Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.112
      1 /*	$NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $");
     85 
     86 #include "midi.h"
     87 #include "mpu.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/kernel.h>
     92 #include <sys/errno.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/syslog.h>
     95 #include <sys/device.h>
     96 #include <sys/proc.h>
     97 #include <sys/buf.h>
     98 
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #include <machine/bus.h>
    102 
    103 #include <sys/audioio.h>
    104 #include <dev/audio_if.h>
    105 #include <dev/midi_if.h>
    106 #include <dev/mulaw.h>
    107 #include <dev/auconv.h>
    108 
    109 #include <dev/isa/isavar.h>
    110 #include <dev/isa/isadmavar.h>
    111 
    112 #include <dev/isa/sbreg.h>
    113 #include <dev/isa/sbdspvar.h>
    114 
    115 
    116 #ifdef AUDIO_DEBUG
    117 #define DPRINTF(x)	if (sbdspdebug) printf x
    118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    119 int	sbdspdebug = 0;
    120 #else
    121 #define DPRINTF(x)
    122 #define DPRINTFN(n,x)
    123 #endif
    124 
    125 #ifndef SBDSP_NPOLL
    126 #define SBDSP_NPOLL 3000
    127 #endif
    128 
    129 struct {
    130 	int wdsp;
    131 	int rdsp;
    132 	int wmidi;
    133 } sberr;
    134 
    135 /*
    136  * Time constant routines follow.  See SBK, section 12.
    137  * Although they don't come out and say it (in the docs),
    138  * the card clearly uses a 1MHz countdown timer, as the
    139  * low-speed formula (p. 12-4) is:
    140  *	tc = 256 - 10^6 / sr
    141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    142  * and a 256MHz clock is used:
    143  *	tc = 65536 - 256 * 10^ 6 / sr
    144  * Since we can only use the upper byte of the HS TC, the two formulae
    145  * are equivalent.  (Why didn't they say so?)  E.g.,
    146  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    147  *
    148  * The crossover point (from low- to high-speed modes) is different
    149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    150  *
    151  *				SBPRO			SB20
    152  *				-----			--------
    153  * input ls min			4	KHz		4	KHz
    154  * input ls max			23	KHz		13	KHz
    155  * input hs max			44.1	KHz		15	KHz
    156  * output ls min		4	KHz		4	KHz
    157  * output ls max		23	KHz		23	KHz
    158  * output hs max		44.1	KHz		44.1	KHz
    159  */
    160 /* XXX Should we round the tc?
    161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    162 */
    163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    165 
    166 struct sbmode {
    167 	short	model;
    168 	u_char	channels;
    169 	u_char	precision;
    170 	u_short	lowrate, highrate;
    171 	u_char	cmd;
    172 	u_char	halt, cont;
    173 	u_char	cmdchan;
    174 };
    175 static struct sbmode sbpmodes[] = {
    176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    192 #define PLAY16 15 /* must be the index of the next entry in the table */
    193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    195  { -1 }
    196 };
    197 static struct sbmode sbrmodes[] = {
    198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    215  { -1 }
    216 };
    217 
    218 void	sbversion __P((struct sbdsp_softc *));
    219 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    220 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    221 void	sbdsp_pause __P((struct sbdsp_softc *));
    222 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    223 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    224 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    225 void	sbdsp_set_ifilter __P((void *, int));
    226 int	sbdsp_get_ifilter __P((void *));
    227 
    228 int	sbdsp_block_output __P((void *));
    229 int	sbdsp_block_input __P((void *));
    230 static	int sbdsp_adjust __P((int, int));
    231 
    232 int	sbdsp_midi_intr __P((void *));
    233 
    234 static void	sbdsp_powerhook __P((int, void*));
    235 
    236 #ifdef AUDIO_DEBUG
    237 void	sb_printsc __P((struct sbdsp_softc *));
    238 
    239 void
    240 sb_printsc(sc)
    241 	struct sbdsp_softc *sc;
    242 {
    243 	int i;
    244 
    245 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
    246 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    247 	    sc->sc_drq8, sc->sc_drq16,
    248 	    sc->sc_iobase, sc->sc_irq);
    249 	printf("irate %d itc %x orate %d otc %x\n",
    250 	    sc->sc_i.rate, sc->sc_i.tc,
    251 	    sc->sc_o.rate, sc->sc_o.tc);
    252 	printf("spkron %u nintr %lu\n",
    253 	    sc->spkr_state, sc->sc_interrupts);
    254 	printf("intr8 %p intr16 %p\n",
    255 	    sc->sc_intr8, sc->sc_intr16);
    256 	printf("gain:");
    257 	for (i = 0; i < SB_NDEVS; i++)
    258 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    259 	printf("\n");
    260 }
    261 #endif /* AUDIO_DEBUG */
    262 
    263 /*
    264  * Probe / attach routines.
    265  */
    266 
    267 /*
    268  * Probe for the soundblaster hardware.
    269  */
    270 int
    271 sbdsp_probe(sc)
    272 	struct sbdsp_softc *sc;
    273 {
    274 
    275 	if (sbdsp_reset(sc) < 0) {
    276 		DPRINTF(("sbdsp: couldn't reset card\n"));
    277 		return 0;
    278 	}
    279 	/* if flags set, go and probe the jazz16 stuff */
    280 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    281 		sbdsp_jazz16_probe(sc);
    282 	else
    283 		sbversion(sc);
    284 	if (sc->sc_model == SB_UNK) {
    285 		/* Unknown SB model found. */
    286 		DPRINTF(("sbdsp: unknown SB model found\n"));
    287 		return 0;
    288 	}
    289 	return 1;
    290 }
    291 
    292 /*
    293  * Try add-on stuff for Jazz16.
    294  */
    295 void
    296 sbdsp_jazz16_probe(sc)
    297 	struct sbdsp_softc *sc;
    298 {
    299 	static u_char jazz16_irq_conf[16] = {
    300 	    -1, -1, 0x02, 0x03,
    301 	    -1, 0x01, -1, 0x04,
    302 	    -1, 0x02, 0x05, -1,
    303 	    -1, -1, -1, 0x06};
    304 	static u_char jazz16_drq_conf[8] = {
    305 	    -1, 0x01, -1, 0x02,
    306 	    -1, 0x03, -1, 0x04};
    307 
    308 	bus_space_tag_t iot = sc->sc_iot;
    309 	bus_space_handle_t ioh;
    310 
    311 	sbversion(sc);
    312 
    313 	DPRINTF(("jazz16 probe\n"));
    314 
    315 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    316 		DPRINTF(("bus map failed\n"));
    317 		return;
    318 	}
    319 
    320 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    321 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    322 		DPRINTF(("drq/irq check failed\n"));
    323 		goto done;		/* give up, we can't do it. */
    324 	}
    325 
    326 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    327 	delay(10000);			/* delay 10 ms */
    328 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    329 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    330 
    331 	if (sbdsp_reset(sc) < 0) {
    332 		DPRINTF(("sbdsp_reset check failed\n"));
    333 		goto done;		/* XXX? what else could we do? */
    334 	}
    335 
    336 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    337 		DPRINTF(("read16 setup failed\n"));
    338 		goto done;
    339 	}
    340 
    341 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    342 		DPRINTF(("read16 failed\n"));
    343 		goto done;
    344 	}
    345 
    346 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    347 	sc->sc_drq16 = sc->sc_drq8;
    348 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    349 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    350 		jazz16_drq_conf[sc->sc_drq8]) ||
    351 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    352 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    353 	} else {
    354 		DPRINTF(("jazz16 detected!\n"));
    355 		sc->sc_model = SB_JAZZ;
    356 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    357 	}
    358 
    359 done:
    360 	bus_space_unmap(iot, ioh, 1);
    361 }
    362 
    363 /*
    364  * Attach hardware to driver, attach hardware driver to audio
    365  * pseudo-device driver .
    366  */
    367 void
    368 sbdsp_attach(sc)
    369 	struct sbdsp_softc *sc;
    370 {
    371 	struct audio_params pparams, rparams;
    372 	int i, error;
    373 	u_int v;
    374 
    375 	pparams = audio_default;
    376 	rparams = audio_default;
    377 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    378 
    379 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    380 
    381 	if (sc->sc_mixer_model != SBM_NONE) {
    382 		/* Reset the mixer.*/
    383 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    384 		/* And set our own default values */
    385 		for (i = 0; i < SB_NDEVS; i++) {
    386 			switch(i) {
    387 			case SB_MIC_VOL:
    388 			case SB_LINE_IN_VOL:
    389 				v = 0;
    390 				break;
    391 			case SB_BASS:
    392 			case SB_TREBLE:
    393 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    394 				break;
    395 			case SB_CD_IN_MUTE:
    396 			case SB_MIC_IN_MUTE:
    397 			case SB_LINE_IN_MUTE:
    398 			case SB_MIDI_IN_MUTE:
    399 			case SB_CD_SWAP:
    400 			case SB_MIC_SWAP:
    401 			case SB_LINE_SWAP:
    402 			case SB_MIDI_SWAP:
    403 			case SB_CD_OUT_MUTE:
    404 			case SB_MIC_OUT_MUTE:
    405 			case SB_LINE_OUT_MUTE:
    406 				v = 0;
    407 				break;
    408 			default:
    409 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    410 				break;
    411 			}
    412 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    413 			sbdsp_set_mixer_gain(sc, i);
    414 		}
    415 		sc->in_filter = 0;	/* no filters turned on, please */
    416 	}
    417 
    418 	printf(": dsp v%d.%02d%s\n",
    419 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    420 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    421 
    422 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    423 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    424 	    sc->sc_drq8 != sc->sc_drq16;
    425 
    426 	if (sc->sc_drq8 != -1) {
    427 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    428 		    sc->sc_drq8);
    429 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    430 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    431 		if (error) {
    432 			printf("%s: can't create map for drq %d\n",
    433 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    434 			return;
    435 		}
    436 	}
    437 
    438 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    439 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    440 		    sc->sc_drq16);
    441 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    442 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    443 		if (error) {
    444 			printf("%s: can't create map for drq %d\n",
    445 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    446 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    447 			return;
    448 		}
    449 	}
    450 
    451 	powerhook_establish (sbdsp_powerhook, sc);
    452 }
    453 
    454 static void
    455 sbdsp_powerhook (why, arg)
    456 	int why;
    457 	void *arg;
    458 {
    459 	struct sbdsp_softc *sc = arg;
    460 	int i;
    461 
    462 	if (!sc || why != PWR_RESUME)
    463 		return;
    464 
    465 	/* Reset the mixer. */
    466 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    467 	for (i = 0; i < SB_NDEVS; i++)
    468 		sbdsp_set_mixer_gain (sc, i);
    469 }
    470 
    471 void
    472 sbdsp_mix_write(sc, mixerport, val)
    473 	struct sbdsp_softc *sc;
    474 	int mixerport;
    475 	int val;
    476 {
    477 	bus_space_tag_t iot = sc->sc_iot;
    478 	bus_space_handle_t ioh = sc->sc_ioh;
    479 	int s;
    480 
    481 	s = splaudio();
    482 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    483 	delay(20);
    484 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    485 	delay(30);
    486 	splx(s);
    487 }
    488 
    489 int
    490 sbdsp_mix_read(sc, mixerport)
    491 	struct sbdsp_softc *sc;
    492 	int mixerport;
    493 {
    494 	bus_space_tag_t iot = sc->sc_iot;
    495 	bus_space_handle_t ioh = sc->sc_ioh;
    496 	int val;
    497 	int s;
    498 
    499 	s = splaudio();
    500 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    501 	delay(20);
    502 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    503 	delay(30);
    504 	splx(s);
    505 	return val;
    506 }
    507 
    508 /*
    509  * Various routines to interface to higher level audio driver
    510  */
    511 
    512 int
    513 sbdsp_query_encoding(addr, fp)
    514 	void *addr;
    515 	struct audio_encoding *fp;
    516 {
    517 	struct sbdsp_softc *sc = addr;
    518 	int emul;
    519 
    520 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    521 
    522 	switch (fp->index) {
    523 	case 0:
    524 		strcpy(fp->name, AudioEulinear);
    525 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    526 		fp->precision = 8;
    527 		fp->flags = 0;
    528 		return 0;
    529 	case 1:
    530 		strcpy(fp->name, AudioEmulaw);
    531 		fp->encoding = AUDIO_ENCODING_ULAW;
    532 		fp->precision = 8;
    533 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    534 		return 0;
    535 	case 2:
    536 		strcpy(fp->name, AudioEalaw);
    537 		fp->encoding = AUDIO_ENCODING_ALAW;
    538 		fp->precision = 8;
    539 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    540 		return 0;
    541 	case 3:
    542 		strcpy(fp->name, AudioEslinear);
    543 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    544 		fp->precision = 8;
    545 		fp->flags = emul;
    546 		return 0;
    547 	}
    548 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    549 		return EINVAL;
    550 
    551 	switch(fp->index) {
    552 	case 4:
    553 		strcpy(fp->name, AudioEslinear_le);
    554 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    555 		fp->precision = 16;
    556 		fp->flags = 0;
    557 		return 0;
    558 	case 5:
    559 		strcpy(fp->name, AudioEulinear_le);
    560 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    561 		fp->precision = 16;
    562 		fp->flags = emul;
    563 		return 0;
    564 	case 6:
    565 		strcpy(fp->name, AudioEslinear_be);
    566 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    567 		fp->precision = 16;
    568 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    569 		return 0;
    570 	case 7:
    571 		strcpy(fp->name, AudioEulinear_be);
    572 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    573 		fp->precision = 16;
    574 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    575 		return 0;
    576 	default:
    577 		return EINVAL;
    578 	}
    579 	return 0;
    580 }
    581 
    582 int
    583 sbdsp_set_params(addr, setmode, usemode, play, rec)
    584 	void *addr;
    585 	int setmode, usemode;
    586 	struct audio_params *play, *rec;
    587 {
    588 	struct sbdsp_softc *sc = addr;
    589 	struct sbmode *m;
    590 	u_int rate, tc, bmode;
    591 	void (*swcode) __P((void *, u_char *buf, int cnt));
    592 	int factor;
    593 	int model;
    594 	int chan;
    595 	struct audio_params *p;
    596 	int mode;
    597 
    598 	if (sc->sc_open == SB_OPEN_MIDI)
    599 		return EBUSY;
    600 
    601 	/* Later models work like SB16. */
    602 	model = min(sc->sc_model, SB_16);
    603 
    604 	/*
    605 	 * Prior to the SB16, we have only one clock, so make the sample
    606 	 * rates match.
    607 	 */
    608 	if (!ISSB16CLASS(sc) &&
    609 	    play->sample_rate != rec->sample_rate &&
    610 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    611 		if (setmode == AUMODE_PLAY) {
    612 			rec->sample_rate = play->sample_rate;
    613 			setmode |= AUMODE_RECORD;
    614 		} else if (setmode == AUMODE_RECORD) {
    615 			play->sample_rate = rec->sample_rate;
    616 			setmode |= AUMODE_PLAY;
    617 		} else
    618 			return (EINVAL);
    619 	}
    620 
    621 	/* Set first record info, then play info */
    622 	for (mode = AUMODE_RECORD; mode != -1;
    623 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    624 		if ((setmode & mode) == 0)
    625 			continue;
    626 
    627 		p = mode == AUMODE_PLAY ? play : rec;
    628 		/* Locate proper commands */
    629 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    630 		    m->model != -1; m++) {
    631 			if (model == m->model &&
    632 			    p->channels == m->channels &&
    633 			    p->precision == m->precision &&
    634 			    p->sample_rate >= m->lowrate &&
    635 			    p->sample_rate <= m->highrate)
    636 				break;
    637 		}
    638 		if (m->model == -1)
    639 			return EINVAL;
    640 		rate = p->sample_rate;
    641 		swcode = 0;
    642 		factor = 1;
    643 		tc = 1;
    644 		bmode = -1;
    645 		if (model == SB_16) {
    646 			switch (p->encoding) {
    647 			case AUDIO_ENCODING_SLINEAR_BE:
    648 				if (p->precision == 16)
    649 					swcode = swap_bytes;
    650 				/* fall into */
    651 			case AUDIO_ENCODING_SLINEAR_LE:
    652 				bmode = SB_BMODE_SIGNED;
    653 				break;
    654 			case AUDIO_ENCODING_ULINEAR_BE:
    655 				if (p->precision == 16)
    656 					swcode = swap_bytes;
    657 				/* fall into */
    658 			case AUDIO_ENCODING_ULINEAR_LE:
    659 				bmode = SB_BMODE_UNSIGNED;
    660 				break;
    661 			case AUDIO_ENCODING_ULAW:
    662 				if (mode == AUMODE_PLAY) {
    663 					swcode = mulaw_to_ulinear16_le;
    664 					factor = 2;
    665 					m = &sbpmodes[PLAY16];
    666 				} else
    667 					swcode = ulinear8_to_mulaw;
    668 				bmode = SB_BMODE_UNSIGNED;
    669 				break;
    670 			case AUDIO_ENCODING_ALAW:
    671 				if (mode == AUMODE_PLAY) {
    672 					swcode = alaw_to_ulinear16_le;
    673 					factor = 2;
    674 					m = &sbpmodes[PLAY16];
    675 				} else
    676 					swcode = ulinear8_to_alaw;
    677 				bmode = SB_BMODE_UNSIGNED;
    678 				break;
    679 			default:
    680 				return EINVAL;
    681 			}
    682 			if (p->channels == 2)
    683 				bmode |= SB_BMODE_STEREO;
    684 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    685 			switch (p->encoding) {
    686 			case AUDIO_ENCODING_SLINEAR_LE:
    687 				break;
    688 			case AUDIO_ENCODING_ULINEAR_LE:
    689 				swcode = change_sign16_le;
    690 				break;
    691 			case AUDIO_ENCODING_SLINEAR_BE:
    692 				swcode = swap_bytes;
    693 				break;
    694 			case AUDIO_ENCODING_ULINEAR_BE:
    695 				swcode = mode == AUMODE_PLAY ?
    696 					swap_bytes_change_sign16_le :
    697 					change_sign16_swap_bytes_le;
    698 				break;
    699 			case AUDIO_ENCODING_ULAW:
    700 				swcode = mode == AUMODE_PLAY ?
    701 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    702 				break;
    703 			case AUDIO_ENCODING_ALAW:
    704 				swcode = mode == AUMODE_PLAY ?
    705 					alaw_to_ulinear8 : ulinear8_to_alaw;
    706 				break;
    707 			default:
    708 				return EINVAL;
    709 			}
    710 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    711 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    712 		} else {
    713 			switch (p->encoding) {
    714 			case AUDIO_ENCODING_SLINEAR_BE:
    715 			case AUDIO_ENCODING_SLINEAR_LE:
    716 				swcode = change_sign8;
    717 				break;
    718 			case AUDIO_ENCODING_ULINEAR_BE:
    719 			case AUDIO_ENCODING_ULINEAR_LE:
    720 				break;
    721 			case AUDIO_ENCODING_ULAW:
    722 				swcode = mode == AUMODE_PLAY ?
    723 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    724 				break;
    725 			case AUDIO_ENCODING_ALAW:
    726 				swcode = mode == AUMODE_PLAY ?
    727 					alaw_to_ulinear8 : ulinear8_to_alaw;
    728 				break;
    729 			default:
    730 				return EINVAL;
    731 			}
    732 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    733 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    734 		}
    735 
    736 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    737 		if (mode == AUMODE_PLAY) {
    738 			sc->sc_o.rate = rate;
    739 			sc->sc_o.tc = tc;
    740 			sc->sc_o.modep = m;
    741 			sc->sc_o.bmode = bmode;
    742 			sc->sc_o.dmachan = chan;
    743 		} else {
    744 			sc->sc_i.rate = rate;
    745 			sc->sc_i.tc = tc;
    746 			sc->sc_i.modep = m;
    747 			sc->sc_i.bmode = bmode;
    748 			sc->sc_i.dmachan = chan;
    749 		}
    750 
    751 		p->sw_code = swcode;
    752 		p->factor = factor;
    753 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    754 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    755 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    756 
    757 	}
    758 
    759 	if (sc->sc_fullduplex &&
    760 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    761 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    762 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    763 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    764 			/* Use 16 bit DMA for playing by expanding the samples. */
    765 			play->sw_code = linear8_to_linear16_le;
    766 			play->factor = 2;
    767 			sc->sc_o.modep = &sbpmodes[PLAY16];
    768 			sc->sc_o.dmachan = sc->sc_drq16;
    769 		} else {
    770 			return EINVAL;
    771 		}
    772 	}
    773 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    774 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    775 
    776 	return (0);
    777 }
    778 
    779 void
    780 sbdsp_set_ifilter(addr, which)
    781 	void *addr;
    782 	int which;
    783 {
    784 	struct sbdsp_softc *sc = addr;
    785 	int mixval;
    786 
    787 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    788 	switch (which) {
    789 	case 0:
    790 		mixval |= SBP_FILTER_OFF;
    791 		break;
    792 	case SB_TREBLE:
    793 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    794 		break;
    795 	case SB_BASS:
    796 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    797 		break;
    798 	default:
    799 		return;
    800 	}
    801 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    802 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    803 }
    804 
    805 int
    806 sbdsp_get_ifilter(addr)
    807 	void *addr;
    808 {
    809 	struct sbdsp_softc *sc = addr;
    810 
    811 	sc->in_filter =
    812 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    813 	switch (sc->in_filter) {
    814 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    815 		return SB_TREBLE;
    816 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    817 		return SB_BASS;
    818 	default:
    819 		return 0;
    820 	}
    821 }
    822 
    823 int
    824 sbdsp_set_in_ports(sc, mask)
    825 	struct sbdsp_softc *sc;
    826 	int mask;
    827 {
    828 	int bitsl, bitsr;
    829 	int sbport;
    830 
    831 	if (sc->sc_open == SB_OPEN_MIDI)
    832 		return EBUSY;
    833 
    834 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    835 		 sc->sc_mixer_model, mask));
    836 
    837 	switch(sc->sc_mixer_model) {
    838 	case SBM_NONE:
    839 		return EINVAL;
    840 	case SBM_CT1335:
    841 		if (mask != (1 << SB_MIC_VOL))
    842 			return EINVAL;
    843 		break;
    844 	case SBM_CT1345:
    845 		switch (mask) {
    846 		case 1 << SB_MIC_VOL:
    847 			sbport = SBP_FROM_MIC;
    848 			break;
    849 		case 1 << SB_LINE_IN_VOL:
    850 			sbport = SBP_FROM_LINE;
    851 			break;
    852 		case 1 << SB_CD_VOL:
    853 			sbport = SBP_FROM_CD;
    854 			break;
    855 		default:
    856 			return (EINVAL);
    857 		}
    858 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    859 		break;
    860 	case SBM_CT1XX5:
    861 	case SBM_CT1745:
    862 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    863 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    864 			return EINVAL;
    865 		bitsr = 0;
    866 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    867 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    868 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    869 		bitsl = SB_SRC_R_TO_L(bitsr);
    870 		if (mask & (1<<SB_MIC_VOL)) {
    871 			bitsl |= SBP_MIC_SRC;
    872 			bitsr |= SBP_MIC_SRC;
    873 		}
    874 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    875 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    876 		break;
    877 	}
    878 	sc->in_mask = mask;
    879 
    880 	return 0;
    881 }
    882 
    883 int
    884 sbdsp_speaker_ctl(addr, newstate)
    885 	void *addr;
    886 	int newstate;
    887 {
    888 	struct sbdsp_softc *sc = addr;
    889 
    890 	if (sc->sc_open == SB_OPEN_MIDI)
    891 		return EBUSY;
    892 
    893 	if ((newstate == SPKR_ON) &&
    894 	    (sc->spkr_state == SPKR_OFF)) {
    895 		sbdsp_spkron(sc);
    896 		sc->spkr_state = SPKR_ON;
    897 	}
    898 	if ((newstate == SPKR_OFF) &&
    899 	    (sc->spkr_state == SPKR_ON)) {
    900 		sbdsp_spkroff(sc);
    901 		sc->spkr_state = SPKR_OFF;
    902 	}
    903 	return 0;
    904 }
    905 
    906 int
    907 sbdsp_round_blocksize(addr, blk)
    908 	void *addr;
    909 	int blk;
    910 {
    911 	return blk & -4;	/* round to biggest sample size */
    912 }
    913 
    914 int
    915 sbdsp_open(addr, flags)
    916 	void *addr;
    917 	int flags;
    918 {
    919 	struct sbdsp_softc *sc = addr;
    920 	int error, state;
    921 
    922 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    923 
    924 	if (sc->sc_open != SB_CLOSED)
    925 		return (EBUSY);
    926 	sc->sc_open = SB_OPEN_AUDIO;
    927 	sc->sc_openflags = flags;
    928 	state = 0;
    929 
    930 	if (sc->sc_drq8 != -1) {
    931 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
    932 		if (error != 0)
    933 			goto bad;
    934 		state |= 1;
    935 	}
    936 
    937 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    938 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
    939 		if (error != 0)
    940 			goto bad;
    941 		state |= 2;
    942 	}
    943 
    944 
    945 	if (sbdsp_reset(sc) != 0) {
    946 		error = EIO;
    947 		goto bad;
    948 	}
    949 
    950 	if (ISSBPRO(sc) &&
    951 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    952 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    953 		/* we'll readjust when it's time for DMA. */
    954 	}
    955 
    956 	/*
    957 	 * Leave most things as they were; users must change things if
    958 	 * the previous process didn't leave it they way they wanted.
    959 	 * Looked at another way, it's easy to set up a configuration
    960 	 * in one program and leave it for another to inherit.
    961 	 */
    962 	DPRINTF(("sbdsp_open: opened\n"));
    963 
    964 	return (0);
    965 
    966 bad:
    967 	if (state & 1)
    968 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    969 	if (state & 2)
    970 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    971 
    972 	sc->sc_open = SB_CLOSED;
    973 	return (error);
    974 }
    975 
    976 void
    977 sbdsp_close(addr)
    978 	void *addr;
    979 {
    980 	struct sbdsp_softc *sc = addr;
    981 
    982 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    983 
    984 	sbdsp_spkroff(sc);
    985 	sc->spkr_state = SPKR_OFF;
    986 
    987 	sbdsp_halt_output(sc);
    988 	sbdsp_halt_input(sc);
    989 
    990 	sc->sc_intr8 = 0;
    991 	sc->sc_intr16 = 0;
    992 
    993 	if (sc->sc_drq8 != -1)
    994 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    995 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    996 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    997 
    998 	sc->sc_open = SB_CLOSED;
    999 	DPRINTF(("sbdsp_close: closed\n"));
   1000 }
   1001 
   1002 /*
   1003  * Lower-level routines
   1004  */
   1005 
   1006 /*
   1007  * Reset the card.
   1008  * Return non-zero if the card isn't detected.
   1009  */
   1010 int
   1011 sbdsp_reset(sc)
   1012 	struct sbdsp_softc *sc;
   1013 {
   1014 	bus_space_tag_t iot = sc->sc_iot;
   1015 	bus_space_handle_t ioh = sc->sc_ioh;
   1016 
   1017 	sc->sc_intr8 = 0;
   1018 	sc->sc_intr16 = 0;
   1019 	sc->sc_intrm = 0;
   1020 
   1021 	/*
   1022 	 * See SBK, section 11.3.
   1023 	 * We pulse a reset signal into the card.
   1024 	 * Gee, what a brilliant hardware design.
   1025 	 */
   1026 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1027 	delay(10);
   1028 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1029 	delay(30);
   1030 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1031 		return -1;
   1032 
   1033 	return 0;
   1034 }
   1035 
   1036 /*
   1037  * Write a byte to the dsp.
   1038  * We are at the mercy of the card as we use a
   1039  * polling loop and wait until it can take the byte.
   1040  */
   1041 int
   1042 sbdsp_wdsp(sc, v)
   1043 	struct sbdsp_softc *sc;
   1044 	int v;
   1045 {
   1046 	bus_space_tag_t iot = sc->sc_iot;
   1047 	bus_space_handle_t ioh = sc->sc_ioh;
   1048 	int i;
   1049 	u_char x;
   1050 
   1051 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1052 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1053 		delay(10);
   1054 		if ((x & SB_DSP_BUSY) == 0) {
   1055 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1056 			delay(10);
   1057 			return 0;
   1058 		}
   1059 	}
   1060 	++sberr.wdsp;
   1061 	return -1;
   1062 }
   1063 
   1064 /*
   1065  * Read a byte from the DSP, using polling.
   1066  */
   1067 int
   1068 sbdsp_rdsp(sc)
   1069 	struct sbdsp_softc *sc;
   1070 {
   1071 	bus_space_tag_t iot = sc->sc_iot;
   1072 	bus_space_handle_t ioh = sc->sc_ioh;
   1073 	int i;
   1074 	u_char x;
   1075 
   1076 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1077 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1078 		delay(10);
   1079 		if (x & SB_DSP_READY) {
   1080 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1081 			delay(10);
   1082 			return x;
   1083 		}
   1084 	}
   1085 	++sberr.rdsp;
   1086 	return -1;
   1087 }
   1088 
   1089 void
   1090 sbdsp_pause(sc)
   1091 	struct sbdsp_softc *sc;
   1092 {
   1093 
   1094 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1095 }
   1096 
   1097 /*
   1098  * Turn on the speaker.  The SBK documention says this operation
   1099  * can take up to 1/10 of a second.  Higher level layers should
   1100  * probably let the task sleep for this amount of time after
   1101  * calling here.  Otherwise, things might not work (because
   1102  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1103  *
   1104  * These engineers had their heads up their ass when
   1105  * they designed this card.
   1106  */
   1107 void
   1108 sbdsp_spkron(sc)
   1109 	struct sbdsp_softc *sc;
   1110 {
   1111 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1112 	sbdsp_pause(sc);
   1113 }
   1114 
   1115 /*
   1116  * Turn off the speaker; see comment above.
   1117  */
   1118 void
   1119 sbdsp_spkroff(sc)
   1120 	struct sbdsp_softc *sc;
   1121 {
   1122 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1123 	sbdsp_pause(sc);
   1124 }
   1125 
   1126 /*
   1127  * Read the version number out of the card.
   1128  * Store version information in the softc.
   1129  */
   1130 void
   1131 sbversion(sc)
   1132 	struct sbdsp_softc *sc;
   1133 {
   1134 	int v;
   1135 
   1136 	sc->sc_model = SB_UNK;
   1137 	sc->sc_version = 0;
   1138 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1139 		return;
   1140 	v = sbdsp_rdsp(sc) << 8;
   1141 	v |= sbdsp_rdsp(sc);
   1142 	if (v < 0)
   1143 		return;
   1144 	sc->sc_version = v;
   1145 	switch(SBVER_MAJOR(v)) {
   1146 	case 1:
   1147 		sc->sc_mixer_model = SBM_NONE;
   1148 		sc->sc_model = SB_1;
   1149 		break;
   1150 	case 2:
   1151 		/* Some SB2 have a mixer, some don't. */
   1152 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1153 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1154 		/* Check if we can read back the mixer values. */
   1155 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1156 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1157 			sc->sc_mixer_model = SBM_CT1335;
   1158 		else
   1159 			sc->sc_mixer_model = SBM_NONE;
   1160 		if (SBVER_MINOR(v) == 0)
   1161 			sc->sc_model = SB_20;
   1162 		else
   1163 			sc->sc_model = SB_2x;
   1164 		break;
   1165 	case 3:
   1166 		sc->sc_mixer_model = SBM_CT1345;
   1167 		sc->sc_model = SB_PRO;
   1168 		break;
   1169 	case 4:
   1170 #if 0
   1171 /* XXX This does not work */
   1172 		/* Most SB16 have a tone controls, but some don't. */
   1173 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1174 		/* Check if we can read back the mixer value. */
   1175 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1176 			sc->sc_mixer_model = SBM_CT1745;
   1177 		else
   1178 			sc->sc_mixer_model = SBM_CT1XX5;
   1179 #else
   1180 		sc->sc_mixer_model = SBM_CT1745;
   1181 #endif
   1182 #if 0
   1183 /* XXX figure out a good way of determining the model */
   1184 		/* XXX what about SB_32 */
   1185 		if (SBVER_MINOR(v) == 16)
   1186 			sc->sc_model = SB_64;
   1187 		else
   1188 #endif
   1189 			sc->sc_model = SB_16;
   1190 		break;
   1191 	}
   1192 }
   1193 
   1194 int
   1195 sbdsp_set_timeconst(sc, tc)
   1196 	struct sbdsp_softc *sc;
   1197 	int tc;
   1198 {
   1199 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1200 
   1201 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1202 	    sbdsp_wdsp(sc, tc) < 0)
   1203 		return EIO;
   1204 
   1205 	return 0;
   1206 }
   1207 
   1208 int
   1209 sbdsp16_set_rate(sc, cmd, rate)
   1210 	struct sbdsp_softc *sc;
   1211 	int cmd, rate;
   1212 {
   1213 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1214 
   1215 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1216 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1217 	    sbdsp_wdsp(sc, rate) < 0)
   1218 		return EIO;
   1219 	return 0;
   1220 }
   1221 
   1222 int
   1223 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1224 	void *addr;
   1225 	void *start, *end;
   1226 	int blksize;
   1227 	void (*intr) __P((void *));
   1228 	void *arg;
   1229 	struct audio_params *param;
   1230 {
   1231 	struct sbdsp_softc *sc = addr;
   1232 	int stereo = param->channels == 2;
   1233 	int width = param->precision * param->factor;
   1234 	int filter;
   1235 
   1236 #ifdef DIAGNOSTIC
   1237 	if (stereo && (blksize & 1)) {
   1238 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1239 		return (EIO);
   1240 	}
   1241 	if (sc->sc_i.run != SB_NOTRUNNING)
   1242 		printf("sbdsp_trigger_input: already running\n");
   1243 #endif
   1244 
   1245 	sc->sc_intrr = intr;
   1246 	sc->sc_argr = arg;
   1247 
   1248 	if (width == 8) {
   1249 #ifdef DIAGNOSTIC
   1250 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1251 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1252 			    width, sc->sc_i.dmachan);
   1253 			return (EIO);
   1254 		}
   1255 #endif
   1256 		sc->sc_intr8 = sbdsp_block_input;
   1257 	} else {
   1258 #ifdef DIAGNOSTIC
   1259 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1260 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1261 			    width, sc->sc_i.dmachan);
   1262 			return (EIO);
   1263 		}
   1264 #endif
   1265 		sc->sc_intr16 = sbdsp_block_input;
   1266 	}
   1267 
   1268 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1269 		blksize >>= 1;
   1270 	--blksize;
   1271 	sc->sc_i.blksize = blksize;
   1272 
   1273 	if (ISSBPRO(sc)) {
   1274 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1275 			return (EIO);
   1276 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1277 		sbdsp_mix_write(sc, SBP_INFILTER,
   1278 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1279 		    filter);
   1280 	}
   1281 
   1282 	if (ISSB16CLASS(sc)) {
   1283 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1284 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1285 				 sc->sc_i.rate));
   1286 			return (EIO);
   1287 		}
   1288 	} else {
   1289 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1290 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1291 				 sc->sc_i.rate));
   1292 			return (EIO);
   1293 		}
   1294 	}
   1295 
   1296 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
   1297 	    start, end, sc->sc_i.dmachan));
   1298 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1299 	    (char *)end - (char *)start, NULL,
   1300 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1301 
   1302 	return sbdsp_block_input(addr);
   1303 }
   1304 
   1305 int
   1306 sbdsp_block_input(addr)
   1307 	void *addr;
   1308 {
   1309 	struct sbdsp_softc *sc = addr;
   1310 	int cc = sc->sc_i.blksize;
   1311 
   1312 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1313 
   1314 	if (sc->sc_i.run != SB_NOTRUNNING)
   1315 		sc->sc_intrr(sc->sc_argr);
   1316 
   1317 	if (sc->sc_model == SB_1) {
   1318 		/* Non-looping mode, start DMA */
   1319 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1320 		    sbdsp_wdsp(sc, cc) < 0 ||
   1321 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1322 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1323 			return (EIO);
   1324 		}
   1325 		sc->sc_i.run = SB_RUNNING;
   1326 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1327 		/* Initialize looping PCM */
   1328 		if (ISSB16CLASS(sc)) {
   1329 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1330 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1331 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1332 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1333 			    sbdsp_wdsp(sc, cc) < 0 ||
   1334 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1335 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1336 				return (EIO);
   1337 			}
   1338 		} else {
   1339 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1340 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1341 			    sbdsp_wdsp(sc, cc) < 0 ||
   1342 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1343 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1344 				return (EIO);
   1345 			}
   1346 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1347 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1348 				return (EIO);
   1349 			}
   1350 		}
   1351 		sc->sc_i.run = SB_LOOPING;
   1352 	}
   1353 
   1354 	return (0);
   1355 }
   1356 
   1357 int
   1358 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1359 	void *addr;
   1360 	void *start, *end;
   1361 	int blksize;
   1362 	void (*intr) __P((void *));
   1363 	void *arg;
   1364 	struct audio_params *param;
   1365 {
   1366 	struct sbdsp_softc *sc = addr;
   1367 	int stereo = param->channels == 2;
   1368 	int width = param->precision * param->factor;
   1369 	int cmd;
   1370 
   1371 #ifdef DIAGNOSTIC
   1372 	if (stereo && (blksize & 1)) {
   1373 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1374 		return (EIO);
   1375 	}
   1376 	if (sc->sc_o.run != SB_NOTRUNNING)
   1377 		printf("sbdsp_trigger_output: already running\n");
   1378 #endif
   1379 
   1380 	sc->sc_intrp = intr;
   1381 	sc->sc_argp = arg;
   1382 
   1383 	if (width == 8) {
   1384 #ifdef DIAGNOSTIC
   1385 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1386 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1387 			    width, sc->sc_o.dmachan);
   1388 			return (EIO);
   1389 		}
   1390 #endif
   1391 		sc->sc_intr8 = sbdsp_block_output;
   1392 	} else {
   1393 #ifdef DIAGNOSTIC
   1394 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1395 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1396 			    width, sc->sc_o.dmachan);
   1397 			return (EIO);
   1398 		}
   1399 #endif
   1400 		sc->sc_intr16 = sbdsp_block_output;
   1401 	}
   1402 
   1403 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1404 		blksize >>= 1;
   1405 	--blksize;
   1406 	sc->sc_o.blksize = blksize;
   1407 
   1408 	if (ISSBPRO(sc)) {
   1409 		/* make sure we re-set stereo mixer bit when we start output. */
   1410 		sbdsp_mix_write(sc, SBP_STEREO,
   1411 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1412 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1413 		cmd = sc->sc_o.modep->cmdchan;
   1414 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1415 			return (EIO);
   1416 	}
   1417 
   1418 	if (ISSB16CLASS(sc)) {
   1419 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1420 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1421 				 sc->sc_o.rate));
   1422 			return (EIO);
   1423 		}
   1424 	} else {
   1425 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1426 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1427 				 sc->sc_o.rate));
   1428 			return (EIO);
   1429 		}
   1430 	}
   1431 
   1432 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
   1433 	    start, end, sc->sc_o.dmachan));
   1434 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1435 	    (char *)end - (char *)start, NULL,
   1436 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1437 
   1438 	return sbdsp_block_output(addr);
   1439 }
   1440 
   1441 int
   1442 sbdsp_block_output(addr)
   1443 	void *addr;
   1444 {
   1445 	struct sbdsp_softc *sc = addr;
   1446 	int cc = sc->sc_o.blksize;
   1447 
   1448 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1449 
   1450 	if (sc->sc_o.run != SB_NOTRUNNING)
   1451 		sc->sc_intrp(sc->sc_argp);
   1452 
   1453 	if (sc->sc_model == SB_1) {
   1454 		/* Non-looping mode, initialized. Start DMA and PCM */
   1455 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1456 		    sbdsp_wdsp(sc, cc) < 0 ||
   1457 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1458 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1459 			return (EIO);
   1460 		}
   1461 		sc->sc_o.run = SB_RUNNING;
   1462 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1463 		/* Initialize looping PCM */
   1464 		if (ISSB16CLASS(sc)) {
   1465 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1466 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1467 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1468 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1469 			    sbdsp_wdsp(sc, cc) < 0 ||
   1470 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1471 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1472 				return (EIO);
   1473 			}
   1474 		} else {
   1475 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1476 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1477 			    sbdsp_wdsp(sc, cc) < 0 ||
   1478 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1479 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1480 				return (EIO);
   1481 			}
   1482 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1483 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1484 				return (EIO);
   1485 			}
   1486 		}
   1487 		sc->sc_o.run = SB_LOOPING;
   1488 	}
   1489 
   1490 	return (0);
   1491 }
   1492 
   1493 int
   1494 sbdsp_halt_output(addr)
   1495 	void *addr;
   1496 {
   1497 	struct sbdsp_softc *sc = addr;
   1498 
   1499 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1500 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1501 			printf("sbdsp_halt_output: failed to halt\n");
   1502 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1503 		sc->sc_o.run = SB_NOTRUNNING;
   1504 	}
   1505 
   1506 	return (0);
   1507 }
   1508 
   1509 int
   1510 sbdsp_halt_input(addr)
   1511 	void *addr;
   1512 {
   1513 	struct sbdsp_softc *sc = addr;
   1514 
   1515 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1516 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1517 			printf("sbdsp_halt_input: failed to halt\n");
   1518 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1519 		sc->sc_i.run = SB_NOTRUNNING;
   1520 	}
   1521 
   1522 	return (0);
   1523 }
   1524 
   1525 /*
   1526  * Only the DSP unit on the sound blaster generates interrupts.
   1527  * There are three cases of interrupt: reception of a midi byte
   1528  * (when mode is enabled), completion of DMA transmission, or
   1529  * completion of a DMA reception.
   1530  *
   1531  * If there is interrupt sharing or a spurious interrupt occurs
   1532  * there is no way to distinguish this on an SB2.  So if you have
   1533  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1534  */
   1535 int
   1536 sbdsp_intr(arg)
   1537 	void *arg;
   1538 {
   1539 	struct sbdsp_softc *sc = arg;
   1540 	u_char irq;
   1541 
   1542 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1543 		   sc->sc_intr8, sc->sc_intr16));
   1544 	if (ISSB16CLASS(sc)) {
   1545 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1546 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1547 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1548 			return 0;
   1549 		}
   1550 	} else {
   1551 		/* XXXX CHECK FOR INTERRUPT */
   1552 		irq = SBP_IRQ_DMA8;
   1553 	}
   1554 
   1555 	sc->sc_interrupts++;
   1556 	delay(10);		/* XXX why? */
   1557 
   1558 	/* clear interrupt */
   1559 	if (irq & SBP_IRQ_DMA8) {
   1560 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1561 		if (sc->sc_intr8)
   1562 			sc->sc_intr8(arg);
   1563 	}
   1564 	if (irq & SBP_IRQ_DMA16) {
   1565 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1566 		if (sc->sc_intr16)
   1567 			sc->sc_intr16(arg);
   1568 	}
   1569 #if NMPU > 0
   1570 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1571 		mpu_intr(sc->sc_mpudev);
   1572 	}
   1573 #endif
   1574 	return 1;
   1575 }
   1576 
   1577 /* Like val & mask, but make sure the result is correctly rounded. */
   1578 #define MAXVAL 256
   1579 static int
   1580 sbdsp_adjust(val, mask)
   1581 	int val, mask;
   1582 {
   1583 	val += (MAXVAL - mask) >> 1;
   1584 	if (val >= MAXVAL)
   1585 		val = MAXVAL-1;
   1586 	return val & mask;
   1587 }
   1588 
   1589 void
   1590 sbdsp_set_mixer_gain(sc, port)
   1591 	struct sbdsp_softc *sc;
   1592 	int port;
   1593 {
   1594 	int src, gain;
   1595 
   1596 	switch(sc->sc_mixer_model) {
   1597 	case SBM_NONE:
   1598 		return;
   1599 	case SBM_CT1335:
   1600 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1601 		switch(port) {
   1602 		case SB_MASTER_VOL:
   1603 			src = SBP_1335_MASTER_VOL;
   1604 			break;
   1605 		case SB_MIDI_VOL:
   1606 			src = SBP_1335_MIDI_VOL;
   1607 			break;
   1608 		case SB_CD_VOL:
   1609 			src = SBP_1335_CD_VOL;
   1610 			break;
   1611 		case SB_VOICE_VOL:
   1612 			src = SBP_1335_VOICE_VOL;
   1613 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1614 			break;
   1615 		default:
   1616 			return;
   1617 		}
   1618 		sbdsp_mix_write(sc, src, gain);
   1619 		break;
   1620 	case SBM_CT1345:
   1621 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1622 				      sc->gain[port][SB_RIGHT]);
   1623 		switch (port) {
   1624 		case SB_MIC_VOL:
   1625 			src = SBP_MIC_VOL;
   1626 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1627 			break;
   1628 		case SB_MASTER_VOL:
   1629 			src = SBP_MASTER_VOL;
   1630 			break;
   1631 		case SB_LINE_IN_VOL:
   1632 			src = SBP_LINE_VOL;
   1633 			break;
   1634 		case SB_VOICE_VOL:
   1635 			src = SBP_VOICE_VOL;
   1636 			break;
   1637 		case SB_MIDI_VOL:
   1638 			src = SBP_MIDI_VOL;
   1639 			break;
   1640 		case SB_CD_VOL:
   1641 			src = SBP_CD_VOL;
   1642 			break;
   1643 		default:
   1644 			return;
   1645 		}
   1646 		sbdsp_mix_write(sc, src, gain);
   1647 		break;
   1648 	case SBM_CT1XX5:
   1649 	case SBM_CT1745:
   1650 		switch (port) {
   1651 		case SB_MIC_VOL:
   1652 			src = SB16P_MIC_L;
   1653 			break;
   1654 		case SB_MASTER_VOL:
   1655 			src = SB16P_MASTER_L;
   1656 			break;
   1657 		case SB_LINE_IN_VOL:
   1658 			src = SB16P_LINE_L;
   1659 			break;
   1660 		case SB_VOICE_VOL:
   1661 			src = SB16P_VOICE_L;
   1662 			break;
   1663 		case SB_MIDI_VOL:
   1664 			src = SB16P_MIDI_L;
   1665 			break;
   1666 		case SB_CD_VOL:
   1667 			src = SB16P_CD_L;
   1668 			break;
   1669 		case SB_INPUT_GAIN:
   1670 			src = SB16P_INPUT_GAIN_L;
   1671 			break;
   1672 		case SB_OUTPUT_GAIN:
   1673 			src = SB16P_OUTPUT_GAIN_L;
   1674 			break;
   1675 		case SB_TREBLE:
   1676 			src = SB16P_TREBLE_L;
   1677 			break;
   1678 		case SB_BASS:
   1679 			src = SB16P_BASS_L;
   1680 			break;
   1681 		case SB_PCSPEAKER:
   1682 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1683 			return;
   1684 		default:
   1685 			return;
   1686 		}
   1687 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1688 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1689 		break;
   1690 	}
   1691 }
   1692 
   1693 int
   1694 sbdsp_mixer_set_port(addr, cp)
   1695 	void *addr;
   1696 	mixer_ctrl_t *cp;
   1697 {
   1698 	struct sbdsp_softc *sc = addr;
   1699 	int lgain, rgain;
   1700 	int mask, bits;
   1701 	int lmask, rmask, lbits, rbits;
   1702 	int mute, swap;
   1703 
   1704 	if (sc->sc_open == SB_OPEN_MIDI)
   1705 		return EBUSY;
   1706 
   1707 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1708 	    cp->un.value.num_channels));
   1709 
   1710 	if (sc->sc_mixer_model == SBM_NONE)
   1711 		return EINVAL;
   1712 
   1713 	switch (cp->dev) {
   1714 	case SB_TREBLE:
   1715 	case SB_BASS:
   1716 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1717 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1718 			if (cp->type != AUDIO_MIXER_ENUM)
   1719 				return EINVAL;
   1720 			switch (cp->dev) {
   1721 			case SB_TREBLE:
   1722 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1723 				return 0;
   1724 			case SB_BASS:
   1725 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1726 				return 0;
   1727 			}
   1728 		}
   1729 	case SB_PCSPEAKER:
   1730 	case SB_INPUT_GAIN:
   1731 	case SB_OUTPUT_GAIN:
   1732 		if (!ISSBM1745(sc))
   1733 			return EINVAL;
   1734 	case SB_MIC_VOL:
   1735 	case SB_LINE_IN_VOL:
   1736 		if (sc->sc_mixer_model == SBM_CT1335)
   1737 			return EINVAL;
   1738 	case SB_VOICE_VOL:
   1739 	case SB_MIDI_VOL:
   1740 	case SB_CD_VOL:
   1741 	case SB_MASTER_VOL:
   1742 		if (cp->type != AUDIO_MIXER_VALUE)
   1743 			return EINVAL;
   1744 
   1745 		/*
   1746 		 * All the mixer ports are stereo except for the microphone.
   1747 		 * If we get a single-channel gain value passed in, then we
   1748 		 * duplicate it to both left and right channels.
   1749 		 */
   1750 
   1751 		switch (cp->dev) {
   1752 		case SB_MIC_VOL:
   1753 			if (cp->un.value.num_channels != 1)
   1754 				return EINVAL;
   1755 
   1756 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1757 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1758 			break;
   1759 		case SB_PCSPEAKER:
   1760 			if (cp->un.value.num_channels != 1)
   1761 				return EINVAL;
   1762 			/* fall into */
   1763 		case SB_INPUT_GAIN:
   1764 		case SB_OUTPUT_GAIN:
   1765 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1766 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1767 			break;
   1768 		default:
   1769 			switch (cp->un.value.num_channels) {
   1770 			case 1:
   1771 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1772 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1773 				break;
   1774 			case 2:
   1775 				if (sc->sc_mixer_model == SBM_CT1335)
   1776 					return EINVAL;
   1777 				lgain = SB_ADJUST_GAIN(sc,
   1778 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1779 				rgain = SB_ADJUST_GAIN(sc,
   1780 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1781 				break;
   1782 			default:
   1783 				return EINVAL;
   1784 			}
   1785 			break;
   1786 		}
   1787 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1788 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1789 
   1790 		sbdsp_set_mixer_gain(sc, cp->dev);
   1791 		break;
   1792 
   1793 	case SB_RECORD_SOURCE:
   1794 		if (ISSBM1745(sc)) {
   1795 			if (cp->type != AUDIO_MIXER_SET)
   1796 				return EINVAL;
   1797 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1798 		} else {
   1799 			if (cp->type != AUDIO_MIXER_ENUM)
   1800 				return EINVAL;
   1801 			sc->in_port = cp->un.ord;
   1802 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1803 		}
   1804 		break;
   1805 
   1806 	case SB_AGC:
   1807 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1808 			return EINVAL;
   1809 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1810 		break;
   1811 
   1812 	case SB_CD_OUT_MUTE:
   1813 		mask = SB16P_SW_CD;
   1814 		goto omute;
   1815 	case SB_MIC_OUT_MUTE:
   1816 		mask = SB16P_SW_MIC;
   1817 		goto omute;
   1818 	case SB_LINE_OUT_MUTE:
   1819 		mask = SB16P_SW_LINE;
   1820 	omute:
   1821 		if (cp->type != AUDIO_MIXER_ENUM)
   1822 			return EINVAL;
   1823 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1824 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1825 		if (cp->un.ord)
   1826 			bits = bits & ~mask;
   1827 		else
   1828 			bits = bits | mask;
   1829 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1830 		break;
   1831 
   1832 	case SB_MIC_IN_MUTE:
   1833 	case SB_MIC_SWAP:
   1834 		lmask = rmask = SB16P_SW_MIC;
   1835 		goto imute;
   1836 	case SB_CD_IN_MUTE:
   1837 	case SB_CD_SWAP:
   1838 		lmask = SB16P_SW_CD_L;
   1839 		rmask = SB16P_SW_CD_R;
   1840 		goto imute;
   1841 	case SB_LINE_IN_MUTE:
   1842 	case SB_LINE_SWAP:
   1843 		lmask = SB16P_SW_LINE_L;
   1844 		rmask = SB16P_SW_LINE_R;
   1845 		goto imute;
   1846 	case SB_MIDI_IN_MUTE:
   1847 	case SB_MIDI_SWAP:
   1848 		lmask = SB16P_SW_MIDI_L;
   1849 		rmask = SB16P_SW_MIDI_R;
   1850 	imute:
   1851 		if (cp->type != AUDIO_MIXER_ENUM)
   1852 			return EINVAL;
   1853 		mask = lmask | rmask;
   1854 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1855 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1856 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1857 		if (SB_IS_IN_MUTE(cp->dev)) {
   1858 			mute = cp->dev;
   1859 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1860 		} else {
   1861 			swap = cp->dev;
   1862 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1863 		}
   1864 		if (sc->gain[swap][SB_LR]) {
   1865 			mask = lmask;
   1866 			lmask = rmask;
   1867 			rmask = mask;
   1868 		}
   1869 		if (!sc->gain[mute][SB_LR]) {
   1870 			lbits = lbits | lmask;
   1871 			rbits = rbits | rmask;
   1872 		}
   1873 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1874 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1875 		break;
   1876 
   1877 	default:
   1878 		return EINVAL;
   1879 	}
   1880 
   1881 	return 0;
   1882 }
   1883 
   1884 int
   1885 sbdsp_mixer_get_port(addr, cp)
   1886 	void *addr;
   1887 	mixer_ctrl_t *cp;
   1888 {
   1889 	struct sbdsp_softc *sc = addr;
   1890 
   1891 	if (sc->sc_open == SB_OPEN_MIDI)
   1892 		return EBUSY;
   1893 
   1894 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1895 
   1896 	if (sc->sc_mixer_model == SBM_NONE)
   1897 		return EINVAL;
   1898 
   1899 	switch (cp->dev) {
   1900 	case SB_TREBLE:
   1901 	case SB_BASS:
   1902 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1903 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1904 			switch (cp->dev) {
   1905 			case SB_TREBLE:
   1906 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1907 				return 0;
   1908 			case SB_BASS:
   1909 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1910 				return 0;
   1911 			}
   1912 		}
   1913 	case SB_PCSPEAKER:
   1914 	case SB_INPUT_GAIN:
   1915 	case SB_OUTPUT_GAIN:
   1916 		if (!ISSBM1745(sc))
   1917 			return EINVAL;
   1918 	case SB_MIC_VOL:
   1919 	case SB_LINE_IN_VOL:
   1920 		if (sc->sc_mixer_model == SBM_CT1335)
   1921 			return EINVAL;
   1922 	case SB_VOICE_VOL:
   1923 	case SB_MIDI_VOL:
   1924 	case SB_CD_VOL:
   1925 	case SB_MASTER_VOL:
   1926 		switch (cp->dev) {
   1927 		case SB_MIC_VOL:
   1928 		case SB_PCSPEAKER:
   1929 			if (cp->un.value.num_channels != 1)
   1930 				return EINVAL;
   1931 			/* fall into */
   1932 		default:
   1933 			switch (cp->un.value.num_channels) {
   1934 			case 1:
   1935 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1936 					sc->gain[cp->dev][SB_LEFT];
   1937 				break;
   1938 			case 2:
   1939 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1940 					sc->gain[cp->dev][SB_LEFT];
   1941 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1942 					sc->gain[cp->dev][SB_RIGHT];
   1943 				break;
   1944 			default:
   1945 				return EINVAL;
   1946 			}
   1947 			break;
   1948 		}
   1949 		break;
   1950 
   1951 	case SB_RECORD_SOURCE:
   1952 		if (ISSBM1745(sc))
   1953 			cp->un.mask = sc->in_mask;
   1954 		else
   1955 			cp->un.ord = sc->in_port;
   1956 		break;
   1957 
   1958 	case SB_AGC:
   1959 		if (!ISSBM1745(sc))
   1960 			return EINVAL;
   1961 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1962 		break;
   1963 
   1964 	case SB_CD_IN_MUTE:
   1965 	case SB_MIC_IN_MUTE:
   1966 	case SB_LINE_IN_MUTE:
   1967 	case SB_MIDI_IN_MUTE:
   1968 	case SB_CD_SWAP:
   1969 	case SB_MIC_SWAP:
   1970 	case SB_LINE_SWAP:
   1971 	case SB_MIDI_SWAP:
   1972 	case SB_CD_OUT_MUTE:
   1973 	case SB_MIC_OUT_MUTE:
   1974 	case SB_LINE_OUT_MUTE:
   1975 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1976 		break;
   1977 
   1978 	default:
   1979 		return EINVAL;
   1980 	}
   1981 
   1982 	return 0;
   1983 }
   1984 
   1985 int
   1986 sbdsp_mixer_query_devinfo(addr, dip)
   1987 	void *addr;
   1988 	mixer_devinfo_t *dip;
   1989 {
   1990 	struct sbdsp_softc *sc = addr;
   1991 	int chan, class, is1745;
   1992 
   1993 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1994 		 sc->sc_mixer_model, dip->index));
   1995 
   1996 	if (sc->sc_mixer_model == SBM_NONE)
   1997 		return ENXIO;
   1998 
   1999 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   2000 	is1745 = ISSBM1745(sc);
   2001 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   2002 
   2003 	switch (dip->index) {
   2004 	case SB_MASTER_VOL:
   2005 		dip->type = AUDIO_MIXER_VALUE;
   2006 		dip->mixer_class = SB_OUTPUT_CLASS;
   2007 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2008 		strcpy(dip->label.name, AudioNmaster);
   2009 		dip->un.v.num_channels = chan;
   2010 		strcpy(dip->un.v.units.name, AudioNvolume);
   2011 		return 0;
   2012 	case SB_MIDI_VOL:
   2013 		dip->type = AUDIO_MIXER_VALUE;
   2014 		dip->mixer_class = class;
   2015 		dip->prev = AUDIO_MIXER_LAST;
   2016 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2017 		strcpy(dip->label.name, AudioNfmsynth);
   2018 		dip->un.v.num_channels = chan;
   2019 		strcpy(dip->un.v.units.name, AudioNvolume);
   2020 		return 0;
   2021 	case SB_CD_VOL:
   2022 		dip->type = AUDIO_MIXER_VALUE;
   2023 		dip->mixer_class = class;
   2024 		dip->prev = AUDIO_MIXER_LAST;
   2025 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2026 		strcpy(dip->label.name, AudioNcd);
   2027 		dip->un.v.num_channels = chan;
   2028 		strcpy(dip->un.v.units.name, AudioNvolume);
   2029 		return 0;
   2030 	case SB_VOICE_VOL:
   2031 		dip->type = AUDIO_MIXER_VALUE;
   2032 		dip->mixer_class = class;
   2033 		dip->prev = AUDIO_MIXER_LAST;
   2034 		dip->next = AUDIO_MIXER_LAST;
   2035 		strcpy(dip->label.name, AudioNdac);
   2036 		dip->un.v.num_channels = chan;
   2037 		strcpy(dip->un.v.units.name, AudioNvolume);
   2038 		return 0;
   2039 	case SB_OUTPUT_CLASS:
   2040 		dip->type = AUDIO_MIXER_CLASS;
   2041 		dip->mixer_class = SB_OUTPUT_CLASS;
   2042 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2043 		strcpy(dip->label.name, AudioCoutputs);
   2044 		return 0;
   2045 	}
   2046 
   2047 	if (sc->sc_mixer_model == SBM_CT1335)
   2048 		return ENXIO;
   2049 
   2050 	switch (dip->index) {
   2051 	case SB_MIC_VOL:
   2052 		dip->type = AUDIO_MIXER_VALUE;
   2053 		dip->mixer_class = class;
   2054 		dip->prev = AUDIO_MIXER_LAST;
   2055 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2056 		strcpy(dip->label.name, AudioNmicrophone);
   2057 		dip->un.v.num_channels = 1;
   2058 		strcpy(dip->un.v.units.name, AudioNvolume);
   2059 		return 0;
   2060 
   2061 	case SB_LINE_IN_VOL:
   2062 		dip->type = AUDIO_MIXER_VALUE;
   2063 		dip->mixer_class = class;
   2064 		dip->prev = AUDIO_MIXER_LAST;
   2065 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2066 		strcpy(dip->label.name, AudioNline);
   2067 		dip->un.v.num_channels = 2;
   2068 		strcpy(dip->un.v.units.name, AudioNvolume);
   2069 		return 0;
   2070 
   2071 	case SB_RECORD_SOURCE:
   2072 		dip->mixer_class = SB_RECORD_CLASS;
   2073 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2074 		strcpy(dip->label.name, AudioNsource);
   2075 		if (ISSBM1745(sc)) {
   2076 			dip->type = AUDIO_MIXER_SET;
   2077 			dip->un.s.num_mem = 4;
   2078 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2079 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2080 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2081 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2082 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2083 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2084 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2085 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2086 		} else {
   2087 			dip->type = AUDIO_MIXER_ENUM;
   2088 			dip->un.e.num_mem = 3;
   2089 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2090 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2091 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2092 			dip->un.e.member[1].ord = SB_CD_VOL;
   2093 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2094 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2095 		}
   2096 		return 0;
   2097 
   2098 	case SB_BASS:
   2099 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2100 		strcpy(dip->label.name, AudioNbass);
   2101 		if (sc->sc_mixer_model == SBM_CT1745) {
   2102 			dip->type = AUDIO_MIXER_VALUE;
   2103 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2104 			dip->un.v.num_channels = 2;
   2105 			strcpy(dip->un.v.units.name, AudioNbass);
   2106 		} else {
   2107 			dip->type = AUDIO_MIXER_ENUM;
   2108 			dip->mixer_class = SB_INPUT_CLASS;
   2109 			dip->un.e.num_mem = 2;
   2110 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2111 			dip->un.e.member[0].ord = 0;
   2112 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2113 			dip->un.e.member[1].ord = 1;
   2114 		}
   2115 		return 0;
   2116 
   2117 	case SB_TREBLE:
   2118 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2119 		strcpy(dip->label.name, AudioNtreble);
   2120 		if (sc->sc_mixer_model == SBM_CT1745) {
   2121 			dip->type = AUDIO_MIXER_VALUE;
   2122 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2123 			dip->un.v.num_channels = 2;
   2124 			strcpy(dip->un.v.units.name, AudioNtreble);
   2125 		} else {
   2126 			dip->type = AUDIO_MIXER_ENUM;
   2127 			dip->mixer_class = SB_INPUT_CLASS;
   2128 			dip->un.e.num_mem = 2;
   2129 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2130 			dip->un.e.member[0].ord = 0;
   2131 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2132 			dip->un.e.member[1].ord = 1;
   2133 		}
   2134 		return 0;
   2135 
   2136 	case SB_RECORD_CLASS:			/* record source class */
   2137 		dip->type = AUDIO_MIXER_CLASS;
   2138 		dip->mixer_class = SB_RECORD_CLASS;
   2139 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2140 		strcpy(dip->label.name, AudioCrecord);
   2141 		return 0;
   2142 
   2143 	case SB_INPUT_CLASS:
   2144 		dip->type = AUDIO_MIXER_CLASS;
   2145 		dip->mixer_class = SB_INPUT_CLASS;
   2146 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2147 		strcpy(dip->label.name, AudioCinputs);
   2148 		return 0;
   2149 
   2150 	}
   2151 
   2152 	if (sc->sc_mixer_model == SBM_CT1345)
   2153 		return ENXIO;
   2154 
   2155 	switch(dip->index) {
   2156 	case SB_PCSPEAKER:
   2157 		dip->type = AUDIO_MIXER_VALUE;
   2158 		dip->mixer_class = SB_INPUT_CLASS;
   2159 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2160 		strcpy(dip->label.name, "pc_speaker");
   2161 		dip->un.v.num_channels = 1;
   2162 		strcpy(dip->un.v.units.name, AudioNvolume);
   2163 		return 0;
   2164 
   2165 	case SB_INPUT_GAIN:
   2166 		dip->type = AUDIO_MIXER_VALUE;
   2167 		dip->mixer_class = SB_INPUT_CLASS;
   2168 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2169 		strcpy(dip->label.name, AudioNinput);
   2170 		dip->un.v.num_channels = 2;
   2171 		strcpy(dip->un.v.units.name, AudioNvolume);
   2172 		return 0;
   2173 
   2174 	case SB_OUTPUT_GAIN:
   2175 		dip->type = AUDIO_MIXER_VALUE;
   2176 		dip->mixer_class = SB_OUTPUT_CLASS;
   2177 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2178 		strcpy(dip->label.name, AudioNoutput);
   2179 		dip->un.v.num_channels = 2;
   2180 		strcpy(dip->un.v.units.name, AudioNvolume);
   2181 		return 0;
   2182 
   2183 	case SB_AGC:
   2184 		dip->type = AUDIO_MIXER_ENUM;
   2185 		dip->mixer_class = SB_INPUT_CLASS;
   2186 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2187 		strcpy(dip->label.name, "agc");
   2188 		dip->un.e.num_mem = 2;
   2189 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2190 		dip->un.e.member[0].ord = 0;
   2191 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2192 		dip->un.e.member[1].ord = 1;
   2193 		return 0;
   2194 
   2195 	case SB_EQUALIZATION_CLASS:
   2196 		dip->type = AUDIO_MIXER_CLASS;
   2197 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2198 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2199 		strcpy(dip->label.name, AudioCequalization);
   2200 		return 0;
   2201 
   2202 	case SB_CD_IN_MUTE:
   2203 		dip->prev = SB_CD_VOL;
   2204 		dip->next = SB_CD_SWAP;
   2205 		dip->mixer_class = SB_INPUT_CLASS;
   2206 		goto mute;
   2207 
   2208 	case SB_MIC_IN_MUTE:
   2209 		dip->prev = SB_MIC_VOL;
   2210 		dip->next = SB_MIC_SWAP;
   2211 		dip->mixer_class = SB_INPUT_CLASS;
   2212 		goto mute;
   2213 
   2214 	case SB_LINE_IN_MUTE:
   2215 		dip->prev = SB_LINE_IN_VOL;
   2216 		dip->next = SB_LINE_SWAP;
   2217 		dip->mixer_class = SB_INPUT_CLASS;
   2218 		goto mute;
   2219 
   2220 	case SB_MIDI_IN_MUTE:
   2221 		dip->prev = SB_MIDI_VOL;
   2222 		dip->next = SB_MIDI_SWAP;
   2223 		dip->mixer_class = SB_INPUT_CLASS;
   2224 		goto mute;
   2225 
   2226 	case SB_CD_SWAP:
   2227 		dip->prev = SB_CD_IN_MUTE;
   2228 		dip->next = SB_CD_OUT_MUTE;
   2229 		goto swap;
   2230 
   2231 	case SB_MIC_SWAP:
   2232 		dip->prev = SB_MIC_IN_MUTE;
   2233 		dip->next = SB_MIC_OUT_MUTE;
   2234 		goto swap;
   2235 
   2236 	case SB_LINE_SWAP:
   2237 		dip->prev = SB_LINE_IN_MUTE;
   2238 		dip->next = SB_LINE_OUT_MUTE;
   2239 		goto swap;
   2240 
   2241 	case SB_MIDI_SWAP:
   2242 		dip->prev = SB_MIDI_IN_MUTE;
   2243 		dip->next = AUDIO_MIXER_LAST;
   2244 	swap:
   2245 		dip->mixer_class = SB_INPUT_CLASS;
   2246 		strcpy(dip->label.name, AudioNswap);
   2247 		goto mute1;
   2248 
   2249 	case SB_CD_OUT_MUTE:
   2250 		dip->prev = SB_CD_SWAP;
   2251 		dip->next = AUDIO_MIXER_LAST;
   2252 		dip->mixer_class = SB_OUTPUT_CLASS;
   2253 		goto mute;
   2254 
   2255 	case SB_MIC_OUT_MUTE:
   2256 		dip->prev = SB_MIC_SWAP;
   2257 		dip->next = AUDIO_MIXER_LAST;
   2258 		dip->mixer_class = SB_OUTPUT_CLASS;
   2259 		goto mute;
   2260 
   2261 	case SB_LINE_OUT_MUTE:
   2262 		dip->prev = SB_LINE_SWAP;
   2263 		dip->next = AUDIO_MIXER_LAST;
   2264 		dip->mixer_class = SB_OUTPUT_CLASS;
   2265 	mute:
   2266 		strcpy(dip->label.name, AudioNmute);
   2267 	mute1:
   2268 		dip->type = AUDIO_MIXER_ENUM;
   2269 		dip->un.e.num_mem = 2;
   2270 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2271 		dip->un.e.member[0].ord = 0;
   2272 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2273 		dip->un.e.member[1].ord = 1;
   2274 		return 0;
   2275 
   2276 	}
   2277 
   2278 	return ENXIO;
   2279 }
   2280 
   2281 void *
   2282 sb_malloc(addr, direction, size, pool, flags)
   2283 	void *addr;
   2284 	int direction;
   2285 	size_t size;
   2286 	struct malloc_type *pool;
   2287 	int flags;
   2288 {
   2289 	struct sbdsp_softc *sc = addr;
   2290 	int drq;
   2291 
   2292 	if (sc->sc_drq8 != -1)
   2293 		drq = sc->sc_drq8;
   2294 	else
   2295 		drq = sc->sc_drq16;
   2296 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2297 }
   2298 
   2299 void
   2300 sb_free(addr, ptr, pool)
   2301 	void *addr;
   2302 	void *ptr;
   2303 	struct malloc_type *pool;
   2304 {
   2305 	isa_free(ptr, pool);
   2306 }
   2307 
   2308 size_t
   2309 sb_round_buffersize(addr, direction, size)
   2310 	void *addr;
   2311 	int direction;
   2312 	size_t size;
   2313 {
   2314 	struct sbdsp_softc *sc = addr;
   2315 	bus_size_t maxsize;
   2316 
   2317 	if (sc->sc_drq8 != -1)
   2318 		maxsize = sc->sc_drq8_maxsize;
   2319 	else
   2320 		maxsize = sc->sc_drq16_maxsize;
   2321 
   2322 	if (size > maxsize)
   2323 		size = maxsize;
   2324 	return (size);
   2325 }
   2326 
   2327 paddr_t
   2328 sb_mappage(addr, mem, off, prot)
   2329 	void *addr;
   2330 	void *mem;
   2331 	off_t off;
   2332 	int prot;
   2333 {
   2334 	return isa_mappage(mem, off, prot);
   2335 }
   2336 
   2337 int
   2338 sbdsp_get_props(addr)
   2339 	void *addr;
   2340 {
   2341 	struct sbdsp_softc *sc = addr;
   2342 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2343 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2344 }
   2345 
   2346 #if NMPU > 0
   2347 /*
   2348  * MIDI related routines.
   2349  */
   2350 
   2351 int
   2352 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2353 	void *addr;
   2354 	int flags;
   2355 	void (*iintr)__P((void *, int));
   2356 	void (*ointr)__P((void *));
   2357 	void *arg;
   2358 {
   2359 	struct sbdsp_softc *sc = addr;
   2360 
   2361 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2362 
   2363 	if (sc->sc_open != SB_CLOSED)
   2364 		return EBUSY;
   2365 	if (sbdsp_reset(sc) != 0)
   2366 		return EIO;
   2367 
   2368 	sc->sc_open = SB_OPEN_MIDI;
   2369 	sc->sc_openflags = flags;
   2370 
   2371 	if (sc->sc_model >= SB_20)
   2372 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2373 			return EIO;
   2374 
   2375 	sc->sc_intr8 = sbdsp_midi_intr;
   2376 	sc->sc_intrm = iintr;
   2377 	sc->sc_argm = arg;
   2378 
   2379 	return 0;
   2380 }
   2381 
   2382 void
   2383 sbdsp_midi_close(addr)
   2384 	void *addr;
   2385 {
   2386 	struct sbdsp_softc *sc = addr;
   2387 
   2388 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2389 
   2390 	if (sc->sc_model >= SB_20)
   2391 		sbdsp_reset(sc); /* exit UART mode */
   2392 
   2393 	sc->sc_intrm = 0;
   2394 	sc->sc_open = SB_CLOSED;
   2395 }
   2396 
   2397 int
   2398 sbdsp_midi_output(addr, d)
   2399 	void *addr;
   2400 	int d;
   2401 {
   2402 	struct sbdsp_softc *sc = addr;
   2403 
   2404 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2405 		return EIO;
   2406 	if (sbdsp_wdsp(sc, d))
   2407 		return EIO;
   2408 	return 0;
   2409 }
   2410 
   2411 void
   2412 sbdsp_midi_getinfo(addr, mi)
   2413 	void *addr;
   2414 	struct midi_info *mi;
   2415 {
   2416 	struct sbdsp_softc *sc = addr;
   2417 
   2418 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2419 	mi->props = MIDI_PROP_CAN_INPUT;
   2420 }
   2421 
   2422 int
   2423 sbdsp_midi_intr(addr)
   2424 	void *addr;
   2425 {
   2426 	struct sbdsp_softc *sc = addr;
   2427 
   2428 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2429 	return (0);
   2430 }
   2431 
   2432 #endif
   2433 
   2434