sbdsp.c revision 1.107 1 /* $NetBSD: sbdsp.c,v 1.107 2001/02/22 15:23:31 minoura Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84 #include "mpu.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95
96 #include <machine/cpu.h>
97 #include <machine/intr.h>
98 #include <machine/bus.h>
99
100 #include <sys/audioio.h>
101 #include <dev/audio_if.h>
102 #include <dev/midi_if.h>
103 #include <dev/mulaw.h>
104 #include <dev/auconv.h>
105
106 #include <dev/isa/isavar.h>
107 #include <dev/isa/isadmavar.h>
108
109 #include <dev/isa/sbreg.h>
110 #include <dev/isa/sbdspvar.h>
111
112
113 #ifdef AUDIO_DEBUG
114 #define DPRINTF(x) if (sbdspdebug) printf x
115 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
116 int sbdspdebug = 0;
117 #else
118 #define DPRINTF(x)
119 #define DPRINTFN(n,x)
120 #endif
121
122 #ifndef SBDSP_NPOLL
123 #define SBDSP_NPOLL 3000
124 #endif
125
126 struct {
127 int wdsp;
128 int rdsp;
129 int wmidi;
130 } sberr;
131
132 /*
133 * Time constant routines follow. See SBK, section 12.
134 * Although they don't come out and say it (in the docs),
135 * the card clearly uses a 1MHz countdown timer, as the
136 * low-speed formula (p. 12-4) is:
137 * tc = 256 - 10^6 / sr
138 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
139 * and a 256MHz clock is used:
140 * tc = 65536 - 256 * 10^ 6 / sr
141 * Since we can only use the upper byte of the HS TC, the two formulae
142 * are equivalent. (Why didn't they say so?) E.g.,
143 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
144 *
145 * The crossover point (from low- to high-speed modes) is different
146 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
147 *
148 * SBPRO SB20
149 * ----- --------
150 * input ls min 4 KHz 4 KHz
151 * input ls max 23 KHz 13 KHz
152 * input hs max 44.1 KHz 15 KHz
153 * output ls min 4 KHz 4 KHz
154 * output ls max 23 KHz 23 KHz
155 * output hs max 44.1 KHz 44.1 KHz
156 */
157 /* XXX Should we round the tc?
158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
159 */
160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
162
163 struct sbmode {
164 short model;
165 u_char channels;
166 u_char precision;
167 u_short lowrate, highrate;
168 u_char cmd;
169 u_char halt, cont;
170 u_char cmdchan;
171 };
172 static struct sbmode sbpmodes[] = {
173 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
180 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
181 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
183 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
184 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
186 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
187 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
189 #define PLAY16 15 /* must be the index of the next entry in the table */
190 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192 { -1 }
193 };
194 static struct sbmode sbrmodes[] = {
195 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
201 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
202 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
207 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
208 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
210 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212 { -1 }
213 };
214
215 void sbversion __P((struct sbdsp_softc *));
216 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
217 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
218 void sbdsp_pause __P((struct sbdsp_softc *));
219 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void sbdsp_set_ifilter __P((void *, int));
223 int sbdsp_get_ifilter __P((void *));
224
225 int sbdsp_block_output __P((void *));
226 int sbdsp_block_input __P((void *));
227 static int sbdsp_adjust __P((int, int));
228
229 int sbdsp_midi_intr __P((void *));
230
231 static void sbdsp_powerhook __P((int, void*));
232
233 #ifdef AUDIO_DEBUG
234 void sb_printsc __P((struct sbdsp_softc *));
235
236 void
237 sb_printsc(sc)
238 struct sbdsp_softc *sc;
239 {
240 int i;
241
242 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
243 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
244 sc->sc_drq8, sc->sc_drq16,
245 sc->sc_iobase, sc->sc_irq);
246 printf("irate %d itc %x orate %d otc %x\n",
247 sc->sc_i.rate, sc->sc_i.tc,
248 sc->sc_o.rate, sc->sc_o.tc);
249 printf("spkron %u nintr %lu\n",
250 sc->spkr_state, sc->sc_interrupts);
251 printf("intr8 %p intr16 %p\n",
252 sc->sc_intr8, sc->sc_intr16);
253 printf("gain:");
254 for (i = 0; i < SB_NDEVS; i++)
255 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
256 printf("\n");
257 }
258 #endif /* AUDIO_DEBUG */
259
260 /*
261 * Probe / attach routines.
262 */
263
264 /*
265 * Probe for the soundblaster hardware.
266 */
267 int
268 sbdsp_probe(sc)
269 struct sbdsp_softc *sc;
270 {
271
272 if (sbdsp_reset(sc) < 0) {
273 DPRINTF(("sbdsp: couldn't reset card\n"));
274 return 0;
275 }
276 /* if flags set, go and probe the jazz16 stuff */
277 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
278 sbdsp_jazz16_probe(sc);
279 else
280 sbversion(sc);
281 if (sc->sc_model == SB_UNK) {
282 /* Unknown SB model found. */
283 DPRINTF(("sbdsp: unknown SB model found\n"));
284 return 0;
285 }
286 return 1;
287 }
288
289 /*
290 * Try add-on stuff for Jazz16.
291 */
292 void
293 sbdsp_jazz16_probe(sc)
294 struct sbdsp_softc *sc;
295 {
296 static u_char jazz16_irq_conf[16] = {
297 -1, -1, 0x02, 0x03,
298 -1, 0x01, -1, 0x04,
299 -1, 0x02, 0x05, -1,
300 -1, -1, -1, 0x06};
301 static u_char jazz16_drq_conf[8] = {
302 -1, 0x01, -1, 0x02,
303 -1, 0x03, -1, 0x04};
304
305 bus_space_tag_t iot = sc->sc_iot;
306 bus_space_handle_t ioh;
307
308 sbversion(sc);
309
310 DPRINTF(("jazz16 probe\n"));
311
312 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
313 DPRINTF(("bus map failed\n"));
314 return;
315 }
316
317 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
318 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
319 DPRINTF(("drq/irq check failed\n"));
320 goto done; /* give up, we can't do it. */
321 }
322
323 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
324 delay(10000); /* delay 10 ms */
325 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
326 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
327
328 if (sbdsp_reset(sc) < 0) {
329 DPRINTF(("sbdsp_reset check failed\n"));
330 goto done; /* XXX? what else could we do? */
331 }
332
333 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
334 DPRINTF(("read16 setup failed\n"));
335 goto done;
336 }
337
338 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
339 DPRINTF(("read16 failed\n"));
340 goto done;
341 }
342
343 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
344 sc->sc_drq16 = sc->sc_drq8;
345 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
346 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
347 jazz16_drq_conf[sc->sc_drq8]) ||
348 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
349 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
350 } else {
351 DPRINTF(("jazz16 detected!\n"));
352 sc->sc_model = SB_JAZZ;
353 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
354 }
355
356 done:
357 bus_space_unmap(iot, ioh, 1);
358 }
359
360 /*
361 * Attach hardware to driver, attach hardware driver to audio
362 * pseudo-device driver .
363 */
364 void
365 sbdsp_attach(sc)
366 struct sbdsp_softc *sc;
367 {
368 struct audio_params pparams, rparams;
369 int i;
370 u_int v;
371
372 pparams = audio_default;
373 rparams = audio_default;
374 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
375
376 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
377
378 if (sc->sc_mixer_model != SBM_NONE) {
379 /* Reset the mixer.*/
380 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
381 /* And set our own default values */
382 for (i = 0; i < SB_NDEVS; i++) {
383 switch(i) {
384 case SB_MIC_VOL:
385 case SB_LINE_IN_VOL:
386 v = 0;
387 break;
388 case SB_BASS:
389 case SB_TREBLE:
390 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
391 break;
392 case SB_CD_IN_MUTE:
393 case SB_MIC_IN_MUTE:
394 case SB_LINE_IN_MUTE:
395 case SB_MIDI_IN_MUTE:
396 case SB_CD_SWAP:
397 case SB_MIC_SWAP:
398 case SB_LINE_SWAP:
399 case SB_MIDI_SWAP:
400 case SB_CD_OUT_MUTE:
401 case SB_MIC_OUT_MUTE:
402 case SB_LINE_OUT_MUTE:
403 v = 0;
404 break;
405 default:
406 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
407 break;
408 }
409 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
410 sbdsp_set_mixer_gain(sc, i);
411 }
412 sc->in_filter = 0; /* no filters turned on, please */
413 }
414
415 printf(": dsp v%d.%02d%s\n",
416 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
417 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
418
419 sc->sc_fullduplex = ISSB16CLASS(sc) &&
420 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
421 sc->sc_drq8 != sc->sc_drq16;
422
423 if (sc->sc_drq8 != -1)
424 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
425 sc->sc_drq8);
426
427 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
428 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
429 sc->sc_drq16);
430
431 powerhook_establish (sbdsp_powerhook, sc);
432 }
433
434 static void
435 sbdsp_powerhook (why, arg)
436 int why;
437 void *arg;
438 {
439 struct sbdsp_softc *sc = arg;
440 int i;
441
442 if (!sc || why != PWR_RESUME)
443 return;
444
445 /* Reset the mixer. */
446 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
447 for (i = 0; i < SB_NDEVS; i++)
448 sbdsp_set_mixer_gain (sc, i);
449 }
450
451 void
452 sbdsp_mix_write(sc, mixerport, val)
453 struct sbdsp_softc *sc;
454 int mixerport;
455 int val;
456 {
457 bus_space_tag_t iot = sc->sc_iot;
458 bus_space_handle_t ioh = sc->sc_ioh;
459 int s;
460
461 s = splaudio();
462 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
463 delay(20);
464 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
465 delay(30);
466 splx(s);
467 }
468
469 int
470 sbdsp_mix_read(sc, mixerport)
471 struct sbdsp_softc *sc;
472 int mixerport;
473 {
474 bus_space_tag_t iot = sc->sc_iot;
475 bus_space_handle_t ioh = sc->sc_ioh;
476 int val;
477 int s;
478
479 s = splaudio();
480 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
481 delay(20);
482 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
483 delay(30);
484 splx(s);
485 return val;
486 }
487
488 /*
489 * Various routines to interface to higher level audio driver
490 */
491
492 int
493 sbdsp_query_encoding(addr, fp)
494 void *addr;
495 struct audio_encoding *fp;
496 {
497 struct sbdsp_softc *sc = addr;
498 int emul;
499
500 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
501
502 switch (fp->index) {
503 case 0:
504 strcpy(fp->name, AudioEulinear);
505 fp->encoding = AUDIO_ENCODING_ULINEAR;
506 fp->precision = 8;
507 fp->flags = 0;
508 return 0;
509 case 1:
510 strcpy(fp->name, AudioEmulaw);
511 fp->encoding = AUDIO_ENCODING_ULAW;
512 fp->precision = 8;
513 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
514 return 0;
515 case 2:
516 strcpy(fp->name, AudioEalaw);
517 fp->encoding = AUDIO_ENCODING_ALAW;
518 fp->precision = 8;
519 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
520 return 0;
521 case 3:
522 strcpy(fp->name, AudioEslinear);
523 fp->encoding = AUDIO_ENCODING_SLINEAR;
524 fp->precision = 8;
525 fp->flags = emul;
526 return 0;
527 }
528 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
529 return EINVAL;
530
531 switch(fp->index) {
532 case 4:
533 strcpy(fp->name, AudioEslinear_le);
534 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
535 fp->precision = 16;
536 fp->flags = 0;
537 return 0;
538 case 5:
539 strcpy(fp->name, AudioEulinear_le);
540 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
541 fp->precision = 16;
542 fp->flags = emul;
543 return 0;
544 case 6:
545 strcpy(fp->name, AudioEslinear_be);
546 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
547 fp->precision = 16;
548 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
549 return 0;
550 case 7:
551 strcpy(fp->name, AudioEulinear_be);
552 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
553 fp->precision = 16;
554 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
555 return 0;
556 default:
557 return EINVAL;
558 }
559 return 0;
560 }
561
562 int
563 sbdsp_set_params(addr, setmode, usemode, play, rec)
564 void *addr;
565 int setmode, usemode;
566 struct audio_params *play, *rec;
567 {
568 struct sbdsp_softc *sc = addr;
569 struct sbmode *m;
570 u_int rate, tc, bmode;
571 void (*swcode) __P((void *, u_char *buf, int cnt));
572 int factor;
573 int model;
574 int chan;
575 struct audio_params *p;
576 int mode;
577
578 if (sc->sc_open == SB_OPEN_MIDI)
579 return EBUSY;
580
581 /* Later models work like SB16. */
582 model = min(sc->sc_model, SB_16);
583
584 /*
585 * Prior to the SB16, we have only one clock, so make the sample
586 * rates match.
587 */
588 if (!ISSB16CLASS(sc) &&
589 play->sample_rate != rec->sample_rate &&
590 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
591 if (setmode == AUMODE_PLAY) {
592 rec->sample_rate = play->sample_rate;
593 setmode |= AUMODE_RECORD;
594 } else if (setmode == AUMODE_RECORD) {
595 play->sample_rate = rec->sample_rate;
596 setmode |= AUMODE_PLAY;
597 } else
598 return (EINVAL);
599 }
600
601 /* Set first record info, then play info */
602 for (mode = AUMODE_RECORD; mode != -1;
603 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
604 if ((setmode & mode) == 0)
605 continue;
606
607 p = mode == AUMODE_PLAY ? play : rec;
608 /* Locate proper commands */
609 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
610 m->model != -1; m++) {
611 if (model == m->model &&
612 p->channels == m->channels &&
613 p->precision == m->precision &&
614 p->sample_rate >= m->lowrate &&
615 p->sample_rate <= m->highrate)
616 break;
617 }
618 if (m->model == -1)
619 return EINVAL;
620 rate = p->sample_rate;
621 swcode = 0;
622 factor = 1;
623 tc = 1;
624 bmode = -1;
625 if (model == SB_16) {
626 switch (p->encoding) {
627 case AUDIO_ENCODING_SLINEAR_BE:
628 if (p->precision == 16)
629 swcode = swap_bytes;
630 /* fall into */
631 case AUDIO_ENCODING_SLINEAR_LE:
632 bmode = SB_BMODE_SIGNED;
633 break;
634 case AUDIO_ENCODING_ULINEAR_BE:
635 if (p->precision == 16)
636 swcode = swap_bytes;
637 /* fall into */
638 case AUDIO_ENCODING_ULINEAR_LE:
639 bmode = SB_BMODE_UNSIGNED;
640 break;
641 case AUDIO_ENCODING_ULAW:
642 if (mode == AUMODE_PLAY) {
643 swcode = mulaw_to_ulinear16_le;
644 factor = 2;
645 m = &sbpmodes[PLAY16];
646 } else
647 swcode = ulinear8_to_mulaw;
648 bmode = SB_BMODE_UNSIGNED;
649 break;
650 case AUDIO_ENCODING_ALAW:
651 if (mode == AUMODE_PLAY) {
652 swcode = alaw_to_ulinear16_le;
653 factor = 2;
654 m = &sbpmodes[PLAY16];
655 } else
656 swcode = ulinear8_to_alaw;
657 bmode = SB_BMODE_UNSIGNED;
658 break;
659 default:
660 return EINVAL;
661 }
662 if (p->channels == 2)
663 bmode |= SB_BMODE_STEREO;
664 } else if (m->model == SB_JAZZ && m->precision == 16) {
665 switch (p->encoding) {
666 case AUDIO_ENCODING_SLINEAR_LE:
667 break;
668 case AUDIO_ENCODING_ULINEAR_LE:
669 swcode = change_sign16_le;
670 break;
671 case AUDIO_ENCODING_SLINEAR_BE:
672 swcode = swap_bytes;
673 break;
674 case AUDIO_ENCODING_ULINEAR_BE:
675 swcode = mode == AUMODE_PLAY ?
676 swap_bytes_change_sign16_le :
677 change_sign16_swap_bytes_le;
678 break;
679 case AUDIO_ENCODING_ULAW:
680 swcode = mode == AUMODE_PLAY ?
681 mulaw_to_ulinear8 : ulinear8_to_mulaw;
682 break;
683 case AUDIO_ENCODING_ALAW:
684 swcode = mode == AUMODE_PLAY ?
685 alaw_to_ulinear8 : ulinear8_to_alaw;
686 break;
687 default:
688 return EINVAL;
689 }
690 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
691 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
692 } else {
693 switch (p->encoding) {
694 case AUDIO_ENCODING_SLINEAR_BE:
695 case AUDIO_ENCODING_SLINEAR_LE:
696 swcode = change_sign8;
697 break;
698 case AUDIO_ENCODING_ULINEAR_BE:
699 case AUDIO_ENCODING_ULINEAR_LE:
700 break;
701 case AUDIO_ENCODING_ULAW:
702 swcode = mode == AUMODE_PLAY ?
703 mulaw_to_ulinear8 : ulinear8_to_mulaw;
704 break;
705 case AUDIO_ENCODING_ALAW:
706 swcode = mode == AUMODE_PLAY ?
707 alaw_to_ulinear8 : ulinear8_to_alaw;
708 break;
709 default:
710 return EINVAL;
711 }
712 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
713 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
714 }
715
716 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
717 if (mode == AUMODE_PLAY) {
718 sc->sc_o.rate = rate;
719 sc->sc_o.tc = tc;
720 sc->sc_o.modep = m;
721 sc->sc_o.bmode = bmode;
722 sc->sc_o.dmachan = chan;
723 } else {
724 sc->sc_i.rate = rate;
725 sc->sc_i.tc = tc;
726 sc->sc_i.modep = m;
727 sc->sc_i.bmode = bmode;
728 sc->sc_i.dmachan = chan;
729 }
730
731 p->sw_code = swcode;
732 p->factor = factor;
733 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
734 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
735 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
736
737 }
738
739 if (sc->sc_fullduplex &&
740 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
741 sc->sc_i.dmachan == sc->sc_o.dmachan) {
742 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
743 if (sc->sc_o.dmachan == sc->sc_drq8) {
744 /* Use 16 bit DMA for playing by expanding the samples. */
745 play->sw_code = linear8_to_linear16_le;
746 play->factor = 2;
747 sc->sc_o.modep = &sbpmodes[PLAY16];
748 sc->sc_o.dmachan = sc->sc_drq16;
749 } else {
750 return EINVAL;
751 }
752 }
753 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
754 sc->sc_i.dmachan, sc->sc_o.dmachan));
755
756 return (0);
757 }
758
759 void
760 sbdsp_set_ifilter(addr, which)
761 void *addr;
762 int which;
763 {
764 struct sbdsp_softc *sc = addr;
765 int mixval;
766
767 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
768 switch (which) {
769 case 0:
770 mixval |= SBP_FILTER_OFF;
771 break;
772 case SB_TREBLE:
773 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
774 break;
775 case SB_BASS:
776 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
777 break;
778 default:
779 return;
780 }
781 sc->in_filter = mixval & SBP_IFILTER_MASK;
782 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
783 }
784
785 int
786 sbdsp_get_ifilter(addr)
787 void *addr;
788 {
789 struct sbdsp_softc *sc = addr;
790
791 sc->in_filter =
792 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
793 switch (sc->in_filter) {
794 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
795 return SB_TREBLE;
796 case SBP_FILTER_ON|SBP_IFILTER_LOW:
797 return SB_BASS;
798 default:
799 return 0;
800 }
801 }
802
803 int
804 sbdsp_set_in_ports(sc, mask)
805 struct sbdsp_softc *sc;
806 int mask;
807 {
808 int bitsl, bitsr;
809 int sbport;
810
811 if (sc->sc_open == SB_OPEN_MIDI)
812 return EBUSY;
813
814 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
815 sc->sc_mixer_model, mask));
816
817 switch(sc->sc_mixer_model) {
818 case SBM_NONE:
819 return EINVAL;
820 case SBM_CT1335:
821 if (mask != (1 << SB_MIC_VOL))
822 return EINVAL;
823 break;
824 case SBM_CT1345:
825 switch (mask) {
826 case 1 << SB_MIC_VOL:
827 sbport = SBP_FROM_MIC;
828 break;
829 case 1 << SB_LINE_IN_VOL:
830 sbport = SBP_FROM_LINE;
831 break;
832 case 1 << SB_CD_VOL:
833 sbport = SBP_FROM_CD;
834 break;
835 default:
836 return (EINVAL);
837 }
838 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
839 break;
840 case SBM_CT1XX5:
841 case SBM_CT1745:
842 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
843 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
844 return EINVAL;
845 bitsr = 0;
846 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
847 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
848 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
849 bitsl = SB_SRC_R_TO_L(bitsr);
850 if (mask & (1<<SB_MIC_VOL)) {
851 bitsl |= SBP_MIC_SRC;
852 bitsr |= SBP_MIC_SRC;
853 }
854 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
855 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
856 break;
857 }
858 sc->in_mask = mask;
859
860 return 0;
861 }
862
863 int
864 sbdsp_speaker_ctl(addr, newstate)
865 void *addr;
866 int newstate;
867 {
868 struct sbdsp_softc *sc = addr;
869
870 if (sc->sc_open == SB_OPEN_MIDI)
871 return EBUSY;
872
873 if ((newstate == SPKR_ON) &&
874 (sc->spkr_state == SPKR_OFF)) {
875 sbdsp_spkron(sc);
876 sc->spkr_state = SPKR_ON;
877 }
878 if ((newstate == SPKR_OFF) &&
879 (sc->spkr_state == SPKR_ON)) {
880 sbdsp_spkroff(sc);
881 sc->spkr_state = SPKR_OFF;
882 }
883 return 0;
884 }
885
886 int
887 sbdsp_round_blocksize(addr, blk)
888 void *addr;
889 int blk;
890 {
891 return blk & -4; /* round to biggest sample size */
892 }
893
894 int
895 sbdsp_open(addr, flags)
896 void *addr;
897 int flags;
898 {
899 struct sbdsp_softc *sc = addr;
900 int error, state;
901
902 DPRINTF(("sbdsp_open: sc=%p\n", sc));
903
904 if (sc->sc_open != SB_CLOSED)
905 return (EBUSY);
906 sc->sc_open = SB_OPEN_AUDIO;
907 sc->sc_openflags = flags;
908 state = 0;
909
910 if (sc->sc_drq8 != -1) {
911 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
912 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
913 if (error) {
914 printf("%s: can't create map for drq %d\n",
915 sc->sc_dev.dv_xname, sc->sc_drq8);
916 goto bad;
917 }
918 state |= 1;
919 }
920 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
921 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
922 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
923 if (error) {
924 printf("%s: can't create map for drq %d\n",
925 sc->sc_dev.dv_xname, sc->sc_drq16);
926 goto bad;
927 }
928 state |= 2;
929 }
930
931 if (sbdsp_reset(sc) != 0) {
932 error = EIO;
933 goto bad;
934 }
935
936 if (ISSBPRO(sc) &&
937 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
938 DPRINTF(("sbdsp_open: can't set mono mode\n"));
939 /* we'll readjust when it's time for DMA. */
940 }
941
942 /*
943 * Leave most things as they were; users must change things if
944 * the previous process didn't leave it they way they wanted.
945 * Looked at another way, it's easy to set up a configuration
946 * in one program and leave it for another to inherit.
947 */
948 DPRINTF(("sbdsp_open: opened\n"));
949
950 return (0);
951
952 bad:
953 if (state & 1)
954 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
955 if (state & 2)
956 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
957
958 sc->sc_open = SB_CLOSED;
959 return (error);
960 }
961
962 void
963 sbdsp_close(addr)
964 void *addr;
965 {
966 struct sbdsp_softc *sc = addr;
967
968 DPRINTF(("sbdsp_close: sc=%p\n", sc));
969
970 sbdsp_spkroff(sc);
971 sc->spkr_state = SPKR_OFF;
972
973 sbdsp_halt_output(sc);
974 sbdsp_halt_input(sc);
975
976 sc->sc_intr8 = 0;
977 sc->sc_intr16 = 0;
978
979 if (sc->sc_drq8 != -1)
980 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
981 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
982 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
983
984 sc->sc_open = SB_CLOSED;
985 DPRINTF(("sbdsp_close: closed\n"));
986 }
987
988 /*
989 * Lower-level routines
990 */
991
992 /*
993 * Reset the card.
994 * Return non-zero if the card isn't detected.
995 */
996 int
997 sbdsp_reset(sc)
998 struct sbdsp_softc *sc;
999 {
1000 bus_space_tag_t iot = sc->sc_iot;
1001 bus_space_handle_t ioh = sc->sc_ioh;
1002
1003 sc->sc_intr8 = 0;
1004 sc->sc_intr16 = 0;
1005 sc->sc_intrm = 0;
1006
1007 /*
1008 * See SBK, section 11.3.
1009 * We pulse a reset signal into the card.
1010 * Gee, what a brilliant hardware design.
1011 */
1012 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1013 delay(10);
1014 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1015 delay(30);
1016 if (sbdsp_rdsp(sc) != SB_MAGIC)
1017 return -1;
1018
1019 return 0;
1020 }
1021
1022 /*
1023 * Write a byte to the dsp.
1024 * We are at the mercy of the card as we use a
1025 * polling loop and wait until it can take the byte.
1026 */
1027 int
1028 sbdsp_wdsp(sc, v)
1029 struct sbdsp_softc *sc;
1030 int v;
1031 {
1032 bus_space_tag_t iot = sc->sc_iot;
1033 bus_space_handle_t ioh = sc->sc_ioh;
1034 int i;
1035 u_char x;
1036
1037 for (i = SBDSP_NPOLL; --i >= 0; ) {
1038 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1039 delay(10);
1040 if ((x & SB_DSP_BUSY) == 0) {
1041 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1042 delay(10);
1043 return 0;
1044 }
1045 }
1046 ++sberr.wdsp;
1047 return -1;
1048 }
1049
1050 /*
1051 * Read a byte from the DSP, using polling.
1052 */
1053 int
1054 sbdsp_rdsp(sc)
1055 struct sbdsp_softc *sc;
1056 {
1057 bus_space_tag_t iot = sc->sc_iot;
1058 bus_space_handle_t ioh = sc->sc_ioh;
1059 int i;
1060 u_char x;
1061
1062 for (i = SBDSP_NPOLL; --i >= 0; ) {
1063 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1064 delay(10);
1065 if (x & SB_DSP_READY) {
1066 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1067 delay(10);
1068 return x;
1069 }
1070 }
1071 ++sberr.rdsp;
1072 return -1;
1073 }
1074
1075 void
1076 sbdsp_pause(sc)
1077 struct sbdsp_softc *sc;
1078 {
1079
1080 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1081 }
1082
1083 /*
1084 * Turn on the speaker. The SBK documention says this operation
1085 * can take up to 1/10 of a second. Higher level layers should
1086 * probably let the task sleep for this amount of time after
1087 * calling here. Otherwise, things might not work (because
1088 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1089 *
1090 * These engineers had their heads up their ass when
1091 * they designed this card.
1092 */
1093 void
1094 sbdsp_spkron(sc)
1095 struct sbdsp_softc *sc;
1096 {
1097 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1098 sbdsp_pause(sc);
1099 }
1100
1101 /*
1102 * Turn off the speaker; see comment above.
1103 */
1104 void
1105 sbdsp_spkroff(sc)
1106 struct sbdsp_softc *sc;
1107 {
1108 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1109 sbdsp_pause(sc);
1110 }
1111
1112 /*
1113 * Read the version number out of the card.
1114 * Store version information in the softc.
1115 */
1116 void
1117 sbversion(sc)
1118 struct sbdsp_softc *sc;
1119 {
1120 int v;
1121
1122 sc->sc_model = SB_UNK;
1123 sc->sc_version = 0;
1124 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1125 return;
1126 v = sbdsp_rdsp(sc) << 8;
1127 v |= sbdsp_rdsp(sc);
1128 if (v < 0)
1129 return;
1130 sc->sc_version = v;
1131 switch(SBVER_MAJOR(v)) {
1132 case 1:
1133 sc->sc_mixer_model = SBM_NONE;
1134 sc->sc_model = SB_1;
1135 break;
1136 case 2:
1137 /* Some SB2 have a mixer, some don't. */
1138 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1139 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1140 /* Check if we can read back the mixer values. */
1141 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1142 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1143 sc->sc_mixer_model = SBM_CT1335;
1144 else
1145 sc->sc_mixer_model = SBM_NONE;
1146 if (SBVER_MINOR(v) == 0)
1147 sc->sc_model = SB_20;
1148 else
1149 sc->sc_model = SB_2x;
1150 break;
1151 case 3:
1152 sc->sc_mixer_model = SBM_CT1345;
1153 sc->sc_model = SB_PRO;
1154 break;
1155 case 4:
1156 #if 0
1157 /* XXX This does not work */
1158 /* Most SB16 have a tone controls, but some don't. */
1159 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1160 /* Check if we can read back the mixer value. */
1161 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1162 sc->sc_mixer_model = SBM_CT1745;
1163 else
1164 sc->sc_mixer_model = SBM_CT1XX5;
1165 #else
1166 sc->sc_mixer_model = SBM_CT1745;
1167 #endif
1168 #if 0
1169 /* XXX figure out a good way of determining the model */
1170 /* XXX what about SB_32 */
1171 if (SBVER_MINOR(v) == 16)
1172 sc->sc_model = SB_64;
1173 else
1174 #endif
1175 sc->sc_model = SB_16;
1176 break;
1177 }
1178 }
1179
1180 int
1181 sbdsp_set_timeconst(sc, tc)
1182 struct sbdsp_softc *sc;
1183 int tc;
1184 {
1185 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1186
1187 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1188 sbdsp_wdsp(sc, tc) < 0)
1189 return EIO;
1190
1191 return 0;
1192 }
1193
1194 int
1195 sbdsp16_set_rate(sc, cmd, rate)
1196 struct sbdsp_softc *sc;
1197 int cmd, rate;
1198 {
1199 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1200
1201 if (sbdsp_wdsp(sc, cmd) < 0 ||
1202 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1203 sbdsp_wdsp(sc, rate) < 0)
1204 return EIO;
1205 return 0;
1206 }
1207
1208 int
1209 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1210 void *addr;
1211 void *start, *end;
1212 int blksize;
1213 void (*intr) __P((void *));
1214 void *arg;
1215 struct audio_params *param;
1216 {
1217 struct sbdsp_softc *sc = addr;
1218 int stereo = param->channels == 2;
1219 int width = param->precision * param->factor;
1220 int filter;
1221
1222 #ifdef DIAGNOSTIC
1223 if (stereo && (blksize & 1)) {
1224 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1225 return (EIO);
1226 }
1227 if (sc->sc_i.run != SB_NOTRUNNING)
1228 printf("sbdsp_trigger_input: already running\n");
1229 #endif
1230
1231 sc->sc_intrr = intr;
1232 sc->sc_argr = arg;
1233
1234 if (width == 8) {
1235 #ifdef DIAGNOSTIC
1236 if (sc->sc_i.dmachan != sc->sc_drq8) {
1237 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1238 width, sc->sc_i.dmachan);
1239 return (EIO);
1240 }
1241 #endif
1242 sc->sc_intr8 = sbdsp_block_input;
1243 } else {
1244 #ifdef DIAGNOSTIC
1245 if (sc->sc_i.dmachan != sc->sc_drq16) {
1246 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1247 width, sc->sc_i.dmachan);
1248 return (EIO);
1249 }
1250 #endif
1251 sc->sc_intr16 = sbdsp_block_input;
1252 }
1253
1254 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1255 blksize >>= 1;
1256 --blksize;
1257 sc->sc_i.blksize = blksize;
1258
1259 if (ISSBPRO(sc)) {
1260 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1261 return (EIO);
1262 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1263 sbdsp_mix_write(sc, SBP_INFILTER,
1264 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1265 filter);
1266 }
1267
1268 if (ISSB16CLASS(sc)) {
1269 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1270 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1271 sc->sc_i.rate));
1272 return (EIO);
1273 }
1274 } else {
1275 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1276 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1277 sc->sc_i.rate));
1278 return (EIO);
1279 }
1280 }
1281
1282 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1283 start, end, sc->sc_i.dmachan));
1284 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1285 (char *)end - (char *)start, NULL,
1286 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1287
1288 return sbdsp_block_input(addr);
1289 }
1290
1291 int
1292 sbdsp_block_input(addr)
1293 void *addr;
1294 {
1295 struct sbdsp_softc *sc = addr;
1296 int cc = sc->sc_i.blksize;
1297
1298 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1299
1300 if (sc->sc_i.run != SB_NOTRUNNING)
1301 sc->sc_intrr(sc->sc_argr);
1302
1303 if (sc->sc_model == SB_1) {
1304 /* Non-looping mode, start DMA */
1305 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1306 sbdsp_wdsp(sc, cc) < 0 ||
1307 sbdsp_wdsp(sc, cc >> 8) < 0) {
1308 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1309 return (EIO);
1310 }
1311 sc->sc_i.run = SB_RUNNING;
1312 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1313 /* Initialize looping PCM */
1314 if (ISSB16CLASS(sc)) {
1315 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1316 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1317 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1318 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1319 sbdsp_wdsp(sc, cc) < 0 ||
1320 sbdsp_wdsp(sc, cc >> 8) < 0) {
1321 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1322 return (EIO);
1323 }
1324 } else {
1325 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1326 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1327 sbdsp_wdsp(sc, cc) < 0 ||
1328 sbdsp_wdsp(sc, cc >> 8) < 0) {
1329 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1330 return (EIO);
1331 }
1332 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1333 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1334 return (EIO);
1335 }
1336 }
1337 sc->sc_i.run = SB_LOOPING;
1338 }
1339
1340 return (0);
1341 }
1342
1343 int
1344 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1345 void *addr;
1346 void *start, *end;
1347 int blksize;
1348 void (*intr) __P((void *));
1349 void *arg;
1350 struct audio_params *param;
1351 {
1352 struct sbdsp_softc *sc = addr;
1353 int stereo = param->channels == 2;
1354 int width = param->precision * param->factor;
1355 int cmd;
1356
1357 #ifdef DIAGNOSTIC
1358 if (stereo && (blksize & 1)) {
1359 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1360 return (EIO);
1361 }
1362 if (sc->sc_o.run != SB_NOTRUNNING)
1363 printf("sbdsp_trigger_output: already running\n");
1364 #endif
1365
1366 sc->sc_intrp = intr;
1367 sc->sc_argp = arg;
1368
1369 if (width == 8) {
1370 #ifdef DIAGNOSTIC
1371 if (sc->sc_o.dmachan != sc->sc_drq8) {
1372 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1373 width, sc->sc_o.dmachan);
1374 return (EIO);
1375 }
1376 #endif
1377 sc->sc_intr8 = sbdsp_block_output;
1378 } else {
1379 #ifdef DIAGNOSTIC
1380 if (sc->sc_o.dmachan != sc->sc_drq16) {
1381 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1382 width, sc->sc_o.dmachan);
1383 return (EIO);
1384 }
1385 #endif
1386 sc->sc_intr16 = sbdsp_block_output;
1387 }
1388
1389 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1390 blksize >>= 1;
1391 --blksize;
1392 sc->sc_o.blksize = blksize;
1393
1394 if (ISSBPRO(sc)) {
1395 /* make sure we re-set stereo mixer bit when we start output. */
1396 sbdsp_mix_write(sc, SBP_STEREO,
1397 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1398 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1399 cmd = sc->sc_o.modep->cmdchan;
1400 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1401 return (EIO);
1402 }
1403
1404 if (ISSB16CLASS(sc)) {
1405 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1406 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1407 sc->sc_o.rate));
1408 return (EIO);
1409 }
1410 } else {
1411 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1412 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1413 sc->sc_o.rate));
1414 return (EIO);
1415 }
1416 }
1417
1418 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1419 start, end, sc->sc_o.dmachan));
1420 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1421 (char *)end - (char *)start, NULL,
1422 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1423
1424 return sbdsp_block_output(addr);
1425 }
1426
1427 int
1428 sbdsp_block_output(addr)
1429 void *addr;
1430 {
1431 struct sbdsp_softc *sc = addr;
1432 int cc = sc->sc_o.blksize;
1433
1434 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1435
1436 if (sc->sc_o.run != SB_NOTRUNNING)
1437 sc->sc_intrp(sc->sc_argp);
1438
1439 if (sc->sc_model == SB_1) {
1440 /* Non-looping mode, initialized. Start DMA and PCM */
1441 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1442 sbdsp_wdsp(sc, cc) < 0 ||
1443 sbdsp_wdsp(sc, cc >> 8) < 0) {
1444 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1445 return (EIO);
1446 }
1447 sc->sc_o.run = SB_RUNNING;
1448 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1449 /* Initialize looping PCM */
1450 if (ISSB16CLASS(sc)) {
1451 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1452 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1453 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1454 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1455 sbdsp_wdsp(sc, cc) < 0 ||
1456 sbdsp_wdsp(sc, cc >> 8) < 0) {
1457 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1458 return (EIO);
1459 }
1460 } else {
1461 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1462 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1463 sbdsp_wdsp(sc, cc) < 0 ||
1464 sbdsp_wdsp(sc, cc >> 8) < 0) {
1465 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1466 return (EIO);
1467 }
1468 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1469 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1470 return (EIO);
1471 }
1472 }
1473 sc->sc_o.run = SB_LOOPING;
1474 }
1475
1476 return (0);
1477 }
1478
1479 int
1480 sbdsp_halt_output(addr)
1481 void *addr;
1482 {
1483 struct sbdsp_softc *sc = addr;
1484
1485 if (sc->sc_o.run != SB_NOTRUNNING) {
1486 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1487 printf("sbdsp_halt_output: failed to halt\n");
1488 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1489 sc->sc_o.run = SB_NOTRUNNING;
1490 }
1491
1492 return (0);
1493 }
1494
1495 int
1496 sbdsp_halt_input(addr)
1497 void *addr;
1498 {
1499 struct sbdsp_softc *sc = addr;
1500
1501 if (sc->sc_i.run != SB_NOTRUNNING) {
1502 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1503 printf("sbdsp_halt_input: failed to halt\n");
1504 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1505 sc->sc_i.run = SB_NOTRUNNING;
1506 }
1507
1508 return (0);
1509 }
1510
1511 /*
1512 * Only the DSP unit on the sound blaster generates interrupts.
1513 * There are three cases of interrupt: reception of a midi byte
1514 * (when mode is enabled), completion of dma transmission, or
1515 * completion of a dma reception.
1516 *
1517 * If there is interrupt sharing or a spurious interrupt occurs
1518 * there is no way to distinguish this on an SB2. So if you have
1519 * an SB2 and experience problems, buy an SB16 (it's only $40).
1520 */
1521 int
1522 sbdsp_intr(arg)
1523 void *arg;
1524 {
1525 struct sbdsp_softc *sc = arg;
1526 u_char irq;
1527
1528 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1529 sc->sc_intr8, sc->sc_intr16));
1530 if (ISSB16CLASS(sc)) {
1531 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1532 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1533 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1534 return 0;
1535 }
1536 } else {
1537 /* XXXX CHECK FOR INTERRUPT */
1538 irq = SBP_IRQ_DMA8;
1539 }
1540
1541 sc->sc_interrupts++;
1542 delay(10); /* XXX why? */
1543
1544 /* clear interrupt */
1545 if (irq & SBP_IRQ_DMA8) {
1546 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1547 if (sc->sc_intr8)
1548 sc->sc_intr8(arg);
1549 }
1550 if (irq & SBP_IRQ_DMA16) {
1551 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1552 if (sc->sc_intr16)
1553 sc->sc_intr16(arg);
1554 }
1555 #if NMPU > 0
1556 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1557 mpu_intr(sc->sc_mpudev);
1558 }
1559 #endif
1560 return 1;
1561 }
1562
1563 /* Like val & mask, but make sure the result is correctly rounded. */
1564 #define MAXVAL 256
1565 static int
1566 sbdsp_adjust(val, mask)
1567 int val, mask;
1568 {
1569 val += (MAXVAL - mask) >> 1;
1570 if (val >= MAXVAL)
1571 val = MAXVAL-1;
1572 return val & mask;
1573 }
1574
1575 void
1576 sbdsp_set_mixer_gain(sc, port)
1577 struct sbdsp_softc *sc;
1578 int port;
1579 {
1580 int src, gain;
1581
1582 switch(sc->sc_mixer_model) {
1583 case SBM_NONE:
1584 return;
1585 case SBM_CT1335:
1586 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1587 switch(port) {
1588 case SB_MASTER_VOL:
1589 src = SBP_1335_MASTER_VOL;
1590 break;
1591 case SB_MIDI_VOL:
1592 src = SBP_1335_MIDI_VOL;
1593 break;
1594 case SB_CD_VOL:
1595 src = SBP_1335_CD_VOL;
1596 break;
1597 case SB_VOICE_VOL:
1598 src = SBP_1335_VOICE_VOL;
1599 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1600 break;
1601 default:
1602 return;
1603 }
1604 sbdsp_mix_write(sc, src, gain);
1605 break;
1606 case SBM_CT1345:
1607 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1608 sc->gain[port][SB_RIGHT]);
1609 switch (port) {
1610 case SB_MIC_VOL:
1611 src = SBP_MIC_VOL;
1612 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1613 break;
1614 case SB_MASTER_VOL:
1615 src = SBP_MASTER_VOL;
1616 break;
1617 case SB_LINE_IN_VOL:
1618 src = SBP_LINE_VOL;
1619 break;
1620 case SB_VOICE_VOL:
1621 src = SBP_VOICE_VOL;
1622 break;
1623 case SB_MIDI_VOL:
1624 src = SBP_MIDI_VOL;
1625 break;
1626 case SB_CD_VOL:
1627 src = SBP_CD_VOL;
1628 break;
1629 default:
1630 return;
1631 }
1632 sbdsp_mix_write(sc, src, gain);
1633 break;
1634 case SBM_CT1XX5:
1635 case SBM_CT1745:
1636 switch (port) {
1637 case SB_MIC_VOL:
1638 src = SB16P_MIC_L;
1639 break;
1640 case SB_MASTER_VOL:
1641 src = SB16P_MASTER_L;
1642 break;
1643 case SB_LINE_IN_VOL:
1644 src = SB16P_LINE_L;
1645 break;
1646 case SB_VOICE_VOL:
1647 src = SB16P_VOICE_L;
1648 break;
1649 case SB_MIDI_VOL:
1650 src = SB16P_MIDI_L;
1651 break;
1652 case SB_CD_VOL:
1653 src = SB16P_CD_L;
1654 break;
1655 case SB_INPUT_GAIN:
1656 src = SB16P_INPUT_GAIN_L;
1657 break;
1658 case SB_OUTPUT_GAIN:
1659 src = SB16P_OUTPUT_GAIN_L;
1660 break;
1661 case SB_TREBLE:
1662 src = SB16P_TREBLE_L;
1663 break;
1664 case SB_BASS:
1665 src = SB16P_BASS_L;
1666 break;
1667 case SB_PCSPEAKER:
1668 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1669 return;
1670 default:
1671 return;
1672 }
1673 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1674 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1675 break;
1676 }
1677 }
1678
1679 int
1680 sbdsp_mixer_set_port(addr, cp)
1681 void *addr;
1682 mixer_ctrl_t *cp;
1683 {
1684 struct sbdsp_softc *sc = addr;
1685 int lgain, rgain;
1686 int mask, bits;
1687 int lmask, rmask, lbits, rbits;
1688 int mute, swap;
1689
1690 if (sc->sc_open == SB_OPEN_MIDI)
1691 return EBUSY;
1692
1693 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1694 cp->un.value.num_channels));
1695
1696 if (sc->sc_mixer_model == SBM_NONE)
1697 return EINVAL;
1698
1699 switch (cp->dev) {
1700 case SB_TREBLE:
1701 case SB_BASS:
1702 if (sc->sc_mixer_model == SBM_CT1345 ||
1703 sc->sc_mixer_model == SBM_CT1XX5) {
1704 if (cp->type != AUDIO_MIXER_ENUM)
1705 return EINVAL;
1706 switch (cp->dev) {
1707 case SB_TREBLE:
1708 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1709 return 0;
1710 case SB_BASS:
1711 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1712 return 0;
1713 }
1714 }
1715 case SB_PCSPEAKER:
1716 case SB_INPUT_GAIN:
1717 case SB_OUTPUT_GAIN:
1718 if (!ISSBM1745(sc))
1719 return EINVAL;
1720 case SB_MIC_VOL:
1721 case SB_LINE_IN_VOL:
1722 if (sc->sc_mixer_model == SBM_CT1335)
1723 return EINVAL;
1724 case SB_VOICE_VOL:
1725 case SB_MIDI_VOL:
1726 case SB_CD_VOL:
1727 case SB_MASTER_VOL:
1728 if (cp->type != AUDIO_MIXER_VALUE)
1729 return EINVAL;
1730
1731 /*
1732 * All the mixer ports are stereo except for the microphone.
1733 * If we get a single-channel gain value passed in, then we
1734 * duplicate it to both left and right channels.
1735 */
1736
1737 switch (cp->dev) {
1738 case SB_MIC_VOL:
1739 if (cp->un.value.num_channels != 1)
1740 return EINVAL;
1741
1742 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1743 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1744 break;
1745 case SB_PCSPEAKER:
1746 if (cp->un.value.num_channels != 1)
1747 return EINVAL;
1748 /* fall into */
1749 case SB_INPUT_GAIN:
1750 case SB_OUTPUT_GAIN:
1751 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1752 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1753 break;
1754 default:
1755 switch (cp->un.value.num_channels) {
1756 case 1:
1757 lgain = rgain = SB_ADJUST_GAIN(sc,
1758 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1759 break;
1760 case 2:
1761 if (sc->sc_mixer_model == SBM_CT1335)
1762 return EINVAL;
1763 lgain = SB_ADJUST_GAIN(sc,
1764 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1765 rgain = SB_ADJUST_GAIN(sc,
1766 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1767 break;
1768 default:
1769 return EINVAL;
1770 }
1771 break;
1772 }
1773 sc->gain[cp->dev][SB_LEFT] = lgain;
1774 sc->gain[cp->dev][SB_RIGHT] = rgain;
1775
1776 sbdsp_set_mixer_gain(sc, cp->dev);
1777 break;
1778
1779 case SB_RECORD_SOURCE:
1780 if (ISSBM1745(sc)) {
1781 if (cp->type != AUDIO_MIXER_SET)
1782 return EINVAL;
1783 return sbdsp_set_in_ports(sc, cp->un.mask);
1784 } else {
1785 if (cp->type != AUDIO_MIXER_ENUM)
1786 return EINVAL;
1787 sc->in_port = cp->un.ord;
1788 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1789 }
1790 break;
1791
1792 case SB_AGC:
1793 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1794 return EINVAL;
1795 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1796 break;
1797
1798 case SB_CD_OUT_MUTE:
1799 mask = SB16P_SW_CD;
1800 goto omute;
1801 case SB_MIC_OUT_MUTE:
1802 mask = SB16P_SW_MIC;
1803 goto omute;
1804 case SB_LINE_OUT_MUTE:
1805 mask = SB16P_SW_LINE;
1806 omute:
1807 if (cp->type != AUDIO_MIXER_ENUM)
1808 return EINVAL;
1809 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1810 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1811 if (cp->un.ord)
1812 bits = bits & ~mask;
1813 else
1814 bits = bits | mask;
1815 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1816 break;
1817
1818 case SB_MIC_IN_MUTE:
1819 case SB_MIC_SWAP:
1820 lmask = rmask = SB16P_SW_MIC;
1821 goto imute;
1822 case SB_CD_IN_MUTE:
1823 case SB_CD_SWAP:
1824 lmask = SB16P_SW_CD_L;
1825 rmask = SB16P_SW_CD_R;
1826 goto imute;
1827 case SB_LINE_IN_MUTE:
1828 case SB_LINE_SWAP:
1829 lmask = SB16P_SW_LINE_L;
1830 rmask = SB16P_SW_LINE_R;
1831 goto imute;
1832 case SB_MIDI_IN_MUTE:
1833 case SB_MIDI_SWAP:
1834 lmask = SB16P_SW_MIDI_L;
1835 rmask = SB16P_SW_MIDI_R;
1836 imute:
1837 if (cp->type != AUDIO_MIXER_ENUM)
1838 return EINVAL;
1839 mask = lmask | rmask;
1840 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1841 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1842 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1843 if (SB_IS_IN_MUTE(cp->dev)) {
1844 mute = cp->dev;
1845 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1846 } else {
1847 swap = cp->dev;
1848 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1849 }
1850 if (sc->gain[swap][SB_LR]) {
1851 mask = lmask;
1852 lmask = rmask;
1853 rmask = mask;
1854 }
1855 if (!sc->gain[mute][SB_LR]) {
1856 lbits = lbits | lmask;
1857 rbits = rbits | rmask;
1858 }
1859 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1860 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1861 break;
1862
1863 default:
1864 return EINVAL;
1865 }
1866
1867 return 0;
1868 }
1869
1870 int
1871 sbdsp_mixer_get_port(addr, cp)
1872 void *addr;
1873 mixer_ctrl_t *cp;
1874 {
1875 struct sbdsp_softc *sc = addr;
1876
1877 if (sc->sc_open == SB_OPEN_MIDI)
1878 return EBUSY;
1879
1880 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1881
1882 if (sc->sc_mixer_model == SBM_NONE)
1883 return EINVAL;
1884
1885 switch (cp->dev) {
1886 case SB_TREBLE:
1887 case SB_BASS:
1888 if (sc->sc_mixer_model == SBM_CT1345 ||
1889 sc->sc_mixer_model == SBM_CT1XX5) {
1890 switch (cp->dev) {
1891 case SB_TREBLE:
1892 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1893 return 0;
1894 case SB_BASS:
1895 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1896 return 0;
1897 }
1898 }
1899 case SB_PCSPEAKER:
1900 case SB_INPUT_GAIN:
1901 case SB_OUTPUT_GAIN:
1902 if (!ISSBM1745(sc))
1903 return EINVAL;
1904 case SB_MIC_VOL:
1905 case SB_LINE_IN_VOL:
1906 if (sc->sc_mixer_model == SBM_CT1335)
1907 return EINVAL;
1908 case SB_VOICE_VOL:
1909 case SB_MIDI_VOL:
1910 case SB_CD_VOL:
1911 case SB_MASTER_VOL:
1912 switch (cp->dev) {
1913 case SB_MIC_VOL:
1914 case SB_PCSPEAKER:
1915 if (cp->un.value.num_channels != 1)
1916 return EINVAL;
1917 /* fall into */
1918 default:
1919 switch (cp->un.value.num_channels) {
1920 case 1:
1921 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1922 sc->gain[cp->dev][SB_LEFT];
1923 break;
1924 case 2:
1925 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1926 sc->gain[cp->dev][SB_LEFT];
1927 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1928 sc->gain[cp->dev][SB_RIGHT];
1929 break;
1930 default:
1931 return EINVAL;
1932 }
1933 break;
1934 }
1935 break;
1936
1937 case SB_RECORD_SOURCE:
1938 if (ISSBM1745(sc))
1939 cp->un.mask = sc->in_mask;
1940 else
1941 cp->un.ord = sc->in_port;
1942 break;
1943
1944 case SB_AGC:
1945 if (!ISSBM1745(sc))
1946 return EINVAL;
1947 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1948 break;
1949
1950 case SB_CD_IN_MUTE:
1951 case SB_MIC_IN_MUTE:
1952 case SB_LINE_IN_MUTE:
1953 case SB_MIDI_IN_MUTE:
1954 case SB_CD_SWAP:
1955 case SB_MIC_SWAP:
1956 case SB_LINE_SWAP:
1957 case SB_MIDI_SWAP:
1958 case SB_CD_OUT_MUTE:
1959 case SB_MIC_OUT_MUTE:
1960 case SB_LINE_OUT_MUTE:
1961 cp->un.ord = sc->gain[cp->dev][SB_LR];
1962 break;
1963
1964 default:
1965 return EINVAL;
1966 }
1967
1968 return 0;
1969 }
1970
1971 int
1972 sbdsp_mixer_query_devinfo(addr, dip)
1973 void *addr;
1974 mixer_devinfo_t *dip;
1975 {
1976 struct sbdsp_softc *sc = addr;
1977 int chan, class, is1745;
1978
1979 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1980 sc->sc_mixer_model, dip->index));
1981
1982 if (sc->sc_mixer_model == SBM_NONE)
1983 return ENXIO;
1984
1985 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1986 is1745 = ISSBM1745(sc);
1987 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1988
1989 switch (dip->index) {
1990 case SB_MASTER_VOL:
1991 dip->type = AUDIO_MIXER_VALUE;
1992 dip->mixer_class = SB_OUTPUT_CLASS;
1993 dip->prev = dip->next = AUDIO_MIXER_LAST;
1994 strcpy(dip->label.name, AudioNmaster);
1995 dip->un.v.num_channels = chan;
1996 strcpy(dip->un.v.units.name, AudioNvolume);
1997 return 0;
1998 case SB_MIDI_VOL:
1999 dip->type = AUDIO_MIXER_VALUE;
2000 dip->mixer_class = class;
2001 dip->prev = AUDIO_MIXER_LAST;
2002 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2003 strcpy(dip->label.name, AudioNfmsynth);
2004 dip->un.v.num_channels = chan;
2005 strcpy(dip->un.v.units.name, AudioNvolume);
2006 return 0;
2007 case SB_CD_VOL:
2008 dip->type = AUDIO_MIXER_VALUE;
2009 dip->mixer_class = class;
2010 dip->prev = AUDIO_MIXER_LAST;
2011 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2012 strcpy(dip->label.name, AudioNcd);
2013 dip->un.v.num_channels = chan;
2014 strcpy(dip->un.v.units.name, AudioNvolume);
2015 return 0;
2016 case SB_VOICE_VOL:
2017 dip->type = AUDIO_MIXER_VALUE;
2018 dip->mixer_class = class;
2019 dip->prev = AUDIO_MIXER_LAST;
2020 dip->next = AUDIO_MIXER_LAST;
2021 strcpy(dip->label.name, AudioNdac);
2022 dip->un.v.num_channels = chan;
2023 strcpy(dip->un.v.units.name, AudioNvolume);
2024 return 0;
2025 case SB_OUTPUT_CLASS:
2026 dip->type = AUDIO_MIXER_CLASS;
2027 dip->mixer_class = SB_OUTPUT_CLASS;
2028 dip->next = dip->prev = AUDIO_MIXER_LAST;
2029 strcpy(dip->label.name, AudioCoutputs);
2030 return 0;
2031 }
2032
2033 if (sc->sc_mixer_model == SBM_CT1335)
2034 return ENXIO;
2035
2036 switch (dip->index) {
2037 case SB_MIC_VOL:
2038 dip->type = AUDIO_MIXER_VALUE;
2039 dip->mixer_class = class;
2040 dip->prev = AUDIO_MIXER_LAST;
2041 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2042 strcpy(dip->label.name, AudioNmicrophone);
2043 dip->un.v.num_channels = 1;
2044 strcpy(dip->un.v.units.name, AudioNvolume);
2045 return 0;
2046
2047 case SB_LINE_IN_VOL:
2048 dip->type = AUDIO_MIXER_VALUE;
2049 dip->mixer_class = class;
2050 dip->prev = AUDIO_MIXER_LAST;
2051 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2052 strcpy(dip->label.name, AudioNline);
2053 dip->un.v.num_channels = 2;
2054 strcpy(dip->un.v.units.name, AudioNvolume);
2055 return 0;
2056
2057 case SB_RECORD_SOURCE:
2058 dip->mixer_class = SB_RECORD_CLASS;
2059 dip->prev = dip->next = AUDIO_MIXER_LAST;
2060 strcpy(dip->label.name, AudioNsource);
2061 if (ISSBM1745(sc)) {
2062 dip->type = AUDIO_MIXER_SET;
2063 dip->un.s.num_mem = 4;
2064 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2065 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2066 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2067 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2068 strcpy(dip->un.s.member[2].label.name, AudioNline);
2069 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2070 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2071 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2072 } else {
2073 dip->type = AUDIO_MIXER_ENUM;
2074 dip->un.e.num_mem = 3;
2075 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2076 dip->un.e.member[0].ord = SB_MIC_VOL;
2077 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2078 dip->un.e.member[1].ord = SB_CD_VOL;
2079 strcpy(dip->un.e.member[2].label.name, AudioNline);
2080 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2081 }
2082 return 0;
2083
2084 case SB_BASS:
2085 dip->prev = dip->next = AUDIO_MIXER_LAST;
2086 strcpy(dip->label.name, AudioNbass);
2087 if (sc->sc_mixer_model == SBM_CT1745) {
2088 dip->type = AUDIO_MIXER_VALUE;
2089 dip->mixer_class = SB_EQUALIZATION_CLASS;
2090 dip->un.v.num_channels = 2;
2091 strcpy(dip->un.v.units.name, AudioNbass);
2092 } else {
2093 dip->type = AUDIO_MIXER_ENUM;
2094 dip->mixer_class = SB_INPUT_CLASS;
2095 dip->un.e.num_mem = 2;
2096 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2097 dip->un.e.member[0].ord = 0;
2098 strcpy(dip->un.e.member[1].label.name, AudioNon);
2099 dip->un.e.member[1].ord = 1;
2100 }
2101 return 0;
2102
2103 case SB_TREBLE:
2104 dip->prev = dip->next = AUDIO_MIXER_LAST;
2105 strcpy(dip->label.name, AudioNtreble);
2106 if (sc->sc_mixer_model == SBM_CT1745) {
2107 dip->type = AUDIO_MIXER_VALUE;
2108 dip->mixer_class = SB_EQUALIZATION_CLASS;
2109 dip->un.v.num_channels = 2;
2110 strcpy(dip->un.v.units.name, AudioNtreble);
2111 } else {
2112 dip->type = AUDIO_MIXER_ENUM;
2113 dip->mixer_class = SB_INPUT_CLASS;
2114 dip->un.e.num_mem = 2;
2115 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2116 dip->un.e.member[0].ord = 0;
2117 strcpy(dip->un.e.member[1].label.name, AudioNon);
2118 dip->un.e.member[1].ord = 1;
2119 }
2120 return 0;
2121
2122 case SB_RECORD_CLASS: /* record source class */
2123 dip->type = AUDIO_MIXER_CLASS;
2124 dip->mixer_class = SB_RECORD_CLASS;
2125 dip->next = dip->prev = AUDIO_MIXER_LAST;
2126 strcpy(dip->label.name, AudioCrecord);
2127 return 0;
2128
2129 case SB_INPUT_CLASS:
2130 dip->type = AUDIO_MIXER_CLASS;
2131 dip->mixer_class = SB_INPUT_CLASS;
2132 dip->next = dip->prev = AUDIO_MIXER_LAST;
2133 strcpy(dip->label.name, AudioCinputs);
2134 return 0;
2135
2136 }
2137
2138 if (sc->sc_mixer_model == SBM_CT1345)
2139 return ENXIO;
2140
2141 switch(dip->index) {
2142 case SB_PCSPEAKER:
2143 dip->type = AUDIO_MIXER_VALUE;
2144 dip->mixer_class = SB_INPUT_CLASS;
2145 dip->prev = dip->next = AUDIO_MIXER_LAST;
2146 strcpy(dip->label.name, "pc_speaker");
2147 dip->un.v.num_channels = 1;
2148 strcpy(dip->un.v.units.name, AudioNvolume);
2149 return 0;
2150
2151 case SB_INPUT_GAIN:
2152 dip->type = AUDIO_MIXER_VALUE;
2153 dip->mixer_class = SB_INPUT_CLASS;
2154 dip->prev = dip->next = AUDIO_MIXER_LAST;
2155 strcpy(dip->label.name, AudioNinput);
2156 dip->un.v.num_channels = 2;
2157 strcpy(dip->un.v.units.name, AudioNvolume);
2158 return 0;
2159
2160 case SB_OUTPUT_GAIN:
2161 dip->type = AUDIO_MIXER_VALUE;
2162 dip->mixer_class = SB_OUTPUT_CLASS;
2163 dip->prev = dip->next = AUDIO_MIXER_LAST;
2164 strcpy(dip->label.name, AudioNoutput);
2165 dip->un.v.num_channels = 2;
2166 strcpy(dip->un.v.units.name, AudioNvolume);
2167 return 0;
2168
2169 case SB_AGC:
2170 dip->type = AUDIO_MIXER_ENUM;
2171 dip->mixer_class = SB_INPUT_CLASS;
2172 dip->prev = dip->next = AUDIO_MIXER_LAST;
2173 strcpy(dip->label.name, "agc");
2174 dip->un.e.num_mem = 2;
2175 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2176 dip->un.e.member[0].ord = 0;
2177 strcpy(dip->un.e.member[1].label.name, AudioNon);
2178 dip->un.e.member[1].ord = 1;
2179 return 0;
2180
2181 case SB_EQUALIZATION_CLASS:
2182 dip->type = AUDIO_MIXER_CLASS;
2183 dip->mixer_class = SB_EQUALIZATION_CLASS;
2184 dip->next = dip->prev = AUDIO_MIXER_LAST;
2185 strcpy(dip->label.name, AudioCequalization);
2186 return 0;
2187
2188 case SB_CD_IN_MUTE:
2189 dip->prev = SB_CD_VOL;
2190 dip->next = SB_CD_SWAP;
2191 dip->mixer_class = SB_INPUT_CLASS;
2192 goto mute;
2193
2194 case SB_MIC_IN_MUTE:
2195 dip->prev = SB_MIC_VOL;
2196 dip->next = SB_MIC_SWAP;
2197 dip->mixer_class = SB_INPUT_CLASS;
2198 goto mute;
2199
2200 case SB_LINE_IN_MUTE:
2201 dip->prev = SB_LINE_IN_VOL;
2202 dip->next = SB_LINE_SWAP;
2203 dip->mixer_class = SB_INPUT_CLASS;
2204 goto mute;
2205
2206 case SB_MIDI_IN_MUTE:
2207 dip->prev = SB_MIDI_VOL;
2208 dip->next = SB_MIDI_SWAP;
2209 dip->mixer_class = SB_INPUT_CLASS;
2210 goto mute;
2211
2212 case SB_CD_SWAP:
2213 dip->prev = SB_CD_IN_MUTE;
2214 dip->next = SB_CD_OUT_MUTE;
2215 goto swap;
2216
2217 case SB_MIC_SWAP:
2218 dip->prev = SB_MIC_IN_MUTE;
2219 dip->next = SB_MIC_OUT_MUTE;
2220 goto swap;
2221
2222 case SB_LINE_SWAP:
2223 dip->prev = SB_LINE_IN_MUTE;
2224 dip->next = SB_LINE_OUT_MUTE;
2225 goto swap;
2226
2227 case SB_MIDI_SWAP:
2228 dip->prev = SB_MIDI_IN_MUTE;
2229 dip->next = AUDIO_MIXER_LAST;
2230 swap:
2231 dip->mixer_class = SB_INPUT_CLASS;
2232 strcpy(dip->label.name, AudioNswap);
2233 goto mute1;
2234
2235 case SB_CD_OUT_MUTE:
2236 dip->prev = SB_CD_SWAP;
2237 dip->next = AUDIO_MIXER_LAST;
2238 dip->mixer_class = SB_OUTPUT_CLASS;
2239 goto mute;
2240
2241 case SB_MIC_OUT_MUTE:
2242 dip->prev = SB_MIC_SWAP;
2243 dip->next = AUDIO_MIXER_LAST;
2244 dip->mixer_class = SB_OUTPUT_CLASS;
2245 goto mute;
2246
2247 case SB_LINE_OUT_MUTE:
2248 dip->prev = SB_LINE_SWAP;
2249 dip->next = AUDIO_MIXER_LAST;
2250 dip->mixer_class = SB_OUTPUT_CLASS;
2251 mute:
2252 strcpy(dip->label.name, AudioNmute);
2253 mute1:
2254 dip->type = AUDIO_MIXER_ENUM;
2255 dip->un.e.num_mem = 2;
2256 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2257 dip->un.e.member[0].ord = 0;
2258 strcpy(dip->un.e.member[1].label.name, AudioNon);
2259 dip->un.e.member[1].ord = 1;
2260 return 0;
2261
2262 }
2263
2264 return ENXIO;
2265 }
2266
2267 void *
2268 sb_malloc(addr, direction, size, pool, flags)
2269 void *addr;
2270 int direction;
2271 size_t size;
2272 int pool, flags;
2273 {
2274 struct sbdsp_softc *sc = addr;
2275 int drq;
2276
2277 if (sc->sc_drq8 != -1)
2278 drq = sc->sc_drq8;
2279 else
2280 drq = sc->sc_drq16;
2281 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2282 }
2283
2284 void
2285 sb_free(addr, ptr, pool)
2286 void *addr;
2287 void *ptr;
2288 int pool;
2289 {
2290 isa_free(ptr, pool);
2291 }
2292
2293 size_t
2294 sb_round_buffersize(addr, direction, size)
2295 void *addr;
2296 int direction;
2297 size_t size;
2298 {
2299 struct sbdsp_softc *sc = addr;
2300 bus_size_t maxsize;
2301
2302 if (sc->sc_drq8 != -1)
2303 maxsize = sc->sc_drq8_maxsize;
2304 else
2305 maxsize = sc->sc_drq16_maxsize;
2306
2307 if (size > maxsize)
2308 size = maxsize;
2309 return (size);
2310 }
2311
2312 paddr_t
2313 sb_mappage(addr, mem, off, prot)
2314 void *addr;
2315 void *mem;
2316 off_t off;
2317 int prot;
2318 {
2319 return isa_mappage(mem, off, prot);
2320 }
2321
2322 int
2323 sbdsp_get_props(addr)
2324 void *addr;
2325 {
2326 struct sbdsp_softc *sc = addr;
2327 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2328 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2329 }
2330
2331 #if NMPU > 0
2332 /*
2333 * MIDI related routines.
2334 */
2335
2336 int
2337 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2338 void *addr;
2339 int flags;
2340 void (*iintr)__P((void *, int));
2341 void (*ointr)__P((void *));
2342 void *arg;
2343 {
2344 struct sbdsp_softc *sc = addr;
2345
2346 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2347
2348 if (sc->sc_open != SB_CLOSED)
2349 return EBUSY;
2350 if (sbdsp_reset(sc) != 0)
2351 return EIO;
2352
2353 sc->sc_open = SB_OPEN_MIDI;
2354 sc->sc_openflags = flags;
2355
2356 if (sc->sc_model >= SB_20)
2357 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2358 return EIO;
2359
2360 sc->sc_intr8 = sbdsp_midi_intr;
2361 sc->sc_intrm = iintr;
2362 sc->sc_argm = arg;
2363
2364 return 0;
2365 }
2366
2367 void
2368 sbdsp_midi_close(addr)
2369 void *addr;
2370 {
2371 struct sbdsp_softc *sc = addr;
2372
2373 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2374
2375 if (sc->sc_model >= SB_20)
2376 sbdsp_reset(sc); /* exit UART mode */
2377
2378 sc->sc_intrm = 0;
2379 sc->sc_open = SB_CLOSED;
2380 }
2381
2382 int
2383 sbdsp_midi_output(addr, d)
2384 void *addr;
2385 int d;
2386 {
2387 struct sbdsp_softc *sc = addr;
2388
2389 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2390 return EIO;
2391 if (sbdsp_wdsp(sc, d))
2392 return EIO;
2393 return 0;
2394 }
2395
2396 void
2397 sbdsp_midi_getinfo(addr, mi)
2398 void *addr;
2399 struct midi_info *mi;
2400 {
2401 struct sbdsp_softc *sc = addr;
2402
2403 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2404 mi->props = MIDI_PROP_CAN_INPUT;
2405 }
2406
2407 int
2408 sbdsp_midi_intr(addr)
2409 void *addr;
2410 {
2411 struct sbdsp_softc *sc = addr;
2412
2413 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2414 return (0);
2415 }
2416
2417 #endif
2418
2419