sbdsp.c revision 1.111 1 /* $NetBSD: sbdsp.c,v 1.111 2003/05/03 18:11:28 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.111 2003/05/03 18:11:28 wiz Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 KHz 4 KHz
154 * input ls max 23 KHz 13 KHz
155 * input hs max 44.1 KHz 15 KHz
156 * output ls min 4 KHz 4 KHz
157 * output ls max 23 KHz 23 KHz
158 * output hs max 44.1 KHz 44.1 KHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195 { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215 { -1 }
216 };
217
218 void sbversion __P((struct sbdsp_softc *));
219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
221 void sbdsp_pause __P((struct sbdsp_softc *));
222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
225 void sbdsp_set_ifilter __P((void *, int));
226 int sbdsp_get_ifilter __P((void *));
227
228 int sbdsp_block_output __P((void *));
229 int sbdsp_block_input __P((void *));
230 static int sbdsp_adjust __P((int, int));
231
232 int sbdsp_midi_intr __P((void *));
233
234 static void sbdsp_powerhook __P((int, void*));
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc __P((struct sbdsp_softc *));
238
239 void
240 sb_printsc(sc)
241 struct sbdsp_softc *sc;
242 {
243 int i;
244
245 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
247 sc->sc_drq8, sc->sc_drq16,
248 sc->sc_iobase, sc->sc_irq);
249 printf("irate %d itc %x orate %d otc %x\n",
250 sc->sc_i.rate, sc->sc_i.tc,
251 sc->sc_o.rate, sc->sc_o.tc);
252 printf("spkron %u nintr %lu\n",
253 sc->spkr_state, sc->sc_interrupts);
254 printf("intr8 %p intr16 %p\n",
255 sc->sc_intr8, sc->sc_intr16);
256 printf("gain:");
257 for (i = 0; i < SB_NDEVS; i++)
258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
259 printf("\n");
260 }
261 #endif /* AUDIO_DEBUG */
262
263 /*
264 * Probe / attach routines.
265 */
266
267 /*
268 * Probe for the soundblaster hardware.
269 */
270 int
271 sbdsp_probe(sc)
272 struct sbdsp_softc *sc;
273 {
274
275 if (sbdsp_reset(sc) < 0) {
276 DPRINTF(("sbdsp: couldn't reset card\n"));
277 return 0;
278 }
279 /* if flags set, go and probe the jazz16 stuff */
280 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
281 sbdsp_jazz16_probe(sc);
282 else
283 sbversion(sc);
284 if (sc->sc_model == SB_UNK) {
285 /* Unknown SB model found. */
286 DPRINTF(("sbdsp: unknown SB model found\n"));
287 return 0;
288 }
289 return 1;
290 }
291
292 /*
293 * Try add-on stuff for Jazz16.
294 */
295 void
296 sbdsp_jazz16_probe(sc)
297 struct sbdsp_softc *sc;
298 {
299 static u_char jazz16_irq_conf[16] = {
300 -1, -1, 0x02, 0x03,
301 -1, 0x01, -1, 0x04,
302 -1, 0x02, 0x05, -1,
303 -1, -1, -1, 0x06};
304 static u_char jazz16_drq_conf[8] = {
305 -1, 0x01, -1, 0x02,
306 -1, 0x03, -1, 0x04};
307
308 bus_space_tag_t iot = sc->sc_iot;
309 bus_space_handle_t ioh;
310
311 sbversion(sc);
312
313 DPRINTF(("jazz16 probe\n"));
314
315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
316 DPRINTF(("bus map failed\n"));
317 return;
318 }
319
320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
322 DPRINTF(("drq/irq check failed\n"));
323 goto done; /* give up, we can't do it. */
324 }
325
326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
327 delay(10000); /* delay 10 ms */
328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
330
331 if (sbdsp_reset(sc) < 0) {
332 DPRINTF(("sbdsp_reset check failed\n"));
333 goto done; /* XXX? what else could we do? */
334 }
335
336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
337 DPRINTF(("read16 setup failed\n"));
338 goto done;
339 }
340
341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
342 DPRINTF(("read16 failed\n"));
343 goto done;
344 }
345
346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
347 sc->sc_drq16 = sc->sc_drq8;
348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
350 jazz16_drq_conf[sc->sc_drq8]) ||
351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
353 } else {
354 DPRINTF(("jazz16 detected!\n"));
355 sc->sc_model = SB_JAZZ;
356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
357 }
358
359 done:
360 bus_space_unmap(iot, ioh, 1);
361 }
362
363 /*
364 * Attach hardware to driver, attach hardware driver to audio
365 * pseudo-device driver .
366 */
367 void
368 sbdsp_attach(sc)
369 struct sbdsp_softc *sc;
370 {
371 struct audio_params pparams, rparams;
372 int i;
373 u_int v;
374
375 pparams = audio_default;
376 rparams = audio_default;
377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
378
379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
380
381 if (sc->sc_mixer_model != SBM_NONE) {
382 /* Reset the mixer.*/
383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
384 /* And set our own default values */
385 for (i = 0; i < SB_NDEVS; i++) {
386 switch(i) {
387 case SB_MIC_VOL:
388 case SB_LINE_IN_VOL:
389 v = 0;
390 break;
391 case SB_BASS:
392 case SB_TREBLE:
393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
394 break;
395 case SB_CD_IN_MUTE:
396 case SB_MIC_IN_MUTE:
397 case SB_LINE_IN_MUTE:
398 case SB_MIDI_IN_MUTE:
399 case SB_CD_SWAP:
400 case SB_MIC_SWAP:
401 case SB_LINE_SWAP:
402 case SB_MIDI_SWAP:
403 case SB_CD_OUT_MUTE:
404 case SB_MIC_OUT_MUTE:
405 case SB_LINE_OUT_MUTE:
406 v = 0;
407 break;
408 default:
409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 break;
411 }
412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
413 sbdsp_set_mixer_gain(sc, i);
414 }
415 sc->in_filter = 0; /* no filters turned on, please */
416 }
417
418 printf(": dsp v%d.%02d%s\n",
419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
421
422 sc->sc_fullduplex = ISSB16CLASS(sc) &&
423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
424 sc->sc_drq8 != sc->sc_drq16;
425
426 if (sc->sc_drq8 != -1)
427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
428 sc->sc_drq8);
429
430 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
431 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
432 sc->sc_drq16);
433
434 powerhook_establish (sbdsp_powerhook, sc);
435 }
436
437 static void
438 sbdsp_powerhook (why, arg)
439 int why;
440 void *arg;
441 {
442 struct sbdsp_softc *sc = arg;
443 int i;
444
445 if (!sc || why != PWR_RESUME)
446 return;
447
448 /* Reset the mixer. */
449 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
450 for (i = 0; i < SB_NDEVS; i++)
451 sbdsp_set_mixer_gain (sc, i);
452 }
453
454 void
455 sbdsp_mix_write(sc, mixerport, val)
456 struct sbdsp_softc *sc;
457 int mixerport;
458 int val;
459 {
460 bus_space_tag_t iot = sc->sc_iot;
461 bus_space_handle_t ioh = sc->sc_ioh;
462 int s;
463
464 s = splaudio();
465 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
466 delay(20);
467 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
468 delay(30);
469 splx(s);
470 }
471
472 int
473 sbdsp_mix_read(sc, mixerport)
474 struct sbdsp_softc *sc;
475 int mixerport;
476 {
477 bus_space_tag_t iot = sc->sc_iot;
478 bus_space_handle_t ioh = sc->sc_ioh;
479 int val;
480 int s;
481
482 s = splaudio();
483 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
484 delay(20);
485 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
486 delay(30);
487 splx(s);
488 return val;
489 }
490
491 /*
492 * Various routines to interface to higher level audio driver
493 */
494
495 int
496 sbdsp_query_encoding(addr, fp)
497 void *addr;
498 struct audio_encoding *fp;
499 {
500 struct sbdsp_softc *sc = addr;
501 int emul;
502
503 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
504
505 switch (fp->index) {
506 case 0:
507 strcpy(fp->name, AudioEulinear);
508 fp->encoding = AUDIO_ENCODING_ULINEAR;
509 fp->precision = 8;
510 fp->flags = 0;
511 return 0;
512 case 1:
513 strcpy(fp->name, AudioEmulaw);
514 fp->encoding = AUDIO_ENCODING_ULAW;
515 fp->precision = 8;
516 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
517 return 0;
518 case 2:
519 strcpy(fp->name, AudioEalaw);
520 fp->encoding = AUDIO_ENCODING_ALAW;
521 fp->precision = 8;
522 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
523 return 0;
524 case 3:
525 strcpy(fp->name, AudioEslinear);
526 fp->encoding = AUDIO_ENCODING_SLINEAR;
527 fp->precision = 8;
528 fp->flags = emul;
529 return 0;
530 }
531 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
532 return EINVAL;
533
534 switch(fp->index) {
535 case 4:
536 strcpy(fp->name, AudioEslinear_le);
537 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
538 fp->precision = 16;
539 fp->flags = 0;
540 return 0;
541 case 5:
542 strcpy(fp->name, AudioEulinear_le);
543 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
544 fp->precision = 16;
545 fp->flags = emul;
546 return 0;
547 case 6:
548 strcpy(fp->name, AudioEslinear_be);
549 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
550 fp->precision = 16;
551 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
552 return 0;
553 case 7:
554 strcpy(fp->name, AudioEulinear_be);
555 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
556 fp->precision = 16;
557 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
558 return 0;
559 default:
560 return EINVAL;
561 }
562 return 0;
563 }
564
565 int
566 sbdsp_set_params(addr, setmode, usemode, play, rec)
567 void *addr;
568 int setmode, usemode;
569 struct audio_params *play, *rec;
570 {
571 struct sbdsp_softc *sc = addr;
572 struct sbmode *m;
573 u_int rate, tc, bmode;
574 void (*swcode) __P((void *, u_char *buf, int cnt));
575 int factor;
576 int model;
577 int chan;
578 struct audio_params *p;
579 int mode;
580
581 if (sc->sc_open == SB_OPEN_MIDI)
582 return EBUSY;
583
584 /* Later models work like SB16. */
585 model = min(sc->sc_model, SB_16);
586
587 /*
588 * Prior to the SB16, we have only one clock, so make the sample
589 * rates match.
590 */
591 if (!ISSB16CLASS(sc) &&
592 play->sample_rate != rec->sample_rate &&
593 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
594 if (setmode == AUMODE_PLAY) {
595 rec->sample_rate = play->sample_rate;
596 setmode |= AUMODE_RECORD;
597 } else if (setmode == AUMODE_RECORD) {
598 play->sample_rate = rec->sample_rate;
599 setmode |= AUMODE_PLAY;
600 } else
601 return (EINVAL);
602 }
603
604 /* Set first record info, then play info */
605 for (mode = AUMODE_RECORD; mode != -1;
606 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
607 if ((setmode & mode) == 0)
608 continue;
609
610 p = mode == AUMODE_PLAY ? play : rec;
611 /* Locate proper commands */
612 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
613 m->model != -1; m++) {
614 if (model == m->model &&
615 p->channels == m->channels &&
616 p->precision == m->precision &&
617 p->sample_rate >= m->lowrate &&
618 p->sample_rate <= m->highrate)
619 break;
620 }
621 if (m->model == -1)
622 return EINVAL;
623 rate = p->sample_rate;
624 swcode = 0;
625 factor = 1;
626 tc = 1;
627 bmode = -1;
628 if (model == SB_16) {
629 switch (p->encoding) {
630 case AUDIO_ENCODING_SLINEAR_BE:
631 if (p->precision == 16)
632 swcode = swap_bytes;
633 /* fall into */
634 case AUDIO_ENCODING_SLINEAR_LE:
635 bmode = SB_BMODE_SIGNED;
636 break;
637 case AUDIO_ENCODING_ULINEAR_BE:
638 if (p->precision == 16)
639 swcode = swap_bytes;
640 /* fall into */
641 case AUDIO_ENCODING_ULINEAR_LE:
642 bmode = SB_BMODE_UNSIGNED;
643 break;
644 case AUDIO_ENCODING_ULAW:
645 if (mode == AUMODE_PLAY) {
646 swcode = mulaw_to_ulinear16_le;
647 factor = 2;
648 m = &sbpmodes[PLAY16];
649 } else
650 swcode = ulinear8_to_mulaw;
651 bmode = SB_BMODE_UNSIGNED;
652 break;
653 case AUDIO_ENCODING_ALAW:
654 if (mode == AUMODE_PLAY) {
655 swcode = alaw_to_ulinear16_le;
656 factor = 2;
657 m = &sbpmodes[PLAY16];
658 } else
659 swcode = ulinear8_to_alaw;
660 bmode = SB_BMODE_UNSIGNED;
661 break;
662 default:
663 return EINVAL;
664 }
665 if (p->channels == 2)
666 bmode |= SB_BMODE_STEREO;
667 } else if (m->model == SB_JAZZ && m->precision == 16) {
668 switch (p->encoding) {
669 case AUDIO_ENCODING_SLINEAR_LE:
670 break;
671 case AUDIO_ENCODING_ULINEAR_LE:
672 swcode = change_sign16_le;
673 break;
674 case AUDIO_ENCODING_SLINEAR_BE:
675 swcode = swap_bytes;
676 break;
677 case AUDIO_ENCODING_ULINEAR_BE:
678 swcode = mode == AUMODE_PLAY ?
679 swap_bytes_change_sign16_le :
680 change_sign16_swap_bytes_le;
681 break;
682 case AUDIO_ENCODING_ULAW:
683 swcode = mode == AUMODE_PLAY ?
684 mulaw_to_ulinear8 : ulinear8_to_mulaw;
685 break;
686 case AUDIO_ENCODING_ALAW:
687 swcode = mode == AUMODE_PLAY ?
688 alaw_to_ulinear8 : ulinear8_to_alaw;
689 break;
690 default:
691 return EINVAL;
692 }
693 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
694 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
695 } else {
696 switch (p->encoding) {
697 case AUDIO_ENCODING_SLINEAR_BE:
698 case AUDIO_ENCODING_SLINEAR_LE:
699 swcode = change_sign8;
700 break;
701 case AUDIO_ENCODING_ULINEAR_BE:
702 case AUDIO_ENCODING_ULINEAR_LE:
703 break;
704 case AUDIO_ENCODING_ULAW:
705 swcode = mode == AUMODE_PLAY ?
706 mulaw_to_ulinear8 : ulinear8_to_mulaw;
707 break;
708 case AUDIO_ENCODING_ALAW:
709 swcode = mode == AUMODE_PLAY ?
710 alaw_to_ulinear8 : ulinear8_to_alaw;
711 break;
712 default:
713 return EINVAL;
714 }
715 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
716 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
717 }
718
719 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
720 if (mode == AUMODE_PLAY) {
721 sc->sc_o.rate = rate;
722 sc->sc_o.tc = tc;
723 sc->sc_o.modep = m;
724 sc->sc_o.bmode = bmode;
725 sc->sc_o.dmachan = chan;
726 } else {
727 sc->sc_i.rate = rate;
728 sc->sc_i.tc = tc;
729 sc->sc_i.modep = m;
730 sc->sc_i.bmode = bmode;
731 sc->sc_i.dmachan = chan;
732 }
733
734 p->sw_code = swcode;
735 p->factor = factor;
736 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
737 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
738 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
739
740 }
741
742 if (sc->sc_fullduplex &&
743 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
744 sc->sc_i.dmachan == sc->sc_o.dmachan) {
745 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
746 if (sc->sc_o.dmachan == sc->sc_drq8) {
747 /* Use 16 bit DMA for playing by expanding the samples. */
748 play->sw_code = linear8_to_linear16_le;
749 play->factor = 2;
750 sc->sc_o.modep = &sbpmodes[PLAY16];
751 sc->sc_o.dmachan = sc->sc_drq16;
752 } else {
753 return EINVAL;
754 }
755 }
756 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
757 sc->sc_i.dmachan, sc->sc_o.dmachan));
758
759 return (0);
760 }
761
762 void
763 sbdsp_set_ifilter(addr, which)
764 void *addr;
765 int which;
766 {
767 struct sbdsp_softc *sc = addr;
768 int mixval;
769
770 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
771 switch (which) {
772 case 0:
773 mixval |= SBP_FILTER_OFF;
774 break;
775 case SB_TREBLE:
776 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
777 break;
778 case SB_BASS:
779 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
780 break;
781 default:
782 return;
783 }
784 sc->in_filter = mixval & SBP_IFILTER_MASK;
785 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
786 }
787
788 int
789 sbdsp_get_ifilter(addr)
790 void *addr;
791 {
792 struct sbdsp_softc *sc = addr;
793
794 sc->in_filter =
795 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
796 switch (sc->in_filter) {
797 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
798 return SB_TREBLE;
799 case SBP_FILTER_ON|SBP_IFILTER_LOW:
800 return SB_BASS;
801 default:
802 return 0;
803 }
804 }
805
806 int
807 sbdsp_set_in_ports(sc, mask)
808 struct sbdsp_softc *sc;
809 int mask;
810 {
811 int bitsl, bitsr;
812 int sbport;
813
814 if (sc->sc_open == SB_OPEN_MIDI)
815 return EBUSY;
816
817 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
818 sc->sc_mixer_model, mask));
819
820 switch(sc->sc_mixer_model) {
821 case SBM_NONE:
822 return EINVAL;
823 case SBM_CT1335:
824 if (mask != (1 << SB_MIC_VOL))
825 return EINVAL;
826 break;
827 case SBM_CT1345:
828 switch (mask) {
829 case 1 << SB_MIC_VOL:
830 sbport = SBP_FROM_MIC;
831 break;
832 case 1 << SB_LINE_IN_VOL:
833 sbport = SBP_FROM_LINE;
834 break;
835 case 1 << SB_CD_VOL:
836 sbport = SBP_FROM_CD;
837 break;
838 default:
839 return (EINVAL);
840 }
841 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
842 break;
843 case SBM_CT1XX5:
844 case SBM_CT1745:
845 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
846 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
847 return EINVAL;
848 bitsr = 0;
849 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
850 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
851 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
852 bitsl = SB_SRC_R_TO_L(bitsr);
853 if (mask & (1<<SB_MIC_VOL)) {
854 bitsl |= SBP_MIC_SRC;
855 bitsr |= SBP_MIC_SRC;
856 }
857 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
859 break;
860 }
861 sc->in_mask = mask;
862
863 return 0;
864 }
865
866 int
867 sbdsp_speaker_ctl(addr, newstate)
868 void *addr;
869 int newstate;
870 {
871 struct sbdsp_softc *sc = addr;
872
873 if (sc->sc_open == SB_OPEN_MIDI)
874 return EBUSY;
875
876 if ((newstate == SPKR_ON) &&
877 (sc->spkr_state == SPKR_OFF)) {
878 sbdsp_spkron(sc);
879 sc->spkr_state = SPKR_ON;
880 }
881 if ((newstate == SPKR_OFF) &&
882 (sc->spkr_state == SPKR_ON)) {
883 sbdsp_spkroff(sc);
884 sc->spkr_state = SPKR_OFF;
885 }
886 return 0;
887 }
888
889 int
890 sbdsp_round_blocksize(addr, blk)
891 void *addr;
892 int blk;
893 {
894 return blk & -4; /* round to biggest sample size */
895 }
896
897 int
898 sbdsp_open(addr, flags)
899 void *addr;
900 int flags;
901 {
902 struct sbdsp_softc *sc = addr;
903 int error, state;
904
905 DPRINTF(("sbdsp_open: sc=%p\n", sc));
906
907 if (sc->sc_open != SB_CLOSED)
908 return (EBUSY);
909 sc->sc_open = SB_OPEN_AUDIO;
910 sc->sc_openflags = flags;
911 state = 0;
912
913 if (sc->sc_drq8 != -1) {
914 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
915 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
916 if (error) {
917 printf("%s: can't create map for drq %d\n",
918 sc->sc_dev.dv_xname, sc->sc_drq8);
919 goto bad;
920 }
921 state |= 1;
922 }
923 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
924 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
925 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
926 if (error) {
927 printf("%s: can't create map for drq %d\n",
928 sc->sc_dev.dv_xname, sc->sc_drq16);
929 goto bad;
930 }
931 state |= 2;
932 }
933
934 if (sbdsp_reset(sc) != 0) {
935 error = EIO;
936 goto bad;
937 }
938
939 if (ISSBPRO(sc) &&
940 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
941 DPRINTF(("sbdsp_open: can't set mono mode\n"));
942 /* we'll readjust when it's time for DMA. */
943 }
944
945 /*
946 * Leave most things as they were; users must change things if
947 * the previous process didn't leave it they way they wanted.
948 * Looked at another way, it's easy to set up a configuration
949 * in one program and leave it for another to inherit.
950 */
951 DPRINTF(("sbdsp_open: opened\n"));
952
953 return (0);
954
955 bad:
956 if (state & 1)
957 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
958 if (state & 2)
959 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
960
961 sc->sc_open = SB_CLOSED;
962 return (error);
963 }
964
965 void
966 sbdsp_close(addr)
967 void *addr;
968 {
969 struct sbdsp_softc *sc = addr;
970
971 DPRINTF(("sbdsp_close: sc=%p\n", sc));
972
973 sbdsp_spkroff(sc);
974 sc->spkr_state = SPKR_OFF;
975
976 sbdsp_halt_output(sc);
977 sbdsp_halt_input(sc);
978
979 sc->sc_intr8 = 0;
980 sc->sc_intr16 = 0;
981
982 if (sc->sc_drq8 != -1)
983 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
984 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
985 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
986
987 sc->sc_open = SB_CLOSED;
988 DPRINTF(("sbdsp_close: closed\n"));
989 }
990
991 /*
992 * Lower-level routines
993 */
994
995 /*
996 * Reset the card.
997 * Return non-zero if the card isn't detected.
998 */
999 int
1000 sbdsp_reset(sc)
1001 struct sbdsp_softc *sc;
1002 {
1003 bus_space_tag_t iot = sc->sc_iot;
1004 bus_space_handle_t ioh = sc->sc_ioh;
1005
1006 sc->sc_intr8 = 0;
1007 sc->sc_intr16 = 0;
1008 sc->sc_intrm = 0;
1009
1010 /*
1011 * See SBK, section 11.3.
1012 * We pulse a reset signal into the card.
1013 * Gee, what a brilliant hardware design.
1014 */
1015 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1016 delay(10);
1017 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1018 delay(30);
1019 if (sbdsp_rdsp(sc) != SB_MAGIC)
1020 return -1;
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * Write a byte to the dsp.
1027 * We are at the mercy of the card as we use a
1028 * polling loop and wait until it can take the byte.
1029 */
1030 int
1031 sbdsp_wdsp(sc, v)
1032 struct sbdsp_softc *sc;
1033 int v;
1034 {
1035 bus_space_tag_t iot = sc->sc_iot;
1036 bus_space_handle_t ioh = sc->sc_ioh;
1037 int i;
1038 u_char x;
1039
1040 for (i = SBDSP_NPOLL; --i >= 0; ) {
1041 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1042 delay(10);
1043 if ((x & SB_DSP_BUSY) == 0) {
1044 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1045 delay(10);
1046 return 0;
1047 }
1048 }
1049 ++sberr.wdsp;
1050 return -1;
1051 }
1052
1053 /*
1054 * Read a byte from the DSP, using polling.
1055 */
1056 int
1057 sbdsp_rdsp(sc)
1058 struct sbdsp_softc *sc;
1059 {
1060 bus_space_tag_t iot = sc->sc_iot;
1061 bus_space_handle_t ioh = sc->sc_ioh;
1062 int i;
1063 u_char x;
1064
1065 for (i = SBDSP_NPOLL; --i >= 0; ) {
1066 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1067 delay(10);
1068 if (x & SB_DSP_READY) {
1069 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1070 delay(10);
1071 return x;
1072 }
1073 }
1074 ++sberr.rdsp;
1075 return -1;
1076 }
1077
1078 void
1079 sbdsp_pause(sc)
1080 struct sbdsp_softc *sc;
1081 {
1082
1083 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1084 }
1085
1086 /*
1087 * Turn on the speaker. The SBK documention says this operation
1088 * can take up to 1/10 of a second. Higher level layers should
1089 * probably let the task sleep for this amount of time after
1090 * calling here. Otherwise, things might not work (because
1091 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1092 *
1093 * These engineers had their heads up their ass when
1094 * they designed this card.
1095 */
1096 void
1097 sbdsp_spkron(sc)
1098 struct sbdsp_softc *sc;
1099 {
1100 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1101 sbdsp_pause(sc);
1102 }
1103
1104 /*
1105 * Turn off the speaker; see comment above.
1106 */
1107 void
1108 sbdsp_spkroff(sc)
1109 struct sbdsp_softc *sc;
1110 {
1111 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1112 sbdsp_pause(sc);
1113 }
1114
1115 /*
1116 * Read the version number out of the card.
1117 * Store version information in the softc.
1118 */
1119 void
1120 sbversion(sc)
1121 struct sbdsp_softc *sc;
1122 {
1123 int v;
1124
1125 sc->sc_model = SB_UNK;
1126 sc->sc_version = 0;
1127 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1128 return;
1129 v = sbdsp_rdsp(sc) << 8;
1130 v |= sbdsp_rdsp(sc);
1131 if (v < 0)
1132 return;
1133 sc->sc_version = v;
1134 switch(SBVER_MAJOR(v)) {
1135 case 1:
1136 sc->sc_mixer_model = SBM_NONE;
1137 sc->sc_model = SB_1;
1138 break;
1139 case 2:
1140 /* Some SB2 have a mixer, some don't. */
1141 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1142 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1143 /* Check if we can read back the mixer values. */
1144 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1145 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1146 sc->sc_mixer_model = SBM_CT1335;
1147 else
1148 sc->sc_mixer_model = SBM_NONE;
1149 if (SBVER_MINOR(v) == 0)
1150 sc->sc_model = SB_20;
1151 else
1152 sc->sc_model = SB_2x;
1153 break;
1154 case 3:
1155 sc->sc_mixer_model = SBM_CT1345;
1156 sc->sc_model = SB_PRO;
1157 break;
1158 case 4:
1159 #if 0
1160 /* XXX This does not work */
1161 /* Most SB16 have a tone controls, but some don't. */
1162 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1163 /* Check if we can read back the mixer value. */
1164 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1165 sc->sc_mixer_model = SBM_CT1745;
1166 else
1167 sc->sc_mixer_model = SBM_CT1XX5;
1168 #else
1169 sc->sc_mixer_model = SBM_CT1745;
1170 #endif
1171 #if 0
1172 /* XXX figure out a good way of determining the model */
1173 /* XXX what about SB_32 */
1174 if (SBVER_MINOR(v) == 16)
1175 sc->sc_model = SB_64;
1176 else
1177 #endif
1178 sc->sc_model = SB_16;
1179 break;
1180 }
1181 }
1182
1183 int
1184 sbdsp_set_timeconst(sc, tc)
1185 struct sbdsp_softc *sc;
1186 int tc;
1187 {
1188 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1189
1190 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1191 sbdsp_wdsp(sc, tc) < 0)
1192 return EIO;
1193
1194 return 0;
1195 }
1196
1197 int
1198 sbdsp16_set_rate(sc, cmd, rate)
1199 struct sbdsp_softc *sc;
1200 int cmd, rate;
1201 {
1202 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1203
1204 if (sbdsp_wdsp(sc, cmd) < 0 ||
1205 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1206 sbdsp_wdsp(sc, rate) < 0)
1207 return EIO;
1208 return 0;
1209 }
1210
1211 int
1212 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1213 void *addr;
1214 void *start, *end;
1215 int blksize;
1216 void (*intr) __P((void *));
1217 void *arg;
1218 struct audio_params *param;
1219 {
1220 struct sbdsp_softc *sc = addr;
1221 int stereo = param->channels == 2;
1222 int width = param->precision * param->factor;
1223 int filter;
1224
1225 #ifdef DIAGNOSTIC
1226 if (stereo && (blksize & 1)) {
1227 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1228 return (EIO);
1229 }
1230 if (sc->sc_i.run != SB_NOTRUNNING)
1231 printf("sbdsp_trigger_input: already running\n");
1232 #endif
1233
1234 sc->sc_intrr = intr;
1235 sc->sc_argr = arg;
1236
1237 if (width == 8) {
1238 #ifdef DIAGNOSTIC
1239 if (sc->sc_i.dmachan != sc->sc_drq8) {
1240 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1241 width, sc->sc_i.dmachan);
1242 return (EIO);
1243 }
1244 #endif
1245 sc->sc_intr8 = sbdsp_block_input;
1246 } else {
1247 #ifdef DIAGNOSTIC
1248 if (sc->sc_i.dmachan != sc->sc_drq16) {
1249 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1250 width, sc->sc_i.dmachan);
1251 return (EIO);
1252 }
1253 #endif
1254 sc->sc_intr16 = sbdsp_block_input;
1255 }
1256
1257 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1258 blksize >>= 1;
1259 --blksize;
1260 sc->sc_i.blksize = blksize;
1261
1262 if (ISSBPRO(sc)) {
1263 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1264 return (EIO);
1265 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1266 sbdsp_mix_write(sc, SBP_INFILTER,
1267 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1268 filter);
1269 }
1270
1271 if (ISSB16CLASS(sc)) {
1272 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1273 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1274 sc->sc_i.rate));
1275 return (EIO);
1276 }
1277 } else {
1278 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1279 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1280 sc->sc_i.rate));
1281 return (EIO);
1282 }
1283 }
1284
1285 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1286 start, end, sc->sc_i.dmachan));
1287 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1288 (char *)end - (char *)start, NULL,
1289 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1290
1291 return sbdsp_block_input(addr);
1292 }
1293
1294 int
1295 sbdsp_block_input(addr)
1296 void *addr;
1297 {
1298 struct sbdsp_softc *sc = addr;
1299 int cc = sc->sc_i.blksize;
1300
1301 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1302
1303 if (sc->sc_i.run != SB_NOTRUNNING)
1304 sc->sc_intrr(sc->sc_argr);
1305
1306 if (sc->sc_model == SB_1) {
1307 /* Non-looping mode, start DMA */
1308 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1309 sbdsp_wdsp(sc, cc) < 0 ||
1310 sbdsp_wdsp(sc, cc >> 8) < 0) {
1311 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1312 return (EIO);
1313 }
1314 sc->sc_i.run = SB_RUNNING;
1315 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1316 /* Initialize looping PCM */
1317 if (ISSB16CLASS(sc)) {
1318 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1319 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1320 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1321 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1322 sbdsp_wdsp(sc, cc) < 0 ||
1323 sbdsp_wdsp(sc, cc >> 8) < 0) {
1324 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1325 return (EIO);
1326 }
1327 } else {
1328 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1329 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1330 sbdsp_wdsp(sc, cc) < 0 ||
1331 sbdsp_wdsp(sc, cc >> 8) < 0) {
1332 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1333 return (EIO);
1334 }
1335 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1336 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1337 return (EIO);
1338 }
1339 }
1340 sc->sc_i.run = SB_LOOPING;
1341 }
1342
1343 return (0);
1344 }
1345
1346 int
1347 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1348 void *addr;
1349 void *start, *end;
1350 int blksize;
1351 void (*intr) __P((void *));
1352 void *arg;
1353 struct audio_params *param;
1354 {
1355 struct sbdsp_softc *sc = addr;
1356 int stereo = param->channels == 2;
1357 int width = param->precision * param->factor;
1358 int cmd;
1359
1360 #ifdef DIAGNOSTIC
1361 if (stereo && (blksize & 1)) {
1362 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1363 return (EIO);
1364 }
1365 if (sc->sc_o.run != SB_NOTRUNNING)
1366 printf("sbdsp_trigger_output: already running\n");
1367 #endif
1368
1369 sc->sc_intrp = intr;
1370 sc->sc_argp = arg;
1371
1372 if (width == 8) {
1373 #ifdef DIAGNOSTIC
1374 if (sc->sc_o.dmachan != sc->sc_drq8) {
1375 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1376 width, sc->sc_o.dmachan);
1377 return (EIO);
1378 }
1379 #endif
1380 sc->sc_intr8 = sbdsp_block_output;
1381 } else {
1382 #ifdef DIAGNOSTIC
1383 if (sc->sc_o.dmachan != sc->sc_drq16) {
1384 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1385 width, sc->sc_o.dmachan);
1386 return (EIO);
1387 }
1388 #endif
1389 sc->sc_intr16 = sbdsp_block_output;
1390 }
1391
1392 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1393 blksize >>= 1;
1394 --blksize;
1395 sc->sc_o.blksize = blksize;
1396
1397 if (ISSBPRO(sc)) {
1398 /* make sure we re-set stereo mixer bit when we start output. */
1399 sbdsp_mix_write(sc, SBP_STEREO,
1400 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1401 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1402 cmd = sc->sc_o.modep->cmdchan;
1403 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1404 return (EIO);
1405 }
1406
1407 if (ISSB16CLASS(sc)) {
1408 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1409 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1410 sc->sc_o.rate));
1411 return (EIO);
1412 }
1413 } else {
1414 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1415 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1416 sc->sc_o.rate));
1417 return (EIO);
1418 }
1419 }
1420
1421 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1422 start, end, sc->sc_o.dmachan));
1423 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1424 (char *)end - (char *)start, NULL,
1425 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1426
1427 return sbdsp_block_output(addr);
1428 }
1429
1430 int
1431 sbdsp_block_output(addr)
1432 void *addr;
1433 {
1434 struct sbdsp_softc *sc = addr;
1435 int cc = sc->sc_o.blksize;
1436
1437 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1438
1439 if (sc->sc_o.run != SB_NOTRUNNING)
1440 sc->sc_intrp(sc->sc_argp);
1441
1442 if (sc->sc_model == SB_1) {
1443 /* Non-looping mode, initialized. Start DMA and PCM */
1444 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1445 sbdsp_wdsp(sc, cc) < 0 ||
1446 sbdsp_wdsp(sc, cc >> 8) < 0) {
1447 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1448 return (EIO);
1449 }
1450 sc->sc_o.run = SB_RUNNING;
1451 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1452 /* Initialize looping PCM */
1453 if (ISSB16CLASS(sc)) {
1454 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1455 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1456 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1457 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1458 sbdsp_wdsp(sc, cc) < 0 ||
1459 sbdsp_wdsp(sc, cc >> 8) < 0) {
1460 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1461 return (EIO);
1462 }
1463 } else {
1464 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1465 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1466 sbdsp_wdsp(sc, cc) < 0 ||
1467 sbdsp_wdsp(sc, cc >> 8) < 0) {
1468 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1469 return (EIO);
1470 }
1471 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1472 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1473 return (EIO);
1474 }
1475 }
1476 sc->sc_o.run = SB_LOOPING;
1477 }
1478
1479 return (0);
1480 }
1481
1482 int
1483 sbdsp_halt_output(addr)
1484 void *addr;
1485 {
1486 struct sbdsp_softc *sc = addr;
1487
1488 if (sc->sc_o.run != SB_NOTRUNNING) {
1489 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1490 printf("sbdsp_halt_output: failed to halt\n");
1491 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1492 sc->sc_o.run = SB_NOTRUNNING;
1493 }
1494
1495 return (0);
1496 }
1497
1498 int
1499 sbdsp_halt_input(addr)
1500 void *addr;
1501 {
1502 struct sbdsp_softc *sc = addr;
1503
1504 if (sc->sc_i.run != SB_NOTRUNNING) {
1505 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1506 printf("sbdsp_halt_input: failed to halt\n");
1507 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1508 sc->sc_i.run = SB_NOTRUNNING;
1509 }
1510
1511 return (0);
1512 }
1513
1514 /*
1515 * Only the DSP unit on the sound blaster generates interrupts.
1516 * There are three cases of interrupt: reception of a midi byte
1517 * (when mode is enabled), completion of DMA transmission, or
1518 * completion of a DMA reception.
1519 *
1520 * If there is interrupt sharing or a spurious interrupt occurs
1521 * there is no way to distinguish this on an SB2. So if you have
1522 * an SB2 and experience problems, buy an SB16 (it's only $40).
1523 */
1524 int
1525 sbdsp_intr(arg)
1526 void *arg;
1527 {
1528 struct sbdsp_softc *sc = arg;
1529 u_char irq;
1530
1531 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1532 sc->sc_intr8, sc->sc_intr16));
1533 if (ISSB16CLASS(sc)) {
1534 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1535 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1536 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1537 return 0;
1538 }
1539 } else {
1540 /* XXXX CHECK FOR INTERRUPT */
1541 irq = SBP_IRQ_DMA8;
1542 }
1543
1544 sc->sc_interrupts++;
1545 delay(10); /* XXX why? */
1546
1547 /* clear interrupt */
1548 if (irq & SBP_IRQ_DMA8) {
1549 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1550 if (sc->sc_intr8)
1551 sc->sc_intr8(arg);
1552 }
1553 if (irq & SBP_IRQ_DMA16) {
1554 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1555 if (sc->sc_intr16)
1556 sc->sc_intr16(arg);
1557 }
1558 #if NMPU > 0
1559 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1560 mpu_intr(sc->sc_mpudev);
1561 }
1562 #endif
1563 return 1;
1564 }
1565
1566 /* Like val & mask, but make sure the result is correctly rounded. */
1567 #define MAXVAL 256
1568 static int
1569 sbdsp_adjust(val, mask)
1570 int val, mask;
1571 {
1572 val += (MAXVAL - mask) >> 1;
1573 if (val >= MAXVAL)
1574 val = MAXVAL-1;
1575 return val & mask;
1576 }
1577
1578 void
1579 sbdsp_set_mixer_gain(sc, port)
1580 struct sbdsp_softc *sc;
1581 int port;
1582 {
1583 int src, gain;
1584
1585 switch(sc->sc_mixer_model) {
1586 case SBM_NONE:
1587 return;
1588 case SBM_CT1335:
1589 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1590 switch(port) {
1591 case SB_MASTER_VOL:
1592 src = SBP_1335_MASTER_VOL;
1593 break;
1594 case SB_MIDI_VOL:
1595 src = SBP_1335_MIDI_VOL;
1596 break;
1597 case SB_CD_VOL:
1598 src = SBP_1335_CD_VOL;
1599 break;
1600 case SB_VOICE_VOL:
1601 src = SBP_1335_VOICE_VOL;
1602 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1603 break;
1604 default:
1605 return;
1606 }
1607 sbdsp_mix_write(sc, src, gain);
1608 break;
1609 case SBM_CT1345:
1610 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1611 sc->gain[port][SB_RIGHT]);
1612 switch (port) {
1613 case SB_MIC_VOL:
1614 src = SBP_MIC_VOL;
1615 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1616 break;
1617 case SB_MASTER_VOL:
1618 src = SBP_MASTER_VOL;
1619 break;
1620 case SB_LINE_IN_VOL:
1621 src = SBP_LINE_VOL;
1622 break;
1623 case SB_VOICE_VOL:
1624 src = SBP_VOICE_VOL;
1625 break;
1626 case SB_MIDI_VOL:
1627 src = SBP_MIDI_VOL;
1628 break;
1629 case SB_CD_VOL:
1630 src = SBP_CD_VOL;
1631 break;
1632 default:
1633 return;
1634 }
1635 sbdsp_mix_write(sc, src, gain);
1636 break;
1637 case SBM_CT1XX5:
1638 case SBM_CT1745:
1639 switch (port) {
1640 case SB_MIC_VOL:
1641 src = SB16P_MIC_L;
1642 break;
1643 case SB_MASTER_VOL:
1644 src = SB16P_MASTER_L;
1645 break;
1646 case SB_LINE_IN_VOL:
1647 src = SB16P_LINE_L;
1648 break;
1649 case SB_VOICE_VOL:
1650 src = SB16P_VOICE_L;
1651 break;
1652 case SB_MIDI_VOL:
1653 src = SB16P_MIDI_L;
1654 break;
1655 case SB_CD_VOL:
1656 src = SB16P_CD_L;
1657 break;
1658 case SB_INPUT_GAIN:
1659 src = SB16P_INPUT_GAIN_L;
1660 break;
1661 case SB_OUTPUT_GAIN:
1662 src = SB16P_OUTPUT_GAIN_L;
1663 break;
1664 case SB_TREBLE:
1665 src = SB16P_TREBLE_L;
1666 break;
1667 case SB_BASS:
1668 src = SB16P_BASS_L;
1669 break;
1670 case SB_PCSPEAKER:
1671 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1672 return;
1673 default:
1674 return;
1675 }
1676 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1677 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1678 break;
1679 }
1680 }
1681
1682 int
1683 sbdsp_mixer_set_port(addr, cp)
1684 void *addr;
1685 mixer_ctrl_t *cp;
1686 {
1687 struct sbdsp_softc *sc = addr;
1688 int lgain, rgain;
1689 int mask, bits;
1690 int lmask, rmask, lbits, rbits;
1691 int mute, swap;
1692
1693 if (sc->sc_open == SB_OPEN_MIDI)
1694 return EBUSY;
1695
1696 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1697 cp->un.value.num_channels));
1698
1699 if (sc->sc_mixer_model == SBM_NONE)
1700 return EINVAL;
1701
1702 switch (cp->dev) {
1703 case SB_TREBLE:
1704 case SB_BASS:
1705 if (sc->sc_mixer_model == SBM_CT1345 ||
1706 sc->sc_mixer_model == SBM_CT1XX5) {
1707 if (cp->type != AUDIO_MIXER_ENUM)
1708 return EINVAL;
1709 switch (cp->dev) {
1710 case SB_TREBLE:
1711 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1712 return 0;
1713 case SB_BASS:
1714 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1715 return 0;
1716 }
1717 }
1718 case SB_PCSPEAKER:
1719 case SB_INPUT_GAIN:
1720 case SB_OUTPUT_GAIN:
1721 if (!ISSBM1745(sc))
1722 return EINVAL;
1723 case SB_MIC_VOL:
1724 case SB_LINE_IN_VOL:
1725 if (sc->sc_mixer_model == SBM_CT1335)
1726 return EINVAL;
1727 case SB_VOICE_VOL:
1728 case SB_MIDI_VOL:
1729 case SB_CD_VOL:
1730 case SB_MASTER_VOL:
1731 if (cp->type != AUDIO_MIXER_VALUE)
1732 return EINVAL;
1733
1734 /*
1735 * All the mixer ports are stereo except for the microphone.
1736 * If we get a single-channel gain value passed in, then we
1737 * duplicate it to both left and right channels.
1738 */
1739
1740 switch (cp->dev) {
1741 case SB_MIC_VOL:
1742 if (cp->un.value.num_channels != 1)
1743 return EINVAL;
1744
1745 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1746 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1747 break;
1748 case SB_PCSPEAKER:
1749 if (cp->un.value.num_channels != 1)
1750 return EINVAL;
1751 /* fall into */
1752 case SB_INPUT_GAIN:
1753 case SB_OUTPUT_GAIN:
1754 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1755 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1756 break;
1757 default:
1758 switch (cp->un.value.num_channels) {
1759 case 1:
1760 lgain = rgain = SB_ADJUST_GAIN(sc,
1761 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1762 break;
1763 case 2:
1764 if (sc->sc_mixer_model == SBM_CT1335)
1765 return EINVAL;
1766 lgain = SB_ADJUST_GAIN(sc,
1767 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1768 rgain = SB_ADJUST_GAIN(sc,
1769 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1770 break;
1771 default:
1772 return EINVAL;
1773 }
1774 break;
1775 }
1776 sc->gain[cp->dev][SB_LEFT] = lgain;
1777 sc->gain[cp->dev][SB_RIGHT] = rgain;
1778
1779 sbdsp_set_mixer_gain(sc, cp->dev);
1780 break;
1781
1782 case SB_RECORD_SOURCE:
1783 if (ISSBM1745(sc)) {
1784 if (cp->type != AUDIO_MIXER_SET)
1785 return EINVAL;
1786 return sbdsp_set_in_ports(sc, cp->un.mask);
1787 } else {
1788 if (cp->type != AUDIO_MIXER_ENUM)
1789 return EINVAL;
1790 sc->in_port = cp->un.ord;
1791 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1792 }
1793 break;
1794
1795 case SB_AGC:
1796 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1797 return EINVAL;
1798 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1799 break;
1800
1801 case SB_CD_OUT_MUTE:
1802 mask = SB16P_SW_CD;
1803 goto omute;
1804 case SB_MIC_OUT_MUTE:
1805 mask = SB16P_SW_MIC;
1806 goto omute;
1807 case SB_LINE_OUT_MUTE:
1808 mask = SB16P_SW_LINE;
1809 omute:
1810 if (cp->type != AUDIO_MIXER_ENUM)
1811 return EINVAL;
1812 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1813 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1814 if (cp->un.ord)
1815 bits = bits & ~mask;
1816 else
1817 bits = bits | mask;
1818 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1819 break;
1820
1821 case SB_MIC_IN_MUTE:
1822 case SB_MIC_SWAP:
1823 lmask = rmask = SB16P_SW_MIC;
1824 goto imute;
1825 case SB_CD_IN_MUTE:
1826 case SB_CD_SWAP:
1827 lmask = SB16P_SW_CD_L;
1828 rmask = SB16P_SW_CD_R;
1829 goto imute;
1830 case SB_LINE_IN_MUTE:
1831 case SB_LINE_SWAP:
1832 lmask = SB16P_SW_LINE_L;
1833 rmask = SB16P_SW_LINE_R;
1834 goto imute;
1835 case SB_MIDI_IN_MUTE:
1836 case SB_MIDI_SWAP:
1837 lmask = SB16P_SW_MIDI_L;
1838 rmask = SB16P_SW_MIDI_R;
1839 imute:
1840 if (cp->type != AUDIO_MIXER_ENUM)
1841 return EINVAL;
1842 mask = lmask | rmask;
1843 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1844 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1845 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1846 if (SB_IS_IN_MUTE(cp->dev)) {
1847 mute = cp->dev;
1848 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1849 } else {
1850 swap = cp->dev;
1851 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1852 }
1853 if (sc->gain[swap][SB_LR]) {
1854 mask = lmask;
1855 lmask = rmask;
1856 rmask = mask;
1857 }
1858 if (!sc->gain[mute][SB_LR]) {
1859 lbits = lbits | lmask;
1860 rbits = rbits | rmask;
1861 }
1862 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1863 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1864 break;
1865
1866 default:
1867 return EINVAL;
1868 }
1869
1870 return 0;
1871 }
1872
1873 int
1874 sbdsp_mixer_get_port(addr, cp)
1875 void *addr;
1876 mixer_ctrl_t *cp;
1877 {
1878 struct sbdsp_softc *sc = addr;
1879
1880 if (sc->sc_open == SB_OPEN_MIDI)
1881 return EBUSY;
1882
1883 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1884
1885 if (sc->sc_mixer_model == SBM_NONE)
1886 return EINVAL;
1887
1888 switch (cp->dev) {
1889 case SB_TREBLE:
1890 case SB_BASS:
1891 if (sc->sc_mixer_model == SBM_CT1345 ||
1892 sc->sc_mixer_model == SBM_CT1XX5) {
1893 switch (cp->dev) {
1894 case SB_TREBLE:
1895 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1896 return 0;
1897 case SB_BASS:
1898 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1899 return 0;
1900 }
1901 }
1902 case SB_PCSPEAKER:
1903 case SB_INPUT_GAIN:
1904 case SB_OUTPUT_GAIN:
1905 if (!ISSBM1745(sc))
1906 return EINVAL;
1907 case SB_MIC_VOL:
1908 case SB_LINE_IN_VOL:
1909 if (sc->sc_mixer_model == SBM_CT1335)
1910 return EINVAL;
1911 case SB_VOICE_VOL:
1912 case SB_MIDI_VOL:
1913 case SB_CD_VOL:
1914 case SB_MASTER_VOL:
1915 switch (cp->dev) {
1916 case SB_MIC_VOL:
1917 case SB_PCSPEAKER:
1918 if (cp->un.value.num_channels != 1)
1919 return EINVAL;
1920 /* fall into */
1921 default:
1922 switch (cp->un.value.num_channels) {
1923 case 1:
1924 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1925 sc->gain[cp->dev][SB_LEFT];
1926 break;
1927 case 2:
1928 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1929 sc->gain[cp->dev][SB_LEFT];
1930 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1931 sc->gain[cp->dev][SB_RIGHT];
1932 break;
1933 default:
1934 return EINVAL;
1935 }
1936 break;
1937 }
1938 break;
1939
1940 case SB_RECORD_SOURCE:
1941 if (ISSBM1745(sc))
1942 cp->un.mask = sc->in_mask;
1943 else
1944 cp->un.ord = sc->in_port;
1945 break;
1946
1947 case SB_AGC:
1948 if (!ISSBM1745(sc))
1949 return EINVAL;
1950 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1951 break;
1952
1953 case SB_CD_IN_MUTE:
1954 case SB_MIC_IN_MUTE:
1955 case SB_LINE_IN_MUTE:
1956 case SB_MIDI_IN_MUTE:
1957 case SB_CD_SWAP:
1958 case SB_MIC_SWAP:
1959 case SB_LINE_SWAP:
1960 case SB_MIDI_SWAP:
1961 case SB_CD_OUT_MUTE:
1962 case SB_MIC_OUT_MUTE:
1963 case SB_LINE_OUT_MUTE:
1964 cp->un.ord = sc->gain[cp->dev][SB_LR];
1965 break;
1966
1967 default:
1968 return EINVAL;
1969 }
1970
1971 return 0;
1972 }
1973
1974 int
1975 sbdsp_mixer_query_devinfo(addr, dip)
1976 void *addr;
1977 mixer_devinfo_t *dip;
1978 {
1979 struct sbdsp_softc *sc = addr;
1980 int chan, class, is1745;
1981
1982 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1983 sc->sc_mixer_model, dip->index));
1984
1985 if (sc->sc_mixer_model == SBM_NONE)
1986 return ENXIO;
1987
1988 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1989 is1745 = ISSBM1745(sc);
1990 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1991
1992 switch (dip->index) {
1993 case SB_MASTER_VOL:
1994 dip->type = AUDIO_MIXER_VALUE;
1995 dip->mixer_class = SB_OUTPUT_CLASS;
1996 dip->prev = dip->next = AUDIO_MIXER_LAST;
1997 strcpy(dip->label.name, AudioNmaster);
1998 dip->un.v.num_channels = chan;
1999 strcpy(dip->un.v.units.name, AudioNvolume);
2000 return 0;
2001 case SB_MIDI_VOL:
2002 dip->type = AUDIO_MIXER_VALUE;
2003 dip->mixer_class = class;
2004 dip->prev = AUDIO_MIXER_LAST;
2005 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2006 strcpy(dip->label.name, AudioNfmsynth);
2007 dip->un.v.num_channels = chan;
2008 strcpy(dip->un.v.units.name, AudioNvolume);
2009 return 0;
2010 case SB_CD_VOL:
2011 dip->type = AUDIO_MIXER_VALUE;
2012 dip->mixer_class = class;
2013 dip->prev = AUDIO_MIXER_LAST;
2014 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2015 strcpy(dip->label.name, AudioNcd);
2016 dip->un.v.num_channels = chan;
2017 strcpy(dip->un.v.units.name, AudioNvolume);
2018 return 0;
2019 case SB_VOICE_VOL:
2020 dip->type = AUDIO_MIXER_VALUE;
2021 dip->mixer_class = class;
2022 dip->prev = AUDIO_MIXER_LAST;
2023 dip->next = AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioNdac);
2025 dip->un.v.num_channels = chan;
2026 strcpy(dip->un.v.units.name, AudioNvolume);
2027 return 0;
2028 case SB_OUTPUT_CLASS:
2029 dip->type = AUDIO_MIXER_CLASS;
2030 dip->mixer_class = SB_OUTPUT_CLASS;
2031 dip->next = dip->prev = AUDIO_MIXER_LAST;
2032 strcpy(dip->label.name, AudioCoutputs);
2033 return 0;
2034 }
2035
2036 if (sc->sc_mixer_model == SBM_CT1335)
2037 return ENXIO;
2038
2039 switch (dip->index) {
2040 case SB_MIC_VOL:
2041 dip->type = AUDIO_MIXER_VALUE;
2042 dip->mixer_class = class;
2043 dip->prev = AUDIO_MIXER_LAST;
2044 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2045 strcpy(dip->label.name, AudioNmicrophone);
2046 dip->un.v.num_channels = 1;
2047 strcpy(dip->un.v.units.name, AudioNvolume);
2048 return 0;
2049
2050 case SB_LINE_IN_VOL:
2051 dip->type = AUDIO_MIXER_VALUE;
2052 dip->mixer_class = class;
2053 dip->prev = AUDIO_MIXER_LAST;
2054 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2055 strcpy(dip->label.name, AudioNline);
2056 dip->un.v.num_channels = 2;
2057 strcpy(dip->un.v.units.name, AudioNvolume);
2058 return 0;
2059
2060 case SB_RECORD_SOURCE:
2061 dip->mixer_class = SB_RECORD_CLASS;
2062 dip->prev = dip->next = AUDIO_MIXER_LAST;
2063 strcpy(dip->label.name, AudioNsource);
2064 if (ISSBM1745(sc)) {
2065 dip->type = AUDIO_MIXER_SET;
2066 dip->un.s.num_mem = 4;
2067 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2068 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2069 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2070 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2071 strcpy(dip->un.s.member[2].label.name, AudioNline);
2072 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2073 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2074 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2075 } else {
2076 dip->type = AUDIO_MIXER_ENUM;
2077 dip->un.e.num_mem = 3;
2078 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2079 dip->un.e.member[0].ord = SB_MIC_VOL;
2080 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2081 dip->un.e.member[1].ord = SB_CD_VOL;
2082 strcpy(dip->un.e.member[2].label.name, AudioNline);
2083 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2084 }
2085 return 0;
2086
2087 case SB_BASS:
2088 dip->prev = dip->next = AUDIO_MIXER_LAST;
2089 strcpy(dip->label.name, AudioNbass);
2090 if (sc->sc_mixer_model == SBM_CT1745) {
2091 dip->type = AUDIO_MIXER_VALUE;
2092 dip->mixer_class = SB_EQUALIZATION_CLASS;
2093 dip->un.v.num_channels = 2;
2094 strcpy(dip->un.v.units.name, AudioNbass);
2095 } else {
2096 dip->type = AUDIO_MIXER_ENUM;
2097 dip->mixer_class = SB_INPUT_CLASS;
2098 dip->un.e.num_mem = 2;
2099 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2100 dip->un.e.member[0].ord = 0;
2101 strcpy(dip->un.e.member[1].label.name, AudioNon);
2102 dip->un.e.member[1].ord = 1;
2103 }
2104 return 0;
2105
2106 case SB_TREBLE:
2107 dip->prev = dip->next = AUDIO_MIXER_LAST;
2108 strcpy(dip->label.name, AudioNtreble);
2109 if (sc->sc_mixer_model == SBM_CT1745) {
2110 dip->type = AUDIO_MIXER_VALUE;
2111 dip->mixer_class = SB_EQUALIZATION_CLASS;
2112 dip->un.v.num_channels = 2;
2113 strcpy(dip->un.v.units.name, AudioNtreble);
2114 } else {
2115 dip->type = AUDIO_MIXER_ENUM;
2116 dip->mixer_class = SB_INPUT_CLASS;
2117 dip->un.e.num_mem = 2;
2118 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2119 dip->un.e.member[0].ord = 0;
2120 strcpy(dip->un.e.member[1].label.name, AudioNon);
2121 dip->un.e.member[1].ord = 1;
2122 }
2123 return 0;
2124
2125 case SB_RECORD_CLASS: /* record source class */
2126 dip->type = AUDIO_MIXER_CLASS;
2127 dip->mixer_class = SB_RECORD_CLASS;
2128 dip->next = dip->prev = AUDIO_MIXER_LAST;
2129 strcpy(dip->label.name, AudioCrecord);
2130 return 0;
2131
2132 case SB_INPUT_CLASS:
2133 dip->type = AUDIO_MIXER_CLASS;
2134 dip->mixer_class = SB_INPUT_CLASS;
2135 dip->next = dip->prev = AUDIO_MIXER_LAST;
2136 strcpy(dip->label.name, AudioCinputs);
2137 return 0;
2138
2139 }
2140
2141 if (sc->sc_mixer_model == SBM_CT1345)
2142 return ENXIO;
2143
2144 switch(dip->index) {
2145 case SB_PCSPEAKER:
2146 dip->type = AUDIO_MIXER_VALUE;
2147 dip->mixer_class = SB_INPUT_CLASS;
2148 dip->prev = dip->next = AUDIO_MIXER_LAST;
2149 strcpy(dip->label.name, "pc_speaker");
2150 dip->un.v.num_channels = 1;
2151 strcpy(dip->un.v.units.name, AudioNvolume);
2152 return 0;
2153
2154 case SB_INPUT_GAIN:
2155 dip->type = AUDIO_MIXER_VALUE;
2156 dip->mixer_class = SB_INPUT_CLASS;
2157 dip->prev = dip->next = AUDIO_MIXER_LAST;
2158 strcpy(dip->label.name, AudioNinput);
2159 dip->un.v.num_channels = 2;
2160 strcpy(dip->un.v.units.name, AudioNvolume);
2161 return 0;
2162
2163 case SB_OUTPUT_GAIN:
2164 dip->type = AUDIO_MIXER_VALUE;
2165 dip->mixer_class = SB_OUTPUT_CLASS;
2166 dip->prev = dip->next = AUDIO_MIXER_LAST;
2167 strcpy(dip->label.name, AudioNoutput);
2168 dip->un.v.num_channels = 2;
2169 strcpy(dip->un.v.units.name, AudioNvolume);
2170 return 0;
2171
2172 case SB_AGC:
2173 dip->type = AUDIO_MIXER_ENUM;
2174 dip->mixer_class = SB_INPUT_CLASS;
2175 dip->prev = dip->next = AUDIO_MIXER_LAST;
2176 strcpy(dip->label.name, "agc");
2177 dip->un.e.num_mem = 2;
2178 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2179 dip->un.e.member[0].ord = 0;
2180 strcpy(dip->un.e.member[1].label.name, AudioNon);
2181 dip->un.e.member[1].ord = 1;
2182 return 0;
2183
2184 case SB_EQUALIZATION_CLASS:
2185 dip->type = AUDIO_MIXER_CLASS;
2186 dip->mixer_class = SB_EQUALIZATION_CLASS;
2187 dip->next = dip->prev = AUDIO_MIXER_LAST;
2188 strcpy(dip->label.name, AudioCequalization);
2189 return 0;
2190
2191 case SB_CD_IN_MUTE:
2192 dip->prev = SB_CD_VOL;
2193 dip->next = SB_CD_SWAP;
2194 dip->mixer_class = SB_INPUT_CLASS;
2195 goto mute;
2196
2197 case SB_MIC_IN_MUTE:
2198 dip->prev = SB_MIC_VOL;
2199 dip->next = SB_MIC_SWAP;
2200 dip->mixer_class = SB_INPUT_CLASS;
2201 goto mute;
2202
2203 case SB_LINE_IN_MUTE:
2204 dip->prev = SB_LINE_IN_VOL;
2205 dip->next = SB_LINE_SWAP;
2206 dip->mixer_class = SB_INPUT_CLASS;
2207 goto mute;
2208
2209 case SB_MIDI_IN_MUTE:
2210 dip->prev = SB_MIDI_VOL;
2211 dip->next = SB_MIDI_SWAP;
2212 dip->mixer_class = SB_INPUT_CLASS;
2213 goto mute;
2214
2215 case SB_CD_SWAP:
2216 dip->prev = SB_CD_IN_MUTE;
2217 dip->next = SB_CD_OUT_MUTE;
2218 goto swap;
2219
2220 case SB_MIC_SWAP:
2221 dip->prev = SB_MIC_IN_MUTE;
2222 dip->next = SB_MIC_OUT_MUTE;
2223 goto swap;
2224
2225 case SB_LINE_SWAP:
2226 dip->prev = SB_LINE_IN_MUTE;
2227 dip->next = SB_LINE_OUT_MUTE;
2228 goto swap;
2229
2230 case SB_MIDI_SWAP:
2231 dip->prev = SB_MIDI_IN_MUTE;
2232 dip->next = AUDIO_MIXER_LAST;
2233 swap:
2234 dip->mixer_class = SB_INPUT_CLASS;
2235 strcpy(dip->label.name, AudioNswap);
2236 goto mute1;
2237
2238 case SB_CD_OUT_MUTE:
2239 dip->prev = SB_CD_SWAP;
2240 dip->next = AUDIO_MIXER_LAST;
2241 dip->mixer_class = SB_OUTPUT_CLASS;
2242 goto mute;
2243
2244 case SB_MIC_OUT_MUTE:
2245 dip->prev = SB_MIC_SWAP;
2246 dip->next = AUDIO_MIXER_LAST;
2247 dip->mixer_class = SB_OUTPUT_CLASS;
2248 goto mute;
2249
2250 case SB_LINE_OUT_MUTE:
2251 dip->prev = SB_LINE_SWAP;
2252 dip->next = AUDIO_MIXER_LAST;
2253 dip->mixer_class = SB_OUTPUT_CLASS;
2254 mute:
2255 strcpy(dip->label.name, AudioNmute);
2256 mute1:
2257 dip->type = AUDIO_MIXER_ENUM;
2258 dip->un.e.num_mem = 2;
2259 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2260 dip->un.e.member[0].ord = 0;
2261 strcpy(dip->un.e.member[1].label.name, AudioNon);
2262 dip->un.e.member[1].ord = 1;
2263 return 0;
2264
2265 }
2266
2267 return ENXIO;
2268 }
2269
2270 void *
2271 sb_malloc(addr, direction, size, pool, flags)
2272 void *addr;
2273 int direction;
2274 size_t size;
2275 struct malloc_type *pool;
2276 int flags;
2277 {
2278 struct sbdsp_softc *sc = addr;
2279 int drq;
2280
2281 if (sc->sc_drq8 != -1)
2282 drq = sc->sc_drq8;
2283 else
2284 drq = sc->sc_drq16;
2285 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2286 }
2287
2288 void
2289 sb_free(addr, ptr, pool)
2290 void *addr;
2291 void *ptr;
2292 struct malloc_type *pool;
2293 {
2294 isa_free(ptr, pool);
2295 }
2296
2297 size_t
2298 sb_round_buffersize(addr, direction, size)
2299 void *addr;
2300 int direction;
2301 size_t size;
2302 {
2303 struct sbdsp_softc *sc = addr;
2304 bus_size_t maxsize;
2305
2306 if (sc->sc_drq8 != -1)
2307 maxsize = sc->sc_drq8_maxsize;
2308 else
2309 maxsize = sc->sc_drq16_maxsize;
2310
2311 if (size > maxsize)
2312 size = maxsize;
2313 return (size);
2314 }
2315
2316 paddr_t
2317 sb_mappage(addr, mem, off, prot)
2318 void *addr;
2319 void *mem;
2320 off_t off;
2321 int prot;
2322 {
2323 return isa_mappage(mem, off, prot);
2324 }
2325
2326 int
2327 sbdsp_get_props(addr)
2328 void *addr;
2329 {
2330 struct sbdsp_softc *sc = addr;
2331 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2332 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2333 }
2334
2335 #if NMPU > 0
2336 /*
2337 * MIDI related routines.
2338 */
2339
2340 int
2341 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2342 void *addr;
2343 int flags;
2344 void (*iintr)__P((void *, int));
2345 void (*ointr)__P((void *));
2346 void *arg;
2347 {
2348 struct sbdsp_softc *sc = addr;
2349
2350 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2351
2352 if (sc->sc_open != SB_CLOSED)
2353 return EBUSY;
2354 if (sbdsp_reset(sc) != 0)
2355 return EIO;
2356
2357 sc->sc_open = SB_OPEN_MIDI;
2358 sc->sc_openflags = flags;
2359
2360 if (sc->sc_model >= SB_20)
2361 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2362 return EIO;
2363
2364 sc->sc_intr8 = sbdsp_midi_intr;
2365 sc->sc_intrm = iintr;
2366 sc->sc_argm = arg;
2367
2368 return 0;
2369 }
2370
2371 void
2372 sbdsp_midi_close(addr)
2373 void *addr;
2374 {
2375 struct sbdsp_softc *sc = addr;
2376
2377 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2378
2379 if (sc->sc_model >= SB_20)
2380 sbdsp_reset(sc); /* exit UART mode */
2381
2382 sc->sc_intrm = 0;
2383 sc->sc_open = SB_CLOSED;
2384 }
2385
2386 int
2387 sbdsp_midi_output(addr, d)
2388 void *addr;
2389 int d;
2390 {
2391 struct sbdsp_softc *sc = addr;
2392
2393 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2394 return EIO;
2395 if (sbdsp_wdsp(sc, d))
2396 return EIO;
2397 return 0;
2398 }
2399
2400 void
2401 sbdsp_midi_getinfo(addr, mi)
2402 void *addr;
2403 struct midi_info *mi;
2404 {
2405 struct sbdsp_softc *sc = addr;
2406
2407 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2408 mi->props = MIDI_PROP_CAN_INPUT;
2409 }
2410
2411 int
2412 sbdsp_midi_intr(addr)
2413 void *addr;
2414 {
2415 struct sbdsp_softc *sc = addr;
2416
2417 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2418 return (0);
2419 }
2420
2421 #endif
2422
2423