sbdsp.c revision 1.112 1 /* $NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 KHz 4 KHz
154 * input ls max 23 KHz 13 KHz
155 * input hs max 44.1 KHz 15 KHz
156 * output ls min 4 KHz 4 KHz
157 * output ls max 23 KHz 23 KHz
158 * output hs max 44.1 KHz 44.1 KHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195 { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215 { -1 }
216 };
217
218 void sbversion __P((struct sbdsp_softc *));
219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
221 void sbdsp_pause __P((struct sbdsp_softc *));
222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
225 void sbdsp_set_ifilter __P((void *, int));
226 int sbdsp_get_ifilter __P((void *));
227
228 int sbdsp_block_output __P((void *));
229 int sbdsp_block_input __P((void *));
230 static int sbdsp_adjust __P((int, int));
231
232 int sbdsp_midi_intr __P((void *));
233
234 static void sbdsp_powerhook __P((int, void*));
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc __P((struct sbdsp_softc *));
238
239 void
240 sb_printsc(sc)
241 struct sbdsp_softc *sc;
242 {
243 int i;
244
245 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
247 sc->sc_drq8, sc->sc_drq16,
248 sc->sc_iobase, sc->sc_irq);
249 printf("irate %d itc %x orate %d otc %x\n",
250 sc->sc_i.rate, sc->sc_i.tc,
251 sc->sc_o.rate, sc->sc_o.tc);
252 printf("spkron %u nintr %lu\n",
253 sc->spkr_state, sc->sc_interrupts);
254 printf("intr8 %p intr16 %p\n",
255 sc->sc_intr8, sc->sc_intr16);
256 printf("gain:");
257 for (i = 0; i < SB_NDEVS; i++)
258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
259 printf("\n");
260 }
261 #endif /* AUDIO_DEBUG */
262
263 /*
264 * Probe / attach routines.
265 */
266
267 /*
268 * Probe for the soundblaster hardware.
269 */
270 int
271 sbdsp_probe(sc)
272 struct sbdsp_softc *sc;
273 {
274
275 if (sbdsp_reset(sc) < 0) {
276 DPRINTF(("sbdsp: couldn't reset card\n"));
277 return 0;
278 }
279 /* if flags set, go and probe the jazz16 stuff */
280 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
281 sbdsp_jazz16_probe(sc);
282 else
283 sbversion(sc);
284 if (sc->sc_model == SB_UNK) {
285 /* Unknown SB model found. */
286 DPRINTF(("sbdsp: unknown SB model found\n"));
287 return 0;
288 }
289 return 1;
290 }
291
292 /*
293 * Try add-on stuff for Jazz16.
294 */
295 void
296 sbdsp_jazz16_probe(sc)
297 struct sbdsp_softc *sc;
298 {
299 static u_char jazz16_irq_conf[16] = {
300 -1, -1, 0x02, 0x03,
301 -1, 0x01, -1, 0x04,
302 -1, 0x02, 0x05, -1,
303 -1, -1, -1, 0x06};
304 static u_char jazz16_drq_conf[8] = {
305 -1, 0x01, -1, 0x02,
306 -1, 0x03, -1, 0x04};
307
308 bus_space_tag_t iot = sc->sc_iot;
309 bus_space_handle_t ioh;
310
311 sbversion(sc);
312
313 DPRINTF(("jazz16 probe\n"));
314
315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
316 DPRINTF(("bus map failed\n"));
317 return;
318 }
319
320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
322 DPRINTF(("drq/irq check failed\n"));
323 goto done; /* give up, we can't do it. */
324 }
325
326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
327 delay(10000); /* delay 10 ms */
328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
330
331 if (sbdsp_reset(sc) < 0) {
332 DPRINTF(("sbdsp_reset check failed\n"));
333 goto done; /* XXX? what else could we do? */
334 }
335
336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
337 DPRINTF(("read16 setup failed\n"));
338 goto done;
339 }
340
341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
342 DPRINTF(("read16 failed\n"));
343 goto done;
344 }
345
346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
347 sc->sc_drq16 = sc->sc_drq8;
348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
350 jazz16_drq_conf[sc->sc_drq8]) ||
351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
353 } else {
354 DPRINTF(("jazz16 detected!\n"));
355 sc->sc_model = SB_JAZZ;
356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
357 }
358
359 done:
360 bus_space_unmap(iot, ioh, 1);
361 }
362
363 /*
364 * Attach hardware to driver, attach hardware driver to audio
365 * pseudo-device driver .
366 */
367 void
368 sbdsp_attach(sc)
369 struct sbdsp_softc *sc;
370 {
371 struct audio_params pparams, rparams;
372 int i, error;
373 u_int v;
374
375 pparams = audio_default;
376 rparams = audio_default;
377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
378
379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
380
381 if (sc->sc_mixer_model != SBM_NONE) {
382 /* Reset the mixer.*/
383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
384 /* And set our own default values */
385 for (i = 0; i < SB_NDEVS; i++) {
386 switch(i) {
387 case SB_MIC_VOL:
388 case SB_LINE_IN_VOL:
389 v = 0;
390 break;
391 case SB_BASS:
392 case SB_TREBLE:
393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
394 break;
395 case SB_CD_IN_MUTE:
396 case SB_MIC_IN_MUTE:
397 case SB_LINE_IN_MUTE:
398 case SB_MIDI_IN_MUTE:
399 case SB_CD_SWAP:
400 case SB_MIC_SWAP:
401 case SB_LINE_SWAP:
402 case SB_MIDI_SWAP:
403 case SB_CD_OUT_MUTE:
404 case SB_MIC_OUT_MUTE:
405 case SB_LINE_OUT_MUTE:
406 v = 0;
407 break;
408 default:
409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 break;
411 }
412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
413 sbdsp_set_mixer_gain(sc, i);
414 }
415 sc->in_filter = 0; /* no filters turned on, please */
416 }
417
418 printf(": dsp v%d.%02d%s\n",
419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
421
422 sc->sc_fullduplex = ISSB16CLASS(sc) &&
423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
424 sc->sc_drq8 != sc->sc_drq16;
425
426 if (sc->sc_drq8 != -1) {
427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
428 sc->sc_drq8);
429 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
430 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
431 if (error) {
432 printf("%s: can't create map for drq %d\n",
433 sc->sc_dev.dv_xname, sc->sc_drq8);
434 return;
435 }
436 }
437
438 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
439 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
440 sc->sc_drq16);
441 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
442 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
443 if (error) {
444 printf("%s: can't create map for drq %d\n",
445 sc->sc_dev.dv_xname, sc->sc_drq16);
446 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
447 return;
448 }
449 }
450
451 powerhook_establish (sbdsp_powerhook, sc);
452 }
453
454 static void
455 sbdsp_powerhook (why, arg)
456 int why;
457 void *arg;
458 {
459 struct sbdsp_softc *sc = arg;
460 int i;
461
462 if (!sc || why != PWR_RESUME)
463 return;
464
465 /* Reset the mixer. */
466 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
467 for (i = 0; i < SB_NDEVS; i++)
468 sbdsp_set_mixer_gain (sc, i);
469 }
470
471 void
472 sbdsp_mix_write(sc, mixerport, val)
473 struct sbdsp_softc *sc;
474 int mixerport;
475 int val;
476 {
477 bus_space_tag_t iot = sc->sc_iot;
478 bus_space_handle_t ioh = sc->sc_ioh;
479 int s;
480
481 s = splaudio();
482 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
483 delay(20);
484 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
485 delay(30);
486 splx(s);
487 }
488
489 int
490 sbdsp_mix_read(sc, mixerport)
491 struct sbdsp_softc *sc;
492 int mixerport;
493 {
494 bus_space_tag_t iot = sc->sc_iot;
495 bus_space_handle_t ioh = sc->sc_ioh;
496 int val;
497 int s;
498
499 s = splaudio();
500 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
501 delay(20);
502 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
503 delay(30);
504 splx(s);
505 return val;
506 }
507
508 /*
509 * Various routines to interface to higher level audio driver
510 */
511
512 int
513 sbdsp_query_encoding(addr, fp)
514 void *addr;
515 struct audio_encoding *fp;
516 {
517 struct sbdsp_softc *sc = addr;
518 int emul;
519
520 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
521
522 switch (fp->index) {
523 case 0:
524 strcpy(fp->name, AudioEulinear);
525 fp->encoding = AUDIO_ENCODING_ULINEAR;
526 fp->precision = 8;
527 fp->flags = 0;
528 return 0;
529 case 1:
530 strcpy(fp->name, AudioEmulaw);
531 fp->encoding = AUDIO_ENCODING_ULAW;
532 fp->precision = 8;
533 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
534 return 0;
535 case 2:
536 strcpy(fp->name, AudioEalaw);
537 fp->encoding = AUDIO_ENCODING_ALAW;
538 fp->precision = 8;
539 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
540 return 0;
541 case 3:
542 strcpy(fp->name, AudioEslinear);
543 fp->encoding = AUDIO_ENCODING_SLINEAR;
544 fp->precision = 8;
545 fp->flags = emul;
546 return 0;
547 }
548 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
549 return EINVAL;
550
551 switch(fp->index) {
552 case 4:
553 strcpy(fp->name, AudioEslinear_le);
554 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
555 fp->precision = 16;
556 fp->flags = 0;
557 return 0;
558 case 5:
559 strcpy(fp->name, AudioEulinear_le);
560 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
561 fp->precision = 16;
562 fp->flags = emul;
563 return 0;
564 case 6:
565 strcpy(fp->name, AudioEslinear_be);
566 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
567 fp->precision = 16;
568 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
569 return 0;
570 case 7:
571 strcpy(fp->name, AudioEulinear_be);
572 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
573 fp->precision = 16;
574 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
575 return 0;
576 default:
577 return EINVAL;
578 }
579 return 0;
580 }
581
582 int
583 sbdsp_set_params(addr, setmode, usemode, play, rec)
584 void *addr;
585 int setmode, usemode;
586 struct audio_params *play, *rec;
587 {
588 struct sbdsp_softc *sc = addr;
589 struct sbmode *m;
590 u_int rate, tc, bmode;
591 void (*swcode) __P((void *, u_char *buf, int cnt));
592 int factor;
593 int model;
594 int chan;
595 struct audio_params *p;
596 int mode;
597
598 if (sc->sc_open == SB_OPEN_MIDI)
599 return EBUSY;
600
601 /* Later models work like SB16. */
602 model = min(sc->sc_model, SB_16);
603
604 /*
605 * Prior to the SB16, we have only one clock, so make the sample
606 * rates match.
607 */
608 if (!ISSB16CLASS(sc) &&
609 play->sample_rate != rec->sample_rate &&
610 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
611 if (setmode == AUMODE_PLAY) {
612 rec->sample_rate = play->sample_rate;
613 setmode |= AUMODE_RECORD;
614 } else if (setmode == AUMODE_RECORD) {
615 play->sample_rate = rec->sample_rate;
616 setmode |= AUMODE_PLAY;
617 } else
618 return (EINVAL);
619 }
620
621 /* Set first record info, then play info */
622 for (mode = AUMODE_RECORD; mode != -1;
623 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
624 if ((setmode & mode) == 0)
625 continue;
626
627 p = mode == AUMODE_PLAY ? play : rec;
628 /* Locate proper commands */
629 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
630 m->model != -1; m++) {
631 if (model == m->model &&
632 p->channels == m->channels &&
633 p->precision == m->precision &&
634 p->sample_rate >= m->lowrate &&
635 p->sample_rate <= m->highrate)
636 break;
637 }
638 if (m->model == -1)
639 return EINVAL;
640 rate = p->sample_rate;
641 swcode = 0;
642 factor = 1;
643 tc = 1;
644 bmode = -1;
645 if (model == SB_16) {
646 switch (p->encoding) {
647 case AUDIO_ENCODING_SLINEAR_BE:
648 if (p->precision == 16)
649 swcode = swap_bytes;
650 /* fall into */
651 case AUDIO_ENCODING_SLINEAR_LE:
652 bmode = SB_BMODE_SIGNED;
653 break;
654 case AUDIO_ENCODING_ULINEAR_BE:
655 if (p->precision == 16)
656 swcode = swap_bytes;
657 /* fall into */
658 case AUDIO_ENCODING_ULINEAR_LE:
659 bmode = SB_BMODE_UNSIGNED;
660 break;
661 case AUDIO_ENCODING_ULAW:
662 if (mode == AUMODE_PLAY) {
663 swcode = mulaw_to_ulinear16_le;
664 factor = 2;
665 m = &sbpmodes[PLAY16];
666 } else
667 swcode = ulinear8_to_mulaw;
668 bmode = SB_BMODE_UNSIGNED;
669 break;
670 case AUDIO_ENCODING_ALAW:
671 if (mode == AUMODE_PLAY) {
672 swcode = alaw_to_ulinear16_le;
673 factor = 2;
674 m = &sbpmodes[PLAY16];
675 } else
676 swcode = ulinear8_to_alaw;
677 bmode = SB_BMODE_UNSIGNED;
678 break;
679 default:
680 return EINVAL;
681 }
682 if (p->channels == 2)
683 bmode |= SB_BMODE_STEREO;
684 } else if (m->model == SB_JAZZ && m->precision == 16) {
685 switch (p->encoding) {
686 case AUDIO_ENCODING_SLINEAR_LE:
687 break;
688 case AUDIO_ENCODING_ULINEAR_LE:
689 swcode = change_sign16_le;
690 break;
691 case AUDIO_ENCODING_SLINEAR_BE:
692 swcode = swap_bytes;
693 break;
694 case AUDIO_ENCODING_ULINEAR_BE:
695 swcode = mode == AUMODE_PLAY ?
696 swap_bytes_change_sign16_le :
697 change_sign16_swap_bytes_le;
698 break;
699 case AUDIO_ENCODING_ULAW:
700 swcode = mode == AUMODE_PLAY ?
701 mulaw_to_ulinear8 : ulinear8_to_mulaw;
702 break;
703 case AUDIO_ENCODING_ALAW:
704 swcode = mode == AUMODE_PLAY ?
705 alaw_to_ulinear8 : ulinear8_to_alaw;
706 break;
707 default:
708 return EINVAL;
709 }
710 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
711 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
712 } else {
713 switch (p->encoding) {
714 case AUDIO_ENCODING_SLINEAR_BE:
715 case AUDIO_ENCODING_SLINEAR_LE:
716 swcode = change_sign8;
717 break;
718 case AUDIO_ENCODING_ULINEAR_BE:
719 case AUDIO_ENCODING_ULINEAR_LE:
720 break;
721 case AUDIO_ENCODING_ULAW:
722 swcode = mode == AUMODE_PLAY ?
723 mulaw_to_ulinear8 : ulinear8_to_mulaw;
724 break;
725 case AUDIO_ENCODING_ALAW:
726 swcode = mode == AUMODE_PLAY ?
727 alaw_to_ulinear8 : ulinear8_to_alaw;
728 break;
729 default:
730 return EINVAL;
731 }
732 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
733 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
734 }
735
736 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
737 if (mode == AUMODE_PLAY) {
738 sc->sc_o.rate = rate;
739 sc->sc_o.tc = tc;
740 sc->sc_o.modep = m;
741 sc->sc_o.bmode = bmode;
742 sc->sc_o.dmachan = chan;
743 } else {
744 sc->sc_i.rate = rate;
745 sc->sc_i.tc = tc;
746 sc->sc_i.modep = m;
747 sc->sc_i.bmode = bmode;
748 sc->sc_i.dmachan = chan;
749 }
750
751 p->sw_code = swcode;
752 p->factor = factor;
753 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
754 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
755 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
756
757 }
758
759 if (sc->sc_fullduplex &&
760 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
761 sc->sc_i.dmachan == sc->sc_o.dmachan) {
762 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
763 if (sc->sc_o.dmachan == sc->sc_drq8) {
764 /* Use 16 bit DMA for playing by expanding the samples. */
765 play->sw_code = linear8_to_linear16_le;
766 play->factor = 2;
767 sc->sc_o.modep = &sbpmodes[PLAY16];
768 sc->sc_o.dmachan = sc->sc_drq16;
769 } else {
770 return EINVAL;
771 }
772 }
773 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
774 sc->sc_i.dmachan, sc->sc_o.dmachan));
775
776 return (0);
777 }
778
779 void
780 sbdsp_set_ifilter(addr, which)
781 void *addr;
782 int which;
783 {
784 struct sbdsp_softc *sc = addr;
785 int mixval;
786
787 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
788 switch (which) {
789 case 0:
790 mixval |= SBP_FILTER_OFF;
791 break;
792 case SB_TREBLE:
793 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
794 break;
795 case SB_BASS:
796 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
797 break;
798 default:
799 return;
800 }
801 sc->in_filter = mixval & SBP_IFILTER_MASK;
802 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
803 }
804
805 int
806 sbdsp_get_ifilter(addr)
807 void *addr;
808 {
809 struct sbdsp_softc *sc = addr;
810
811 sc->in_filter =
812 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
813 switch (sc->in_filter) {
814 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
815 return SB_TREBLE;
816 case SBP_FILTER_ON|SBP_IFILTER_LOW:
817 return SB_BASS;
818 default:
819 return 0;
820 }
821 }
822
823 int
824 sbdsp_set_in_ports(sc, mask)
825 struct sbdsp_softc *sc;
826 int mask;
827 {
828 int bitsl, bitsr;
829 int sbport;
830
831 if (sc->sc_open == SB_OPEN_MIDI)
832 return EBUSY;
833
834 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
835 sc->sc_mixer_model, mask));
836
837 switch(sc->sc_mixer_model) {
838 case SBM_NONE:
839 return EINVAL;
840 case SBM_CT1335:
841 if (mask != (1 << SB_MIC_VOL))
842 return EINVAL;
843 break;
844 case SBM_CT1345:
845 switch (mask) {
846 case 1 << SB_MIC_VOL:
847 sbport = SBP_FROM_MIC;
848 break;
849 case 1 << SB_LINE_IN_VOL:
850 sbport = SBP_FROM_LINE;
851 break;
852 case 1 << SB_CD_VOL:
853 sbport = SBP_FROM_CD;
854 break;
855 default:
856 return (EINVAL);
857 }
858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
859 break;
860 case SBM_CT1XX5:
861 case SBM_CT1745:
862 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
863 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
864 return EINVAL;
865 bitsr = 0;
866 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
867 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
868 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
869 bitsl = SB_SRC_R_TO_L(bitsr);
870 if (mask & (1<<SB_MIC_VOL)) {
871 bitsl |= SBP_MIC_SRC;
872 bitsr |= SBP_MIC_SRC;
873 }
874 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
875 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
876 break;
877 }
878 sc->in_mask = mask;
879
880 return 0;
881 }
882
883 int
884 sbdsp_speaker_ctl(addr, newstate)
885 void *addr;
886 int newstate;
887 {
888 struct sbdsp_softc *sc = addr;
889
890 if (sc->sc_open == SB_OPEN_MIDI)
891 return EBUSY;
892
893 if ((newstate == SPKR_ON) &&
894 (sc->spkr_state == SPKR_OFF)) {
895 sbdsp_spkron(sc);
896 sc->spkr_state = SPKR_ON;
897 }
898 if ((newstate == SPKR_OFF) &&
899 (sc->spkr_state == SPKR_ON)) {
900 sbdsp_spkroff(sc);
901 sc->spkr_state = SPKR_OFF;
902 }
903 return 0;
904 }
905
906 int
907 sbdsp_round_blocksize(addr, blk)
908 void *addr;
909 int blk;
910 {
911 return blk & -4; /* round to biggest sample size */
912 }
913
914 int
915 sbdsp_open(addr, flags)
916 void *addr;
917 int flags;
918 {
919 struct sbdsp_softc *sc = addr;
920 int error, state;
921
922 DPRINTF(("sbdsp_open: sc=%p\n", sc));
923
924 if (sc->sc_open != SB_CLOSED)
925 return (EBUSY);
926 sc->sc_open = SB_OPEN_AUDIO;
927 sc->sc_openflags = flags;
928 state = 0;
929
930 if (sc->sc_drq8 != -1) {
931 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
932 if (error != 0)
933 goto bad;
934 state |= 1;
935 }
936
937 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
938 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
939 if (error != 0)
940 goto bad;
941 state |= 2;
942 }
943
944
945 if (sbdsp_reset(sc) != 0) {
946 error = EIO;
947 goto bad;
948 }
949
950 if (ISSBPRO(sc) &&
951 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
952 DPRINTF(("sbdsp_open: can't set mono mode\n"));
953 /* we'll readjust when it's time for DMA. */
954 }
955
956 /*
957 * Leave most things as they were; users must change things if
958 * the previous process didn't leave it they way they wanted.
959 * Looked at another way, it's easy to set up a configuration
960 * in one program and leave it for another to inherit.
961 */
962 DPRINTF(("sbdsp_open: opened\n"));
963
964 return (0);
965
966 bad:
967 if (state & 1)
968 isa_drq_free(sc->sc_ic, sc->sc_drq8);
969 if (state & 2)
970 isa_drq_free(sc->sc_ic, sc->sc_drq16);
971
972 sc->sc_open = SB_CLOSED;
973 return (error);
974 }
975
976 void
977 sbdsp_close(addr)
978 void *addr;
979 {
980 struct sbdsp_softc *sc = addr;
981
982 DPRINTF(("sbdsp_close: sc=%p\n", sc));
983
984 sbdsp_spkroff(sc);
985 sc->spkr_state = SPKR_OFF;
986
987 sbdsp_halt_output(sc);
988 sbdsp_halt_input(sc);
989
990 sc->sc_intr8 = 0;
991 sc->sc_intr16 = 0;
992
993 if (sc->sc_drq8 != -1)
994 isa_drq_free(sc->sc_ic, sc->sc_drq8);
995 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
996 isa_drq_free(sc->sc_ic, sc->sc_drq16);
997
998 sc->sc_open = SB_CLOSED;
999 DPRINTF(("sbdsp_close: closed\n"));
1000 }
1001
1002 /*
1003 * Lower-level routines
1004 */
1005
1006 /*
1007 * Reset the card.
1008 * Return non-zero if the card isn't detected.
1009 */
1010 int
1011 sbdsp_reset(sc)
1012 struct sbdsp_softc *sc;
1013 {
1014 bus_space_tag_t iot = sc->sc_iot;
1015 bus_space_handle_t ioh = sc->sc_ioh;
1016
1017 sc->sc_intr8 = 0;
1018 sc->sc_intr16 = 0;
1019 sc->sc_intrm = 0;
1020
1021 /*
1022 * See SBK, section 11.3.
1023 * We pulse a reset signal into the card.
1024 * Gee, what a brilliant hardware design.
1025 */
1026 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1027 delay(10);
1028 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1029 delay(30);
1030 if (sbdsp_rdsp(sc) != SB_MAGIC)
1031 return -1;
1032
1033 return 0;
1034 }
1035
1036 /*
1037 * Write a byte to the dsp.
1038 * We are at the mercy of the card as we use a
1039 * polling loop and wait until it can take the byte.
1040 */
1041 int
1042 sbdsp_wdsp(sc, v)
1043 struct sbdsp_softc *sc;
1044 int v;
1045 {
1046 bus_space_tag_t iot = sc->sc_iot;
1047 bus_space_handle_t ioh = sc->sc_ioh;
1048 int i;
1049 u_char x;
1050
1051 for (i = SBDSP_NPOLL; --i >= 0; ) {
1052 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1053 delay(10);
1054 if ((x & SB_DSP_BUSY) == 0) {
1055 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1056 delay(10);
1057 return 0;
1058 }
1059 }
1060 ++sberr.wdsp;
1061 return -1;
1062 }
1063
1064 /*
1065 * Read a byte from the DSP, using polling.
1066 */
1067 int
1068 sbdsp_rdsp(sc)
1069 struct sbdsp_softc *sc;
1070 {
1071 bus_space_tag_t iot = sc->sc_iot;
1072 bus_space_handle_t ioh = sc->sc_ioh;
1073 int i;
1074 u_char x;
1075
1076 for (i = SBDSP_NPOLL; --i >= 0; ) {
1077 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1078 delay(10);
1079 if (x & SB_DSP_READY) {
1080 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1081 delay(10);
1082 return x;
1083 }
1084 }
1085 ++sberr.rdsp;
1086 return -1;
1087 }
1088
1089 void
1090 sbdsp_pause(sc)
1091 struct sbdsp_softc *sc;
1092 {
1093
1094 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1095 }
1096
1097 /*
1098 * Turn on the speaker. The SBK documention says this operation
1099 * can take up to 1/10 of a second. Higher level layers should
1100 * probably let the task sleep for this amount of time after
1101 * calling here. Otherwise, things might not work (because
1102 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1103 *
1104 * These engineers had their heads up their ass when
1105 * they designed this card.
1106 */
1107 void
1108 sbdsp_spkron(sc)
1109 struct sbdsp_softc *sc;
1110 {
1111 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1112 sbdsp_pause(sc);
1113 }
1114
1115 /*
1116 * Turn off the speaker; see comment above.
1117 */
1118 void
1119 sbdsp_spkroff(sc)
1120 struct sbdsp_softc *sc;
1121 {
1122 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1123 sbdsp_pause(sc);
1124 }
1125
1126 /*
1127 * Read the version number out of the card.
1128 * Store version information in the softc.
1129 */
1130 void
1131 sbversion(sc)
1132 struct sbdsp_softc *sc;
1133 {
1134 int v;
1135
1136 sc->sc_model = SB_UNK;
1137 sc->sc_version = 0;
1138 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1139 return;
1140 v = sbdsp_rdsp(sc) << 8;
1141 v |= sbdsp_rdsp(sc);
1142 if (v < 0)
1143 return;
1144 sc->sc_version = v;
1145 switch(SBVER_MAJOR(v)) {
1146 case 1:
1147 sc->sc_mixer_model = SBM_NONE;
1148 sc->sc_model = SB_1;
1149 break;
1150 case 2:
1151 /* Some SB2 have a mixer, some don't. */
1152 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1153 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1154 /* Check if we can read back the mixer values. */
1155 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1156 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1157 sc->sc_mixer_model = SBM_CT1335;
1158 else
1159 sc->sc_mixer_model = SBM_NONE;
1160 if (SBVER_MINOR(v) == 0)
1161 sc->sc_model = SB_20;
1162 else
1163 sc->sc_model = SB_2x;
1164 break;
1165 case 3:
1166 sc->sc_mixer_model = SBM_CT1345;
1167 sc->sc_model = SB_PRO;
1168 break;
1169 case 4:
1170 #if 0
1171 /* XXX This does not work */
1172 /* Most SB16 have a tone controls, but some don't. */
1173 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1174 /* Check if we can read back the mixer value. */
1175 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1176 sc->sc_mixer_model = SBM_CT1745;
1177 else
1178 sc->sc_mixer_model = SBM_CT1XX5;
1179 #else
1180 sc->sc_mixer_model = SBM_CT1745;
1181 #endif
1182 #if 0
1183 /* XXX figure out a good way of determining the model */
1184 /* XXX what about SB_32 */
1185 if (SBVER_MINOR(v) == 16)
1186 sc->sc_model = SB_64;
1187 else
1188 #endif
1189 sc->sc_model = SB_16;
1190 break;
1191 }
1192 }
1193
1194 int
1195 sbdsp_set_timeconst(sc, tc)
1196 struct sbdsp_softc *sc;
1197 int tc;
1198 {
1199 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1200
1201 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1202 sbdsp_wdsp(sc, tc) < 0)
1203 return EIO;
1204
1205 return 0;
1206 }
1207
1208 int
1209 sbdsp16_set_rate(sc, cmd, rate)
1210 struct sbdsp_softc *sc;
1211 int cmd, rate;
1212 {
1213 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1214
1215 if (sbdsp_wdsp(sc, cmd) < 0 ||
1216 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1217 sbdsp_wdsp(sc, rate) < 0)
1218 return EIO;
1219 return 0;
1220 }
1221
1222 int
1223 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1224 void *addr;
1225 void *start, *end;
1226 int blksize;
1227 void (*intr) __P((void *));
1228 void *arg;
1229 struct audio_params *param;
1230 {
1231 struct sbdsp_softc *sc = addr;
1232 int stereo = param->channels == 2;
1233 int width = param->precision * param->factor;
1234 int filter;
1235
1236 #ifdef DIAGNOSTIC
1237 if (stereo && (blksize & 1)) {
1238 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1239 return (EIO);
1240 }
1241 if (sc->sc_i.run != SB_NOTRUNNING)
1242 printf("sbdsp_trigger_input: already running\n");
1243 #endif
1244
1245 sc->sc_intrr = intr;
1246 sc->sc_argr = arg;
1247
1248 if (width == 8) {
1249 #ifdef DIAGNOSTIC
1250 if (sc->sc_i.dmachan != sc->sc_drq8) {
1251 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1252 width, sc->sc_i.dmachan);
1253 return (EIO);
1254 }
1255 #endif
1256 sc->sc_intr8 = sbdsp_block_input;
1257 } else {
1258 #ifdef DIAGNOSTIC
1259 if (sc->sc_i.dmachan != sc->sc_drq16) {
1260 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1261 width, sc->sc_i.dmachan);
1262 return (EIO);
1263 }
1264 #endif
1265 sc->sc_intr16 = sbdsp_block_input;
1266 }
1267
1268 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1269 blksize >>= 1;
1270 --blksize;
1271 sc->sc_i.blksize = blksize;
1272
1273 if (ISSBPRO(sc)) {
1274 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1275 return (EIO);
1276 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1277 sbdsp_mix_write(sc, SBP_INFILTER,
1278 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1279 filter);
1280 }
1281
1282 if (ISSB16CLASS(sc)) {
1283 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1284 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1285 sc->sc_i.rate));
1286 return (EIO);
1287 }
1288 } else {
1289 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1290 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1291 sc->sc_i.rate));
1292 return (EIO);
1293 }
1294 }
1295
1296 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1297 start, end, sc->sc_i.dmachan));
1298 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1299 (char *)end - (char *)start, NULL,
1300 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1301
1302 return sbdsp_block_input(addr);
1303 }
1304
1305 int
1306 sbdsp_block_input(addr)
1307 void *addr;
1308 {
1309 struct sbdsp_softc *sc = addr;
1310 int cc = sc->sc_i.blksize;
1311
1312 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1313
1314 if (sc->sc_i.run != SB_NOTRUNNING)
1315 sc->sc_intrr(sc->sc_argr);
1316
1317 if (sc->sc_model == SB_1) {
1318 /* Non-looping mode, start DMA */
1319 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1320 sbdsp_wdsp(sc, cc) < 0 ||
1321 sbdsp_wdsp(sc, cc >> 8) < 0) {
1322 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1323 return (EIO);
1324 }
1325 sc->sc_i.run = SB_RUNNING;
1326 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1327 /* Initialize looping PCM */
1328 if (ISSB16CLASS(sc)) {
1329 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1330 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1331 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1332 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1333 sbdsp_wdsp(sc, cc) < 0 ||
1334 sbdsp_wdsp(sc, cc >> 8) < 0) {
1335 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1336 return (EIO);
1337 }
1338 } else {
1339 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1340 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1341 sbdsp_wdsp(sc, cc) < 0 ||
1342 sbdsp_wdsp(sc, cc >> 8) < 0) {
1343 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1344 return (EIO);
1345 }
1346 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1347 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1348 return (EIO);
1349 }
1350 }
1351 sc->sc_i.run = SB_LOOPING;
1352 }
1353
1354 return (0);
1355 }
1356
1357 int
1358 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1359 void *addr;
1360 void *start, *end;
1361 int blksize;
1362 void (*intr) __P((void *));
1363 void *arg;
1364 struct audio_params *param;
1365 {
1366 struct sbdsp_softc *sc = addr;
1367 int stereo = param->channels == 2;
1368 int width = param->precision * param->factor;
1369 int cmd;
1370
1371 #ifdef DIAGNOSTIC
1372 if (stereo && (blksize & 1)) {
1373 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1374 return (EIO);
1375 }
1376 if (sc->sc_o.run != SB_NOTRUNNING)
1377 printf("sbdsp_trigger_output: already running\n");
1378 #endif
1379
1380 sc->sc_intrp = intr;
1381 sc->sc_argp = arg;
1382
1383 if (width == 8) {
1384 #ifdef DIAGNOSTIC
1385 if (sc->sc_o.dmachan != sc->sc_drq8) {
1386 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1387 width, sc->sc_o.dmachan);
1388 return (EIO);
1389 }
1390 #endif
1391 sc->sc_intr8 = sbdsp_block_output;
1392 } else {
1393 #ifdef DIAGNOSTIC
1394 if (sc->sc_o.dmachan != sc->sc_drq16) {
1395 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1396 width, sc->sc_o.dmachan);
1397 return (EIO);
1398 }
1399 #endif
1400 sc->sc_intr16 = sbdsp_block_output;
1401 }
1402
1403 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1404 blksize >>= 1;
1405 --blksize;
1406 sc->sc_o.blksize = blksize;
1407
1408 if (ISSBPRO(sc)) {
1409 /* make sure we re-set stereo mixer bit when we start output. */
1410 sbdsp_mix_write(sc, SBP_STEREO,
1411 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1412 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1413 cmd = sc->sc_o.modep->cmdchan;
1414 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1415 return (EIO);
1416 }
1417
1418 if (ISSB16CLASS(sc)) {
1419 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1420 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1421 sc->sc_o.rate));
1422 return (EIO);
1423 }
1424 } else {
1425 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1426 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1427 sc->sc_o.rate));
1428 return (EIO);
1429 }
1430 }
1431
1432 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1433 start, end, sc->sc_o.dmachan));
1434 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1435 (char *)end - (char *)start, NULL,
1436 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1437
1438 return sbdsp_block_output(addr);
1439 }
1440
1441 int
1442 sbdsp_block_output(addr)
1443 void *addr;
1444 {
1445 struct sbdsp_softc *sc = addr;
1446 int cc = sc->sc_o.blksize;
1447
1448 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1449
1450 if (sc->sc_o.run != SB_NOTRUNNING)
1451 sc->sc_intrp(sc->sc_argp);
1452
1453 if (sc->sc_model == SB_1) {
1454 /* Non-looping mode, initialized. Start DMA and PCM */
1455 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1456 sbdsp_wdsp(sc, cc) < 0 ||
1457 sbdsp_wdsp(sc, cc >> 8) < 0) {
1458 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1459 return (EIO);
1460 }
1461 sc->sc_o.run = SB_RUNNING;
1462 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1463 /* Initialize looping PCM */
1464 if (ISSB16CLASS(sc)) {
1465 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1466 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1467 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1468 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1469 sbdsp_wdsp(sc, cc) < 0 ||
1470 sbdsp_wdsp(sc, cc >> 8) < 0) {
1471 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1472 return (EIO);
1473 }
1474 } else {
1475 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1476 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1477 sbdsp_wdsp(sc, cc) < 0 ||
1478 sbdsp_wdsp(sc, cc >> 8) < 0) {
1479 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1480 return (EIO);
1481 }
1482 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1483 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1484 return (EIO);
1485 }
1486 }
1487 sc->sc_o.run = SB_LOOPING;
1488 }
1489
1490 return (0);
1491 }
1492
1493 int
1494 sbdsp_halt_output(addr)
1495 void *addr;
1496 {
1497 struct sbdsp_softc *sc = addr;
1498
1499 if (sc->sc_o.run != SB_NOTRUNNING) {
1500 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1501 printf("sbdsp_halt_output: failed to halt\n");
1502 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1503 sc->sc_o.run = SB_NOTRUNNING;
1504 }
1505
1506 return (0);
1507 }
1508
1509 int
1510 sbdsp_halt_input(addr)
1511 void *addr;
1512 {
1513 struct sbdsp_softc *sc = addr;
1514
1515 if (sc->sc_i.run != SB_NOTRUNNING) {
1516 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1517 printf("sbdsp_halt_input: failed to halt\n");
1518 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1519 sc->sc_i.run = SB_NOTRUNNING;
1520 }
1521
1522 return (0);
1523 }
1524
1525 /*
1526 * Only the DSP unit on the sound blaster generates interrupts.
1527 * There are three cases of interrupt: reception of a midi byte
1528 * (when mode is enabled), completion of DMA transmission, or
1529 * completion of a DMA reception.
1530 *
1531 * If there is interrupt sharing or a spurious interrupt occurs
1532 * there is no way to distinguish this on an SB2. So if you have
1533 * an SB2 and experience problems, buy an SB16 (it's only $40).
1534 */
1535 int
1536 sbdsp_intr(arg)
1537 void *arg;
1538 {
1539 struct sbdsp_softc *sc = arg;
1540 u_char irq;
1541
1542 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1543 sc->sc_intr8, sc->sc_intr16));
1544 if (ISSB16CLASS(sc)) {
1545 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1546 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1547 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1548 return 0;
1549 }
1550 } else {
1551 /* XXXX CHECK FOR INTERRUPT */
1552 irq = SBP_IRQ_DMA8;
1553 }
1554
1555 sc->sc_interrupts++;
1556 delay(10); /* XXX why? */
1557
1558 /* clear interrupt */
1559 if (irq & SBP_IRQ_DMA8) {
1560 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1561 if (sc->sc_intr8)
1562 sc->sc_intr8(arg);
1563 }
1564 if (irq & SBP_IRQ_DMA16) {
1565 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1566 if (sc->sc_intr16)
1567 sc->sc_intr16(arg);
1568 }
1569 #if NMPU > 0
1570 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1571 mpu_intr(sc->sc_mpudev);
1572 }
1573 #endif
1574 return 1;
1575 }
1576
1577 /* Like val & mask, but make sure the result is correctly rounded. */
1578 #define MAXVAL 256
1579 static int
1580 sbdsp_adjust(val, mask)
1581 int val, mask;
1582 {
1583 val += (MAXVAL - mask) >> 1;
1584 if (val >= MAXVAL)
1585 val = MAXVAL-1;
1586 return val & mask;
1587 }
1588
1589 void
1590 sbdsp_set_mixer_gain(sc, port)
1591 struct sbdsp_softc *sc;
1592 int port;
1593 {
1594 int src, gain;
1595
1596 switch(sc->sc_mixer_model) {
1597 case SBM_NONE:
1598 return;
1599 case SBM_CT1335:
1600 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1601 switch(port) {
1602 case SB_MASTER_VOL:
1603 src = SBP_1335_MASTER_VOL;
1604 break;
1605 case SB_MIDI_VOL:
1606 src = SBP_1335_MIDI_VOL;
1607 break;
1608 case SB_CD_VOL:
1609 src = SBP_1335_CD_VOL;
1610 break;
1611 case SB_VOICE_VOL:
1612 src = SBP_1335_VOICE_VOL;
1613 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1614 break;
1615 default:
1616 return;
1617 }
1618 sbdsp_mix_write(sc, src, gain);
1619 break;
1620 case SBM_CT1345:
1621 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1622 sc->gain[port][SB_RIGHT]);
1623 switch (port) {
1624 case SB_MIC_VOL:
1625 src = SBP_MIC_VOL;
1626 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1627 break;
1628 case SB_MASTER_VOL:
1629 src = SBP_MASTER_VOL;
1630 break;
1631 case SB_LINE_IN_VOL:
1632 src = SBP_LINE_VOL;
1633 break;
1634 case SB_VOICE_VOL:
1635 src = SBP_VOICE_VOL;
1636 break;
1637 case SB_MIDI_VOL:
1638 src = SBP_MIDI_VOL;
1639 break;
1640 case SB_CD_VOL:
1641 src = SBP_CD_VOL;
1642 break;
1643 default:
1644 return;
1645 }
1646 sbdsp_mix_write(sc, src, gain);
1647 break;
1648 case SBM_CT1XX5:
1649 case SBM_CT1745:
1650 switch (port) {
1651 case SB_MIC_VOL:
1652 src = SB16P_MIC_L;
1653 break;
1654 case SB_MASTER_VOL:
1655 src = SB16P_MASTER_L;
1656 break;
1657 case SB_LINE_IN_VOL:
1658 src = SB16P_LINE_L;
1659 break;
1660 case SB_VOICE_VOL:
1661 src = SB16P_VOICE_L;
1662 break;
1663 case SB_MIDI_VOL:
1664 src = SB16P_MIDI_L;
1665 break;
1666 case SB_CD_VOL:
1667 src = SB16P_CD_L;
1668 break;
1669 case SB_INPUT_GAIN:
1670 src = SB16P_INPUT_GAIN_L;
1671 break;
1672 case SB_OUTPUT_GAIN:
1673 src = SB16P_OUTPUT_GAIN_L;
1674 break;
1675 case SB_TREBLE:
1676 src = SB16P_TREBLE_L;
1677 break;
1678 case SB_BASS:
1679 src = SB16P_BASS_L;
1680 break;
1681 case SB_PCSPEAKER:
1682 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1683 return;
1684 default:
1685 return;
1686 }
1687 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1688 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1689 break;
1690 }
1691 }
1692
1693 int
1694 sbdsp_mixer_set_port(addr, cp)
1695 void *addr;
1696 mixer_ctrl_t *cp;
1697 {
1698 struct sbdsp_softc *sc = addr;
1699 int lgain, rgain;
1700 int mask, bits;
1701 int lmask, rmask, lbits, rbits;
1702 int mute, swap;
1703
1704 if (sc->sc_open == SB_OPEN_MIDI)
1705 return EBUSY;
1706
1707 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1708 cp->un.value.num_channels));
1709
1710 if (sc->sc_mixer_model == SBM_NONE)
1711 return EINVAL;
1712
1713 switch (cp->dev) {
1714 case SB_TREBLE:
1715 case SB_BASS:
1716 if (sc->sc_mixer_model == SBM_CT1345 ||
1717 sc->sc_mixer_model == SBM_CT1XX5) {
1718 if (cp->type != AUDIO_MIXER_ENUM)
1719 return EINVAL;
1720 switch (cp->dev) {
1721 case SB_TREBLE:
1722 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1723 return 0;
1724 case SB_BASS:
1725 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1726 return 0;
1727 }
1728 }
1729 case SB_PCSPEAKER:
1730 case SB_INPUT_GAIN:
1731 case SB_OUTPUT_GAIN:
1732 if (!ISSBM1745(sc))
1733 return EINVAL;
1734 case SB_MIC_VOL:
1735 case SB_LINE_IN_VOL:
1736 if (sc->sc_mixer_model == SBM_CT1335)
1737 return EINVAL;
1738 case SB_VOICE_VOL:
1739 case SB_MIDI_VOL:
1740 case SB_CD_VOL:
1741 case SB_MASTER_VOL:
1742 if (cp->type != AUDIO_MIXER_VALUE)
1743 return EINVAL;
1744
1745 /*
1746 * All the mixer ports are stereo except for the microphone.
1747 * If we get a single-channel gain value passed in, then we
1748 * duplicate it to both left and right channels.
1749 */
1750
1751 switch (cp->dev) {
1752 case SB_MIC_VOL:
1753 if (cp->un.value.num_channels != 1)
1754 return EINVAL;
1755
1756 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1757 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1758 break;
1759 case SB_PCSPEAKER:
1760 if (cp->un.value.num_channels != 1)
1761 return EINVAL;
1762 /* fall into */
1763 case SB_INPUT_GAIN:
1764 case SB_OUTPUT_GAIN:
1765 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1766 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1767 break;
1768 default:
1769 switch (cp->un.value.num_channels) {
1770 case 1:
1771 lgain = rgain = SB_ADJUST_GAIN(sc,
1772 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1773 break;
1774 case 2:
1775 if (sc->sc_mixer_model == SBM_CT1335)
1776 return EINVAL;
1777 lgain = SB_ADJUST_GAIN(sc,
1778 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1779 rgain = SB_ADJUST_GAIN(sc,
1780 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1781 break;
1782 default:
1783 return EINVAL;
1784 }
1785 break;
1786 }
1787 sc->gain[cp->dev][SB_LEFT] = lgain;
1788 sc->gain[cp->dev][SB_RIGHT] = rgain;
1789
1790 sbdsp_set_mixer_gain(sc, cp->dev);
1791 break;
1792
1793 case SB_RECORD_SOURCE:
1794 if (ISSBM1745(sc)) {
1795 if (cp->type != AUDIO_MIXER_SET)
1796 return EINVAL;
1797 return sbdsp_set_in_ports(sc, cp->un.mask);
1798 } else {
1799 if (cp->type != AUDIO_MIXER_ENUM)
1800 return EINVAL;
1801 sc->in_port = cp->un.ord;
1802 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1803 }
1804 break;
1805
1806 case SB_AGC:
1807 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1808 return EINVAL;
1809 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1810 break;
1811
1812 case SB_CD_OUT_MUTE:
1813 mask = SB16P_SW_CD;
1814 goto omute;
1815 case SB_MIC_OUT_MUTE:
1816 mask = SB16P_SW_MIC;
1817 goto omute;
1818 case SB_LINE_OUT_MUTE:
1819 mask = SB16P_SW_LINE;
1820 omute:
1821 if (cp->type != AUDIO_MIXER_ENUM)
1822 return EINVAL;
1823 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1824 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1825 if (cp->un.ord)
1826 bits = bits & ~mask;
1827 else
1828 bits = bits | mask;
1829 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1830 break;
1831
1832 case SB_MIC_IN_MUTE:
1833 case SB_MIC_SWAP:
1834 lmask = rmask = SB16P_SW_MIC;
1835 goto imute;
1836 case SB_CD_IN_MUTE:
1837 case SB_CD_SWAP:
1838 lmask = SB16P_SW_CD_L;
1839 rmask = SB16P_SW_CD_R;
1840 goto imute;
1841 case SB_LINE_IN_MUTE:
1842 case SB_LINE_SWAP:
1843 lmask = SB16P_SW_LINE_L;
1844 rmask = SB16P_SW_LINE_R;
1845 goto imute;
1846 case SB_MIDI_IN_MUTE:
1847 case SB_MIDI_SWAP:
1848 lmask = SB16P_SW_MIDI_L;
1849 rmask = SB16P_SW_MIDI_R;
1850 imute:
1851 if (cp->type != AUDIO_MIXER_ENUM)
1852 return EINVAL;
1853 mask = lmask | rmask;
1854 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1855 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1856 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1857 if (SB_IS_IN_MUTE(cp->dev)) {
1858 mute = cp->dev;
1859 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1860 } else {
1861 swap = cp->dev;
1862 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1863 }
1864 if (sc->gain[swap][SB_LR]) {
1865 mask = lmask;
1866 lmask = rmask;
1867 rmask = mask;
1868 }
1869 if (!sc->gain[mute][SB_LR]) {
1870 lbits = lbits | lmask;
1871 rbits = rbits | rmask;
1872 }
1873 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1874 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1875 break;
1876
1877 default:
1878 return EINVAL;
1879 }
1880
1881 return 0;
1882 }
1883
1884 int
1885 sbdsp_mixer_get_port(addr, cp)
1886 void *addr;
1887 mixer_ctrl_t *cp;
1888 {
1889 struct sbdsp_softc *sc = addr;
1890
1891 if (sc->sc_open == SB_OPEN_MIDI)
1892 return EBUSY;
1893
1894 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1895
1896 if (sc->sc_mixer_model == SBM_NONE)
1897 return EINVAL;
1898
1899 switch (cp->dev) {
1900 case SB_TREBLE:
1901 case SB_BASS:
1902 if (sc->sc_mixer_model == SBM_CT1345 ||
1903 sc->sc_mixer_model == SBM_CT1XX5) {
1904 switch (cp->dev) {
1905 case SB_TREBLE:
1906 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1907 return 0;
1908 case SB_BASS:
1909 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1910 return 0;
1911 }
1912 }
1913 case SB_PCSPEAKER:
1914 case SB_INPUT_GAIN:
1915 case SB_OUTPUT_GAIN:
1916 if (!ISSBM1745(sc))
1917 return EINVAL;
1918 case SB_MIC_VOL:
1919 case SB_LINE_IN_VOL:
1920 if (sc->sc_mixer_model == SBM_CT1335)
1921 return EINVAL;
1922 case SB_VOICE_VOL:
1923 case SB_MIDI_VOL:
1924 case SB_CD_VOL:
1925 case SB_MASTER_VOL:
1926 switch (cp->dev) {
1927 case SB_MIC_VOL:
1928 case SB_PCSPEAKER:
1929 if (cp->un.value.num_channels != 1)
1930 return EINVAL;
1931 /* fall into */
1932 default:
1933 switch (cp->un.value.num_channels) {
1934 case 1:
1935 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1936 sc->gain[cp->dev][SB_LEFT];
1937 break;
1938 case 2:
1939 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1940 sc->gain[cp->dev][SB_LEFT];
1941 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1942 sc->gain[cp->dev][SB_RIGHT];
1943 break;
1944 default:
1945 return EINVAL;
1946 }
1947 break;
1948 }
1949 break;
1950
1951 case SB_RECORD_SOURCE:
1952 if (ISSBM1745(sc))
1953 cp->un.mask = sc->in_mask;
1954 else
1955 cp->un.ord = sc->in_port;
1956 break;
1957
1958 case SB_AGC:
1959 if (!ISSBM1745(sc))
1960 return EINVAL;
1961 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1962 break;
1963
1964 case SB_CD_IN_MUTE:
1965 case SB_MIC_IN_MUTE:
1966 case SB_LINE_IN_MUTE:
1967 case SB_MIDI_IN_MUTE:
1968 case SB_CD_SWAP:
1969 case SB_MIC_SWAP:
1970 case SB_LINE_SWAP:
1971 case SB_MIDI_SWAP:
1972 case SB_CD_OUT_MUTE:
1973 case SB_MIC_OUT_MUTE:
1974 case SB_LINE_OUT_MUTE:
1975 cp->un.ord = sc->gain[cp->dev][SB_LR];
1976 break;
1977
1978 default:
1979 return EINVAL;
1980 }
1981
1982 return 0;
1983 }
1984
1985 int
1986 sbdsp_mixer_query_devinfo(addr, dip)
1987 void *addr;
1988 mixer_devinfo_t *dip;
1989 {
1990 struct sbdsp_softc *sc = addr;
1991 int chan, class, is1745;
1992
1993 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1994 sc->sc_mixer_model, dip->index));
1995
1996 if (sc->sc_mixer_model == SBM_NONE)
1997 return ENXIO;
1998
1999 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2000 is1745 = ISSBM1745(sc);
2001 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2002
2003 switch (dip->index) {
2004 case SB_MASTER_VOL:
2005 dip->type = AUDIO_MIXER_VALUE;
2006 dip->mixer_class = SB_OUTPUT_CLASS;
2007 dip->prev = dip->next = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioNmaster);
2009 dip->un.v.num_channels = chan;
2010 strcpy(dip->un.v.units.name, AudioNvolume);
2011 return 0;
2012 case SB_MIDI_VOL:
2013 dip->type = AUDIO_MIXER_VALUE;
2014 dip->mixer_class = class;
2015 dip->prev = AUDIO_MIXER_LAST;
2016 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioNfmsynth);
2018 dip->un.v.num_channels = chan;
2019 strcpy(dip->un.v.units.name, AudioNvolume);
2020 return 0;
2021 case SB_CD_VOL:
2022 dip->type = AUDIO_MIXER_VALUE;
2023 dip->mixer_class = class;
2024 dip->prev = AUDIO_MIXER_LAST;
2025 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2026 strcpy(dip->label.name, AudioNcd);
2027 dip->un.v.num_channels = chan;
2028 strcpy(dip->un.v.units.name, AudioNvolume);
2029 return 0;
2030 case SB_VOICE_VOL:
2031 dip->type = AUDIO_MIXER_VALUE;
2032 dip->mixer_class = class;
2033 dip->prev = AUDIO_MIXER_LAST;
2034 dip->next = AUDIO_MIXER_LAST;
2035 strcpy(dip->label.name, AudioNdac);
2036 dip->un.v.num_channels = chan;
2037 strcpy(dip->un.v.units.name, AudioNvolume);
2038 return 0;
2039 case SB_OUTPUT_CLASS:
2040 dip->type = AUDIO_MIXER_CLASS;
2041 dip->mixer_class = SB_OUTPUT_CLASS;
2042 dip->next = dip->prev = AUDIO_MIXER_LAST;
2043 strcpy(dip->label.name, AudioCoutputs);
2044 return 0;
2045 }
2046
2047 if (sc->sc_mixer_model == SBM_CT1335)
2048 return ENXIO;
2049
2050 switch (dip->index) {
2051 case SB_MIC_VOL:
2052 dip->type = AUDIO_MIXER_VALUE;
2053 dip->mixer_class = class;
2054 dip->prev = AUDIO_MIXER_LAST;
2055 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2056 strcpy(dip->label.name, AudioNmicrophone);
2057 dip->un.v.num_channels = 1;
2058 strcpy(dip->un.v.units.name, AudioNvolume);
2059 return 0;
2060
2061 case SB_LINE_IN_VOL:
2062 dip->type = AUDIO_MIXER_VALUE;
2063 dip->mixer_class = class;
2064 dip->prev = AUDIO_MIXER_LAST;
2065 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2066 strcpy(dip->label.name, AudioNline);
2067 dip->un.v.num_channels = 2;
2068 strcpy(dip->un.v.units.name, AudioNvolume);
2069 return 0;
2070
2071 case SB_RECORD_SOURCE:
2072 dip->mixer_class = SB_RECORD_CLASS;
2073 dip->prev = dip->next = AUDIO_MIXER_LAST;
2074 strcpy(dip->label.name, AudioNsource);
2075 if (ISSBM1745(sc)) {
2076 dip->type = AUDIO_MIXER_SET;
2077 dip->un.s.num_mem = 4;
2078 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2079 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2080 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2081 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2082 strcpy(dip->un.s.member[2].label.name, AudioNline);
2083 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2084 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2085 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2086 } else {
2087 dip->type = AUDIO_MIXER_ENUM;
2088 dip->un.e.num_mem = 3;
2089 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2090 dip->un.e.member[0].ord = SB_MIC_VOL;
2091 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2092 dip->un.e.member[1].ord = SB_CD_VOL;
2093 strcpy(dip->un.e.member[2].label.name, AudioNline);
2094 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2095 }
2096 return 0;
2097
2098 case SB_BASS:
2099 dip->prev = dip->next = AUDIO_MIXER_LAST;
2100 strcpy(dip->label.name, AudioNbass);
2101 if (sc->sc_mixer_model == SBM_CT1745) {
2102 dip->type = AUDIO_MIXER_VALUE;
2103 dip->mixer_class = SB_EQUALIZATION_CLASS;
2104 dip->un.v.num_channels = 2;
2105 strcpy(dip->un.v.units.name, AudioNbass);
2106 } else {
2107 dip->type = AUDIO_MIXER_ENUM;
2108 dip->mixer_class = SB_INPUT_CLASS;
2109 dip->un.e.num_mem = 2;
2110 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2111 dip->un.e.member[0].ord = 0;
2112 strcpy(dip->un.e.member[1].label.name, AudioNon);
2113 dip->un.e.member[1].ord = 1;
2114 }
2115 return 0;
2116
2117 case SB_TREBLE:
2118 dip->prev = dip->next = AUDIO_MIXER_LAST;
2119 strcpy(dip->label.name, AudioNtreble);
2120 if (sc->sc_mixer_model == SBM_CT1745) {
2121 dip->type = AUDIO_MIXER_VALUE;
2122 dip->mixer_class = SB_EQUALIZATION_CLASS;
2123 dip->un.v.num_channels = 2;
2124 strcpy(dip->un.v.units.name, AudioNtreble);
2125 } else {
2126 dip->type = AUDIO_MIXER_ENUM;
2127 dip->mixer_class = SB_INPUT_CLASS;
2128 dip->un.e.num_mem = 2;
2129 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2130 dip->un.e.member[0].ord = 0;
2131 strcpy(dip->un.e.member[1].label.name, AudioNon);
2132 dip->un.e.member[1].ord = 1;
2133 }
2134 return 0;
2135
2136 case SB_RECORD_CLASS: /* record source class */
2137 dip->type = AUDIO_MIXER_CLASS;
2138 dip->mixer_class = SB_RECORD_CLASS;
2139 dip->next = dip->prev = AUDIO_MIXER_LAST;
2140 strcpy(dip->label.name, AudioCrecord);
2141 return 0;
2142
2143 case SB_INPUT_CLASS:
2144 dip->type = AUDIO_MIXER_CLASS;
2145 dip->mixer_class = SB_INPUT_CLASS;
2146 dip->next = dip->prev = AUDIO_MIXER_LAST;
2147 strcpy(dip->label.name, AudioCinputs);
2148 return 0;
2149
2150 }
2151
2152 if (sc->sc_mixer_model == SBM_CT1345)
2153 return ENXIO;
2154
2155 switch(dip->index) {
2156 case SB_PCSPEAKER:
2157 dip->type = AUDIO_MIXER_VALUE;
2158 dip->mixer_class = SB_INPUT_CLASS;
2159 dip->prev = dip->next = AUDIO_MIXER_LAST;
2160 strcpy(dip->label.name, "pc_speaker");
2161 dip->un.v.num_channels = 1;
2162 strcpy(dip->un.v.units.name, AudioNvolume);
2163 return 0;
2164
2165 case SB_INPUT_GAIN:
2166 dip->type = AUDIO_MIXER_VALUE;
2167 dip->mixer_class = SB_INPUT_CLASS;
2168 dip->prev = dip->next = AUDIO_MIXER_LAST;
2169 strcpy(dip->label.name, AudioNinput);
2170 dip->un.v.num_channels = 2;
2171 strcpy(dip->un.v.units.name, AudioNvolume);
2172 return 0;
2173
2174 case SB_OUTPUT_GAIN:
2175 dip->type = AUDIO_MIXER_VALUE;
2176 dip->mixer_class = SB_OUTPUT_CLASS;
2177 dip->prev = dip->next = AUDIO_MIXER_LAST;
2178 strcpy(dip->label.name, AudioNoutput);
2179 dip->un.v.num_channels = 2;
2180 strcpy(dip->un.v.units.name, AudioNvolume);
2181 return 0;
2182
2183 case SB_AGC:
2184 dip->type = AUDIO_MIXER_ENUM;
2185 dip->mixer_class = SB_INPUT_CLASS;
2186 dip->prev = dip->next = AUDIO_MIXER_LAST;
2187 strcpy(dip->label.name, "agc");
2188 dip->un.e.num_mem = 2;
2189 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2190 dip->un.e.member[0].ord = 0;
2191 strcpy(dip->un.e.member[1].label.name, AudioNon);
2192 dip->un.e.member[1].ord = 1;
2193 return 0;
2194
2195 case SB_EQUALIZATION_CLASS:
2196 dip->type = AUDIO_MIXER_CLASS;
2197 dip->mixer_class = SB_EQUALIZATION_CLASS;
2198 dip->next = dip->prev = AUDIO_MIXER_LAST;
2199 strcpy(dip->label.name, AudioCequalization);
2200 return 0;
2201
2202 case SB_CD_IN_MUTE:
2203 dip->prev = SB_CD_VOL;
2204 dip->next = SB_CD_SWAP;
2205 dip->mixer_class = SB_INPUT_CLASS;
2206 goto mute;
2207
2208 case SB_MIC_IN_MUTE:
2209 dip->prev = SB_MIC_VOL;
2210 dip->next = SB_MIC_SWAP;
2211 dip->mixer_class = SB_INPUT_CLASS;
2212 goto mute;
2213
2214 case SB_LINE_IN_MUTE:
2215 dip->prev = SB_LINE_IN_VOL;
2216 dip->next = SB_LINE_SWAP;
2217 dip->mixer_class = SB_INPUT_CLASS;
2218 goto mute;
2219
2220 case SB_MIDI_IN_MUTE:
2221 dip->prev = SB_MIDI_VOL;
2222 dip->next = SB_MIDI_SWAP;
2223 dip->mixer_class = SB_INPUT_CLASS;
2224 goto mute;
2225
2226 case SB_CD_SWAP:
2227 dip->prev = SB_CD_IN_MUTE;
2228 dip->next = SB_CD_OUT_MUTE;
2229 goto swap;
2230
2231 case SB_MIC_SWAP:
2232 dip->prev = SB_MIC_IN_MUTE;
2233 dip->next = SB_MIC_OUT_MUTE;
2234 goto swap;
2235
2236 case SB_LINE_SWAP:
2237 dip->prev = SB_LINE_IN_MUTE;
2238 dip->next = SB_LINE_OUT_MUTE;
2239 goto swap;
2240
2241 case SB_MIDI_SWAP:
2242 dip->prev = SB_MIDI_IN_MUTE;
2243 dip->next = AUDIO_MIXER_LAST;
2244 swap:
2245 dip->mixer_class = SB_INPUT_CLASS;
2246 strcpy(dip->label.name, AudioNswap);
2247 goto mute1;
2248
2249 case SB_CD_OUT_MUTE:
2250 dip->prev = SB_CD_SWAP;
2251 dip->next = AUDIO_MIXER_LAST;
2252 dip->mixer_class = SB_OUTPUT_CLASS;
2253 goto mute;
2254
2255 case SB_MIC_OUT_MUTE:
2256 dip->prev = SB_MIC_SWAP;
2257 dip->next = AUDIO_MIXER_LAST;
2258 dip->mixer_class = SB_OUTPUT_CLASS;
2259 goto mute;
2260
2261 case SB_LINE_OUT_MUTE:
2262 dip->prev = SB_LINE_SWAP;
2263 dip->next = AUDIO_MIXER_LAST;
2264 dip->mixer_class = SB_OUTPUT_CLASS;
2265 mute:
2266 strcpy(dip->label.name, AudioNmute);
2267 mute1:
2268 dip->type = AUDIO_MIXER_ENUM;
2269 dip->un.e.num_mem = 2;
2270 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2271 dip->un.e.member[0].ord = 0;
2272 strcpy(dip->un.e.member[1].label.name, AudioNon);
2273 dip->un.e.member[1].ord = 1;
2274 return 0;
2275
2276 }
2277
2278 return ENXIO;
2279 }
2280
2281 void *
2282 sb_malloc(addr, direction, size, pool, flags)
2283 void *addr;
2284 int direction;
2285 size_t size;
2286 struct malloc_type *pool;
2287 int flags;
2288 {
2289 struct sbdsp_softc *sc = addr;
2290 int drq;
2291
2292 if (sc->sc_drq8 != -1)
2293 drq = sc->sc_drq8;
2294 else
2295 drq = sc->sc_drq16;
2296 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2297 }
2298
2299 void
2300 sb_free(addr, ptr, pool)
2301 void *addr;
2302 void *ptr;
2303 struct malloc_type *pool;
2304 {
2305 isa_free(ptr, pool);
2306 }
2307
2308 size_t
2309 sb_round_buffersize(addr, direction, size)
2310 void *addr;
2311 int direction;
2312 size_t size;
2313 {
2314 struct sbdsp_softc *sc = addr;
2315 bus_size_t maxsize;
2316
2317 if (sc->sc_drq8 != -1)
2318 maxsize = sc->sc_drq8_maxsize;
2319 else
2320 maxsize = sc->sc_drq16_maxsize;
2321
2322 if (size > maxsize)
2323 size = maxsize;
2324 return (size);
2325 }
2326
2327 paddr_t
2328 sb_mappage(addr, mem, off, prot)
2329 void *addr;
2330 void *mem;
2331 off_t off;
2332 int prot;
2333 {
2334 return isa_mappage(mem, off, prot);
2335 }
2336
2337 int
2338 sbdsp_get_props(addr)
2339 void *addr;
2340 {
2341 struct sbdsp_softc *sc = addr;
2342 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2343 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2344 }
2345
2346 #if NMPU > 0
2347 /*
2348 * MIDI related routines.
2349 */
2350
2351 int
2352 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2353 void *addr;
2354 int flags;
2355 void (*iintr)__P((void *, int));
2356 void (*ointr)__P((void *));
2357 void *arg;
2358 {
2359 struct sbdsp_softc *sc = addr;
2360
2361 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2362
2363 if (sc->sc_open != SB_CLOSED)
2364 return EBUSY;
2365 if (sbdsp_reset(sc) != 0)
2366 return EIO;
2367
2368 sc->sc_open = SB_OPEN_MIDI;
2369 sc->sc_openflags = flags;
2370
2371 if (sc->sc_model >= SB_20)
2372 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2373 return EIO;
2374
2375 sc->sc_intr8 = sbdsp_midi_intr;
2376 sc->sc_intrm = iintr;
2377 sc->sc_argm = arg;
2378
2379 return 0;
2380 }
2381
2382 void
2383 sbdsp_midi_close(addr)
2384 void *addr;
2385 {
2386 struct sbdsp_softc *sc = addr;
2387
2388 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2389
2390 if (sc->sc_model >= SB_20)
2391 sbdsp_reset(sc); /* exit UART mode */
2392
2393 sc->sc_intrm = 0;
2394 sc->sc_open = SB_CLOSED;
2395 }
2396
2397 int
2398 sbdsp_midi_output(addr, d)
2399 void *addr;
2400 int d;
2401 {
2402 struct sbdsp_softc *sc = addr;
2403
2404 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2405 return EIO;
2406 if (sbdsp_wdsp(sc, d))
2407 return EIO;
2408 return 0;
2409 }
2410
2411 void
2412 sbdsp_midi_getinfo(addr, mi)
2413 void *addr;
2414 struct midi_info *mi;
2415 {
2416 struct sbdsp_softc *sc = addr;
2417
2418 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2419 mi->props = MIDI_PROP_CAN_INPUT;
2420 }
2421
2422 int
2423 sbdsp_midi_intr(addr)
2424 void *addr;
2425 {
2426 struct sbdsp_softc *sc = addr;
2427
2428 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2429 return (0);
2430 }
2431
2432 #endif
2433
2434