sbdsp.c revision 1.112.2.3 1 /* $NetBSD: sbdsp.c,v 1.112.2.3 2004/09/21 13:29:48 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.112.2.3 2004/09/21 13:29:48 skrll Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 KHz 4 KHz
154 * input ls max 23 KHz 13 KHz
155 * input hs max 44.1 KHz 15 KHz
156 * output ls min 4 KHz 4 KHz
157 * output ls max 23 KHz 23 KHz
158 * output hs max 44.1 KHz 44.1 KHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195 { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215 { -1 }
216 };
217
218 void sbversion __P((struct sbdsp_softc *));
219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
221 void sbdsp_pause __P((struct sbdsp_softc *));
222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
225 void sbdsp_set_ifilter __P((void *, int));
226 int sbdsp_get_ifilter __P((void *));
227
228 int sbdsp_block_output __P((void *));
229 int sbdsp_block_input __P((void *));
230 static int sbdsp_adjust __P((int, int));
231
232 int sbdsp_midi_intr __P((void *));
233
234 static void sbdsp_powerhook __P((int, void*));
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc __P((struct sbdsp_softc *));
238
239 void
240 sb_printsc(sc)
241 struct sbdsp_softc *sc;
242 {
243 int i;
244
245 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
247 sc->sc_drq8, sc->sc_drq16,
248 sc->sc_iobase, sc->sc_irq);
249 printf("irate %d itc %x orate %d otc %x\n",
250 sc->sc_i.rate, sc->sc_i.tc,
251 sc->sc_o.rate, sc->sc_o.tc);
252 printf("spkron %u nintr %lu\n",
253 sc->spkr_state, sc->sc_interrupts);
254 printf("intr8 %p intr16 %p\n",
255 sc->sc_intr8, sc->sc_intr16);
256 printf("gain:");
257 for (i = 0; i < SB_NDEVS; i++)
258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
259 printf("\n");
260 }
261 #endif /* AUDIO_DEBUG */
262
263 /*
264 * Probe / attach routines.
265 */
266
267 /*
268 * Probe for the soundblaster hardware.
269 */
270 int
271 sbdsp_probe(sc)
272 struct sbdsp_softc *sc;
273 {
274
275 if (sbdsp_reset(sc) < 0) {
276 DPRINTF(("sbdsp: couldn't reset card\n"));
277 return 0;
278 }
279 /* if flags set, go and probe the jazz16 stuff */
280 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
281 sbdsp_jazz16_probe(sc);
282 else
283 sbversion(sc);
284 if (sc->sc_model == SB_UNK) {
285 /* Unknown SB model found. */
286 DPRINTF(("sbdsp: unknown SB model found\n"));
287 return 0;
288 }
289 return 1;
290 }
291
292 /*
293 * Try add-on stuff for Jazz16.
294 */
295 void
296 sbdsp_jazz16_probe(sc)
297 struct sbdsp_softc *sc;
298 {
299 static u_char jazz16_irq_conf[16] = {
300 -1, -1, 0x02, 0x03,
301 -1, 0x01, -1, 0x04,
302 -1, 0x02, 0x05, -1,
303 -1, -1, -1, 0x06};
304 static u_char jazz16_drq_conf[8] = {
305 -1, 0x01, -1, 0x02,
306 -1, 0x03, -1, 0x04};
307
308 bus_space_tag_t iot = sc->sc_iot;
309 bus_space_handle_t ioh;
310
311 sbversion(sc);
312
313 DPRINTF(("jazz16 probe\n"));
314
315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
316 DPRINTF(("bus map failed\n"));
317 return;
318 }
319
320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
322 DPRINTF(("drq/irq check failed\n"));
323 goto done; /* give up, we can't do it. */
324 }
325
326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
327 delay(10000); /* delay 10 ms */
328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
330
331 if (sbdsp_reset(sc) < 0) {
332 DPRINTF(("sbdsp_reset check failed\n"));
333 goto done; /* XXX? what else could we do? */
334 }
335
336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
337 DPRINTF(("read16 setup failed\n"));
338 goto done;
339 }
340
341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
342 DPRINTF(("read16 failed\n"));
343 goto done;
344 }
345
346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
347 sc->sc_drq16 = sc->sc_drq8;
348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
350 jazz16_drq_conf[sc->sc_drq8]) ||
351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
353 } else {
354 DPRINTF(("jazz16 detected!\n"));
355 sc->sc_model = SB_JAZZ;
356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
357 }
358
359 done:
360 bus_space_unmap(iot, ioh, 1);
361 }
362
363 /*
364 * Attach hardware to driver, attach hardware driver to audio
365 * pseudo-device driver .
366 */
367 void
368 sbdsp_attach(sc)
369 struct sbdsp_softc *sc;
370 {
371 struct audio_params pparams, rparams;
372 int i, error;
373 u_int v;
374
375 pparams = audio_default;
376 rparams = audio_default;
377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
378
379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
380
381 if (sc->sc_mixer_model != SBM_NONE) {
382 /* Reset the mixer.*/
383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
384 /* And set our own default values */
385 for (i = 0; i < SB_NDEVS; i++) {
386 switch(i) {
387 case SB_MIC_VOL:
388 case SB_LINE_IN_VOL:
389 v = 0;
390 break;
391 case SB_BASS:
392 case SB_TREBLE:
393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
394 break;
395 case SB_CD_IN_MUTE:
396 case SB_MIC_IN_MUTE:
397 case SB_LINE_IN_MUTE:
398 case SB_MIDI_IN_MUTE:
399 case SB_CD_SWAP:
400 case SB_MIC_SWAP:
401 case SB_LINE_SWAP:
402 case SB_MIDI_SWAP:
403 case SB_CD_OUT_MUTE:
404 case SB_MIC_OUT_MUTE:
405 case SB_LINE_OUT_MUTE:
406 v = 0;
407 break;
408 default:
409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 break;
411 }
412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
413 sbdsp_set_mixer_gain(sc, i);
414 }
415 sc->in_filter = 0; /* no filters turned on, please */
416 }
417
418 printf(": dsp v%d.%02d%s\n",
419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
421
422 sc->sc_fullduplex = ISSB16CLASS(sc) &&
423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
424 sc->sc_drq8 != sc->sc_drq16;
425
426 if (sc->sc_drq8 != -1) {
427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
428 sc->sc_drq8);
429 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
430 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
431 if (error) {
432 printf("%s: can't create map for drq %d\n",
433 sc->sc_dev.dv_xname, sc->sc_drq8);
434 return;
435 }
436 }
437
438 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
439 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
440 sc->sc_drq16);
441 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
442 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
443 if (error) {
444 printf("%s: can't create map for drq %d\n",
445 sc->sc_dev.dv_xname, sc->sc_drq16);
446 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
447 return;
448 }
449 }
450
451 powerhook_establish (sbdsp_powerhook, sc);
452 }
453
454 static void
455 sbdsp_powerhook (why, arg)
456 int why;
457 void *arg;
458 {
459 struct sbdsp_softc *sc = arg;
460 int i;
461
462 if (!sc || why != PWR_RESUME)
463 return;
464
465 /* Reset the mixer. */
466 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
467 for (i = 0; i < SB_NDEVS; i++)
468 sbdsp_set_mixer_gain (sc, i);
469 }
470
471 void
472 sbdsp_mix_write(sc, mixerport, val)
473 struct sbdsp_softc *sc;
474 int mixerport;
475 int val;
476 {
477 bus_space_tag_t iot = sc->sc_iot;
478 bus_space_handle_t ioh = sc->sc_ioh;
479 int s;
480
481 s = splaudio();
482 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
483 delay(20);
484 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
485 delay(30);
486 splx(s);
487 }
488
489 int
490 sbdsp_mix_read(sc, mixerport)
491 struct sbdsp_softc *sc;
492 int mixerport;
493 {
494 bus_space_tag_t iot = sc->sc_iot;
495 bus_space_handle_t ioh = sc->sc_ioh;
496 int val;
497 int s;
498
499 s = splaudio();
500 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
501 delay(20);
502 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
503 delay(30);
504 splx(s);
505 return val;
506 }
507
508 /*
509 * Various routines to interface to higher level audio driver
510 */
511
512 int
513 sbdsp_query_encoding(addr, fp)
514 void *addr;
515 struct audio_encoding *fp;
516 {
517 struct sbdsp_softc *sc = addr;
518 int emul;
519
520 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
521
522 switch (fp->index) {
523 case 0:
524 strcpy(fp->name, AudioEulinear);
525 fp->encoding = AUDIO_ENCODING_ULINEAR;
526 fp->precision = 8;
527 fp->flags = 0;
528 return 0;
529 case 1:
530 strcpy(fp->name, AudioEmulaw);
531 fp->encoding = AUDIO_ENCODING_ULAW;
532 fp->precision = 8;
533 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
534 return 0;
535 case 2:
536 strcpy(fp->name, AudioEalaw);
537 fp->encoding = AUDIO_ENCODING_ALAW;
538 fp->precision = 8;
539 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
540 return 0;
541 case 3:
542 strcpy(fp->name, AudioEslinear);
543 fp->encoding = AUDIO_ENCODING_SLINEAR;
544 fp->precision = 8;
545 fp->flags = emul;
546 return 0;
547 }
548 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
549 return EINVAL;
550
551 switch(fp->index) {
552 case 4:
553 strcpy(fp->name, AudioEslinear_le);
554 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
555 fp->precision = 16;
556 fp->flags = 0;
557 return 0;
558 case 5:
559 strcpy(fp->name, AudioEulinear_le);
560 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
561 fp->precision = 16;
562 fp->flags = emul;
563 return 0;
564 case 6:
565 strcpy(fp->name, AudioEslinear_be);
566 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
567 fp->precision = 16;
568 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
569 return 0;
570 case 7:
571 strcpy(fp->name, AudioEulinear_be);
572 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
573 fp->precision = 16;
574 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
575 return 0;
576 default:
577 return EINVAL;
578 }
579 return 0;
580 }
581
582 int
583 sbdsp_set_params(addr, setmode, usemode, play, rec)
584 void *addr;
585 int setmode, usemode;
586 struct audio_params *play, *rec;
587 {
588 struct sbdsp_softc *sc = addr;
589 struct sbmode *m;
590 u_int rate, tc, bmode;
591 void (*swcode) __P((void *, u_char *buf, int cnt));
592 int factor;
593 int model;
594 int chan;
595 struct audio_params *p;
596 int mode;
597
598 if (sc->sc_open == SB_OPEN_MIDI)
599 return EBUSY;
600
601 /* Later models work like SB16. */
602 model = min(sc->sc_model, SB_16);
603
604 /*
605 * Prior to the SB16, we have only one clock, so make the sample
606 * rates match.
607 */
608 if (!ISSB16CLASS(sc) &&
609 play->sample_rate != rec->sample_rate &&
610 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
611 if (setmode == AUMODE_PLAY) {
612 rec->sample_rate = play->sample_rate;
613 setmode |= AUMODE_RECORD;
614 } else if (setmode == AUMODE_RECORD) {
615 play->sample_rate = rec->sample_rate;
616 setmode |= AUMODE_PLAY;
617 } else
618 return (EINVAL);
619 }
620
621 /* Set first record info, then play info */
622 for (mode = AUMODE_RECORD; mode != -1;
623 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
624 if ((setmode & mode) == 0)
625 continue;
626
627 p = mode == AUMODE_PLAY ? play : rec;
628 /* Locate proper commands */
629 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
630 m->model != -1; m++) {
631 if (model == m->model &&
632 p->channels == m->channels &&
633 p->precision == m->precision &&
634 p->sample_rate >= m->lowrate &&
635 p->sample_rate <= m->highrate)
636 break;
637 }
638 if (m->model == -1)
639 return EINVAL;
640 rate = p->sample_rate;
641 swcode = 0;
642 factor = 1;
643 tc = 1;
644 bmode = -1;
645 if (model == SB_16) {
646 switch (p->encoding) {
647 case AUDIO_ENCODING_SLINEAR_BE:
648 if (p->precision == 16)
649 swcode = swap_bytes;
650 /* fall into */
651 case AUDIO_ENCODING_SLINEAR_LE:
652 bmode = SB_BMODE_SIGNED;
653 break;
654 case AUDIO_ENCODING_ULINEAR_BE:
655 if (p->precision == 16)
656 swcode = swap_bytes;
657 /* fall into */
658 case AUDIO_ENCODING_ULINEAR_LE:
659 bmode = SB_BMODE_UNSIGNED;
660 break;
661 case AUDIO_ENCODING_ULAW:
662 if (mode == AUMODE_PLAY) {
663 swcode = mulaw_to_ulinear16_le;
664 factor = 2;
665 m = &sbpmodes[PLAY16];
666 } else
667 swcode = ulinear8_to_mulaw;
668 bmode = SB_BMODE_UNSIGNED;
669 break;
670 case AUDIO_ENCODING_ALAW:
671 if (mode == AUMODE_PLAY) {
672 swcode = alaw_to_ulinear16_le;
673 factor = 2;
674 m = &sbpmodes[PLAY16];
675 } else
676 swcode = ulinear8_to_alaw;
677 bmode = SB_BMODE_UNSIGNED;
678 break;
679 default:
680 return EINVAL;
681 }
682 if (p->channels == 2)
683 bmode |= SB_BMODE_STEREO;
684 } else if (m->model == SB_JAZZ && m->precision == 16) {
685 switch (p->encoding) {
686 case AUDIO_ENCODING_SLINEAR_LE:
687 break;
688 case AUDIO_ENCODING_ULINEAR_LE:
689 swcode = change_sign16_le;
690 break;
691 case AUDIO_ENCODING_SLINEAR_BE:
692 swcode = swap_bytes;
693 break;
694 case AUDIO_ENCODING_ULINEAR_BE:
695 swcode = mode == AUMODE_PLAY ?
696 swap_bytes_change_sign16_le :
697 change_sign16_swap_bytes_le;
698 break;
699 case AUDIO_ENCODING_ULAW:
700 swcode = mode == AUMODE_PLAY ?
701 mulaw_to_ulinear8 : ulinear8_to_mulaw;
702 break;
703 case AUDIO_ENCODING_ALAW:
704 swcode = mode == AUMODE_PLAY ?
705 alaw_to_ulinear8 : ulinear8_to_alaw;
706 break;
707 default:
708 return EINVAL;
709 }
710 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
711 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
712 } else {
713 switch (p->encoding) {
714 case AUDIO_ENCODING_SLINEAR_BE:
715 case AUDIO_ENCODING_SLINEAR_LE:
716 swcode = change_sign8;
717 break;
718 case AUDIO_ENCODING_ULINEAR_BE:
719 case AUDIO_ENCODING_ULINEAR_LE:
720 break;
721 case AUDIO_ENCODING_ULAW:
722 swcode = mode == AUMODE_PLAY ?
723 mulaw_to_ulinear8 : ulinear8_to_mulaw;
724 break;
725 case AUDIO_ENCODING_ALAW:
726 swcode = mode == AUMODE_PLAY ?
727 alaw_to_ulinear8 : ulinear8_to_alaw;
728 break;
729 default:
730 return EINVAL;
731 }
732 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
733 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
734 }
735
736 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
737 if (mode == AUMODE_PLAY) {
738 sc->sc_o.rate = rate;
739 sc->sc_o.tc = tc;
740 sc->sc_o.modep = m;
741 sc->sc_o.bmode = bmode;
742 sc->sc_o.dmachan = chan;
743 } else {
744 sc->sc_i.rate = rate;
745 sc->sc_i.tc = tc;
746 sc->sc_i.modep = m;
747 sc->sc_i.bmode = bmode;
748 sc->sc_i.dmachan = chan;
749 }
750
751 p->sw_code = swcode;
752 p->factor = factor;
753 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
754 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
755 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
756
757 }
758
759 if (sc->sc_fullduplex &&
760 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
761 sc->sc_i.dmachan == sc->sc_o.dmachan) {
762 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
763 if (sc->sc_o.dmachan == sc->sc_drq8) {
764 /* Use 16 bit DMA for playing by expanding the samples. */
765 play->sw_code = linear8_to_linear16_le;
766 play->factor = 2;
767 sc->sc_o.modep = &sbpmodes[PLAY16];
768 sc->sc_o.dmachan = sc->sc_drq16;
769 } else {
770 return EINVAL;
771 }
772 }
773 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
774 sc->sc_i.dmachan, sc->sc_o.dmachan));
775
776 return (0);
777 }
778
779 void
780 sbdsp_set_ifilter(addr, which)
781 void *addr;
782 int which;
783 {
784 struct sbdsp_softc *sc = addr;
785 int mixval;
786
787 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
788 switch (which) {
789 case 0:
790 mixval |= SBP_FILTER_OFF;
791 break;
792 case SB_TREBLE:
793 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
794 break;
795 case SB_BASS:
796 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
797 break;
798 default:
799 return;
800 }
801 sc->in_filter = mixval & SBP_IFILTER_MASK;
802 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
803 }
804
805 int
806 sbdsp_get_ifilter(addr)
807 void *addr;
808 {
809 struct sbdsp_softc *sc = addr;
810
811 sc->in_filter =
812 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
813 switch (sc->in_filter) {
814 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
815 return SB_TREBLE;
816 case SBP_FILTER_ON|SBP_IFILTER_LOW:
817 return SB_BASS;
818 default:
819 return 0;
820 }
821 }
822
823 int
824 sbdsp_set_in_ports(sc, mask)
825 struct sbdsp_softc *sc;
826 int mask;
827 {
828 int bitsl, bitsr;
829 int sbport;
830
831 if (sc->sc_open == SB_OPEN_MIDI)
832 return EBUSY;
833
834 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
835 sc->sc_mixer_model, mask));
836
837 switch(sc->sc_mixer_model) {
838 case SBM_NONE:
839 return EINVAL;
840 case SBM_CT1335:
841 if (mask != (1 << SB_MIC_VOL))
842 return EINVAL;
843 break;
844 case SBM_CT1345:
845 switch (mask) {
846 case 1 << SB_MIC_VOL:
847 sbport = SBP_FROM_MIC;
848 break;
849 case 1 << SB_LINE_IN_VOL:
850 sbport = SBP_FROM_LINE;
851 break;
852 case 1 << SB_CD_VOL:
853 sbport = SBP_FROM_CD;
854 break;
855 default:
856 return (EINVAL);
857 }
858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
859 break;
860 case SBM_CT1XX5:
861 case SBM_CT1745:
862 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
863 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
864 return EINVAL;
865 bitsr = 0;
866 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
867 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
868 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
869 bitsl = SB_SRC_R_TO_L(bitsr);
870 if (mask & (1<<SB_MIC_VOL)) {
871 bitsl |= SBP_MIC_SRC;
872 bitsr |= SBP_MIC_SRC;
873 }
874 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
875 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
876 break;
877 }
878 sc->in_mask = mask;
879
880 return 0;
881 }
882
883 int
884 sbdsp_speaker_ctl(addr, newstate)
885 void *addr;
886 int newstate;
887 {
888 struct sbdsp_softc *sc = addr;
889
890 if (sc->sc_open == SB_OPEN_MIDI)
891 return EBUSY;
892
893 if ((newstate == SPKR_ON) &&
894 (sc->spkr_state == SPKR_OFF)) {
895 sbdsp_spkron(sc);
896 sc->spkr_state = SPKR_ON;
897 }
898 if ((newstate == SPKR_OFF) &&
899 (sc->spkr_state == SPKR_ON)) {
900 sbdsp_spkroff(sc);
901 sc->spkr_state = SPKR_OFF;
902 }
903 return 0;
904 }
905
906 int
907 sbdsp_round_blocksize(addr, blk)
908 void *addr;
909 int blk;
910 {
911 return blk & -4; /* round to biggest sample size */
912 }
913
914 int
915 sbdsp_open(addr, flags)
916 void *addr;
917 int flags;
918 {
919 struct sbdsp_softc *sc = addr;
920 int error, state;
921
922 DPRINTF(("sbdsp_open: sc=%p\n", sc));
923
924 if (sc->sc_open != SB_CLOSED)
925 return (EBUSY);
926 sc->sc_open = SB_OPEN_AUDIO;
927 state = 0;
928
929 if (sc->sc_drq8 != -1) {
930 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
931 if (error != 0)
932 goto bad;
933 state |= 1;
934 }
935
936 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
937 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
938 if (error != 0)
939 goto bad;
940 state |= 2;
941 }
942
943
944 if (sbdsp_reset(sc) != 0) {
945 error = EIO;
946 goto bad;
947 }
948
949 if (ISSBPRO(sc) &&
950 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
951 DPRINTF(("sbdsp_open: can't set mono mode\n"));
952 /* we'll readjust when it's time for DMA. */
953 }
954
955 /*
956 * Leave most things as they were; users must change things if
957 * the previous process didn't leave it they way they wanted.
958 * Looked at another way, it's easy to set up a configuration
959 * in one program and leave it for another to inherit.
960 */
961 DPRINTF(("sbdsp_open: opened\n"));
962
963 return (0);
964
965 bad:
966 if (state & 1)
967 isa_drq_free(sc->sc_ic, sc->sc_drq8);
968 if (state & 2)
969 isa_drq_free(sc->sc_ic, sc->sc_drq16);
970
971 sc->sc_open = SB_CLOSED;
972 return (error);
973 }
974
975 void
976 sbdsp_close(addr)
977 void *addr;
978 {
979 struct sbdsp_softc *sc = addr;
980
981 DPRINTF(("sbdsp_close: sc=%p\n", sc));
982
983 sbdsp_spkroff(sc);
984 sc->spkr_state = SPKR_OFF;
985
986 sc->sc_intr8 = 0;
987 sc->sc_intr16 = 0;
988
989 if (sc->sc_drq8 != -1)
990 isa_drq_free(sc->sc_ic, sc->sc_drq8);
991 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
992 isa_drq_free(sc->sc_ic, sc->sc_drq16);
993
994 sc->sc_open = SB_CLOSED;
995 DPRINTF(("sbdsp_close: closed\n"));
996 }
997
998 /*
999 * Lower-level routines
1000 */
1001
1002 /*
1003 * Reset the card.
1004 * Return non-zero if the card isn't detected.
1005 */
1006 int
1007 sbdsp_reset(sc)
1008 struct sbdsp_softc *sc;
1009 {
1010 bus_space_tag_t iot = sc->sc_iot;
1011 bus_space_handle_t ioh = sc->sc_ioh;
1012
1013 sc->sc_intr8 = 0;
1014 sc->sc_intr16 = 0;
1015 sc->sc_intrm = 0;
1016
1017 /*
1018 * See SBK, section 11.3.
1019 * We pulse a reset signal into the card.
1020 * Gee, what a brilliant hardware design.
1021 */
1022 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1023 delay(10);
1024 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1025 delay(30);
1026 if (sbdsp_rdsp(sc) != SB_MAGIC)
1027 return -1;
1028
1029 return 0;
1030 }
1031
1032 /*
1033 * Write a byte to the dsp.
1034 * We are at the mercy of the card as we use a
1035 * polling loop and wait until it can take the byte.
1036 */
1037 int
1038 sbdsp_wdsp(sc, v)
1039 struct sbdsp_softc *sc;
1040 int v;
1041 {
1042 bus_space_tag_t iot = sc->sc_iot;
1043 bus_space_handle_t ioh = sc->sc_ioh;
1044 int i;
1045 u_char x;
1046
1047 for (i = SBDSP_NPOLL; --i >= 0; ) {
1048 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1049 delay(10);
1050 if ((x & SB_DSP_BUSY) == 0) {
1051 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1052 delay(10);
1053 return 0;
1054 }
1055 }
1056 ++sberr.wdsp;
1057 return -1;
1058 }
1059
1060 /*
1061 * Read a byte from the DSP, using polling.
1062 */
1063 int
1064 sbdsp_rdsp(sc)
1065 struct sbdsp_softc *sc;
1066 {
1067 bus_space_tag_t iot = sc->sc_iot;
1068 bus_space_handle_t ioh = sc->sc_ioh;
1069 int i;
1070 u_char x;
1071
1072 for (i = SBDSP_NPOLL; --i >= 0; ) {
1073 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1074 delay(10);
1075 if (x & SB_DSP_READY) {
1076 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1077 delay(10);
1078 return x;
1079 }
1080 }
1081 ++sberr.rdsp;
1082 return -1;
1083 }
1084
1085 void
1086 sbdsp_pause(sc)
1087 struct sbdsp_softc *sc;
1088 {
1089
1090 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1091 }
1092
1093 /*
1094 * Turn on the speaker. The SBK documention says this operation
1095 * can take up to 1/10 of a second. Higher level layers should
1096 * probably let the task sleep for this amount of time after
1097 * calling here. Otherwise, things might not work (because
1098 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1099 *
1100 * These engineers had their heads up their ass when
1101 * they designed this card.
1102 */
1103 void
1104 sbdsp_spkron(sc)
1105 struct sbdsp_softc *sc;
1106 {
1107 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1108 sbdsp_pause(sc);
1109 }
1110
1111 /*
1112 * Turn off the speaker; see comment above.
1113 */
1114 void
1115 sbdsp_spkroff(sc)
1116 struct sbdsp_softc *sc;
1117 {
1118 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1119 sbdsp_pause(sc);
1120 }
1121
1122 /*
1123 * Read the version number out of the card.
1124 * Store version information in the softc.
1125 */
1126 void
1127 sbversion(sc)
1128 struct sbdsp_softc *sc;
1129 {
1130 int v;
1131
1132 sc->sc_model = SB_UNK;
1133 sc->sc_version = 0;
1134 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1135 return;
1136 v = sbdsp_rdsp(sc) << 8;
1137 v |= sbdsp_rdsp(sc);
1138 if (v < 0)
1139 return;
1140 sc->sc_version = v;
1141 switch(SBVER_MAJOR(v)) {
1142 case 1:
1143 sc->sc_mixer_model = SBM_NONE;
1144 sc->sc_model = SB_1;
1145 break;
1146 case 2:
1147 /* Some SB2 have a mixer, some don't. */
1148 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1149 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1150 /* Check if we can read back the mixer values. */
1151 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1152 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1153 sc->sc_mixer_model = SBM_CT1335;
1154 else
1155 sc->sc_mixer_model = SBM_NONE;
1156 if (SBVER_MINOR(v) == 0)
1157 sc->sc_model = SB_20;
1158 else
1159 sc->sc_model = SB_2x;
1160 break;
1161 case 3:
1162 sc->sc_mixer_model = SBM_CT1345;
1163 sc->sc_model = SB_PRO;
1164 break;
1165 case 4:
1166 #if 0
1167 /* XXX This does not work */
1168 /* Most SB16 have a tone controls, but some don't. */
1169 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1170 /* Check if we can read back the mixer value. */
1171 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1172 sc->sc_mixer_model = SBM_CT1745;
1173 else
1174 sc->sc_mixer_model = SBM_CT1XX5;
1175 #else
1176 sc->sc_mixer_model = SBM_CT1745;
1177 #endif
1178 #if 0
1179 /* XXX figure out a good way of determining the model */
1180 /* XXX what about SB_32 */
1181 if (SBVER_MINOR(v) == 16)
1182 sc->sc_model = SB_64;
1183 else
1184 #endif
1185 sc->sc_model = SB_16;
1186 break;
1187 }
1188 }
1189
1190 int
1191 sbdsp_set_timeconst(sc, tc)
1192 struct sbdsp_softc *sc;
1193 int tc;
1194 {
1195 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1196
1197 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1198 sbdsp_wdsp(sc, tc) < 0)
1199 return EIO;
1200
1201 return 0;
1202 }
1203
1204 int
1205 sbdsp16_set_rate(sc, cmd, rate)
1206 struct sbdsp_softc *sc;
1207 int cmd, rate;
1208 {
1209 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1210
1211 if (sbdsp_wdsp(sc, cmd) < 0 ||
1212 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1213 sbdsp_wdsp(sc, rate) < 0)
1214 return EIO;
1215 return 0;
1216 }
1217
1218 int
1219 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1220 void *addr;
1221 void *start, *end;
1222 int blksize;
1223 void (*intr) __P((void *));
1224 void *arg;
1225 struct audio_params *param;
1226 {
1227 struct sbdsp_softc *sc = addr;
1228 int stereo = param->channels == 2;
1229 int width = param->precision * param->factor;
1230 int filter;
1231
1232 #ifdef DIAGNOSTIC
1233 if (stereo && (blksize & 1)) {
1234 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1235 return (EIO);
1236 }
1237 if (sc->sc_i.run != SB_NOTRUNNING)
1238 printf("sbdsp_trigger_input: already running\n");
1239 #endif
1240
1241 sc->sc_intrr = intr;
1242 sc->sc_argr = arg;
1243
1244 if (width == 8) {
1245 #ifdef DIAGNOSTIC
1246 if (sc->sc_i.dmachan != sc->sc_drq8) {
1247 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1248 width, sc->sc_i.dmachan);
1249 return (EIO);
1250 }
1251 #endif
1252 sc->sc_intr8 = sbdsp_block_input;
1253 } else {
1254 #ifdef DIAGNOSTIC
1255 if (sc->sc_i.dmachan != sc->sc_drq16) {
1256 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1257 width, sc->sc_i.dmachan);
1258 return (EIO);
1259 }
1260 #endif
1261 sc->sc_intr16 = sbdsp_block_input;
1262 }
1263
1264 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1265 blksize >>= 1;
1266 --blksize;
1267 sc->sc_i.blksize = blksize;
1268
1269 if (ISSBPRO(sc)) {
1270 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1271 return (EIO);
1272 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1273 sbdsp_mix_write(sc, SBP_INFILTER,
1274 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1275 filter);
1276 }
1277
1278 if (ISSB16CLASS(sc)) {
1279 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1280 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1281 sc->sc_i.rate));
1282 return (EIO);
1283 }
1284 } else {
1285 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1286 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1287 sc->sc_i.rate));
1288 return (EIO);
1289 }
1290 }
1291
1292 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1293 start, end, sc->sc_i.dmachan));
1294 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1295 (char *)end - (char *)start, NULL,
1296 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1297
1298 return sbdsp_block_input(addr);
1299 }
1300
1301 int
1302 sbdsp_block_input(addr)
1303 void *addr;
1304 {
1305 struct sbdsp_softc *sc = addr;
1306 int cc = sc->sc_i.blksize;
1307
1308 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1309
1310 if (sc->sc_i.run != SB_NOTRUNNING)
1311 sc->sc_intrr(sc->sc_argr);
1312
1313 if (sc->sc_model == SB_1) {
1314 /* Non-looping mode, start DMA */
1315 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1316 sbdsp_wdsp(sc, cc) < 0 ||
1317 sbdsp_wdsp(sc, cc >> 8) < 0) {
1318 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1319 return (EIO);
1320 }
1321 sc->sc_i.run = SB_RUNNING;
1322 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1323 /* Initialize looping PCM */
1324 if (ISSB16CLASS(sc)) {
1325 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1326 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1327 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1328 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1329 sbdsp_wdsp(sc, cc) < 0 ||
1330 sbdsp_wdsp(sc, cc >> 8) < 0) {
1331 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1332 return (EIO);
1333 }
1334 } else {
1335 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1336 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1337 sbdsp_wdsp(sc, cc) < 0 ||
1338 sbdsp_wdsp(sc, cc >> 8) < 0) {
1339 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1340 return (EIO);
1341 }
1342 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1343 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1344 return (EIO);
1345 }
1346 }
1347 sc->sc_i.run = SB_LOOPING;
1348 }
1349
1350 return (0);
1351 }
1352
1353 int
1354 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1355 void *addr;
1356 void *start, *end;
1357 int blksize;
1358 void (*intr) __P((void *));
1359 void *arg;
1360 struct audio_params *param;
1361 {
1362 struct sbdsp_softc *sc = addr;
1363 int stereo = param->channels == 2;
1364 int width = param->precision * param->factor;
1365 int cmd;
1366
1367 #ifdef DIAGNOSTIC
1368 if (stereo && (blksize & 1)) {
1369 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1370 return (EIO);
1371 }
1372 if (sc->sc_o.run != SB_NOTRUNNING)
1373 printf("sbdsp_trigger_output: already running\n");
1374 #endif
1375
1376 sc->sc_intrp = intr;
1377 sc->sc_argp = arg;
1378
1379 if (width == 8) {
1380 #ifdef DIAGNOSTIC
1381 if (sc->sc_o.dmachan != sc->sc_drq8) {
1382 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1383 width, sc->sc_o.dmachan);
1384 return (EIO);
1385 }
1386 #endif
1387 sc->sc_intr8 = sbdsp_block_output;
1388 } else {
1389 #ifdef DIAGNOSTIC
1390 if (sc->sc_o.dmachan != sc->sc_drq16) {
1391 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1392 width, sc->sc_o.dmachan);
1393 return (EIO);
1394 }
1395 #endif
1396 sc->sc_intr16 = sbdsp_block_output;
1397 }
1398
1399 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1400 blksize >>= 1;
1401 --blksize;
1402 sc->sc_o.blksize = blksize;
1403
1404 if (ISSBPRO(sc)) {
1405 /* make sure we re-set stereo mixer bit when we start output. */
1406 sbdsp_mix_write(sc, SBP_STEREO,
1407 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1408 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1409 cmd = sc->sc_o.modep->cmdchan;
1410 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1411 return (EIO);
1412 }
1413
1414 if (ISSB16CLASS(sc)) {
1415 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1416 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1417 sc->sc_o.rate));
1418 return (EIO);
1419 }
1420 } else {
1421 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1422 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1423 sc->sc_o.rate));
1424 return (EIO);
1425 }
1426 }
1427
1428 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1429 start, end, sc->sc_o.dmachan));
1430 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1431 (char *)end - (char *)start, NULL,
1432 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1433
1434 return sbdsp_block_output(addr);
1435 }
1436
1437 int
1438 sbdsp_block_output(addr)
1439 void *addr;
1440 {
1441 struct sbdsp_softc *sc = addr;
1442 int cc = sc->sc_o.blksize;
1443
1444 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1445
1446 if (sc->sc_o.run != SB_NOTRUNNING)
1447 sc->sc_intrp(sc->sc_argp);
1448
1449 if (sc->sc_model == SB_1) {
1450 /* Non-looping mode, initialized. Start DMA and PCM */
1451 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1452 sbdsp_wdsp(sc, cc) < 0 ||
1453 sbdsp_wdsp(sc, cc >> 8) < 0) {
1454 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1455 return (EIO);
1456 }
1457 sc->sc_o.run = SB_RUNNING;
1458 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1459 /* Initialize looping PCM */
1460 if (ISSB16CLASS(sc)) {
1461 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1462 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1463 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1464 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1465 sbdsp_wdsp(sc, cc) < 0 ||
1466 sbdsp_wdsp(sc, cc >> 8) < 0) {
1467 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1468 return (EIO);
1469 }
1470 } else {
1471 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1472 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1473 sbdsp_wdsp(sc, cc) < 0 ||
1474 sbdsp_wdsp(sc, cc >> 8) < 0) {
1475 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1476 return (EIO);
1477 }
1478 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1479 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1480 return (EIO);
1481 }
1482 }
1483 sc->sc_o.run = SB_LOOPING;
1484 }
1485
1486 return (0);
1487 }
1488
1489 int
1490 sbdsp_halt_output(addr)
1491 void *addr;
1492 {
1493 struct sbdsp_softc *sc = addr;
1494
1495 if (sc->sc_o.run != SB_NOTRUNNING) {
1496 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1497 printf("sbdsp_halt_output: failed to halt\n");
1498 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1499 sc->sc_o.run = SB_NOTRUNNING;
1500 }
1501
1502 return (0);
1503 }
1504
1505 int
1506 sbdsp_halt_input(addr)
1507 void *addr;
1508 {
1509 struct sbdsp_softc *sc = addr;
1510
1511 if (sc->sc_i.run != SB_NOTRUNNING) {
1512 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1513 printf("sbdsp_halt_input: failed to halt\n");
1514 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1515 sc->sc_i.run = SB_NOTRUNNING;
1516 }
1517
1518 return (0);
1519 }
1520
1521 /*
1522 * Only the DSP unit on the sound blaster generates interrupts.
1523 * There are three cases of interrupt: reception of a midi byte
1524 * (when mode is enabled), completion of DMA transmission, or
1525 * completion of a DMA reception.
1526 *
1527 * If there is interrupt sharing or a spurious interrupt occurs
1528 * there is no way to distinguish this on an SB2. So if you have
1529 * an SB2 and experience problems, buy an SB16 (it's only $40).
1530 */
1531 int
1532 sbdsp_intr(arg)
1533 void *arg;
1534 {
1535 struct sbdsp_softc *sc = arg;
1536 u_char irq;
1537
1538 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1539 sc->sc_intr8, sc->sc_intr16));
1540 if (ISSB16CLASS(sc)) {
1541 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1542 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1543 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1544 return 0;
1545 }
1546 } else {
1547 /* XXXX CHECK FOR INTERRUPT */
1548 irq = SBP_IRQ_DMA8;
1549 }
1550
1551 sc->sc_interrupts++;
1552 delay(10); /* XXX why? */
1553
1554 /* clear interrupt */
1555 if (irq & SBP_IRQ_DMA8) {
1556 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1557 if (sc->sc_intr8)
1558 sc->sc_intr8(arg);
1559 }
1560 if (irq & SBP_IRQ_DMA16) {
1561 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1562 if (sc->sc_intr16)
1563 sc->sc_intr16(arg);
1564 }
1565 #if NMPU > 0
1566 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1567 mpu_intr(sc->sc_mpudev);
1568 }
1569 #endif
1570 return 1;
1571 }
1572
1573 /* Like val & mask, but make sure the result is correctly rounded. */
1574 #define MAXVAL 256
1575 static int
1576 sbdsp_adjust(val, mask)
1577 int val, mask;
1578 {
1579 val += (MAXVAL - mask) >> 1;
1580 if (val >= MAXVAL)
1581 val = MAXVAL-1;
1582 return val & mask;
1583 }
1584
1585 void
1586 sbdsp_set_mixer_gain(sc, port)
1587 struct sbdsp_softc *sc;
1588 int port;
1589 {
1590 int src, gain;
1591
1592 switch(sc->sc_mixer_model) {
1593 case SBM_NONE:
1594 return;
1595 case SBM_CT1335:
1596 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1597 switch(port) {
1598 case SB_MASTER_VOL:
1599 src = SBP_1335_MASTER_VOL;
1600 break;
1601 case SB_MIDI_VOL:
1602 src = SBP_1335_MIDI_VOL;
1603 break;
1604 case SB_CD_VOL:
1605 src = SBP_1335_CD_VOL;
1606 break;
1607 case SB_VOICE_VOL:
1608 src = SBP_1335_VOICE_VOL;
1609 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1610 break;
1611 default:
1612 return;
1613 }
1614 sbdsp_mix_write(sc, src, gain);
1615 break;
1616 case SBM_CT1345:
1617 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1618 sc->gain[port][SB_RIGHT]);
1619 switch (port) {
1620 case SB_MIC_VOL:
1621 src = SBP_MIC_VOL;
1622 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1623 break;
1624 case SB_MASTER_VOL:
1625 src = SBP_MASTER_VOL;
1626 break;
1627 case SB_LINE_IN_VOL:
1628 src = SBP_LINE_VOL;
1629 break;
1630 case SB_VOICE_VOL:
1631 src = SBP_VOICE_VOL;
1632 break;
1633 case SB_MIDI_VOL:
1634 src = SBP_MIDI_VOL;
1635 break;
1636 case SB_CD_VOL:
1637 src = SBP_CD_VOL;
1638 break;
1639 default:
1640 return;
1641 }
1642 sbdsp_mix_write(sc, src, gain);
1643 break;
1644 case SBM_CT1XX5:
1645 case SBM_CT1745:
1646 switch (port) {
1647 case SB_MIC_VOL:
1648 src = SB16P_MIC_L;
1649 break;
1650 case SB_MASTER_VOL:
1651 src = SB16P_MASTER_L;
1652 break;
1653 case SB_LINE_IN_VOL:
1654 src = SB16P_LINE_L;
1655 break;
1656 case SB_VOICE_VOL:
1657 src = SB16P_VOICE_L;
1658 break;
1659 case SB_MIDI_VOL:
1660 src = SB16P_MIDI_L;
1661 break;
1662 case SB_CD_VOL:
1663 src = SB16P_CD_L;
1664 break;
1665 case SB_INPUT_GAIN:
1666 src = SB16P_INPUT_GAIN_L;
1667 break;
1668 case SB_OUTPUT_GAIN:
1669 src = SB16P_OUTPUT_GAIN_L;
1670 break;
1671 case SB_TREBLE:
1672 src = SB16P_TREBLE_L;
1673 break;
1674 case SB_BASS:
1675 src = SB16P_BASS_L;
1676 break;
1677 case SB_PCSPEAKER:
1678 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1679 return;
1680 default:
1681 return;
1682 }
1683 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1684 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1685 break;
1686 }
1687 }
1688
1689 int
1690 sbdsp_mixer_set_port(addr, cp)
1691 void *addr;
1692 mixer_ctrl_t *cp;
1693 {
1694 struct sbdsp_softc *sc = addr;
1695 int lgain, rgain;
1696 int mask, bits;
1697 int lmask, rmask, lbits, rbits;
1698 int mute, swap;
1699
1700 if (sc->sc_open == SB_OPEN_MIDI)
1701 return EBUSY;
1702
1703 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1704 cp->un.value.num_channels));
1705
1706 if (sc->sc_mixer_model == SBM_NONE)
1707 return EINVAL;
1708
1709 switch (cp->dev) {
1710 case SB_TREBLE:
1711 case SB_BASS:
1712 if (sc->sc_mixer_model == SBM_CT1345 ||
1713 sc->sc_mixer_model == SBM_CT1XX5) {
1714 if (cp->type != AUDIO_MIXER_ENUM)
1715 return EINVAL;
1716 switch (cp->dev) {
1717 case SB_TREBLE:
1718 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1719 return 0;
1720 case SB_BASS:
1721 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1722 return 0;
1723 }
1724 }
1725 case SB_PCSPEAKER:
1726 case SB_INPUT_GAIN:
1727 case SB_OUTPUT_GAIN:
1728 if (!ISSBM1745(sc))
1729 return EINVAL;
1730 case SB_MIC_VOL:
1731 case SB_LINE_IN_VOL:
1732 if (sc->sc_mixer_model == SBM_CT1335)
1733 return EINVAL;
1734 case SB_VOICE_VOL:
1735 case SB_MIDI_VOL:
1736 case SB_CD_VOL:
1737 case SB_MASTER_VOL:
1738 if (cp->type != AUDIO_MIXER_VALUE)
1739 return EINVAL;
1740
1741 /*
1742 * All the mixer ports are stereo except for the microphone.
1743 * If we get a single-channel gain value passed in, then we
1744 * duplicate it to both left and right channels.
1745 */
1746
1747 switch (cp->dev) {
1748 case SB_MIC_VOL:
1749 if (cp->un.value.num_channels != 1)
1750 return EINVAL;
1751
1752 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1753 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1754 break;
1755 case SB_PCSPEAKER:
1756 if (cp->un.value.num_channels != 1)
1757 return EINVAL;
1758 /* fall into */
1759 case SB_INPUT_GAIN:
1760 case SB_OUTPUT_GAIN:
1761 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1762 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1763 break;
1764 default:
1765 switch (cp->un.value.num_channels) {
1766 case 1:
1767 lgain = rgain = SB_ADJUST_GAIN(sc,
1768 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1769 break;
1770 case 2:
1771 if (sc->sc_mixer_model == SBM_CT1335)
1772 return EINVAL;
1773 lgain = SB_ADJUST_GAIN(sc,
1774 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1775 rgain = SB_ADJUST_GAIN(sc,
1776 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1777 break;
1778 default:
1779 return EINVAL;
1780 }
1781 break;
1782 }
1783 sc->gain[cp->dev][SB_LEFT] = lgain;
1784 sc->gain[cp->dev][SB_RIGHT] = rgain;
1785
1786 sbdsp_set_mixer_gain(sc, cp->dev);
1787 break;
1788
1789 case SB_RECORD_SOURCE:
1790 if (ISSBM1745(sc)) {
1791 if (cp->type != AUDIO_MIXER_SET)
1792 return EINVAL;
1793 return sbdsp_set_in_ports(sc, cp->un.mask);
1794 } else {
1795 if (cp->type != AUDIO_MIXER_ENUM)
1796 return EINVAL;
1797 sc->in_port = cp->un.ord;
1798 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1799 }
1800 break;
1801
1802 case SB_AGC:
1803 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1804 return EINVAL;
1805 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1806 break;
1807
1808 case SB_CD_OUT_MUTE:
1809 mask = SB16P_SW_CD;
1810 goto omute;
1811 case SB_MIC_OUT_MUTE:
1812 mask = SB16P_SW_MIC;
1813 goto omute;
1814 case SB_LINE_OUT_MUTE:
1815 mask = SB16P_SW_LINE;
1816 omute:
1817 if (cp->type != AUDIO_MIXER_ENUM)
1818 return EINVAL;
1819 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1820 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1821 if (cp->un.ord)
1822 bits = bits & ~mask;
1823 else
1824 bits = bits | mask;
1825 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1826 break;
1827
1828 case SB_MIC_IN_MUTE:
1829 case SB_MIC_SWAP:
1830 lmask = rmask = SB16P_SW_MIC;
1831 goto imute;
1832 case SB_CD_IN_MUTE:
1833 case SB_CD_SWAP:
1834 lmask = SB16P_SW_CD_L;
1835 rmask = SB16P_SW_CD_R;
1836 goto imute;
1837 case SB_LINE_IN_MUTE:
1838 case SB_LINE_SWAP:
1839 lmask = SB16P_SW_LINE_L;
1840 rmask = SB16P_SW_LINE_R;
1841 goto imute;
1842 case SB_MIDI_IN_MUTE:
1843 case SB_MIDI_SWAP:
1844 lmask = SB16P_SW_MIDI_L;
1845 rmask = SB16P_SW_MIDI_R;
1846 imute:
1847 if (cp->type != AUDIO_MIXER_ENUM)
1848 return EINVAL;
1849 mask = lmask | rmask;
1850 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1851 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1852 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1853 if (SB_IS_IN_MUTE(cp->dev)) {
1854 mute = cp->dev;
1855 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1856 } else {
1857 swap = cp->dev;
1858 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1859 }
1860 if (sc->gain[swap][SB_LR]) {
1861 mask = lmask;
1862 lmask = rmask;
1863 rmask = mask;
1864 }
1865 if (!sc->gain[mute][SB_LR]) {
1866 lbits = lbits | lmask;
1867 rbits = rbits | rmask;
1868 }
1869 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1870 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1871 break;
1872
1873 default:
1874 return EINVAL;
1875 }
1876
1877 return 0;
1878 }
1879
1880 int
1881 sbdsp_mixer_get_port(addr, cp)
1882 void *addr;
1883 mixer_ctrl_t *cp;
1884 {
1885 struct sbdsp_softc *sc = addr;
1886
1887 if (sc->sc_open == SB_OPEN_MIDI)
1888 return EBUSY;
1889
1890 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1891
1892 if (sc->sc_mixer_model == SBM_NONE)
1893 return EINVAL;
1894
1895 switch (cp->dev) {
1896 case SB_TREBLE:
1897 case SB_BASS:
1898 if (sc->sc_mixer_model == SBM_CT1345 ||
1899 sc->sc_mixer_model == SBM_CT1XX5) {
1900 switch (cp->dev) {
1901 case SB_TREBLE:
1902 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1903 return 0;
1904 case SB_BASS:
1905 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1906 return 0;
1907 }
1908 }
1909 case SB_PCSPEAKER:
1910 case SB_INPUT_GAIN:
1911 case SB_OUTPUT_GAIN:
1912 if (!ISSBM1745(sc))
1913 return EINVAL;
1914 case SB_MIC_VOL:
1915 case SB_LINE_IN_VOL:
1916 if (sc->sc_mixer_model == SBM_CT1335)
1917 return EINVAL;
1918 case SB_VOICE_VOL:
1919 case SB_MIDI_VOL:
1920 case SB_CD_VOL:
1921 case SB_MASTER_VOL:
1922 switch (cp->dev) {
1923 case SB_MIC_VOL:
1924 case SB_PCSPEAKER:
1925 if (cp->un.value.num_channels != 1)
1926 return EINVAL;
1927 /* fall into */
1928 default:
1929 switch (cp->un.value.num_channels) {
1930 case 1:
1931 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1932 sc->gain[cp->dev][SB_LEFT];
1933 break;
1934 case 2:
1935 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1936 sc->gain[cp->dev][SB_LEFT];
1937 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1938 sc->gain[cp->dev][SB_RIGHT];
1939 break;
1940 default:
1941 return EINVAL;
1942 }
1943 break;
1944 }
1945 break;
1946
1947 case SB_RECORD_SOURCE:
1948 if (ISSBM1745(sc))
1949 cp->un.mask = sc->in_mask;
1950 else
1951 cp->un.ord = sc->in_port;
1952 break;
1953
1954 case SB_AGC:
1955 if (!ISSBM1745(sc))
1956 return EINVAL;
1957 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1958 break;
1959
1960 case SB_CD_IN_MUTE:
1961 case SB_MIC_IN_MUTE:
1962 case SB_LINE_IN_MUTE:
1963 case SB_MIDI_IN_MUTE:
1964 case SB_CD_SWAP:
1965 case SB_MIC_SWAP:
1966 case SB_LINE_SWAP:
1967 case SB_MIDI_SWAP:
1968 case SB_CD_OUT_MUTE:
1969 case SB_MIC_OUT_MUTE:
1970 case SB_LINE_OUT_MUTE:
1971 cp->un.ord = sc->gain[cp->dev][SB_LR];
1972 break;
1973
1974 default:
1975 return EINVAL;
1976 }
1977
1978 return 0;
1979 }
1980
1981 int
1982 sbdsp_mixer_query_devinfo(addr, dip)
1983 void *addr;
1984 mixer_devinfo_t *dip;
1985 {
1986 struct sbdsp_softc *sc = addr;
1987 int chan, class, is1745;
1988
1989 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1990 sc->sc_mixer_model, dip->index));
1991
1992 if (sc->sc_mixer_model == SBM_NONE)
1993 return ENXIO;
1994
1995 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1996 is1745 = ISSBM1745(sc);
1997 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1998
1999 switch (dip->index) {
2000 case SB_MASTER_VOL:
2001 dip->type = AUDIO_MIXER_VALUE;
2002 dip->mixer_class = SB_OUTPUT_CLASS;
2003 dip->prev = dip->next = AUDIO_MIXER_LAST;
2004 strcpy(dip->label.name, AudioNmaster);
2005 dip->un.v.num_channels = chan;
2006 strcpy(dip->un.v.units.name, AudioNvolume);
2007 return 0;
2008 case SB_MIDI_VOL:
2009 dip->type = AUDIO_MIXER_VALUE;
2010 dip->mixer_class = class;
2011 dip->prev = AUDIO_MIXER_LAST;
2012 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2013 strcpy(dip->label.name, AudioNfmsynth);
2014 dip->un.v.num_channels = chan;
2015 strcpy(dip->un.v.units.name, AudioNvolume);
2016 return 0;
2017 case SB_CD_VOL:
2018 dip->type = AUDIO_MIXER_VALUE;
2019 dip->mixer_class = class;
2020 dip->prev = AUDIO_MIXER_LAST;
2021 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2022 strcpy(dip->label.name, AudioNcd);
2023 dip->un.v.num_channels = chan;
2024 strcpy(dip->un.v.units.name, AudioNvolume);
2025 return 0;
2026 case SB_VOICE_VOL:
2027 dip->type = AUDIO_MIXER_VALUE;
2028 dip->mixer_class = class;
2029 dip->prev = AUDIO_MIXER_LAST;
2030 dip->next = AUDIO_MIXER_LAST;
2031 strcpy(dip->label.name, AudioNdac);
2032 dip->un.v.num_channels = chan;
2033 strcpy(dip->un.v.units.name, AudioNvolume);
2034 return 0;
2035 case SB_OUTPUT_CLASS:
2036 dip->type = AUDIO_MIXER_CLASS;
2037 dip->mixer_class = SB_OUTPUT_CLASS;
2038 dip->next = dip->prev = AUDIO_MIXER_LAST;
2039 strcpy(dip->label.name, AudioCoutputs);
2040 return 0;
2041 }
2042
2043 if (sc->sc_mixer_model == SBM_CT1335)
2044 return ENXIO;
2045
2046 switch (dip->index) {
2047 case SB_MIC_VOL:
2048 dip->type = AUDIO_MIXER_VALUE;
2049 dip->mixer_class = class;
2050 dip->prev = AUDIO_MIXER_LAST;
2051 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2052 strcpy(dip->label.name, AudioNmicrophone);
2053 dip->un.v.num_channels = 1;
2054 strcpy(dip->un.v.units.name, AudioNvolume);
2055 return 0;
2056
2057 case SB_LINE_IN_VOL:
2058 dip->type = AUDIO_MIXER_VALUE;
2059 dip->mixer_class = class;
2060 dip->prev = AUDIO_MIXER_LAST;
2061 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2062 strcpy(dip->label.name, AudioNline);
2063 dip->un.v.num_channels = 2;
2064 strcpy(dip->un.v.units.name, AudioNvolume);
2065 return 0;
2066
2067 case SB_RECORD_SOURCE:
2068 dip->mixer_class = SB_RECORD_CLASS;
2069 dip->prev = dip->next = AUDIO_MIXER_LAST;
2070 strcpy(dip->label.name, AudioNsource);
2071 if (ISSBM1745(sc)) {
2072 dip->type = AUDIO_MIXER_SET;
2073 dip->un.s.num_mem = 4;
2074 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2075 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2076 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2077 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2078 strcpy(dip->un.s.member[2].label.name, AudioNline);
2079 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2080 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2081 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2082 } else {
2083 dip->type = AUDIO_MIXER_ENUM;
2084 dip->un.e.num_mem = 3;
2085 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2086 dip->un.e.member[0].ord = SB_MIC_VOL;
2087 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2088 dip->un.e.member[1].ord = SB_CD_VOL;
2089 strcpy(dip->un.e.member[2].label.name, AudioNline);
2090 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2091 }
2092 return 0;
2093
2094 case SB_BASS:
2095 dip->prev = dip->next = AUDIO_MIXER_LAST;
2096 strcpy(dip->label.name, AudioNbass);
2097 if (sc->sc_mixer_model == SBM_CT1745) {
2098 dip->type = AUDIO_MIXER_VALUE;
2099 dip->mixer_class = SB_EQUALIZATION_CLASS;
2100 dip->un.v.num_channels = 2;
2101 strcpy(dip->un.v.units.name, AudioNbass);
2102 } else {
2103 dip->type = AUDIO_MIXER_ENUM;
2104 dip->mixer_class = SB_INPUT_CLASS;
2105 dip->un.e.num_mem = 2;
2106 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2107 dip->un.e.member[0].ord = 0;
2108 strcpy(dip->un.e.member[1].label.name, AudioNon);
2109 dip->un.e.member[1].ord = 1;
2110 }
2111 return 0;
2112
2113 case SB_TREBLE:
2114 dip->prev = dip->next = AUDIO_MIXER_LAST;
2115 strcpy(dip->label.name, AudioNtreble);
2116 if (sc->sc_mixer_model == SBM_CT1745) {
2117 dip->type = AUDIO_MIXER_VALUE;
2118 dip->mixer_class = SB_EQUALIZATION_CLASS;
2119 dip->un.v.num_channels = 2;
2120 strcpy(dip->un.v.units.name, AudioNtreble);
2121 } else {
2122 dip->type = AUDIO_MIXER_ENUM;
2123 dip->mixer_class = SB_INPUT_CLASS;
2124 dip->un.e.num_mem = 2;
2125 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2126 dip->un.e.member[0].ord = 0;
2127 strcpy(dip->un.e.member[1].label.name, AudioNon);
2128 dip->un.e.member[1].ord = 1;
2129 }
2130 return 0;
2131
2132 case SB_RECORD_CLASS: /* record source class */
2133 dip->type = AUDIO_MIXER_CLASS;
2134 dip->mixer_class = SB_RECORD_CLASS;
2135 dip->next = dip->prev = AUDIO_MIXER_LAST;
2136 strcpy(dip->label.name, AudioCrecord);
2137 return 0;
2138
2139 case SB_INPUT_CLASS:
2140 dip->type = AUDIO_MIXER_CLASS;
2141 dip->mixer_class = SB_INPUT_CLASS;
2142 dip->next = dip->prev = AUDIO_MIXER_LAST;
2143 strcpy(dip->label.name, AudioCinputs);
2144 return 0;
2145
2146 }
2147
2148 if (sc->sc_mixer_model == SBM_CT1345)
2149 return ENXIO;
2150
2151 switch(dip->index) {
2152 case SB_PCSPEAKER:
2153 dip->type = AUDIO_MIXER_VALUE;
2154 dip->mixer_class = SB_INPUT_CLASS;
2155 dip->prev = dip->next = AUDIO_MIXER_LAST;
2156 strcpy(dip->label.name, "pc_speaker");
2157 dip->un.v.num_channels = 1;
2158 strcpy(dip->un.v.units.name, AudioNvolume);
2159 return 0;
2160
2161 case SB_INPUT_GAIN:
2162 dip->type = AUDIO_MIXER_VALUE;
2163 dip->mixer_class = SB_INPUT_CLASS;
2164 dip->prev = dip->next = AUDIO_MIXER_LAST;
2165 strcpy(dip->label.name, AudioNinput);
2166 dip->un.v.num_channels = 2;
2167 strcpy(dip->un.v.units.name, AudioNvolume);
2168 return 0;
2169
2170 case SB_OUTPUT_GAIN:
2171 dip->type = AUDIO_MIXER_VALUE;
2172 dip->mixer_class = SB_OUTPUT_CLASS;
2173 dip->prev = dip->next = AUDIO_MIXER_LAST;
2174 strcpy(dip->label.name, AudioNoutput);
2175 dip->un.v.num_channels = 2;
2176 strcpy(dip->un.v.units.name, AudioNvolume);
2177 return 0;
2178
2179 case SB_AGC:
2180 dip->type = AUDIO_MIXER_ENUM;
2181 dip->mixer_class = SB_INPUT_CLASS;
2182 dip->prev = dip->next = AUDIO_MIXER_LAST;
2183 strcpy(dip->label.name, "agc");
2184 dip->un.e.num_mem = 2;
2185 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2186 dip->un.e.member[0].ord = 0;
2187 strcpy(dip->un.e.member[1].label.name, AudioNon);
2188 dip->un.e.member[1].ord = 1;
2189 return 0;
2190
2191 case SB_EQUALIZATION_CLASS:
2192 dip->type = AUDIO_MIXER_CLASS;
2193 dip->mixer_class = SB_EQUALIZATION_CLASS;
2194 dip->next = dip->prev = AUDIO_MIXER_LAST;
2195 strcpy(dip->label.name, AudioCequalization);
2196 return 0;
2197
2198 case SB_CD_IN_MUTE:
2199 dip->prev = SB_CD_VOL;
2200 dip->next = SB_CD_SWAP;
2201 dip->mixer_class = SB_INPUT_CLASS;
2202 goto mute;
2203
2204 case SB_MIC_IN_MUTE:
2205 dip->prev = SB_MIC_VOL;
2206 dip->next = SB_MIC_SWAP;
2207 dip->mixer_class = SB_INPUT_CLASS;
2208 goto mute;
2209
2210 case SB_LINE_IN_MUTE:
2211 dip->prev = SB_LINE_IN_VOL;
2212 dip->next = SB_LINE_SWAP;
2213 dip->mixer_class = SB_INPUT_CLASS;
2214 goto mute;
2215
2216 case SB_MIDI_IN_MUTE:
2217 dip->prev = SB_MIDI_VOL;
2218 dip->next = SB_MIDI_SWAP;
2219 dip->mixer_class = SB_INPUT_CLASS;
2220 goto mute;
2221
2222 case SB_CD_SWAP:
2223 dip->prev = SB_CD_IN_MUTE;
2224 dip->next = SB_CD_OUT_MUTE;
2225 goto swap;
2226
2227 case SB_MIC_SWAP:
2228 dip->prev = SB_MIC_IN_MUTE;
2229 dip->next = SB_MIC_OUT_MUTE;
2230 goto swap;
2231
2232 case SB_LINE_SWAP:
2233 dip->prev = SB_LINE_IN_MUTE;
2234 dip->next = SB_LINE_OUT_MUTE;
2235 goto swap;
2236
2237 case SB_MIDI_SWAP:
2238 dip->prev = SB_MIDI_IN_MUTE;
2239 dip->next = AUDIO_MIXER_LAST;
2240 swap:
2241 dip->mixer_class = SB_INPUT_CLASS;
2242 strcpy(dip->label.name, AudioNswap);
2243 goto mute1;
2244
2245 case SB_CD_OUT_MUTE:
2246 dip->prev = SB_CD_SWAP;
2247 dip->next = AUDIO_MIXER_LAST;
2248 dip->mixer_class = SB_OUTPUT_CLASS;
2249 goto mute;
2250
2251 case SB_MIC_OUT_MUTE:
2252 dip->prev = SB_MIC_SWAP;
2253 dip->next = AUDIO_MIXER_LAST;
2254 dip->mixer_class = SB_OUTPUT_CLASS;
2255 goto mute;
2256
2257 case SB_LINE_OUT_MUTE:
2258 dip->prev = SB_LINE_SWAP;
2259 dip->next = AUDIO_MIXER_LAST;
2260 dip->mixer_class = SB_OUTPUT_CLASS;
2261 mute:
2262 strcpy(dip->label.name, AudioNmute);
2263 mute1:
2264 dip->type = AUDIO_MIXER_ENUM;
2265 dip->un.e.num_mem = 2;
2266 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2267 dip->un.e.member[0].ord = 0;
2268 strcpy(dip->un.e.member[1].label.name, AudioNon);
2269 dip->un.e.member[1].ord = 1;
2270 return 0;
2271
2272 }
2273
2274 return ENXIO;
2275 }
2276
2277 void *
2278 sb_malloc(addr, direction, size, pool, flags)
2279 void *addr;
2280 int direction;
2281 size_t size;
2282 struct malloc_type *pool;
2283 int flags;
2284 {
2285 struct sbdsp_softc *sc = addr;
2286 int drq;
2287
2288 if (sc->sc_drq8 != -1)
2289 drq = sc->sc_drq8;
2290 else
2291 drq = sc->sc_drq16;
2292 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2293 }
2294
2295 void
2296 sb_free(addr, ptr, pool)
2297 void *addr;
2298 void *ptr;
2299 struct malloc_type *pool;
2300 {
2301 isa_free(ptr, pool);
2302 }
2303
2304 size_t
2305 sb_round_buffersize(addr, direction, size)
2306 void *addr;
2307 int direction;
2308 size_t size;
2309 {
2310 struct sbdsp_softc *sc = addr;
2311 bus_size_t maxsize;
2312
2313 if (sc->sc_drq8 != -1)
2314 maxsize = sc->sc_drq8_maxsize;
2315 else
2316 maxsize = sc->sc_drq16_maxsize;
2317
2318 if (size > maxsize)
2319 size = maxsize;
2320 return (size);
2321 }
2322
2323 paddr_t
2324 sb_mappage(addr, mem, off, prot)
2325 void *addr;
2326 void *mem;
2327 off_t off;
2328 int prot;
2329 {
2330 return isa_mappage(mem, off, prot);
2331 }
2332
2333 int
2334 sbdsp_get_props(addr)
2335 void *addr;
2336 {
2337 struct sbdsp_softc *sc = addr;
2338 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2339 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2340 }
2341
2342 #if NMPU > 0
2343 /*
2344 * MIDI related routines.
2345 */
2346
2347 int
2348 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2349 void *addr;
2350 int flags;
2351 void (*iintr)__P((void *, int));
2352 void (*ointr)__P((void *));
2353 void *arg;
2354 {
2355 struct sbdsp_softc *sc = addr;
2356
2357 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2358
2359 if (sc->sc_open != SB_CLOSED)
2360 return EBUSY;
2361 if (sbdsp_reset(sc) != 0)
2362 return EIO;
2363
2364 sc->sc_open = SB_OPEN_MIDI;
2365
2366 if (sc->sc_model >= SB_20)
2367 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2368 return EIO;
2369
2370 sc->sc_intr8 = sbdsp_midi_intr;
2371 sc->sc_intrm = iintr;
2372 sc->sc_argm = arg;
2373
2374 return 0;
2375 }
2376
2377 void
2378 sbdsp_midi_close(addr)
2379 void *addr;
2380 {
2381 struct sbdsp_softc *sc = addr;
2382
2383 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2384
2385 if (sc->sc_model >= SB_20)
2386 sbdsp_reset(sc); /* exit UART mode */
2387
2388 sc->sc_intrm = 0;
2389 sc->sc_open = SB_CLOSED;
2390 }
2391
2392 int
2393 sbdsp_midi_output(addr, d)
2394 void *addr;
2395 int d;
2396 {
2397 struct sbdsp_softc *sc = addr;
2398
2399 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2400 return EIO;
2401 if (sbdsp_wdsp(sc, d))
2402 return EIO;
2403 return 0;
2404 }
2405
2406 void
2407 sbdsp_midi_getinfo(addr, mi)
2408 void *addr;
2409 struct midi_info *mi;
2410 {
2411 struct sbdsp_softc *sc = addr;
2412
2413 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2414 mi->props = MIDI_PROP_CAN_INPUT;
2415 }
2416
2417 int
2418 sbdsp_midi_intr(addr)
2419 void *addr;
2420 {
2421 struct sbdsp_softc *sc = addr;
2422
2423 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2424 return (0);
2425 }
2426
2427 #endif
2428
2429