_EQUALIZATION_CLASS:
   2161 		dip->type = AUDIO_MIXER_CLASS;
   2162 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2163 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2164 		strcpy(dip->label.name, AudioCequalization);
   2165 		return 0;
   2166 
   2167 	case SB_CD_IN_MUTE:
   2168 		dip->prev = SB_CD_VOL;
   2169 		dip->next = SB_CD_SWAP;
   2170 		dip->mixer_class = SB_INPUT_CLASS;
   2171 		goto mute;
   2172 
   2173 	case SB_MIC_IN_MUTE:
   2174 		dip->prev = SB_MIC_VOL;
   2175 		dip->next = SB_MIC_SWAP;
   2176 		dip->mixer_class = SB_INPUT_CLASS;
   2177 		goto mute;
   2178 
   2179 	case SB_LINE_IN_MUTE:
   2180 		dip->prev = SB_LINE_IN_VOL;
   2181 		dip->next = SB_LINE_SWAP;
   2182 		dip->mixer_class = SB_INPUT_CLASS;
   2183 		goto mute;
   2184 
   2185 	case SB_MIDI_IN_MUTE:
   2186 		dip->prev = SB_MIDI_VOL;
   2187 		dip->next = SB_MIDI_SWAP;
   2188 		dip->mixer_class = SB_INPUT_CLASS;
   2189 		goto mute;
   2190 
   2191 	case SB_CD_SWAP:
   2192 		dip->prev = SB_CD_IN_MUTE;
   2193 		dip->next = SB_CD_OUT_MUTE;
   2194 		goto swap;
   2195 
   2196 	case SB_MIC_SWAP:
   2197 		dip->prev = SB_MIC_IN_MUTE;
   2198 		dip->next = SB_MIC_OUT_MUTE;
   2199 		goto swap;
   2200 
   2201 	case SB_LINE_SWAP:
   2202 		dip->prev = SB_LINE_IN_MUTE;
   2203 		dip->next = SB_LINE_OUT_MUTE;
   2204 		goto swap;
   2205 
   2206 	case SB_MIDI_SWAP:
   2207 		dip->prev = SB_MIDI_IN_MUTE;
   2208 		dip->next = AUDIO_MIXER_LAST;
   2209 	swap:
   2210 		dip->mixer_class = SB_INPUT_CLASS;
   2211 		strcpy(dip->label.name, AudioNswap);
   2212 		goto mute1;
   2213 
   2214 	case SB_CD_OUT_MUTE:
   2215 		dip->prev = SB_CD_SWAP;
   2216 		dip->next = AUDIO_MIXER_LAST;
   2217 		dip->mixer_class = SB_OUTPUT_CLASS;
   2218 		goto mute;
   2219 
   2220 	case SB_MIC_OUT_MUTE:
   2221 		dip->prev = SB_MIC_SWAP;
   2222 		dip->next = AUDIO_MIXER_LAST;
   2223 		dip->mixer_class = SB_OUTPUT_CLASS;
   2224 		goto mute;
   2225 
   2226 	case SB_LINE_OUT_MUTE:
   2227 		dip->prev = SB_LINE_SWAP;
   2228 		dip->next = AUDIO_MIXER_LAST;
   2229 		dip->mixer_class = SB_OUTPUT_CLASS;
   2230 	mute:
   2231 		strcpy(dip->label.name, AudioNmute);
   2232 	mute1:
   2233 		dip->type = AUDIO_MIXER_ENUM;
   2234 		dip->un.e.num_mem = 2;
   2235 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2236 		dip->un.e.member[0].ord = 0;
   2237 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2238 		dip->un.e.member[1].ord = 1;
   2239 		return 0;
   2240 
   2241 	}
   2242 
   2243 	return ENXIO;
   2244 }
   2245 
   2246 void *
   2247 sb_malloc(addr, direction, size, pool, flags)
   2248 	void *addr;
   2249 	int direction;
   2250 	size_t size;
   2251 	int pool, flags;
   2252 {
   2253 	struct sbdsp_softc *sc = addr;
   2254 	int drq;
   2255 
   2256 	if (sc->sc_drq8 != -1)
   2257 		drq = sc->sc_drq8;
   2258 	else
   2259 		drq = sc->sc_drq16;
   2260 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2261 }
   2262 
   2263 void
   2264 sb_free(addr, ptr, pool)
   2265 	void *addr;
   2266 	void *ptr;
   2267 	int pool;
   2268 {
   2269 	isa_free(ptr, pool);
   2270 }
   2271 
   2272 size_t
   2273 sb_round_buffersize(addr, direction, size)
   2274 	void *addr;
   2275 	int direction;
   2276 	size_t size;
   2277 {
   2278 	struct sbdsp_softc *sc = addr;
   2279 	bus_size_t maxsize;
   2280 
   2281 	if (sc->sc_drq8 != -1)
   2282 		maxsize = sc->sc_drq8_maxsize;
   2283 	else
   2284 		maxsize = sc->sc_drq16_maxsize;
   2285 
   2286 	if (size > maxsize)
   2287 		size = maxsize;
   2288 	return (size);
   2289 }
   2290 
   2291 paddr_t
   2292 sb_mappage(addr, mem, off, prot)
   2293 	void *addr;
   2294 	void *mem;
   2295 	off_t off;
   2296 	int prot;
   2297 {
   2298 	return isa_mappage(mem, off, prot);
   2299 }
   2300 
   2301 int
   2302 sbdsp_get_props(addr)
   2303 	void *addr;
   2304 {
   2305 	struct sbdsp_softc *sc = addr;
   2306 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2307 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2308 }
   2309 
   2310 #if NMPU > 0
   2311 /*
   2312  * MIDI related routines.
   2313  */
   2314 
   2315 int
   2316 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2317 	void *addr;
   2318 	int flags;
   2319 	void (*iintr)__P((void *, int));
   2320 	void (*ointr)__P((void *));
   2321 	void *arg;
   2322 {
   2323 	struct sbdsp_softc *sc = addr;
   2324 
   2325 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2326 
   2327 	if (sc->sc_open != SB_CLOSED)
   2328 		return EBUSY;
   2329 	if (sbdsp_reset(sc) != 0)
   2330 		return EIO;
   2331 
   2332 	sc->sc_open = SB_OPEN_MIDI;
   2333 	sc->sc_openflags = flags;
   2334 
   2335 	if (sc->sc_model >= SB_20)
   2336 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2337 			return EIO;
   2338 
   2339 	sc->sc_intr8 = sbdsp_midi_intr;
   2340 	sc->sc_intrm = iintr;
   2341 	sc->sc_argm = arg;
   2342 
   2343 	return 0;
   2344 }
   2345 
   2346 void
   2347 sbdsp_midi_close(addr)
   2348 	void *addr;
   2349 {
   2350 	struct sbdsp_softc *sc = addr;
   2351 
   2352 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2353 
   2354 	if (sc->sc_model >= SB_20)
   2355 		sbdsp_reset(sc); /* exit UART mode */
   2356 
   2357 	sc->sc_intrm = 0;
   2358 	sc->sc_open = SB_CLOSED;
   2359 }
   2360 
   2361 int
   2362 sbdsp_midi_output(addr, d)
   2363 	void *addr;
   2364 	int d;
   2365 {
   2366 	struct sbdsp_softc *sc = addr;
   2367 
   2368 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2369 		return EIO;
   2370 	if (sbdsp_wdsp(sc, d))
   2371 		return EIO;
   2372 	return 0;
   2373 }
   2374 
   2375 void
   2376 sbdsp_midi_getinfo(addr, mi)
   2377 	void *addr;
   2378 	struct midi_info *mi;
   2379 {
   2380 	struct sbdsp_softc *sc = addr;
   2381 
   2382 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2383 	mi->props = MIDI_PROP_CAN_INPUT;
   2384 }
   2385 
   2386 int
   2387 sbdsp_midi_intr(addr)
   2388 	void *addr;
   2389 {
   2390 	struct sbdsp_softc *sc = addr;
   2391 
   2392 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2393 	return (0);
   2394 }
   2395 
   2396 #endif
   2397 
   2398