Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.107
      1 /*	$NetBSD: sbdsp.c,v 1.107 2001/02/22 15:23:31 minoura Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include "midi.h"
     84 #include "mpu.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/errno.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/syslog.h>
     92 #include <sys/device.h>
     93 #include <sys/proc.h>
     94 #include <sys/buf.h>
     95 
     96 #include <machine/cpu.h>
     97 #include <machine/intr.h>
     98 #include <machine/bus.h>
     99 
    100 #include <sys/audioio.h>
    101 #include <dev/audio_if.h>
    102 #include <dev/midi_if.h>
    103 #include <dev/mulaw.h>
    104 #include <dev/auconv.h>
    105 
    106 #include <dev/isa/isavar.h>
    107 #include <dev/isa/isadmavar.h>
    108 
    109 #include <dev/isa/sbreg.h>
    110 #include <dev/isa/sbdspvar.h>
    111 
    112 
    113 #ifdef AUDIO_DEBUG
    114 #define DPRINTF(x)	if (sbdspdebug) printf x
    115 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    116 int	sbdspdebug = 0;
    117 #else
    118 #define DPRINTF(x)
    119 #define DPRINTFN(n,x)
    120 #endif
    121 
    122 #ifndef SBDSP_NPOLL
    123 #define SBDSP_NPOLL 3000
    124 #endif
    125 
    126 struct {
    127 	int wdsp;
    128 	int rdsp;
    129 	int wmidi;
    130 } sberr;
    131 
    132 /*
    133  * Time constant routines follow.  See SBK, section 12.
    134  * Although they don't come out and say it (in the docs),
    135  * the card clearly uses a 1MHz countdown timer, as the
    136  * low-speed formula (p. 12-4) is:
    137  *	tc = 256 - 10^6 / sr
    138  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    139  * and a 256MHz clock is used:
    140  *	tc = 65536 - 256 * 10^ 6 / sr
    141  * Since we can only use the upper byte of the HS TC, the two formulae
    142  * are equivalent.  (Why didn't they say so?)  E.g.,
    143  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    144  *
    145  * The crossover point (from low- to high-speed modes) is different
    146  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    147  *
    148  *				SBPRO			SB20
    149  *				-----			--------
    150  * input ls min			4	KHz		4	KHz
    151  * input ls max			23	KHz		13	KHz
    152  * input hs max			44.1	KHz		15	KHz
    153  * output ls min		4	KHz		4	KHz
    154  * output ls max		23	KHz		23	KHz
    155  * output hs max		44.1	KHz		44.1	KHz
    156  */
    157 /* XXX Should we round the tc?
    158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    159 */
    160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    162 
    163 struct sbmode {
    164 	short	model;
    165 	u_char	channels;
    166 	u_char	precision;
    167 	u_short	lowrate, highrate;
    168 	u_char	cmd;
    169 	u_char	halt, cont;
    170 	u_char	cmdchan;
    171 };
    172 static struct sbmode sbpmodes[] = {
    173  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    174  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    175  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    176  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    181  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    182  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    183  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    184  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    185  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    186  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    187  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    188  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    189 #define PLAY16 15 /* must be the index of the next entry in the table */
    190  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    191  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    192  { -1 }
    193 };
    194 static struct sbmode sbrmodes[] = {
    195  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    196  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    197  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    198  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    200  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    201  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    202  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    206  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    207  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    208  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    209  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    210  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    211  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    212  { -1 }
    213 };
    214 
    215 void	sbversion __P((struct sbdsp_softc *));
    216 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    217 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    218 void	sbdsp_pause __P((struct sbdsp_softc *));
    219 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    220 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    221 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    222 void	sbdsp_set_ifilter __P((void *, int));
    223 int	sbdsp_get_ifilter __P((void *));
    224 
    225 int	sbdsp_block_output __P((void *));
    226 int	sbdsp_block_input __P((void *));
    227 static	int sbdsp_adjust __P((int, int));
    228 
    229 int	sbdsp_midi_intr __P((void *));
    230 
    231 static void	sbdsp_powerhook __P((int, void*));
    232 
    233 #ifdef AUDIO_DEBUG
    234 void	sb_printsc __P((struct sbdsp_softc *));
    235 
    236 void
    237 sb_printsc(sc)
    238 	struct sbdsp_softc *sc;
    239 {
    240 	int i;
    241 
    242 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
    243 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    244 	    sc->sc_drq8, sc->sc_drq16,
    245 	    sc->sc_iobase, sc->sc_irq);
    246 	printf("irate %d itc %x orate %d otc %x\n",
    247 	    sc->sc_i.rate, sc->sc_i.tc,
    248 	    sc->sc_o.rate, sc->sc_o.tc);
    249 	printf("spkron %u nintr %lu\n",
    250 	    sc->spkr_state, sc->sc_interrupts);
    251 	printf("intr8 %p intr16 %p\n",
    252 	    sc->sc_intr8, sc->sc_intr16);
    253 	printf("gain:");
    254 	for (i = 0; i < SB_NDEVS; i++)
    255 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    256 	printf("\n");
    257 }
    258 #endif /* AUDIO_DEBUG */
    259 
    260 /*
    261  * Probe / attach routines.
    262  */
    263 
    264 /*
    265  * Probe for the soundblaster hardware.
    266  */
    267 int
    268 sbdsp_probe(sc)
    269 	struct sbdsp_softc *sc;
    270 {
    271 
    272 	if (sbdsp_reset(sc) < 0) {
    273 		DPRINTF(("sbdsp: couldn't reset card\n"));
    274 		return 0;
    275 	}
    276 	/* if flags set, go and probe the jazz16 stuff */
    277 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    278 		sbdsp_jazz16_probe(sc);
    279 	else
    280 		sbversion(sc);
    281 	if (sc->sc_model == SB_UNK) {
    282 		/* Unknown SB model found. */
    283 		DPRINTF(("sbdsp: unknown SB model found\n"));
    284 		return 0;
    285 	}
    286 	return 1;
    287 }
    288 
    289 /*
    290  * Try add-on stuff for Jazz16.
    291  */
    292 void
    293 sbdsp_jazz16_probe(sc)
    294 	struct sbdsp_softc *sc;
    295 {
    296 	static u_char jazz16_irq_conf[16] = {
    297 	    -1, -1, 0x02, 0x03,
    298 	    -1, 0x01, -1, 0x04,
    299 	    -1, 0x02, 0x05, -1,
    300 	    -1, -1, -1, 0x06};
    301 	static u_char jazz16_drq_conf[8] = {
    302 	    -1, 0x01, -1, 0x02,
    303 	    -1, 0x03, -1, 0x04};
    304 
    305 	bus_space_tag_t iot = sc->sc_iot;
    306 	bus_space_handle_t ioh;
    307 
    308 	sbversion(sc);
    309 
    310 	DPRINTF(("jazz16 probe\n"));
    311 
    312 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    313 		DPRINTF(("bus map failed\n"));
    314 		return;
    315 	}
    316 
    317 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    318 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    319 		DPRINTF(("drq/irq check failed\n"));
    320 		goto done;		/* give up, we can't do it. */
    321 	}
    322 
    323 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    324 	delay(10000);			/* delay 10 ms */
    325 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    326 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    327 
    328 	if (sbdsp_reset(sc) < 0) {
    329 		DPRINTF(("sbdsp_reset check failed\n"));
    330 		goto done;		/* XXX? what else could we do? */
    331 	}
    332 
    333 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    334 		DPRINTF(("read16 setup failed\n"));
    335 		goto done;
    336 	}
    337 
    338 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    339 		DPRINTF(("read16 failed\n"));
    340 		goto done;
    341 	}
    342 
    343 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    344 	sc->sc_drq16 = sc->sc_drq8;
    345 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    346 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    347 		jazz16_drq_conf[sc->sc_drq8]) ||
    348 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    349 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    350 	} else {
    351 		DPRINTF(("jazz16 detected!\n"));
    352 		sc->sc_model = SB_JAZZ;
    353 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    354 	}
    355 
    356 done:
    357 	bus_space_unmap(iot, ioh, 1);
    358 }
    359 
    360 /*
    361  * Attach hardware to driver, attach hardware driver to audio
    362  * pseudo-device driver .
    363  */
    364 void
    365 sbdsp_attach(sc)
    366 	struct sbdsp_softc *sc;
    367 {
    368 	struct audio_params pparams, rparams;
    369 	int i;
    370 	u_int v;
    371 
    372 	pparams = audio_default;
    373 	rparams = audio_default;
    374 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    375 
    376 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    377 
    378 	if (sc->sc_mixer_model != SBM_NONE) {
    379 		/* Reset the mixer.*/
    380 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    381 		/* And set our own default values */
    382 		for (i = 0; i < SB_NDEVS; i++) {
    383 			switch(i) {
    384 			case SB_MIC_VOL:
    385 			case SB_LINE_IN_VOL:
    386 				v = 0;
    387 				break;
    388 			case SB_BASS:
    389 			case SB_TREBLE:
    390 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    391 				break;
    392 			case SB_CD_IN_MUTE:
    393 			case SB_MIC_IN_MUTE:
    394 			case SB_LINE_IN_MUTE:
    395 			case SB_MIDI_IN_MUTE:
    396 			case SB_CD_SWAP:
    397 			case SB_MIC_SWAP:
    398 			case SB_LINE_SWAP:
    399 			case SB_MIDI_SWAP:
    400 			case SB_CD_OUT_MUTE:
    401 			case SB_MIC_OUT_MUTE:
    402 			case SB_LINE_OUT_MUTE:
    403 				v = 0;
    404 				break;
    405 			default:
    406 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    407 				break;
    408 			}
    409 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    410 			sbdsp_set_mixer_gain(sc, i);
    411 		}
    412 		sc->in_filter = 0;	/* no filters turned on, please */
    413 	}
    414 
    415 	printf(": dsp v%d.%02d%s\n",
    416 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    417 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    418 
    419 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    420 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    421 	    sc->sc_drq8 != sc->sc_drq16;
    422 
    423 	if (sc->sc_drq8 != -1)
    424 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    425 		    sc->sc_drq8);
    426 
    427 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    428 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    429 		    sc->sc_drq16);
    430 
    431 	powerhook_establish (sbdsp_powerhook, sc);
    432 }
    433 
    434 static void
    435 sbdsp_powerhook (why, arg)
    436 	int why;
    437 	void *arg;
    438 {
    439 	struct sbdsp_softc *sc = arg;
    440 	int i;
    441 
    442 	if (!sc || why != PWR_RESUME)
    443 		return;
    444 
    445 	/* Reset the mixer. */
    446 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    447 	for (i = 0; i < SB_NDEVS; i++)
    448 		sbdsp_set_mixer_gain (sc, i);
    449 }
    450 
    451 void
    452 sbdsp_mix_write(sc, mixerport, val)
    453 	struct sbdsp_softc *sc;
    454 	int mixerport;
    455 	int val;
    456 {
    457 	bus_space_tag_t iot = sc->sc_iot;
    458 	bus_space_handle_t ioh = sc->sc_ioh;
    459 	int s;
    460 
    461 	s = splaudio();
    462 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    463 	delay(20);
    464 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    465 	delay(30);
    466 	splx(s);
    467 }
    468 
    469 int
    470 sbdsp_mix_read(sc, mixerport)
    471 	struct sbdsp_softc *sc;
    472 	int mixerport;
    473 {
    474 	bus_space_tag_t iot = sc->sc_iot;
    475 	bus_space_handle_t ioh = sc->sc_ioh;
    476 	int val;
    477 	int s;
    478 
    479 	s = splaudio();
    480 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    481 	delay(20);
    482 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    483 	delay(30);
    484 	splx(s);
    485 	return val;
    486 }
    487 
    488 /*
    489  * Various routines to interface to higher level audio driver
    490  */
    491 
    492 int
    493 sbdsp_query_encoding(addr, fp)
    494 	void *addr;
    495 	struct audio_encoding *fp;
    496 {
    497 	struct sbdsp_softc *sc = addr;
    498 	int emul;
    499 
    500 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    501 
    502 	switch (fp->index) {
    503 	case 0:
    504 		strcpy(fp->name, AudioEulinear);
    505 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    506 		fp->precision = 8;
    507 		fp->flags = 0;
    508 		return 0;
    509 	case 1:
    510 		strcpy(fp->name, AudioEmulaw);
    511 		fp->encoding = AUDIO_ENCODING_ULAW;
    512 		fp->precision = 8;
    513 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    514 		return 0;
    515 	case 2:
    516 		strcpy(fp->name, AudioEalaw);
    517 		fp->encoding = AUDIO_ENCODING_ALAW;
    518 		fp->precision = 8;
    519 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    520 		return 0;
    521 	case 3:
    522 		strcpy(fp->name, AudioEslinear);
    523 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    524 		fp->precision = 8;
    525 		fp->flags = emul;
    526 		return 0;
    527 	}
    528 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    529 		return EINVAL;
    530 
    531 	switch(fp->index) {
    532 	case 4:
    533 		strcpy(fp->name, AudioEslinear_le);
    534 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    535 		fp->precision = 16;
    536 		fp->flags = 0;
    537 		return 0;
    538 	case 5:
    539 		strcpy(fp->name, AudioEulinear_le);
    540 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    541 		fp->precision = 16;
    542 		fp->flags = emul;
    543 		return 0;
    544 	case 6:
    545 		strcpy(fp->name, AudioEslinear_be);
    546 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    547 		fp->precision = 16;
    548 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    549 		return 0;
    550 	case 7:
    551 		strcpy(fp->name, AudioEulinear_be);
    552 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    553 		fp->precision = 16;
    554 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    555 		return 0;
    556 	default:
    557 		return EINVAL;
    558 	}
    559 	return 0;
    560 }
    561 
    562 int
    563 sbdsp_set_params(addr, setmode, usemode, play, rec)
    564 	void *addr;
    565 	int setmode, usemode;
    566 	struct audio_params *play, *rec;
    567 {
    568 	struct sbdsp_softc *sc = addr;
    569 	struct sbmode *m;
    570 	u_int rate, tc, bmode;
    571 	void (*swcode) __P((void *, u_char *buf, int cnt));
    572 	int factor;
    573 	int model;
    574 	int chan;
    575 	struct audio_params *p;
    576 	int mode;
    577 
    578 	if (sc->sc_open == SB_OPEN_MIDI)
    579 		return EBUSY;
    580 
    581 	/* Later models work like SB16. */
    582 	model = min(sc->sc_model, SB_16);
    583 
    584 	/*
    585 	 * Prior to the SB16, we have only one clock, so make the sample
    586 	 * rates match.
    587 	 */
    588 	if (!ISSB16CLASS(sc) &&
    589 	    play->sample_rate != rec->sample_rate &&
    590 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    591 		if (setmode == AUMODE_PLAY) {
    592 			rec->sample_rate = play->sample_rate;
    593 			setmode |= AUMODE_RECORD;
    594 		} else if (setmode == AUMODE_RECORD) {
    595 			play->sample_rate = rec->sample_rate;
    596 			setmode |= AUMODE_PLAY;
    597 		} else
    598 			return (EINVAL);
    599 	}
    600 
    601 	/* Set first record info, then play info */
    602 	for (mode = AUMODE_RECORD; mode != -1;
    603 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    604 		if ((setmode & mode) == 0)
    605 			continue;
    606 
    607 		p = mode == AUMODE_PLAY ? play : rec;
    608 		/* Locate proper commands */
    609 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    610 		    m->model != -1; m++) {
    611 			if (model == m->model &&
    612 			    p->channels == m->channels &&
    613 			    p->precision == m->precision &&
    614 			    p->sample_rate >= m->lowrate &&
    615 			    p->sample_rate <= m->highrate)
    616 				break;
    617 		}
    618 		if (m->model == -1)
    619 			return EINVAL;
    620 		rate = p->sample_rate;
    621 		swcode = 0;
    622 		factor = 1;
    623 		tc = 1;
    624 		bmode = -1;
    625 		if (model == SB_16) {
    626 			switch (p->encoding) {
    627 			case AUDIO_ENCODING_SLINEAR_BE:
    628 				if (p->precision == 16)
    629 					swcode = swap_bytes;
    630 				/* fall into */
    631 			case AUDIO_ENCODING_SLINEAR_LE:
    632 				bmode = SB_BMODE_SIGNED;
    633 				break;
    634 			case AUDIO_ENCODING_ULINEAR_BE:
    635 				if (p->precision == 16)
    636 					swcode = swap_bytes;
    637 				/* fall into */
    638 			case AUDIO_ENCODING_ULINEAR_LE:
    639 				bmode = SB_BMODE_UNSIGNED;
    640 				break;
    641 			case AUDIO_ENCODING_ULAW:
    642 				if (mode == AUMODE_PLAY) {
    643 					swcode = mulaw_to_ulinear16_le;
    644 					factor = 2;
    645 					m = &sbpmodes[PLAY16];
    646 				} else
    647 					swcode = ulinear8_to_mulaw;
    648 				bmode = SB_BMODE_UNSIGNED;
    649 				break;
    650 			case AUDIO_ENCODING_ALAW:
    651 				if (mode == AUMODE_PLAY) {
    652 					swcode = alaw_to_ulinear16_le;
    653 					factor = 2;
    654 					m = &sbpmodes[PLAY16];
    655 				} else
    656 					swcode = ulinear8_to_alaw;
    657 				bmode = SB_BMODE_UNSIGNED;
    658 				break;
    659 			default:
    660 				return EINVAL;
    661 			}
    662 			if (p->channels == 2)
    663 				bmode |= SB_BMODE_STEREO;
    664 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    665 			switch (p->encoding) {
    666 			case AUDIO_ENCODING_SLINEAR_LE:
    667 				break;
    668 			case AUDIO_ENCODING_ULINEAR_LE:
    669 				swcode = change_sign16_le;
    670 				break;
    671 			case AUDIO_ENCODING_SLINEAR_BE:
    672 				swcode = swap_bytes;
    673 				break;
    674 			case AUDIO_ENCODING_ULINEAR_BE:
    675 				swcode = mode == AUMODE_PLAY ?
    676 					swap_bytes_change_sign16_le :
    677 					change_sign16_swap_bytes_le;
    678 				break;
    679 			case AUDIO_ENCODING_ULAW:
    680 				swcode = mode == AUMODE_PLAY ?
    681 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    682 				break;
    683 			case AUDIO_ENCODING_ALAW:
    684 				swcode = mode == AUMODE_PLAY ?
    685 					alaw_to_ulinear8 : ulinear8_to_alaw;
    686 				break;
    687 			default:
    688 				return EINVAL;
    689 			}
    690 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    691 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    692 		} else {
    693 			switch (p->encoding) {
    694 			case AUDIO_ENCODING_SLINEAR_BE:
    695 			case AUDIO_ENCODING_SLINEAR_LE:
    696 				swcode = change_sign8;
    697 				break;
    698 			case AUDIO_ENCODING_ULINEAR_BE:
    699 			case AUDIO_ENCODING_ULINEAR_LE:
    700 				break;
    701 			case AUDIO_ENCODING_ULAW:
    702 				swcode = mode == AUMODE_PLAY ?
    703 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    704 				break;
    705 			case AUDIO_ENCODING_ALAW:
    706 				swcode = mode == AUMODE_PLAY ?
    707 					alaw_to_ulinear8 : ulinear8_to_alaw;
    708 				break;
    709 			default:
    710 				return EINVAL;
    711 			}
    712 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    713 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    714 		}
    715 
    716 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    717 		if (mode == AUMODE_PLAY) {
    718 			sc->sc_o.rate = rate;
    719 			sc->sc_o.tc = tc;
    720 			sc->sc_o.modep = m;
    721 			sc->sc_o.bmode = bmode;
    722 			sc->sc_o.dmachan = chan;
    723 		} else {
    724 			sc->sc_i.rate = rate;
    725 			sc->sc_i.tc = tc;
    726 			sc->sc_i.modep = m;
    727 			sc->sc_i.bmode = bmode;
    728 			sc->sc_i.dmachan = chan;
    729 		}
    730 
    731 		p->sw_code = swcode;
    732 		p->factor = factor;
    733 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    734 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    735 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    736 
    737 	}
    738 
    739 	if (sc->sc_fullduplex &&
    740 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    741 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    742 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    743 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    744 			/* Use 16 bit DMA for playing by expanding the samples. */
    745 			play->sw_code = linear8_to_linear16_le;
    746 			play->factor = 2;
    747 			sc->sc_o.modep = &sbpmodes[PLAY16];
    748 			sc->sc_o.dmachan = sc->sc_drq16;
    749 		} else {
    750 			return EINVAL;
    751 		}
    752 	}
    753 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    754 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    755 
    756 	return (0);
    757 }
    758 
    759 void
    760 sbdsp_set_ifilter(addr, which)
    761 	void *addr;
    762 	int which;
    763 {
    764 	struct sbdsp_softc *sc = addr;
    765 	int mixval;
    766 
    767 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    768 	switch (which) {
    769 	case 0:
    770 		mixval |= SBP_FILTER_OFF;
    771 		break;
    772 	case SB_TREBLE:
    773 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    774 		break;
    775 	case SB_BASS:
    776 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    777 		break;
    778 	default:
    779 		return;
    780 	}
    781 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    782 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    783 }
    784 
    785 int
    786 sbdsp_get_ifilter(addr)
    787 	void *addr;
    788 {
    789 	struct sbdsp_softc *sc = addr;
    790 
    791 	sc->in_filter =
    792 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    793 	switch (sc->in_filter) {
    794 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    795 		return SB_TREBLE;
    796 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    797 		return SB_BASS;
    798 	default:
    799 		return 0;
    800 	}
    801 }
    802 
    803 int
    804 sbdsp_set_in_ports(sc, mask)
    805 	struct sbdsp_softc *sc;
    806 	int mask;
    807 {
    808 	int bitsl, bitsr;
    809 	int sbport;
    810 
    811 	if (sc->sc_open == SB_OPEN_MIDI)
    812 		return EBUSY;
    813 
    814 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    815 		 sc->sc_mixer_model, mask));
    816 
    817 	switch(sc->sc_mixer_model) {
    818 	case SBM_NONE:
    819 		return EINVAL;
    820 	case SBM_CT1335:
    821 		if (mask != (1 << SB_MIC_VOL))
    822 			return EINVAL;
    823 		break;
    824 	case SBM_CT1345:
    825 		switch (mask) {
    826 		case 1 << SB_MIC_VOL:
    827 			sbport = SBP_FROM_MIC;
    828 			break;
    829 		case 1 << SB_LINE_IN_VOL:
    830 			sbport = SBP_FROM_LINE;
    831 			break;
    832 		case 1 << SB_CD_VOL:
    833 			sbport = SBP_FROM_CD;
    834 			break;
    835 		default:
    836 			return (EINVAL);
    837 		}
    838 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    839 		break;
    840 	case SBM_CT1XX5:
    841 	case SBM_CT1745:
    842 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    843 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    844 			return EINVAL;
    845 		bitsr = 0;
    846 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    847 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    848 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    849 		bitsl = SB_SRC_R_TO_L(bitsr);
    850 		if (mask & (1<<SB_MIC_VOL)) {
    851 			bitsl |= SBP_MIC_SRC;
    852 			bitsr |= SBP_MIC_SRC;
    853 		}
    854 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    855 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    856 		break;
    857 	}
    858 	sc->in_mask = mask;
    859 
    860 	return 0;
    861 }
    862 
    863 int
    864 sbdsp_speaker_ctl(addr, newstate)
    865 	void *addr;
    866 	int newstate;
    867 {
    868 	struct sbdsp_softc *sc = addr;
    869 
    870 	if (sc->sc_open == SB_OPEN_MIDI)
    871 		return EBUSY;
    872 
    873 	if ((newstate == SPKR_ON) &&
    874 	    (sc->spkr_state == SPKR_OFF)) {
    875 		sbdsp_spkron(sc);
    876 		sc->spkr_state = SPKR_ON;
    877 	}
    878 	if ((newstate == SPKR_OFF) &&
    879 	    (sc->spkr_state == SPKR_ON)) {
    880 		sbdsp_spkroff(sc);
    881 		sc->spkr_state = SPKR_OFF;
    882 	}
    883 	return 0;
    884 }
    885 
    886 int
    887 sbdsp_round_blocksize(addr, blk)
    888 	void *addr;
    889 	int blk;
    890 {
    891 	return blk & -4;	/* round to biggest sample size */
    892 }
    893 
    894 int
    895 sbdsp_open(addr, flags)
    896 	void *addr;
    897 	int flags;
    898 {
    899 	struct sbdsp_softc *sc = addr;
    900 	int error, state;
    901 
    902 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    903 
    904 	if (sc->sc_open != SB_CLOSED)
    905 		return (EBUSY);
    906 	sc->sc_open = SB_OPEN_AUDIO;
    907 	sc->sc_openflags = flags;
    908 	state = 0;
    909 
    910 	if (sc->sc_drq8 != -1) {
    911 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    912 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
    913 		if (error) {
    914 			printf("%s: can't create map for drq %d\n",
    915 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    916 			goto bad;
    917 		}
    918 		state |= 1;
    919 	}
    920 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    921 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    922 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
    923 		if (error) {
    924 			printf("%s: can't create map for drq %d\n",
    925 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    926 			goto bad;
    927 		}
    928 		state |= 2;
    929 	}
    930 
    931 	if (sbdsp_reset(sc) != 0) {
    932 		error = EIO;
    933 		goto bad;
    934 	}
    935 
    936 	if (ISSBPRO(sc) &&
    937 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    938 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    939 		/* we'll readjust when it's time for DMA. */
    940 	}
    941 
    942 	/*
    943 	 * Leave most things as they were; users must change things if
    944 	 * the previous process didn't leave it they way they wanted.
    945 	 * Looked at another way, it's easy to set up a configuration
    946 	 * in one program and leave it for another to inherit.
    947 	 */
    948 	DPRINTF(("sbdsp_open: opened\n"));
    949 
    950 	return (0);
    951 
    952 bad:
    953 	if (state & 1)
    954 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    955 	if (state & 2)
    956 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    957 
    958 	sc->sc_open = SB_CLOSED;
    959 	return (error);
    960 }
    961 
    962 void
    963 sbdsp_close(addr)
    964 	void *addr;
    965 {
    966 	struct sbdsp_softc *sc = addr;
    967 
    968 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    969 
    970 	sbdsp_spkroff(sc);
    971 	sc->spkr_state = SPKR_OFF;
    972 
    973 	sbdsp_halt_output(sc);
    974 	sbdsp_halt_input(sc);
    975 
    976 	sc->sc_intr8 = 0;
    977 	sc->sc_intr16 = 0;
    978 
    979 	if (sc->sc_drq8 != -1)
    980 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    981 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    982 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    983 
    984 	sc->sc_open = SB_CLOSED;
    985 	DPRINTF(("sbdsp_close: closed\n"));
    986 }
    987 
    988 /*
    989  * Lower-level routines
    990  */
    991 
    992 /*
    993  * Reset the card.
    994  * Return non-zero if the card isn't detected.
    995  */
    996 int
    997 sbdsp_reset(sc)
    998 	struct sbdsp_softc *sc;
    999 {
   1000 	bus_space_tag_t iot = sc->sc_iot;
   1001 	bus_space_handle_t ioh = sc->sc_ioh;
   1002 
   1003 	sc->sc_intr8 = 0;
   1004 	sc->sc_intr16 = 0;
   1005 	sc->sc_intrm = 0;
   1006 
   1007 	/*
   1008 	 * See SBK, section 11.3.
   1009 	 * We pulse a reset signal into the card.
   1010 	 * Gee, what a brilliant hardware design.
   1011 	 */
   1012 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1013 	delay(10);
   1014 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1015 	delay(30);
   1016 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1017 		return -1;
   1018 
   1019 	return 0;
   1020 }
   1021 
   1022 /*
   1023  * Write a byte to the dsp.
   1024  * We are at the mercy of the card as we use a
   1025  * polling loop and wait until it can take the byte.
   1026  */
   1027 int
   1028 sbdsp_wdsp(sc, v)
   1029 	struct sbdsp_softc *sc;
   1030 	int v;
   1031 {
   1032 	bus_space_tag_t iot = sc->sc_iot;
   1033 	bus_space_handle_t ioh = sc->sc_ioh;
   1034 	int i;
   1035 	u_char x;
   1036 
   1037 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1038 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1039 		delay(10);
   1040 		if ((x & SB_DSP_BUSY) == 0) {
   1041 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1042 			delay(10);
   1043 			return 0;
   1044 		}
   1045 	}
   1046 	++sberr.wdsp;
   1047 	return -1;
   1048 }
   1049 
   1050 /*
   1051  * Read a byte from the DSP, using polling.
   1052  */
   1053 int
   1054 sbdsp_rdsp(sc)
   1055 	struct sbdsp_softc *sc;
   1056 {
   1057 	bus_space_tag_t iot = sc->sc_iot;
   1058 	bus_space_handle_t ioh = sc->sc_ioh;
   1059 	int i;
   1060 	u_char x;
   1061 
   1062 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1063 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1064 		delay(10);
   1065 		if (x & SB_DSP_READY) {
   1066 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1067 			delay(10);
   1068 			return x;
   1069 		}
   1070 	}
   1071 	++sberr.rdsp;
   1072 	return -1;
   1073 }
   1074 
   1075 void
   1076 sbdsp_pause(sc)
   1077 	struct sbdsp_softc *sc;
   1078 {
   1079 
   1080 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1081 }
   1082 
   1083 /*
   1084  * Turn on the speaker.  The SBK documention says this operation
   1085  * can take up to 1/10 of a second.  Higher level layers should
   1086  * probably let the task sleep for this amount of time after
   1087  * calling here.  Otherwise, things might not work (because
   1088  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1089  *
   1090  * These engineers had their heads up their ass when
   1091  * they designed this card.
   1092  */
   1093 void
   1094 sbdsp_spkron(sc)
   1095 	struct sbdsp_softc *sc;
   1096 {
   1097 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1098 	sbdsp_pause(sc);
   1099 }
   1100 
   1101 /*
   1102  * Turn off the speaker; see comment above.
   1103  */
   1104 void
   1105 sbdsp_spkroff(sc)
   1106 	struct sbdsp_softc *sc;
   1107 {
   1108 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1109 	sbdsp_pause(sc);
   1110 }
   1111 
   1112 /*
   1113  * Read the version number out of the card.
   1114  * Store version information in the softc.
   1115  */
   1116 void
   1117 sbversion(sc)
   1118 	struct sbdsp_softc *sc;
   1119 {
   1120 	int v;
   1121 
   1122 	sc->sc_model = SB_UNK;
   1123 	sc->sc_version = 0;
   1124 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1125 		return;
   1126 	v = sbdsp_rdsp(sc) << 8;
   1127 	v |= sbdsp_rdsp(sc);
   1128 	if (v < 0)
   1129 		return;
   1130 	sc->sc_version = v;
   1131 	switch(SBVER_MAJOR(v)) {
   1132 	case 1:
   1133 		sc->sc_mixer_model = SBM_NONE;
   1134 		sc->sc_model = SB_1;
   1135 		break;
   1136 	case 2:
   1137 		/* Some SB2 have a mixer, some don't. */
   1138 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1139 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1140 		/* Check if we can read back the mixer values. */
   1141 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1142 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1143 			sc->sc_mixer_model = SBM_CT1335;
   1144 		else
   1145 			sc->sc_mixer_model = SBM_NONE;
   1146 		if (SBVER_MINOR(v) == 0)
   1147 			sc->sc_model = SB_20;
   1148 		else
   1149 			sc->sc_model = SB_2x;
   1150 		break;
   1151 	case 3:
   1152 		sc->sc_mixer_model = SBM_CT1345;
   1153 		sc->sc_model = SB_PRO;
   1154 		break;
   1155 	case 4:
   1156 #if 0
   1157 /* XXX This does not work */
   1158 		/* Most SB16 have a tone controls, but some don't. */
   1159 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1160 		/* Check if we can read back the mixer value. */
   1161 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1162 			sc->sc_mixer_model = SBM_CT1745;
   1163 		else
   1164 			sc->sc_mixer_model = SBM_CT1XX5;
   1165 #else
   1166 		sc->sc_mixer_model = SBM_CT1745;
   1167 #endif
   1168 #if 0
   1169 /* XXX figure out a good way of determining the model */
   1170 		/* XXX what about SB_32 */
   1171 		if (SBVER_MINOR(v) == 16)
   1172 			sc->sc_model = SB_64;
   1173 		else
   1174 #endif
   1175 			sc->sc_model = SB_16;
   1176 		break;
   1177 	}
   1178 }
   1179 
   1180 int
   1181 sbdsp_set_timeconst(sc, tc)
   1182 	struct sbdsp_softc *sc;
   1183 	int tc;
   1184 {
   1185 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1186 
   1187 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1188 	    sbdsp_wdsp(sc, tc) < 0)
   1189 		return EIO;
   1190 
   1191 	return 0;
   1192 }
   1193 
   1194 int
   1195 sbdsp16_set_rate(sc, cmd, rate)
   1196 	struct sbdsp_softc *sc;
   1197 	int cmd, rate;
   1198 {
   1199 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1200 
   1201 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1202 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1203 	    sbdsp_wdsp(sc, rate) < 0)
   1204 		return EIO;
   1205 	return 0;
   1206 }
   1207 
   1208 int
   1209 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1210 	void *addr;
   1211 	void *start, *end;
   1212 	int blksize;
   1213 	void (*intr) __P((void *));
   1214 	void *arg;
   1215 	struct audio_params *param;
   1216 {
   1217 	struct sbdsp_softc *sc = addr;
   1218 	int stereo = param->channels == 2;
   1219 	int width = param->precision * param->factor;
   1220 	int filter;
   1221 
   1222 #ifdef DIAGNOSTIC
   1223 	if (stereo && (blksize & 1)) {
   1224 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1225 		return (EIO);
   1226 	}
   1227 	if (sc->sc_i.run != SB_NOTRUNNING)
   1228 		printf("sbdsp_trigger_input: already running\n");
   1229 #endif
   1230 
   1231 	sc->sc_intrr = intr;
   1232 	sc->sc_argr = arg;
   1233 
   1234 	if (width == 8) {
   1235 #ifdef DIAGNOSTIC
   1236 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1237 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1238 			    width, sc->sc_i.dmachan);
   1239 			return (EIO);
   1240 		}
   1241 #endif
   1242 		sc->sc_intr8 = sbdsp_block_input;
   1243 	} else {
   1244 #ifdef DIAGNOSTIC
   1245 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1246 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1247 			    width, sc->sc_i.dmachan);
   1248 			return (EIO);
   1249 		}
   1250 #endif
   1251 		sc->sc_intr16 = sbdsp_block_input;
   1252 	}
   1253 
   1254 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1255 		blksize >>= 1;
   1256 	--blksize;
   1257 	sc->sc_i.blksize = blksize;
   1258 
   1259 	if (ISSBPRO(sc)) {
   1260 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1261 			return (EIO);
   1262 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1263 		sbdsp_mix_write(sc, SBP_INFILTER,
   1264 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1265 		    filter);
   1266 	}
   1267 
   1268 	if (ISSB16CLASS(sc)) {
   1269 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1270 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1271 				 sc->sc_i.rate));
   1272 			return (EIO);
   1273 		}
   1274 	} else {
   1275 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1276 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1277 				 sc->sc_i.rate));
   1278 			return (EIO);
   1279 		}
   1280 	}
   1281 
   1282 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
   1283 	    start, end, sc->sc_i.dmachan));
   1284 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1285 	    (char *)end - (char *)start, NULL,
   1286 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1287 
   1288 	return sbdsp_block_input(addr);
   1289 }
   1290 
   1291 int
   1292 sbdsp_block_input(addr)
   1293 	void *addr;
   1294 {
   1295 	struct sbdsp_softc *sc = addr;
   1296 	int cc = sc->sc_i.blksize;
   1297 
   1298 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1299 
   1300 	if (sc->sc_i.run != SB_NOTRUNNING)
   1301 		sc->sc_intrr(sc->sc_argr);
   1302 
   1303 	if (sc->sc_model == SB_1) {
   1304 		/* Non-looping mode, start DMA */
   1305 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1306 		    sbdsp_wdsp(sc, cc) < 0 ||
   1307 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1308 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1309 			return (EIO);
   1310 		}
   1311 		sc->sc_i.run = SB_RUNNING;
   1312 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1313 		/* Initialize looping PCM */
   1314 		if (ISSB16CLASS(sc)) {
   1315 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1316 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1317 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1318 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1319 			    sbdsp_wdsp(sc, cc) < 0 ||
   1320 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1321 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1322 				return (EIO);
   1323 			}
   1324 		} else {
   1325 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1326 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1327 			    sbdsp_wdsp(sc, cc) < 0 ||
   1328 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1329 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1330 				return (EIO);
   1331 			}
   1332 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1333 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1334 				return (EIO);
   1335 			}
   1336 		}
   1337 		sc->sc_i.run = SB_LOOPING;
   1338 	}
   1339 
   1340 	return (0);
   1341 }
   1342 
   1343 int
   1344 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1345 	void *addr;
   1346 	void *start, *end;
   1347 	int blksize;
   1348 	void (*intr) __P((void *));
   1349 	void *arg;
   1350 	struct audio_params *param;
   1351 {
   1352 	struct sbdsp_softc *sc = addr;
   1353 	int stereo = param->channels == 2;
   1354 	int width = param->precision * param->factor;
   1355 	int cmd;
   1356 
   1357 #ifdef DIAGNOSTIC
   1358 	if (stereo && (blksize & 1)) {
   1359 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1360 		return (EIO);
   1361 	}
   1362 	if (sc->sc_o.run != SB_NOTRUNNING)
   1363 		printf("sbdsp_trigger_output: already running\n");
   1364 #endif
   1365 
   1366 	sc->sc_intrp = intr;
   1367 	sc->sc_argp = arg;
   1368 
   1369 	if (width == 8) {
   1370 #ifdef DIAGNOSTIC
   1371 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1372 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1373 			    width, sc->sc_o.dmachan);
   1374 			return (EIO);
   1375 		}
   1376 #endif
   1377 		sc->sc_intr8 = sbdsp_block_output;
   1378 	} else {
   1379 #ifdef DIAGNOSTIC
   1380 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1381 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1382 			    width, sc->sc_o.dmachan);
   1383 			return (EIO);
   1384 		}
   1385 #endif
   1386 		sc->sc_intr16 = sbdsp_block_output;
   1387 	}
   1388 
   1389 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1390 		blksize >>= 1;
   1391 	--blksize;
   1392 	sc->sc_o.blksize = blksize;
   1393 
   1394 	if (ISSBPRO(sc)) {
   1395 		/* make sure we re-set stereo mixer bit when we start output. */
   1396 		sbdsp_mix_write(sc, SBP_STEREO,
   1397 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1398 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1399 		cmd = sc->sc_o.modep->cmdchan;
   1400 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1401 			return (EIO);
   1402 	}
   1403 
   1404 	if (ISSB16CLASS(sc)) {
   1405 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1406 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1407 				 sc->sc_o.rate));
   1408 			return (EIO);
   1409 		}
   1410 	} else {
   1411 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1412 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1413 				 sc->sc_o.rate));
   1414 			return (EIO);
   1415 		}
   1416 	}
   1417 
   1418 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
   1419 	    start, end, sc->sc_o.dmachan));
   1420 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1421 	    (char *)end - (char *)start, NULL,
   1422 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1423 
   1424 	return sbdsp_block_output(addr);
   1425 }
   1426 
   1427 int
   1428 sbdsp_block_output(addr)
   1429 	void *addr;
   1430 {
   1431 	struct sbdsp_softc *sc = addr;
   1432 	int cc = sc->sc_o.blksize;
   1433 
   1434 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1435 
   1436 	if (sc->sc_o.run != SB_NOTRUNNING)
   1437 		sc->sc_intrp(sc->sc_argp);
   1438 
   1439 	if (sc->sc_model == SB_1) {
   1440 		/* Non-looping mode, initialized. Start DMA and PCM */
   1441 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1442 		    sbdsp_wdsp(sc, cc) < 0 ||
   1443 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1444 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1445 			return (EIO);
   1446 		}
   1447 		sc->sc_o.run = SB_RUNNING;
   1448 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1449 		/* Initialize looping PCM */
   1450 		if (ISSB16CLASS(sc)) {
   1451 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1452 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1453 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1454 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1455 			    sbdsp_wdsp(sc, cc) < 0 ||
   1456 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1457 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1458 				return (EIO);
   1459 			}
   1460 		} else {
   1461 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1462 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1463 			    sbdsp_wdsp(sc, cc) < 0 ||
   1464 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1465 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1466 				return (EIO);
   1467 			}
   1468 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1469 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1470 				return (EIO);
   1471 			}
   1472 		}
   1473 		sc->sc_o.run = SB_LOOPING;
   1474 	}
   1475 
   1476 	return (0);
   1477 }
   1478 
   1479 int
   1480 sbdsp_halt_output(addr)
   1481 	void *addr;
   1482 {
   1483 	struct sbdsp_softc *sc = addr;
   1484 
   1485 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1486 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1487 			printf("sbdsp_halt_output: failed to halt\n");
   1488 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1489 		sc->sc_o.run = SB_NOTRUNNING;
   1490 	}
   1491 
   1492 	return (0);
   1493 }
   1494 
   1495 int
   1496 sbdsp_halt_input(addr)
   1497 	void *addr;
   1498 {
   1499 	struct sbdsp_softc *sc = addr;
   1500 
   1501 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1502 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1503 			printf("sbdsp_halt_input: failed to halt\n");
   1504 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1505 		sc->sc_i.run = SB_NOTRUNNING;
   1506 	}
   1507 
   1508 	return (0);
   1509 }
   1510 
   1511 /*
   1512  * Only the DSP unit on the sound blaster generates interrupts.
   1513  * There are three cases of interrupt: reception of a midi byte
   1514  * (when mode is enabled), completion of dma transmission, or
   1515  * completion of a dma reception.
   1516  *
   1517  * If there is interrupt sharing or a spurious interrupt occurs
   1518  * there is no way to distinguish this on an SB2.  So if you have
   1519  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1520  */
   1521 int
   1522 sbdsp_intr(arg)
   1523 	void *arg;
   1524 {
   1525 	struct sbdsp_softc *sc = arg;
   1526 	u_char irq;
   1527 
   1528 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1529 		   sc->sc_intr8, sc->sc_intr16));
   1530 	if (ISSB16CLASS(sc)) {
   1531 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1532 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1533 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1534 			return 0;
   1535 		}
   1536 	} else {
   1537 		/* XXXX CHECK FOR INTERRUPT */
   1538 		irq = SBP_IRQ_DMA8;
   1539 	}
   1540 
   1541 	sc->sc_interrupts++;
   1542 	delay(10);		/* XXX why? */
   1543 
   1544 	/* clear interrupt */
   1545 	if (irq & SBP_IRQ_DMA8) {
   1546 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1547 		if (sc->sc_intr8)
   1548 			sc->sc_intr8(arg);
   1549 	}
   1550 	if (irq & SBP_IRQ_DMA16) {
   1551 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1552 		if (sc->sc_intr16)
   1553 			sc->sc_intr16(arg);
   1554 	}
   1555 #if NMPU > 0
   1556 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1557 		mpu_intr(sc->sc_mpudev);
   1558 	}
   1559 #endif
   1560 	return 1;
   1561 }
   1562 
   1563 /* Like val & mask, but make sure the result is correctly rounded. */
   1564 #define MAXVAL 256
   1565 static int
   1566 sbdsp_adjust(val, mask)
   1567 	int val, mask;
   1568 {
   1569 	val += (MAXVAL - mask) >> 1;
   1570 	if (val >= MAXVAL)
   1571 		val = MAXVAL-1;
   1572 	return val & mask;
   1573 }
   1574 
   1575 void
   1576 sbdsp_set_mixer_gain(sc, port)
   1577 	struct sbdsp_softc *sc;
   1578 	int port;
   1579 {
   1580 	int src, gain;
   1581 
   1582 	switch(sc->sc_mixer_model) {
   1583 	case SBM_NONE:
   1584 		return;
   1585 	case SBM_CT1335:
   1586 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1587 		switch(port) {
   1588 		case SB_MASTER_VOL:
   1589 			src = SBP_1335_MASTER_VOL;
   1590 			break;
   1591 		case SB_MIDI_VOL:
   1592 			src = SBP_1335_MIDI_VOL;
   1593 			break;
   1594 		case SB_CD_VOL:
   1595 			src = SBP_1335_CD_VOL;
   1596 			break;
   1597 		case SB_VOICE_VOL:
   1598 			src = SBP_1335_VOICE_VOL;
   1599 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1600 			break;
   1601 		default:
   1602 			return;
   1603 		}
   1604 		sbdsp_mix_write(sc, src, gain);
   1605 		break;
   1606 	case SBM_CT1345:
   1607 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1608 				      sc->gain[port][SB_RIGHT]);
   1609 		switch (port) {
   1610 		case SB_MIC_VOL:
   1611 			src = SBP_MIC_VOL;
   1612 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1613 			break;
   1614 		case SB_MASTER_VOL:
   1615 			src = SBP_MASTER_VOL;
   1616 			break;
   1617 		case SB_LINE_IN_VOL:
   1618 			src = SBP_LINE_VOL;
   1619 			break;
   1620 		case SB_VOICE_VOL:
   1621 			src = SBP_VOICE_VOL;
   1622 			break;
   1623 		case SB_MIDI_VOL:
   1624 			src = SBP_MIDI_VOL;
   1625 			break;
   1626 		case SB_CD_VOL:
   1627 			src = SBP_CD_VOL;
   1628 			break;
   1629 		default:
   1630 			return;
   1631 		}
   1632 		sbdsp_mix_write(sc, src, gain);
   1633 		break;
   1634 	case SBM_CT1XX5:
   1635 	case SBM_CT1745:
   1636 		switch (port) {
   1637 		case SB_MIC_VOL:
   1638 			src = SB16P_MIC_L;
   1639 			break;
   1640 		case SB_MASTER_VOL:
   1641 			src = SB16P_MASTER_L;
   1642 			break;
   1643 		case SB_LINE_IN_VOL:
   1644 			src = SB16P_LINE_L;
   1645 			break;
   1646 		case SB_VOICE_VOL:
   1647 			src = SB16P_VOICE_L;
   1648 			break;
   1649 		case SB_MIDI_VOL:
   1650 			src = SB16P_MIDI_L;
   1651 			break;
   1652 		case SB_CD_VOL:
   1653 			src = SB16P_CD_L;
   1654 			break;
   1655 		case SB_INPUT_GAIN:
   1656 			src = SB16P_INPUT_GAIN_L;
   1657 			break;
   1658 		case SB_OUTPUT_GAIN:
   1659 			src = SB16P_OUTPUT_GAIN_L;
   1660 			break;
   1661 		case SB_TREBLE:
   1662 			src = SB16P_TREBLE_L;
   1663 			break;
   1664 		case SB_BASS:
   1665 			src = SB16P_BASS_L;
   1666 			break;
   1667 		case SB_PCSPEAKER:
   1668 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1669 			return;
   1670 		default:
   1671 			return;
   1672 		}
   1673 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1674 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1675 		break;
   1676 	}
   1677 }
   1678 
   1679 int
   1680 sbdsp_mixer_set_port(addr, cp)
   1681 	void *addr;
   1682 	mixer_ctrl_t *cp;
   1683 {
   1684 	struct sbdsp_softc *sc = addr;
   1685 	int lgain, rgain;
   1686 	int mask, bits;
   1687 	int lmask, rmask, lbits, rbits;
   1688 	int mute, swap;
   1689 
   1690 	if (sc->sc_open == SB_OPEN_MIDI)
   1691 		return EBUSY;
   1692 
   1693 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1694 	    cp->un.value.num_channels));
   1695 
   1696 	if (sc->sc_mixer_model == SBM_NONE)
   1697 		return EINVAL;
   1698 
   1699 	switch (cp->dev) {
   1700 	case SB_TREBLE:
   1701 	case SB_BASS:
   1702 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1703 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1704 			if (cp->type != AUDIO_MIXER_ENUM)
   1705 				return EINVAL;
   1706 			switch (cp->dev) {
   1707 			case SB_TREBLE:
   1708 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1709 				return 0;
   1710 			case SB_BASS:
   1711 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1712 				return 0;
   1713 			}
   1714 		}
   1715 	case SB_PCSPEAKER:
   1716 	case SB_INPUT_GAIN:
   1717 	case SB_OUTPUT_GAIN:
   1718 		if (!ISSBM1745(sc))
   1719 			return EINVAL;
   1720 	case SB_MIC_VOL:
   1721 	case SB_LINE_IN_VOL:
   1722 		if (sc->sc_mixer_model == SBM_CT1335)
   1723 			return EINVAL;
   1724 	case SB_VOICE_VOL:
   1725 	case SB_MIDI_VOL:
   1726 	case SB_CD_VOL:
   1727 	case SB_MASTER_VOL:
   1728 		if (cp->type != AUDIO_MIXER_VALUE)
   1729 			return EINVAL;
   1730 
   1731 		/*
   1732 		 * All the mixer ports are stereo except for the microphone.
   1733 		 * If we get a single-channel gain value passed in, then we
   1734 		 * duplicate it to both left and right channels.
   1735 		 */
   1736 
   1737 		switch (cp->dev) {
   1738 		case SB_MIC_VOL:
   1739 			if (cp->un.value.num_channels != 1)
   1740 				return EINVAL;
   1741 
   1742 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1743 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1744 			break;
   1745 		case SB_PCSPEAKER:
   1746 			if (cp->un.value.num_channels != 1)
   1747 				return EINVAL;
   1748 			/* fall into */
   1749 		case SB_INPUT_GAIN:
   1750 		case SB_OUTPUT_GAIN:
   1751 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1752 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1753 			break;
   1754 		default:
   1755 			switch (cp->un.value.num_channels) {
   1756 			case 1:
   1757 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1758 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1759 				break;
   1760 			case 2:
   1761 				if (sc->sc_mixer_model == SBM_CT1335)
   1762 					return EINVAL;
   1763 				lgain = SB_ADJUST_GAIN(sc,
   1764 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1765 				rgain = SB_ADJUST_GAIN(sc,
   1766 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1767 				break;
   1768 			default:
   1769 				return EINVAL;
   1770 			}
   1771 			break;
   1772 		}
   1773 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1774 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1775 
   1776 		sbdsp_set_mixer_gain(sc, cp->dev);
   1777 		break;
   1778 
   1779 	case SB_RECORD_SOURCE:
   1780 		if (ISSBM1745(sc)) {
   1781 			if (cp->type != AUDIO_MIXER_SET)
   1782 				return EINVAL;
   1783 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1784 		} else {
   1785 			if (cp->type != AUDIO_MIXER_ENUM)
   1786 				return EINVAL;
   1787 			sc->in_port = cp->un.ord;
   1788 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1789 		}
   1790 		break;
   1791 
   1792 	case SB_AGC:
   1793 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1794 			return EINVAL;
   1795 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1796 		break;
   1797 
   1798 	case SB_CD_OUT_MUTE:
   1799 		mask = SB16P_SW_CD;
   1800 		goto omute;
   1801 	case SB_MIC_OUT_MUTE:
   1802 		mask = SB16P_SW_MIC;
   1803 		goto omute;
   1804 	case SB_LINE_OUT_MUTE:
   1805 		mask = SB16P_SW_LINE;
   1806 	omute:
   1807 		if (cp->type != AUDIO_MIXER_ENUM)
   1808 			return EINVAL;
   1809 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1810 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1811 		if (cp->un.ord)
   1812 			bits = bits & ~mask;
   1813 		else
   1814 			bits = bits | mask;
   1815 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1816 		break;
   1817 
   1818 	case SB_MIC_IN_MUTE:
   1819 	case SB_MIC_SWAP:
   1820 		lmask = rmask = SB16P_SW_MIC;
   1821 		goto imute;
   1822 	case SB_CD_IN_MUTE:
   1823 	case SB_CD_SWAP:
   1824 		lmask = SB16P_SW_CD_L;
   1825 		rmask = SB16P_SW_CD_R;
   1826 		goto imute;
   1827 	case SB_LINE_IN_MUTE:
   1828 	case SB_LINE_SWAP:
   1829 		lmask = SB16P_SW_LINE_L;
   1830 		rmask = SB16P_SW_LINE_R;
   1831 		goto imute;
   1832 	case SB_MIDI_IN_MUTE:
   1833 	case SB_MIDI_SWAP:
   1834 		lmask = SB16P_SW_MIDI_L;
   1835 		rmask = SB16P_SW_MIDI_R;
   1836 	imute:
   1837 		if (cp->type != AUDIO_MIXER_ENUM)
   1838 			return EINVAL;
   1839 		mask = lmask | rmask;
   1840 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1841 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1842 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1843 		if (SB_IS_IN_MUTE(cp->dev)) {
   1844 			mute = cp->dev;
   1845 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1846 		} else {
   1847 			swap = cp->dev;
   1848 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1849 		}
   1850 		if (sc->gain[swap][SB_LR]) {
   1851 			mask = lmask;
   1852 			lmask = rmask;
   1853 			rmask = mask;
   1854 		}
   1855 		if (!sc->gain[mute][SB_LR]) {
   1856 			lbits = lbits | lmask;
   1857 			rbits = rbits | rmask;
   1858 		}
   1859 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1860 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1861 		break;
   1862 
   1863 	default:
   1864 		return EINVAL;
   1865 	}
   1866 
   1867 	return 0;
   1868 }
   1869 
   1870 int
   1871 sbdsp_mixer_get_port(addr, cp)
   1872 	void *addr;
   1873 	mixer_ctrl_t *cp;
   1874 {
   1875 	struct sbdsp_softc *sc = addr;
   1876 
   1877 	if (sc->sc_open == SB_OPEN_MIDI)
   1878 		return EBUSY;
   1879 
   1880 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1881 
   1882 	if (sc->sc_mixer_model == SBM_NONE)
   1883 		return EINVAL;
   1884 
   1885 	switch (cp->dev) {
   1886 	case SB_TREBLE:
   1887 	case SB_BASS:
   1888 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1889 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1890 			switch (cp->dev) {
   1891 			case SB_TREBLE:
   1892 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1893 				return 0;
   1894 			case SB_BASS:
   1895 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1896 				return 0;
   1897 			}
   1898 		}
   1899 	case SB_PCSPEAKER:
   1900 	case SB_INPUT_GAIN:
   1901 	case SB_OUTPUT_GAIN:
   1902 		if (!ISSBM1745(sc))
   1903 			return EINVAL;
   1904 	case SB_MIC_VOL:
   1905 	case SB_LINE_IN_VOL:
   1906 		if (sc->sc_mixer_model == SBM_CT1335)
   1907 			return EINVAL;
   1908 	case SB_VOICE_VOL:
   1909 	case SB_MIDI_VOL:
   1910 	case SB_CD_VOL:
   1911 	case SB_MASTER_VOL:
   1912 		switch (cp->dev) {
   1913 		case SB_MIC_VOL:
   1914 		case SB_PCSPEAKER:
   1915 			if (cp->un.value.num_channels != 1)
   1916 				return EINVAL;
   1917 			/* fall into */
   1918 		default:
   1919 			switch (cp->un.value.num_channels) {
   1920 			case 1:
   1921 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1922 					sc->gain[cp->dev][SB_LEFT];
   1923 				break;
   1924 			case 2:
   1925 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1926 					sc->gain[cp->dev][SB_LEFT];
   1927 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1928 					sc->gain[cp->dev][SB_RIGHT];
   1929 				break;
   1930 			default:
   1931 				return EINVAL;
   1932 			}
   1933 			break;
   1934 		}
   1935 		break;
   1936 
   1937 	case SB_RECORD_SOURCE:
   1938 		if (ISSBM1745(sc))
   1939 			cp->un.mask = sc->in_mask;
   1940 		else
   1941 			cp->un.ord = sc->in_port;
   1942 		break;
   1943 
   1944 	case SB_AGC:
   1945 		if (!ISSBM1745(sc))
   1946 			return EINVAL;
   1947 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1948 		break;
   1949 
   1950 	case SB_CD_IN_MUTE:
   1951 	case SB_MIC_IN_MUTE:
   1952 	case SB_LINE_IN_MUTE:
   1953 	case SB_MIDI_IN_MUTE:
   1954 	case SB_CD_SWAP:
   1955 	case SB_MIC_SWAP:
   1956 	case SB_LINE_SWAP:
   1957 	case SB_MIDI_SWAP:
   1958 	case SB_CD_OUT_MUTE:
   1959 	case SB_MIC_OUT_MUTE:
   1960 	case SB_LINE_OUT_MUTE:
   1961 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1962 		break;
   1963 
   1964 	default:
   1965 		return EINVAL;
   1966 	}
   1967 
   1968 	return 0;
   1969 }
   1970 
   1971 int
   1972 sbdsp_mixer_query_devinfo(addr, dip)
   1973 	void *addr;
   1974 	mixer_devinfo_t *dip;
   1975 {
   1976 	struct sbdsp_softc *sc = addr;
   1977 	int chan, class, is1745;
   1978 
   1979 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1980 		 sc->sc_mixer_model, dip->index));
   1981 
   1982 	if (sc->sc_mixer_model == SBM_NONE)
   1983 		return ENXIO;
   1984 
   1985 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1986 	is1745 = ISSBM1745(sc);
   1987 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1988 
   1989 	switch (dip->index) {
   1990 	case SB_MASTER_VOL:
   1991 		dip->type = AUDIO_MIXER_VALUE;
   1992 		dip->mixer_class = SB_OUTPUT_CLASS;
   1993 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1994 		strcpy(dip->label.name, AudioNmaster);
   1995 		dip->un.v.num_channels = chan;
   1996 		strcpy(dip->un.v.units.name, AudioNvolume);
   1997 		return 0;
   1998 	case SB_MIDI_VOL:
   1999 		dip->type = AUDIO_MIXER_VALUE;
   2000 		dip->mixer_class = class;
   2001 		dip->prev = AUDIO_MIXER_LAST;
   2002 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2003 		strcpy(dip->label.name, AudioNfmsynth);
   2004 		dip->un.v.num_channels = chan;
   2005 		strcpy(dip->un.v.units.name, AudioNvolume);
   2006 		return 0;
   2007 	case SB_CD_VOL:
   2008 		dip->type = AUDIO_MIXER_VALUE;
   2009 		dip->mixer_class = class;
   2010 		dip->prev = AUDIO_MIXER_LAST;
   2011 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2012 		strcpy(dip->label.name, AudioNcd);
   2013 		dip->un.v.num_channels = chan;
   2014 		strcpy(dip->un.v.units.name, AudioNvolume);
   2015 		return 0;
   2016 	case SB_VOICE_VOL:
   2017 		dip->type = AUDIO_MIXER_VALUE;
   2018 		dip->mixer_class = class;
   2019 		dip->prev = AUDIO_MIXER_LAST;
   2020 		dip->next = AUDIO_MIXER_LAST;
   2021 		strcpy(dip->label.name, AudioNdac);
   2022 		dip->un.v.num_channels = chan;
   2023 		strcpy(dip->un.v.units.name, AudioNvolume);
   2024 		return 0;
   2025 	case SB_OUTPUT_CLASS:
   2026 		dip->type = AUDIO_MIXER_CLASS;
   2027 		dip->mixer_class = SB_OUTPUT_CLASS;
   2028 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2029 		strcpy(dip->label.name, AudioCoutputs);
   2030 		return 0;
   2031 	}
   2032 
   2033 	if (sc->sc_mixer_model == SBM_CT1335)
   2034 		return ENXIO;
   2035 
   2036 	switch (dip->index) {
   2037 	case SB_MIC_VOL:
   2038 		dip->type = AUDIO_MIXER_VALUE;
   2039 		dip->mixer_class = class;
   2040 		dip->prev = AUDIO_MIXER_LAST;
   2041 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2042 		strcpy(dip->label.name, AudioNmicrophone);
   2043 		dip->un.v.num_channels = 1;
   2044 		strcpy(dip->un.v.units.name, AudioNvolume);
   2045 		return 0;
   2046 
   2047 	case SB_LINE_IN_VOL:
   2048 		dip->type = AUDIO_MIXER_VALUE;
   2049 		dip->mixer_class = class;
   2050 		dip->prev = AUDIO_MIXER_LAST;
   2051 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2052 		strcpy(dip->label.name, AudioNline);
   2053 		dip->un.v.num_channels = 2;
   2054 		strcpy(dip->un.v.units.name, AudioNvolume);
   2055 		return 0;
   2056 
   2057 	case SB_RECORD_SOURCE:
   2058 		dip->mixer_class = SB_RECORD_CLASS;
   2059 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2060 		strcpy(dip->label.name, AudioNsource);
   2061 		if (ISSBM1745(sc)) {
   2062 			dip->type = AUDIO_MIXER_SET;
   2063 			dip->un.s.num_mem = 4;
   2064 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2065 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2066 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2067 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2068 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2069 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2070 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2071 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2072 		} else {
   2073 			dip->type = AUDIO_MIXER_ENUM;
   2074 			dip->un.e.num_mem = 3;
   2075 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2076 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2077 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2078 			dip->un.e.member[1].ord = SB_CD_VOL;
   2079 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2080 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2081 		}
   2082 		return 0;
   2083 
   2084 	case SB_BASS:
   2085 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2086 		strcpy(dip->label.name, AudioNbass);
   2087 		if (sc->sc_mixer_model == SBM_CT1745) {
   2088 			dip->type = AUDIO_MIXER_VALUE;
   2089 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2090 			dip->un.v.num_channels = 2;
   2091 			strcpy(dip->un.v.units.name, AudioNbass);
   2092 		} else {
   2093 			dip->type = AUDIO_MIXER_ENUM;
   2094 			dip->mixer_class = SB_INPUT_CLASS;
   2095 			dip->un.e.num_mem = 2;
   2096 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2097 			dip->un.e.member[0].ord = 0;
   2098 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2099 			dip->un.e.member[1].ord = 1;
   2100 		}
   2101 		return 0;
   2102 
   2103 	case SB_TREBLE:
   2104 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2105 		strcpy(dip->label.name, AudioNtreble);
   2106 		if (sc->sc_mixer_model == SBM_CT1745) {
   2107 			dip->type = AUDIO_MIXER_VALUE;
   2108 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2109 			dip->un.v.num_channels = 2;
   2110 			strcpy(dip->un.v.units.name, AudioNtreble);
   2111 		} else {
   2112 			dip->type = AUDIO_MIXER_ENUM;
   2113 			dip->mixer_class = SB_INPUT_CLASS;
   2114 			dip->un.e.num_mem = 2;
   2115 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2116 			dip->un.e.member[0].ord = 0;
   2117 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2118 			dip->un.e.member[1].ord = 1;
   2119 		}
   2120 		return 0;
   2121 
   2122 	case SB_RECORD_CLASS:			/* record source class */
   2123 		dip->type = AUDIO_MIXER_CLASS;
   2124 		dip->mixer_class = SB_RECORD_CLASS;
   2125 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2126 		strcpy(dip->label.name, AudioCrecord);
   2127 		return 0;
   2128 
   2129 	case SB_INPUT_CLASS:
   2130 		dip->type = AUDIO_MIXER_CLASS;
   2131 		dip->mixer_class = SB_INPUT_CLASS;
   2132 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2133 		strcpy(dip->label.name, AudioCinputs);
   2134 		return 0;
   2135 
   2136 	}
   2137 
   2138 	if (sc->sc_mixer_model == SBM_CT1345)
   2139 		return ENXIO;
   2140 
   2141 	switch(dip->index) {
   2142 	case SB_PCSPEAKER:
   2143 		dip->type = AUDIO_MIXER_VALUE;
   2144 		dip->mixer_class = SB_INPUT_CLASS;
   2145 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2146 		strcpy(dip->label.name, "pc_speaker");
   2147 		dip->un.v.num_channels = 1;
   2148 		strcpy(dip->un.v.units.name, AudioNvolume);
   2149 		return 0;
   2150 
   2151 	case SB_INPUT_GAIN:
   2152 		dip->type = AUDIO_MIXER_VALUE;
   2153 		dip->mixer_class = SB_INPUT_CLASS;
   2154 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2155 		strcpy(dip->label.name, AudioNinput);
   2156 		dip->un.v.num_channels = 2;
   2157 		strcpy(dip->un.v.units.name, AudioNvolume);
   2158 		return 0;
   2159 
   2160 	case SB_OUTPUT_GAIN:
   2161 		dip->type = AUDIO_MIXER_VALUE;
   2162 		dip->mixer_class = SB_OUTPUT_CLASS;
   2163 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2164 		strcpy(dip->label.name, AudioNoutput);
   2165 		dip->un.v.num_channels = 2;
   2166 		strcpy(dip->un.v.units.name, AudioNvolume);
   2167 		return 0;
   2168 
   2169 	case SB_AGC:
   2170 		dip->type = AUDIO_MIXER_ENUM;
   2171 		dip->mixer_class = SB_INPUT_CLASS;
   2172 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2173 		strcpy(dip->label.name, "agc");
   2174 		dip->un.e.num_mem = 2;
   2175 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2176 		dip->un.e.member[0].ord = 0;
   2177 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2178 		dip->un.e.member[1].ord = 1;
   2179 		return 0;
   2180 
   2181 	case SB_EQUALIZATION_CLASS:
   2182 		dip->type = AUDIO_MIXER_CLASS;
   2183 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2184 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2185 		strcpy(dip->label.name, AudioCequalization);
   2186 		return 0;
   2187 
   2188 	case SB_CD_IN_MUTE:
   2189 		dip->prev = SB_CD_VOL;
   2190 		dip->next = SB_CD_SWAP;
   2191 		dip->mixer_class = SB_INPUT_CLASS;
   2192 		goto mute;
   2193 
   2194 	case SB_MIC_IN_MUTE:
   2195 		dip->prev = SB_MIC_VOL;
   2196 		dip->next = SB_MIC_SWAP;
   2197 		dip->mixer_class = SB_INPUT_CLASS;
   2198 		goto mute;
   2199 
   2200 	case SB_LINE_IN_MUTE:
   2201 		dip->prev = SB_LINE_IN_VOL;
   2202 		dip->next = SB_LINE_SWAP;
   2203 		dip->mixer_class = SB_INPUT_CLASS;
   2204 		goto mute;
   2205 
   2206 	case SB_MIDI_IN_MUTE:
   2207 		dip->prev = SB_MIDI_VOL;
   2208 		dip->next = SB_MIDI_SWAP;
   2209 		dip->mixer_class = SB_INPUT_CLASS;
   2210 		goto mute;
   2211 
   2212 	case SB_CD_SWAP:
   2213 		dip->prev = SB_CD_IN_MUTE;
   2214 		dip->next = SB_CD_OUT_MUTE;
   2215 		goto swap;
   2216 
   2217 	case SB_MIC_SWAP:
   2218 		dip->prev = SB_MIC_IN_MUTE;
   2219 		dip->next = SB_MIC_OUT_MUTE;
   2220 		goto swap;
   2221 
   2222 	case SB_LINE_SWAP:
   2223 		dip->prev = SB_LINE_IN_MUTE;
   2224 		dip->next = SB_LINE_OUT_MUTE;
   2225 		goto swap;
   2226 
   2227 	case SB_MIDI_SWAP:
   2228 		dip->prev = SB_MIDI_IN_MUTE;
   2229 		dip->next = AUDIO_MIXER_LAST;
   2230 	swap:
   2231 		dip->mixer_class = SB_INPUT_CLASS;
   2232 		strcpy(dip->label.name, AudioNswap);
   2233 		goto mute1;
   2234 
   2235 	case SB_CD_OUT_MUTE:
   2236 		dip->prev = SB_CD_SWAP;
   2237 		dip->next = AUDIO_MIXER_LAST;
   2238 		dip->mixer_class = SB_OUTPUT_CLASS;
   2239 		goto mute;
   2240 
   2241 	case SB_MIC_OUT_MUTE:
   2242 		dip->prev = SB_MIC_SWAP;
   2243 		dip->next = AUDIO_MIXER_LAST;
   2244 		dip->mixer_class = SB_OUTPUT_CLASS;
   2245 		goto mute;
   2246 
   2247 	case SB_LINE_OUT_MUTE:
   2248 		dip->prev = SB_LINE_SWAP;
   2249 		dip->next = AUDIO_MIXER_LAST;
   2250 		dip->mixer_class = SB_OUTPUT_CLASS;
   2251 	mute:
   2252 		strcpy(dip->label.name, AudioNmute);
   2253 	mute1:
   2254 		dip->type = AUDIO_MIXER_ENUM;
   2255 		dip->un.e.num_mem = 2;
   2256 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2257 		dip->un.e.member[0].ord = 0;
   2258 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2259 		dip->un.e.member[1].ord = 1;
   2260 		return 0;
   2261 
   2262 	}
   2263 
   2264 	return ENXIO;
   2265 }
   2266 
   2267 void *
   2268 sb_malloc(addr, direction, size, pool, flags)
   2269 	void *addr;
   2270 	int direction;
   2271 	size_t size;
   2272 	int pool, flags;
   2273 {
   2274 	struct sbdsp_softc *sc = addr;
   2275 	int drq;
   2276 
   2277 	if (sc->sc_drq8 != -1)
   2278 		drq = sc->sc_drq8;
   2279 	else
   2280 		drq = sc->sc_drq16;
   2281 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2282 }
   2283 
   2284 void
   2285 sb_free(addr, ptr, pool)
   2286 	void *addr;
   2287 	void *ptr;
   2288 	int pool;
   2289 {
   2290 	isa_free(ptr, pool);
   2291 }
   2292 
   2293 size_t
   2294 sb_round_buffersize(addr, direction, size)
   2295 	void *addr;
   2296 	int direction;
   2297 	size_t size;
   2298 {
   2299 	struct sbdsp_softc *sc = addr;
   2300 	bus_size_t maxsize;
   2301 
   2302 	if (sc->sc_drq8 != -1)
   2303 		maxsize = sc->sc_drq8_maxsize;
   2304 	else
   2305 		maxsize = sc->sc_drq16_maxsize;
   2306 
   2307 	if (size > maxsize)
   2308 		size = maxsize;
   2309 	return (size);
   2310 }
   2311 
   2312 paddr_t
   2313 sb_mappage(addr, mem, off, prot)
   2314 	void *addr;
   2315 	void *mem;
   2316 	off_t off;
   2317 	int prot;
   2318 {
   2319 	return isa_mappage(mem, off, prot);
   2320 }
   2321 
   2322 int
   2323 sbdsp_get_props(addr)
   2324 	void *addr;
   2325 {
   2326 	struct sbdsp_softc *sc = addr;
   2327 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2328 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2329 }
   2330 
   2331 #if NMPU > 0
   2332 /*
   2333  * MIDI related routines.
   2334  */
   2335 
   2336 int
   2337 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2338 	void *addr;
   2339 	int flags;
   2340 	void (*iintr)__P((void *, int));
   2341 	void (*ointr)__P((void *));
   2342 	void *arg;
   2343 {
   2344 	struct sbdsp_softc *sc = addr;
   2345 
   2346 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2347 
   2348 	if (sc->sc_open != SB_CLOSED)
   2349 		return EBUSY;
   2350 	if (sbdsp_reset(sc) != 0)
   2351 		return EIO;
   2352 
   2353 	sc->sc_open = SB_OPEN_MIDI;
   2354 	sc->sc_openflags = flags;
   2355 
   2356 	if (sc->sc_model >= SB_20)
   2357 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2358 			return EIO;
   2359 
   2360 	sc->sc_intr8 = sbdsp_midi_intr;
   2361 	sc->sc_intrm = iintr;
   2362 	sc->sc_argm = arg;
   2363 
   2364 	return 0;
   2365 }
   2366 
   2367 void
   2368 sbdsp_midi_close(addr)
   2369 	void *addr;
   2370 {
   2371 	struct sbdsp_softc *sc = addr;
   2372 
   2373 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2374 
   2375 	if (sc->sc_model >= SB_20)
   2376 		sbdsp_reset(sc); /* exit UART mode */
   2377 
   2378 	sc->sc_intrm = 0;
   2379 	sc->sc_open = SB_CLOSED;
   2380 }
   2381 
   2382 int
   2383 sbdsp_midi_output(addr, d)
   2384 	void *addr;
   2385 	int d;
   2386 {
   2387 	struct sbdsp_softc *sc = addr;
   2388 
   2389 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2390 		return EIO;
   2391 	if (sbdsp_wdsp(sc, d))
   2392 		return EIO;
   2393 	return 0;
   2394 }
   2395 
   2396 void
   2397 sbdsp_midi_getinfo(addr, mi)
   2398 	void *addr;
   2399 	struct midi_info *mi;
   2400 {
   2401 	struct sbdsp_softc *sc = addr;
   2402 
   2403 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2404 	mi->props = MIDI_PROP_CAN_INPUT;
   2405 }
   2406 
   2407 int
   2408 sbdsp_midi_intr(addr)
   2409 	void *addr;
   2410 {
   2411 	struct sbdsp_softc *sc = addr;
   2412 
   2413 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2414 	return (0);
   2415 }
   2416 
   2417 #endif
   2418 
   2419