Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.114
      1 /*	$NetBSD: sbdsp.c,v 1.114 2005/01/10 22:01:37 kent Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.114 2005/01/10 22:01:37 kent Exp $");
     85 
     86 #include "midi.h"
     87 #include "mpu.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/kernel.h>
     92 #include <sys/errno.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/syslog.h>
     95 #include <sys/device.h>
     96 #include <sys/proc.h>
     97 #include <sys/buf.h>
     98 
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #include <machine/bus.h>
    102 
    103 #include <sys/audioio.h>
    104 #include <dev/audio_if.h>
    105 #include <dev/midi_if.h>
    106 #include <dev/mulaw.h>
    107 #include <dev/auconv.h>
    108 
    109 #include <dev/isa/isavar.h>
    110 #include <dev/isa/isadmavar.h>
    111 
    112 #include <dev/isa/sbreg.h>
    113 #include <dev/isa/sbdspvar.h>
    114 
    115 
    116 #ifdef AUDIO_DEBUG
    117 #define DPRINTF(x)	if (sbdspdebug) printf x
    118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    119 int	sbdspdebug = 0;
    120 #else
    121 #define DPRINTF(x)
    122 #define DPRINTFN(n,x)
    123 #endif
    124 
    125 #ifndef SBDSP_NPOLL
    126 #define SBDSP_NPOLL 3000
    127 #endif
    128 
    129 struct {
    130 	int wdsp;
    131 	int rdsp;
    132 	int wmidi;
    133 } sberr;
    134 
    135 /*
    136  * Time constant routines follow.  See SBK, section 12.
    137  * Although they don't come out and say it (in the docs),
    138  * the card clearly uses a 1MHz countdown timer, as the
    139  * low-speed formula (p. 12-4) is:
    140  *	tc = 256 - 10^6 / sr
    141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    142  * and a 256MHz clock is used:
    143  *	tc = 65536 - 256 * 10^ 6 / sr
    144  * Since we can only use the upper byte of the HS TC, the two formulae
    145  * are equivalent.  (Why didn't they say so?)  E.g.,
    146  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    147  *
    148  * The crossover point (from low- to high-speed modes) is different
    149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    150  *
    151  *				SBPRO			SB20
    152  *				-----			--------
    153  * input ls min			4	KHz		4	KHz
    154  * input ls max			23	KHz		13	KHz
    155  * input hs max			44.1	KHz		15	KHz
    156  * output ls min		4	KHz		4	KHz
    157  * output ls max		23	KHz		23	KHz
    158  * output hs max		44.1	KHz		44.1	KHz
    159  */
    160 /* XXX Should we round the tc?
    161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    162 */
    163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    165 
    166 struct sbmode {
    167 	short	model;
    168 	u_char	channels;
    169 	u_char	precision;
    170 	u_short	lowrate, highrate;
    171 	u_char	cmd;
    172 	u_char	halt, cont;
    173 	u_char	cmdchan;
    174 };
    175 static struct sbmode sbpmodes[] = {
    176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    192 #define PLAY16 15 /* must be the index of the next entry in the table */
    193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    195  { -1 }
    196 };
    197 static struct sbmode sbrmodes[] = {
    198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    215  { -1 }
    216 };
    217 
    218 void	sbversion __P((struct sbdsp_softc *));
    219 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    220 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    221 void	sbdsp_pause __P((struct sbdsp_softc *));
    222 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    223 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    224 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    225 void	sbdsp_set_ifilter __P((void *, int));
    226 int	sbdsp_get_ifilter __P((void *));
    227 
    228 int	sbdsp_block_output __P((void *));
    229 int	sbdsp_block_input __P((void *));
    230 static	int sbdsp_adjust __P((int, int));
    231 
    232 int	sbdsp_midi_intr __P((void *));
    233 
    234 static void	sbdsp_powerhook __P((int, void*));
    235 
    236 #ifdef AUDIO_DEBUG
    237 void	sb_printsc __P((struct sbdsp_softc *));
    238 
    239 void
    240 sb_printsc(sc)
    241 	struct sbdsp_softc *sc;
    242 {
    243 	int i;
    244 
    245 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
    246 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    247 	    sc->sc_drq8, sc->sc_drq16,
    248 	    sc->sc_iobase, sc->sc_irq);
    249 	printf("irate %d itc %x orate %d otc %x\n",
    250 	    sc->sc_i.rate, sc->sc_i.tc,
    251 	    sc->sc_o.rate, sc->sc_o.tc);
    252 	printf("spkron %u nintr %lu\n",
    253 	    sc->spkr_state, sc->sc_interrupts);
    254 	printf("intr8 %p intr16 %p\n",
    255 	    sc->sc_intr8, sc->sc_intr16);
    256 	printf("gain:");
    257 	for (i = 0; i < SB_NDEVS; i++)
    258 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    259 	printf("\n");
    260 }
    261 #endif /* AUDIO_DEBUG */
    262 
    263 /*
    264  * Probe / attach routines.
    265  */
    266 
    267 /*
    268  * Probe for the soundblaster hardware.
    269  */
    270 int
    271 sbdsp_probe(sc)
    272 	struct sbdsp_softc *sc;
    273 {
    274 
    275 	if (sbdsp_reset(sc) < 0) {
    276 		DPRINTF(("sbdsp: couldn't reset card\n"));
    277 		return 0;
    278 	}
    279 	/* if flags set, go and probe the jazz16 stuff */
    280 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    281 		sbdsp_jazz16_probe(sc);
    282 	else
    283 		sbversion(sc);
    284 	if (sc->sc_model == SB_UNK) {
    285 		/* Unknown SB model found. */
    286 		DPRINTF(("sbdsp: unknown SB model found\n"));
    287 		return 0;
    288 	}
    289 	return 1;
    290 }
    291 
    292 /*
    293  * Try add-on stuff for Jazz16.
    294  */
    295 void
    296 sbdsp_jazz16_probe(sc)
    297 	struct sbdsp_softc *sc;
    298 {
    299 	static u_char jazz16_irq_conf[16] = {
    300 	    -1, -1, 0x02, 0x03,
    301 	    -1, 0x01, -1, 0x04,
    302 	    -1, 0x02, 0x05, -1,
    303 	    -1, -1, -1, 0x06};
    304 	static u_char jazz16_drq_conf[8] = {
    305 	    -1, 0x01, -1, 0x02,
    306 	    -1, 0x03, -1, 0x04};
    307 
    308 	bus_space_tag_t iot = sc->sc_iot;
    309 	bus_space_handle_t ioh;
    310 
    311 	sbversion(sc);
    312 
    313 	DPRINTF(("jazz16 probe\n"));
    314 
    315 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    316 		DPRINTF(("bus map failed\n"));
    317 		return;
    318 	}
    319 
    320 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    321 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    322 		DPRINTF(("drq/irq check failed\n"));
    323 		goto done;		/* give up, we can't do it. */
    324 	}
    325 
    326 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    327 	delay(10000);			/* delay 10 ms */
    328 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    329 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    330 
    331 	if (sbdsp_reset(sc) < 0) {
    332 		DPRINTF(("sbdsp_reset check failed\n"));
    333 		goto done;		/* XXX? what else could we do? */
    334 	}
    335 
    336 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    337 		DPRINTF(("read16 setup failed\n"));
    338 		goto done;
    339 	}
    340 
    341 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    342 		DPRINTF(("read16 failed\n"));
    343 		goto done;
    344 	}
    345 
    346 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    347 	sc->sc_drq16 = sc->sc_drq8;
    348 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    349 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    350 		jazz16_drq_conf[sc->sc_drq8]) ||
    351 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    352 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    353 	} else {
    354 		DPRINTF(("jazz16 detected!\n"));
    355 		sc->sc_model = SB_JAZZ;
    356 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    357 	}
    358 
    359 done:
    360 	bus_space_unmap(iot, ioh, 1);
    361 }
    362 
    363 /*
    364  * Attach hardware to driver, attach hardware driver to audio
    365  * pseudo-device driver .
    366  */
    367 void
    368 sbdsp_attach(sc)
    369 	struct sbdsp_softc *sc;
    370 {
    371 	int i, error;
    372 	u_int v;
    373 
    374 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    375 
    376 	if (sc->sc_mixer_model != SBM_NONE) {
    377 		/* Reset the mixer.*/
    378 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    379 		/* And set our own default values */
    380 		for (i = 0; i < SB_NDEVS; i++) {
    381 			switch(i) {
    382 			case SB_MIC_VOL:
    383 			case SB_LINE_IN_VOL:
    384 				v = 0;
    385 				break;
    386 			case SB_BASS:
    387 			case SB_TREBLE:
    388 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    389 				break;
    390 			case SB_CD_IN_MUTE:
    391 			case SB_MIC_IN_MUTE:
    392 			case SB_LINE_IN_MUTE:
    393 			case SB_MIDI_IN_MUTE:
    394 			case SB_CD_SWAP:
    395 			case SB_MIC_SWAP:
    396 			case SB_LINE_SWAP:
    397 			case SB_MIDI_SWAP:
    398 			case SB_CD_OUT_MUTE:
    399 			case SB_MIC_OUT_MUTE:
    400 			case SB_LINE_OUT_MUTE:
    401 				v = 0;
    402 				break;
    403 			default:
    404 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    405 				break;
    406 			}
    407 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    408 			sbdsp_set_mixer_gain(sc, i);
    409 		}
    410 		sc->in_filter = 0;	/* no filters turned on, please */
    411 	}
    412 
    413 	printf(": dsp v%d.%02d%s\n",
    414 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    415 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    416 
    417 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    418 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    419 	    sc->sc_drq8 != sc->sc_drq16;
    420 
    421 	if (sc->sc_drq8 != -1) {
    422 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    423 		    sc->sc_drq8);
    424 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    425 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    426 		if (error) {
    427 			printf("%s: can't create map for drq %d\n",
    428 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    429 			return;
    430 		}
    431 	}
    432 
    433 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    434 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    435 		    sc->sc_drq16);
    436 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    437 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    438 		if (error) {
    439 			printf("%s: can't create map for drq %d\n",
    440 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    441 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    442 			return;
    443 		}
    444 	}
    445 
    446 	powerhook_establish (sbdsp_powerhook, sc);
    447 }
    448 
    449 static void
    450 sbdsp_powerhook (why, arg)
    451 	int why;
    452 	void *arg;
    453 {
    454 	struct sbdsp_softc *sc = arg;
    455 	int i;
    456 
    457 	if (!sc || why != PWR_RESUME)
    458 		return;
    459 
    460 	/* Reset the mixer. */
    461 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    462 	for (i = 0; i < SB_NDEVS; i++)
    463 		sbdsp_set_mixer_gain (sc, i);
    464 }
    465 
    466 void
    467 sbdsp_mix_write(sc, mixerport, val)
    468 	struct sbdsp_softc *sc;
    469 	int mixerport;
    470 	int val;
    471 {
    472 	bus_space_tag_t iot = sc->sc_iot;
    473 	bus_space_handle_t ioh = sc->sc_ioh;
    474 	int s;
    475 
    476 	s = splaudio();
    477 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    478 	delay(20);
    479 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    480 	delay(30);
    481 	splx(s);
    482 }
    483 
    484 int
    485 sbdsp_mix_read(sc, mixerport)
    486 	struct sbdsp_softc *sc;
    487 	int mixerport;
    488 {
    489 	bus_space_tag_t iot = sc->sc_iot;
    490 	bus_space_handle_t ioh = sc->sc_ioh;
    491 	int val;
    492 	int s;
    493 
    494 	s = splaudio();
    495 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    496 	delay(20);
    497 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    498 	delay(30);
    499 	splx(s);
    500 	return val;
    501 }
    502 
    503 /*
    504  * Various routines to interface to higher level audio driver
    505  */
    506 
    507 int
    508 sbdsp_query_encoding(addr, fp)
    509 	void *addr;
    510 	struct audio_encoding *fp;
    511 {
    512 	struct sbdsp_softc *sc = addr;
    513 	int emul;
    514 
    515 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    516 
    517 	switch (fp->index) {
    518 	case 0:
    519 		strcpy(fp->name, AudioEulinear);
    520 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    521 		fp->precision = 8;
    522 		fp->flags = 0;
    523 		return 0;
    524 	case 1:
    525 		strcpy(fp->name, AudioEmulaw);
    526 		fp->encoding = AUDIO_ENCODING_ULAW;
    527 		fp->precision = 8;
    528 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    529 		return 0;
    530 	case 2:
    531 		strcpy(fp->name, AudioEalaw);
    532 		fp->encoding = AUDIO_ENCODING_ALAW;
    533 		fp->precision = 8;
    534 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    535 		return 0;
    536 	case 3:
    537 		strcpy(fp->name, AudioEslinear);
    538 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    539 		fp->precision = 8;
    540 		fp->flags = emul;
    541 		return 0;
    542 	}
    543 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    544 		return EINVAL;
    545 
    546 	switch(fp->index) {
    547 	case 4:
    548 		strcpy(fp->name, AudioEslinear_le);
    549 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    550 		fp->precision = 16;
    551 		fp->flags = 0;
    552 		return 0;
    553 	case 5:
    554 		strcpy(fp->name, AudioEulinear_le);
    555 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    556 		fp->precision = 16;
    557 		fp->flags = emul;
    558 		return 0;
    559 	case 6:
    560 		strcpy(fp->name, AudioEslinear_be);
    561 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    562 		fp->precision = 16;
    563 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    564 		return 0;
    565 	case 7:
    566 		strcpy(fp->name, AudioEulinear_be);
    567 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    568 		fp->precision = 16;
    569 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    570 		return 0;
    571 	default:
    572 		return EINVAL;
    573 	}
    574 	return 0;
    575 }
    576 
    577 int
    578 sbdsp_set_params(addr, setmode, usemode, play, rec, pfil, rfil)
    579 	void *addr;
    580 	int setmode, usemode;
    581 	audio_params_t *play, *rec;
    582 	stream_filter_list_t *pfil, *rfil;
    583 {
    584 	struct sbdsp_softc *sc = addr;
    585 	struct sbmode *m;
    586 	u_int rate, tc, bmode;
    587 	stream_filter_factory_t *swcode;
    588 	int model;
    589 	int chan;
    590 	struct audio_params *p;
    591 	audio_params_t hw;
    592 	stream_filter_list_t *fil;
    593 	int mode;
    594 
    595 	if (sc->sc_open == SB_OPEN_MIDI)
    596 		return EBUSY;
    597 
    598 	/* Later models work like SB16. */
    599 	model = min(sc->sc_model, SB_16);
    600 
    601 	/*
    602 	 * Prior to the SB16, we have only one clock, so make the sample
    603 	 * rates match.
    604 	 */
    605 	if (!ISSB16CLASS(sc) &&
    606 	    play->sample_rate != rec->sample_rate &&
    607 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    608 		if (setmode == AUMODE_PLAY) {
    609 			rec->sample_rate = play->sample_rate;
    610 			setmode |= AUMODE_RECORD;
    611 		} else if (setmode == AUMODE_RECORD) {
    612 			play->sample_rate = rec->sample_rate;
    613 			setmode |= AUMODE_PLAY;
    614 		} else
    615 			return (EINVAL);
    616 	}
    617 
    618 	/* Set first record info, then play info */
    619 	for (mode = AUMODE_RECORD; mode != -1;
    620 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    621 		if ((setmode & mode) == 0)
    622 			continue;
    623 
    624 		p = mode == AUMODE_PLAY ? play : rec;
    625 		/* Locate proper commands */
    626 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    627 		    m->model != -1; m++) {
    628 			if (model == m->model &&
    629 			    p->channels == m->channels &&
    630 			    p->precision == m->precision &&
    631 			    p->sample_rate >= m->lowrate &&
    632 			    p->sample_rate <= m->highrate)
    633 				break;
    634 		}
    635 		if (m->model == -1)
    636 			return EINVAL;
    637 		rate = p->sample_rate;
    638 		swcode = NULL;
    639 		fil = mode ==  AUMODE_PLAY ? pfil : rfil;
    640 		hw = *p;
    641 		tc = 1;
    642 		bmode = -1;
    643 		if (model == SB_16) {
    644 			switch (p->encoding) {
    645 			case AUDIO_ENCODING_SLINEAR_BE:
    646 				if (p->precision == 16) {
    647 					hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    648 					swcode = swap_bytes;
    649 				}
    650 				/* fall into */
    651 			case AUDIO_ENCODING_SLINEAR_LE:
    652 				bmode = SB_BMODE_SIGNED;
    653 				break;
    654 
    655 			case AUDIO_ENCODING_ULINEAR_BE:
    656 				if (p->precision == 16) {
    657 					hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    658 					swcode = swap_bytes;
    659 				}
    660 				/* fall into */
    661 			case AUDIO_ENCODING_ULINEAR_LE:
    662 				bmode = SB_BMODE_UNSIGNED;
    663 				break;
    664 
    665 			case AUDIO_ENCODING_ULAW:
    666 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    667 				if (mode == AUMODE_PLAY) {
    668 					hw.precision = hw.validbits = 16;
    669 					swcode = mulaw_to_linear16;
    670 					m = &sbpmodes[PLAY16];
    671 				} else
    672 					swcode = linear8_to_mulaw;
    673 				bmode = SB_BMODE_UNSIGNED;
    674 				break;
    675 
    676 			case AUDIO_ENCODING_ALAW:
    677 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    678 				if (mode == AUMODE_PLAY) {
    679 					hw.precision = hw.validbits = 16;
    680 					swcode = alaw_to_linear16;
    681 					m = &sbpmodes[PLAY16];
    682 				} else
    683 					swcode = linear8_to_alaw;
    684 				bmode = SB_BMODE_UNSIGNED;
    685 				break;
    686 			default:
    687 				return EINVAL;
    688 			}
    689 			if (p->channels == 2)
    690 				bmode |= SB_BMODE_STEREO;
    691 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    692 			switch (p->encoding) {
    693 			case AUDIO_ENCODING_SLINEAR_LE:
    694 				break;
    695 			case AUDIO_ENCODING_ULINEAR_LE:
    696 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    697 				swcode = change_sign16;
    698 				break;
    699 			case AUDIO_ENCODING_SLINEAR_BE:
    700 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    701 				swcode = swap_bytes;
    702 				break;
    703 			case AUDIO_ENCODING_ULINEAR_BE:
    704 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    705 				swcode = swap_bytes_change_sign16;
    706 				break;
    707 			case AUDIO_ENCODING_ULAW:
    708 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    709 				swcode = mode == AUMODE_PLAY ?
    710 					mulaw_to_linear8 : linear8_to_mulaw;
    711 				break;
    712 			case AUDIO_ENCODING_ALAW:
    713 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    714 				swcode = mode == AUMODE_PLAY ?
    715 					alaw_to_linear8 : linear8_to_alaw;
    716 				break;
    717 			default:
    718 				return EINVAL;
    719 			}
    720 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    721 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    722 			hw.sample_rate = p->sample_rate;
    723 		} else {
    724 			switch (p->encoding) {
    725 			case AUDIO_ENCODING_SLINEAR_BE:
    726 			case AUDIO_ENCODING_SLINEAR_LE:
    727 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    728 				swcode = change_sign8;
    729 				break;
    730 			case AUDIO_ENCODING_ULINEAR_BE:
    731 			case AUDIO_ENCODING_ULINEAR_LE:
    732 				break;
    733 			case AUDIO_ENCODING_ULAW:
    734 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    735 				swcode = mode == AUMODE_PLAY ?
    736 					mulaw_to_linear8 : linear8_to_mulaw;
    737 				break;
    738 			case AUDIO_ENCODING_ALAW:
    739 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    740 				swcode = mode == AUMODE_PLAY ?
    741 					alaw_to_linear8 : linear8_to_alaw;
    742 				break;
    743 			default:
    744 				return EINVAL;
    745 			}
    746 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    747 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    748 			hw.sample_rate = p->sample_rate;
    749 		}
    750 
    751 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    752 		if (mode == AUMODE_PLAY) {
    753 			sc->sc_o.rate = rate;
    754 			sc->sc_o.tc = tc;
    755 			sc->sc_o.modep = m;
    756 			sc->sc_o.bmode = bmode;
    757 			sc->sc_o.dmachan = chan;
    758 		} else {
    759 			sc->sc_i.rate = rate;
    760 			sc->sc_i.tc = tc;
    761 			sc->sc_i.modep = m;
    762 			sc->sc_i.bmode = bmode;
    763 			sc->sc_i.dmachan = chan;
    764 		}
    765 
    766 		if (swcode != NULL)
    767 			fil->append(fil, swcode, &hw);
    768 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, "
    769 			 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
    770 			 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
    771 			 p->sample_rate, p->precision, p->channels,
    772 			 p->encoding, tc, m->cmd, bmode, m->cmdchan));
    773 
    774 	}
    775 
    776 	if (sc->sc_fullduplex &&
    777 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    778 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    779 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
    780 			 "odma=%d\n", sc->sc_fullduplex, usemode,
    781 			 sc->sc_i.dmachan, sc->sc_o.dmachan));
    782 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    783 			/* Use 16 bit DMA for playing by expanding the samples. */
    784 			hw.precision = hw.validbits = 16;
    785 			pfil->append(pfil, linear8_to_linear16, &hw);
    786 			sc->sc_o.modep = &sbpmodes[PLAY16];
    787 			sc->sc_o.dmachan = sc->sc_drq16;
    788 		} else {
    789 			return EINVAL;
    790 		}
    791 	}
    792 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    793 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    794 
    795 	return (0);
    796 }
    797 
    798 void
    799 sbdsp_set_ifilter(addr, which)
    800 	void *addr;
    801 	int which;
    802 {
    803 	struct sbdsp_softc *sc = addr;
    804 	int mixval;
    805 
    806 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    807 	switch (which) {
    808 	case 0:
    809 		mixval |= SBP_FILTER_OFF;
    810 		break;
    811 	case SB_TREBLE:
    812 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    813 		break;
    814 	case SB_BASS:
    815 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    816 		break;
    817 	default:
    818 		return;
    819 	}
    820 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    821 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    822 }
    823 
    824 int
    825 sbdsp_get_ifilter(addr)
    826 	void *addr;
    827 {
    828 	struct sbdsp_softc *sc = addr;
    829 
    830 	sc->in_filter =
    831 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    832 	switch (sc->in_filter) {
    833 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    834 		return SB_TREBLE;
    835 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    836 		return SB_BASS;
    837 	default:
    838 		return 0;
    839 	}
    840 }
    841 
    842 int
    843 sbdsp_set_in_ports(sc, mask)
    844 	struct sbdsp_softc *sc;
    845 	int mask;
    846 {
    847 	int bitsl, bitsr;
    848 	int sbport;
    849 
    850 	if (sc->sc_open == SB_OPEN_MIDI)
    851 		return EBUSY;
    852 
    853 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    854 		 sc->sc_mixer_model, mask));
    855 
    856 	switch(sc->sc_mixer_model) {
    857 	case SBM_NONE:
    858 		return EINVAL;
    859 	case SBM_CT1335:
    860 		if (mask != (1 << SB_MIC_VOL))
    861 			return EINVAL;
    862 		break;
    863 	case SBM_CT1345:
    864 		switch (mask) {
    865 		case 1 << SB_MIC_VOL:
    866 			sbport = SBP_FROM_MIC;
    867 			break;
    868 		case 1 << SB_LINE_IN_VOL:
    869 			sbport = SBP_FROM_LINE;
    870 			break;
    871 		case 1 << SB_CD_VOL:
    872 			sbport = SBP_FROM_CD;
    873 			break;
    874 		default:
    875 			return (EINVAL);
    876 		}
    877 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    878 		break;
    879 	case SBM_CT1XX5:
    880 	case SBM_CT1745:
    881 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    882 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    883 			return EINVAL;
    884 		bitsr = 0;
    885 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    886 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    887 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    888 		bitsl = SB_SRC_R_TO_L(bitsr);
    889 		if (mask & (1<<SB_MIC_VOL)) {
    890 			bitsl |= SBP_MIC_SRC;
    891 			bitsr |= SBP_MIC_SRC;
    892 		}
    893 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    894 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    895 		break;
    896 	}
    897 	sc->in_mask = mask;
    898 
    899 	return 0;
    900 }
    901 
    902 int
    903 sbdsp_speaker_ctl(addr, newstate)
    904 	void *addr;
    905 	int newstate;
    906 {
    907 	struct sbdsp_softc *sc = addr;
    908 
    909 	if (sc->sc_open == SB_OPEN_MIDI)
    910 		return EBUSY;
    911 
    912 	if ((newstate == SPKR_ON) &&
    913 	    (sc->spkr_state == SPKR_OFF)) {
    914 		sbdsp_spkron(sc);
    915 		sc->spkr_state = SPKR_ON;
    916 	}
    917 	if ((newstate == SPKR_OFF) &&
    918 	    (sc->spkr_state == SPKR_ON)) {
    919 		sbdsp_spkroff(sc);
    920 		sc->spkr_state = SPKR_OFF;
    921 	}
    922 	return 0;
    923 }
    924 
    925 int
    926 sbdsp_round_blocksize(addr, blk, mode, param)
    927 	void *addr;
    928 	int blk;
    929 	int mode;
    930 	const audio_params_t *param;
    931 {
    932 	return blk & -4;	/* round to biggest sample size */
    933 }
    934 
    935 int
    936 sbdsp_open(addr, flags)
    937 	void *addr;
    938 	int flags;
    939 {
    940 	struct sbdsp_softc *sc = addr;
    941 	int error, state;
    942 
    943 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    944 
    945 	if (sc->sc_open != SB_CLOSED)
    946 		return (EBUSY);
    947 	sc->sc_open = SB_OPEN_AUDIO;
    948 	state = 0;
    949 
    950 	if (sc->sc_drq8 != -1) {
    951 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
    952 		if (error != 0)
    953 			goto bad;
    954 		state |= 1;
    955 	}
    956 
    957 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    958 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
    959 		if (error != 0)
    960 			goto bad;
    961 		state |= 2;
    962 	}
    963 
    964 
    965 	if (sbdsp_reset(sc) != 0) {
    966 		error = EIO;
    967 		goto bad;
    968 	}
    969 
    970 	if (ISSBPRO(sc) &&
    971 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    972 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    973 		/* we'll readjust when it's time for DMA. */
    974 	}
    975 
    976 	/*
    977 	 * Leave most things as they were; users must change things if
    978 	 * the previous process didn't leave it they way they wanted.
    979 	 * Looked at another way, it's easy to set up a configuration
    980 	 * in one program and leave it for another to inherit.
    981 	 */
    982 	DPRINTF(("sbdsp_open: opened\n"));
    983 
    984 	return (0);
    985 
    986 bad:
    987 	if (state & 1)
    988 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    989 	if (state & 2)
    990 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    991 
    992 	sc->sc_open = SB_CLOSED;
    993 	return (error);
    994 }
    995 
    996 void
    997 sbdsp_close(addr)
    998 	void *addr;
    999 {
   1000 	struct sbdsp_softc *sc = addr;
   1001 
   1002 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
   1003 
   1004 	sbdsp_spkroff(sc);
   1005 	sc->spkr_state = SPKR_OFF;
   1006 
   1007 	sc->sc_intr8 = 0;
   1008 	sc->sc_intr16 = 0;
   1009 
   1010 	if (sc->sc_drq8 != -1)
   1011 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
   1012 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
   1013 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
   1014 
   1015 	sc->sc_open = SB_CLOSED;
   1016 	DPRINTF(("sbdsp_close: closed\n"));
   1017 }
   1018 
   1019 /*
   1020  * Lower-level routines
   1021  */
   1022 
   1023 /*
   1024  * Reset the card.
   1025  * Return non-zero if the card isn't detected.
   1026  */
   1027 int
   1028 sbdsp_reset(sc)
   1029 	struct sbdsp_softc *sc;
   1030 {
   1031 	bus_space_tag_t iot = sc->sc_iot;
   1032 	bus_space_handle_t ioh = sc->sc_ioh;
   1033 
   1034 	sc->sc_intr8 = 0;
   1035 	sc->sc_intr16 = 0;
   1036 	sc->sc_intrm = 0;
   1037 
   1038 	/*
   1039 	 * See SBK, section 11.3.
   1040 	 * We pulse a reset signal into the card.
   1041 	 * Gee, what a brilliant hardware design.
   1042 	 */
   1043 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1044 	delay(10);
   1045 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1046 	delay(30);
   1047 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1048 		return -1;
   1049 
   1050 	return 0;
   1051 }
   1052 
   1053 /*
   1054  * Write a byte to the dsp.
   1055  * We are at the mercy of the card as we use a
   1056  * polling loop and wait until it can take the byte.
   1057  */
   1058 int
   1059 sbdsp_wdsp(sc, v)
   1060 	struct sbdsp_softc *sc;
   1061 	int v;
   1062 {
   1063 	bus_space_tag_t iot = sc->sc_iot;
   1064 	bus_space_handle_t ioh = sc->sc_ioh;
   1065 	int i;
   1066 	u_char x;
   1067 
   1068 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1069 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1070 		delay(10);
   1071 		if ((x & SB_DSP_BUSY) == 0) {
   1072 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1073 			delay(10);
   1074 			return 0;
   1075 		}
   1076 	}
   1077 	++sberr.wdsp;
   1078 	return -1;
   1079 }
   1080 
   1081 /*
   1082  * Read a byte from the DSP, using polling.
   1083  */
   1084 int
   1085 sbdsp_rdsp(sc)
   1086 	struct sbdsp_softc *sc;
   1087 {
   1088 	bus_space_tag_t iot = sc->sc_iot;
   1089 	bus_space_handle_t ioh = sc->sc_ioh;
   1090 	int i;
   1091 	u_char x;
   1092 
   1093 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1094 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1095 		delay(10);
   1096 		if (x & SB_DSP_READY) {
   1097 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1098 			delay(10);
   1099 			return x;
   1100 		}
   1101 	}
   1102 	++sberr.rdsp;
   1103 	return -1;
   1104 }
   1105 
   1106 void
   1107 sbdsp_pause(sc)
   1108 	struct sbdsp_softc *sc;
   1109 {
   1110 
   1111 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1112 }
   1113 
   1114 /*
   1115  * Turn on the speaker.  The SBK documention says this operation
   1116  * can take up to 1/10 of a second.  Higher level layers should
   1117  * probably let the task sleep for this amount of time after
   1118  * calling here.  Otherwise, things might not work (because
   1119  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1120  *
   1121  * These engineers had their heads up their ass when
   1122  * they designed this card.
   1123  */
   1124 void
   1125 sbdsp_spkron(sc)
   1126 	struct sbdsp_softc *sc;
   1127 {
   1128 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1129 	sbdsp_pause(sc);
   1130 }
   1131 
   1132 /*
   1133  * Turn off the speaker; see comment above.
   1134  */
   1135 void
   1136 sbdsp_spkroff(sc)
   1137 	struct sbdsp_softc *sc;
   1138 {
   1139 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1140 	sbdsp_pause(sc);
   1141 }
   1142 
   1143 /*
   1144  * Read the version number out of the card.
   1145  * Store version information in the softc.
   1146  */
   1147 void
   1148 sbversion(sc)
   1149 	struct sbdsp_softc *sc;
   1150 {
   1151 	int v;
   1152 
   1153 	sc->sc_model = SB_UNK;
   1154 	sc->sc_version = 0;
   1155 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1156 		return;
   1157 	v = sbdsp_rdsp(sc) << 8;
   1158 	v |= sbdsp_rdsp(sc);
   1159 	if (v < 0)
   1160 		return;
   1161 	sc->sc_version = v;
   1162 	switch(SBVER_MAJOR(v)) {
   1163 	case 1:
   1164 		sc->sc_mixer_model = SBM_NONE;
   1165 		sc->sc_model = SB_1;
   1166 		break;
   1167 	case 2:
   1168 		/* Some SB2 have a mixer, some don't. */
   1169 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1170 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1171 		/* Check if we can read back the mixer values. */
   1172 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1173 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1174 			sc->sc_mixer_model = SBM_CT1335;
   1175 		else
   1176 			sc->sc_mixer_model = SBM_NONE;
   1177 		if (SBVER_MINOR(v) == 0)
   1178 			sc->sc_model = SB_20;
   1179 		else
   1180 			sc->sc_model = SB_2x;
   1181 		break;
   1182 	case 3:
   1183 		sc->sc_mixer_model = SBM_CT1345;
   1184 		sc->sc_model = SB_PRO;
   1185 		break;
   1186 	case 4:
   1187 #if 0
   1188 /* XXX This does not work */
   1189 		/* Most SB16 have a tone controls, but some don't. */
   1190 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1191 		/* Check if we can read back the mixer value. */
   1192 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1193 			sc->sc_mixer_model = SBM_CT1745;
   1194 		else
   1195 			sc->sc_mixer_model = SBM_CT1XX5;
   1196 #else
   1197 		sc->sc_mixer_model = SBM_CT1745;
   1198 #endif
   1199 #if 0
   1200 /* XXX figure out a good way of determining the model */
   1201 		/* XXX what about SB_32 */
   1202 		if (SBVER_MINOR(v) == 16)
   1203 			sc->sc_model = SB_64;
   1204 		else
   1205 #endif
   1206 			sc->sc_model = SB_16;
   1207 		break;
   1208 	}
   1209 }
   1210 
   1211 int
   1212 sbdsp_set_timeconst(sc, tc)
   1213 	struct sbdsp_softc *sc;
   1214 	int tc;
   1215 {
   1216 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1217 
   1218 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1219 	    sbdsp_wdsp(sc, tc) < 0)
   1220 		return EIO;
   1221 
   1222 	return 0;
   1223 }
   1224 
   1225 int
   1226 sbdsp16_set_rate(sc, cmd, rate)
   1227 	struct sbdsp_softc *sc;
   1228 	int cmd, rate;
   1229 {
   1230 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1231 
   1232 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1233 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1234 	    sbdsp_wdsp(sc, rate) < 0)
   1235 		return EIO;
   1236 	return 0;
   1237 }
   1238 
   1239 int
   1240 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1241 	void *addr;
   1242 	void *start, *end;
   1243 	int blksize;
   1244 	void (*intr) __P((void *));
   1245 	void *arg;
   1246 	const audio_params_t *param;
   1247 {
   1248 	struct sbdsp_softc *sc = addr;
   1249 	int stereo = param->channels == 2;
   1250 	int width = param->precision;
   1251 	int filter;
   1252 
   1253 #ifdef DIAGNOSTIC
   1254 	if (stereo && (blksize & 1)) {
   1255 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1256 		return (EIO);
   1257 	}
   1258 	if (sc->sc_i.run != SB_NOTRUNNING)
   1259 		printf("sbdsp_trigger_input: already running\n");
   1260 #endif
   1261 
   1262 	sc->sc_intrr = intr;
   1263 	sc->sc_argr = arg;
   1264 
   1265 	if (width == 8) {
   1266 #ifdef DIAGNOSTIC
   1267 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1268 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1269 			    width, sc->sc_i.dmachan);
   1270 			return (EIO);
   1271 		}
   1272 #endif
   1273 		sc->sc_intr8 = sbdsp_block_input;
   1274 	} else {
   1275 #ifdef DIAGNOSTIC
   1276 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1277 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1278 			    width, sc->sc_i.dmachan);
   1279 			return (EIO);
   1280 		}
   1281 #endif
   1282 		sc->sc_intr16 = sbdsp_block_input;
   1283 	}
   1284 
   1285 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1286 		blksize >>= 1;
   1287 	--blksize;
   1288 	sc->sc_i.blksize = blksize;
   1289 
   1290 	if (ISSBPRO(sc)) {
   1291 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1292 			return (EIO);
   1293 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1294 		sbdsp_mix_write(sc, SBP_INFILTER,
   1295 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1296 		    filter);
   1297 	}
   1298 
   1299 	if (ISSB16CLASS(sc)) {
   1300 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1301 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1302 				 sc->sc_i.rate));
   1303 			return (EIO);
   1304 		}
   1305 	} else {
   1306 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1307 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1308 				 sc->sc_i.rate));
   1309 			return (EIO);
   1310 		}
   1311 	}
   1312 
   1313 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
   1314 	    start, end, sc->sc_i.dmachan));
   1315 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1316 	    (char *)end - (char *)start, NULL,
   1317 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1318 
   1319 	return sbdsp_block_input(addr);
   1320 }
   1321 
   1322 int
   1323 sbdsp_block_input(addr)
   1324 	void *addr;
   1325 {
   1326 	struct sbdsp_softc *sc = addr;
   1327 	int cc = sc->sc_i.blksize;
   1328 
   1329 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1330 
   1331 	if (sc->sc_i.run != SB_NOTRUNNING)
   1332 		sc->sc_intrr(sc->sc_argr);
   1333 
   1334 	if (sc->sc_model == SB_1) {
   1335 		/* Non-looping mode, start DMA */
   1336 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1337 		    sbdsp_wdsp(sc, cc) < 0 ||
   1338 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1339 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1340 			return (EIO);
   1341 		}
   1342 		sc->sc_i.run = SB_RUNNING;
   1343 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1344 		/* Initialize looping PCM */
   1345 		if (ISSB16CLASS(sc)) {
   1346 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1347 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1348 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1349 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1350 			    sbdsp_wdsp(sc, cc) < 0 ||
   1351 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1352 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1353 				return (EIO);
   1354 			}
   1355 		} else {
   1356 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1357 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1358 			    sbdsp_wdsp(sc, cc) < 0 ||
   1359 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1360 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1361 				return (EIO);
   1362 			}
   1363 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1364 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1365 				return (EIO);
   1366 			}
   1367 		}
   1368 		sc->sc_i.run = SB_LOOPING;
   1369 	}
   1370 
   1371 	return (0);
   1372 }
   1373 
   1374 int
   1375 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1376 	void *addr;
   1377 	void *start, *end;
   1378 	int blksize;
   1379 	void (*intr) __P((void *));
   1380 	void *arg;
   1381 	const audio_params_t *param;
   1382 {
   1383 	struct sbdsp_softc *sc = addr;
   1384 	int stereo = param->channels == 2;
   1385 	int width = param->precision;
   1386 	int cmd;
   1387 
   1388 #ifdef DIAGNOSTIC
   1389 	if (stereo && (blksize & 1)) {
   1390 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1391 		return (EIO);
   1392 	}
   1393 	if (sc->sc_o.run != SB_NOTRUNNING)
   1394 		printf("sbdsp_trigger_output: already running\n");
   1395 #endif
   1396 
   1397 	sc->sc_intrp = intr;
   1398 	sc->sc_argp = arg;
   1399 
   1400 	if (width == 8) {
   1401 #ifdef DIAGNOSTIC
   1402 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1403 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1404 			    width, sc->sc_o.dmachan);
   1405 			return (EIO);
   1406 		}
   1407 #endif
   1408 		sc->sc_intr8 = sbdsp_block_output;
   1409 	} else {
   1410 #ifdef DIAGNOSTIC
   1411 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1412 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1413 			    width, sc->sc_o.dmachan);
   1414 			return (EIO);
   1415 		}
   1416 #endif
   1417 		sc->sc_intr16 = sbdsp_block_output;
   1418 	}
   1419 
   1420 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1421 		blksize >>= 1;
   1422 	--blksize;
   1423 	sc->sc_o.blksize = blksize;
   1424 
   1425 	if (ISSBPRO(sc)) {
   1426 		/* make sure we re-set stereo mixer bit when we start output. */
   1427 		sbdsp_mix_write(sc, SBP_STEREO,
   1428 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1429 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1430 		cmd = sc->sc_o.modep->cmdchan;
   1431 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1432 			return (EIO);
   1433 	}
   1434 
   1435 	if (ISSB16CLASS(sc)) {
   1436 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1437 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1438 				 sc->sc_o.rate));
   1439 			return (EIO);
   1440 		}
   1441 	} else {
   1442 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1443 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1444 				 sc->sc_o.rate));
   1445 			return (EIO);
   1446 		}
   1447 	}
   1448 
   1449 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
   1450 	    start, end, sc->sc_o.dmachan));
   1451 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1452 	    (char *)end - (char *)start, NULL,
   1453 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1454 
   1455 	return sbdsp_block_output(addr);
   1456 }
   1457 
   1458 int
   1459 sbdsp_block_output(addr)
   1460 	void *addr;
   1461 {
   1462 	struct sbdsp_softc *sc = addr;
   1463 	int cc = sc->sc_o.blksize;
   1464 
   1465 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1466 
   1467 	if (sc->sc_o.run != SB_NOTRUNNING)
   1468 		sc->sc_intrp(sc->sc_argp);
   1469 
   1470 	if (sc->sc_model == SB_1) {
   1471 		/* Non-looping mode, initialized. Start DMA and PCM */
   1472 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1473 		    sbdsp_wdsp(sc, cc) < 0 ||
   1474 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1475 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1476 			return (EIO);
   1477 		}
   1478 		sc->sc_o.run = SB_RUNNING;
   1479 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1480 		/* Initialize looping PCM */
   1481 		if (ISSB16CLASS(sc)) {
   1482 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1483 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1484 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1485 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1486 			    sbdsp_wdsp(sc, cc) < 0 ||
   1487 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1488 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1489 				return (EIO);
   1490 			}
   1491 		} else {
   1492 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1493 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1494 			    sbdsp_wdsp(sc, cc) < 0 ||
   1495 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1496 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1497 				return (EIO);
   1498 			}
   1499 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1500 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1501 				return (EIO);
   1502 			}
   1503 		}
   1504 		sc->sc_o.run = SB_LOOPING;
   1505 	}
   1506 
   1507 	return (0);
   1508 }
   1509 
   1510 int
   1511 sbdsp_halt_output(addr)
   1512 	void *addr;
   1513 {
   1514 	struct sbdsp_softc *sc = addr;
   1515 
   1516 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1517 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1518 			printf("sbdsp_halt_output: failed to halt\n");
   1519 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1520 		sc->sc_o.run = SB_NOTRUNNING;
   1521 	}
   1522 
   1523 	return (0);
   1524 }
   1525 
   1526 int
   1527 sbdsp_halt_input(addr)
   1528 	void *addr;
   1529 {
   1530 	struct sbdsp_softc *sc = addr;
   1531 
   1532 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1533 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1534 			printf("sbdsp_halt_input: failed to halt\n");
   1535 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1536 		sc->sc_i.run = SB_NOTRUNNING;
   1537 	}
   1538 
   1539 	return (0);
   1540 }
   1541 
   1542 /*
   1543  * Only the DSP unit on the sound blaster generates interrupts.
   1544  * There are three cases of interrupt: reception of a midi byte
   1545  * (when mode is enabled), completion of DMA transmission, or
   1546  * completion of a DMA reception.
   1547  *
   1548  * If there is interrupt sharing or a spurious interrupt occurs
   1549  * there is no way to distinguish this on an SB2.  So if you have
   1550  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1551  */
   1552 int
   1553 sbdsp_intr(arg)
   1554 	void *arg;
   1555 {
   1556 	struct sbdsp_softc *sc = arg;
   1557 	u_char irq;
   1558 
   1559 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1560 		   sc->sc_intr8, sc->sc_intr16));
   1561 	if (ISSB16CLASS(sc)) {
   1562 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1563 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1564 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1565 			return 0;
   1566 		}
   1567 	} else {
   1568 		/* XXXX CHECK FOR INTERRUPT */
   1569 		irq = SBP_IRQ_DMA8;
   1570 	}
   1571 
   1572 	sc->sc_interrupts++;
   1573 	delay(10);		/* XXX why? */
   1574 
   1575 	/* clear interrupt */
   1576 	if (irq & SBP_IRQ_DMA8) {
   1577 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1578 		if (sc->sc_intr8)
   1579 			sc->sc_intr8(arg);
   1580 	}
   1581 	if (irq & SBP_IRQ_DMA16) {
   1582 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1583 		if (sc->sc_intr16)
   1584 			sc->sc_intr16(arg);
   1585 	}
   1586 #if NMPU > 0
   1587 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1588 		mpu_intr(sc->sc_mpudev);
   1589 	}
   1590 #endif
   1591 	return 1;
   1592 }
   1593 
   1594 /* Like val & mask, but make sure the result is correctly rounded. */
   1595 #define MAXVAL 256
   1596 static int
   1597 sbdsp_adjust(val, mask)
   1598 	int val, mask;
   1599 {
   1600 	val += (MAXVAL - mask) >> 1;
   1601 	if (val >= MAXVAL)
   1602 		val = MAXVAL-1;
   1603 	return val & mask;
   1604 }
   1605 
   1606 void
   1607 sbdsp_set_mixer_gain(sc, port)
   1608 	struct sbdsp_softc *sc;
   1609 	int port;
   1610 {
   1611 	int src, gain;
   1612 
   1613 	switch(sc->sc_mixer_model) {
   1614 	case SBM_NONE:
   1615 		return;
   1616 	case SBM_CT1335:
   1617 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1618 		switch(port) {
   1619 		case SB_MASTER_VOL:
   1620 			src = SBP_1335_MASTER_VOL;
   1621 			break;
   1622 		case SB_MIDI_VOL:
   1623 			src = SBP_1335_MIDI_VOL;
   1624 			break;
   1625 		case SB_CD_VOL:
   1626 			src = SBP_1335_CD_VOL;
   1627 			break;
   1628 		case SB_VOICE_VOL:
   1629 			src = SBP_1335_VOICE_VOL;
   1630 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1631 			break;
   1632 		default:
   1633 			return;
   1634 		}
   1635 		sbdsp_mix_write(sc, src, gain);
   1636 		break;
   1637 	case SBM_CT1345:
   1638 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1639 				      sc->gain[port][SB_RIGHT]);
   1640 		switch (port) {
   1641 		case SB_MIC_VOL:
   1642 			src = SBP_MIC_VOL;
   1643 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1644 			break;
   1645 		case SB_MASTER_VOL:
   1646 			src = SBP_MASTER_VOL;
   1647 			break;
   1648 		case SB_LINE_IN_VOL:
   1649 			src = SBP_LINE_VOL;
   1650 			break;
   1651 		case SB_VOICE_VOL:
   1652 			src = SBP_VOICE_VOL;
   1653 			break;
   1654 		case SB_MIDI_VOL:
   1655 			src = SBP_MIDI_VOL;
   1656 			break;
   1657 		case SB_CD_VOL:
   1658 			src = SBP_CD_VOL;
   1659 			break;
   1660 		default:
   1661 			return;
   1662 		}
   1663 		sbdsp_mix_write(sc, src, gain);
   1664 		break;
   1665 	case SBM_CT1XX5:
   1666 	case SBM_CT1745:
   1667 		switch (port) {
   1668 		case SB_MIC_VOL:
   1669 			src = SB16P_MIC_L;
   1670 			break;
   1671 		case SB_MASTER_VOL:
   1672 			src = SB16P_MASTER_L;
   1673 			break;
   1674 		case SB_LINE_IN_VOL:
   1675 			src = SB16P_LINE_L;
   1676 			break;
   1677 		case SB_VOICE_VOL:
   1678 			src = SB16P_VOICE_L;
   1679 			break;
   1680 		case SB_MIDI_VOL:
   1681 			src = SB16P_MIDI_L;
   1682 			break;
   1683 		case SB_CD_VOL:
   1684 			src = SB16P_CD_L;
   1685 			break;
   1686 		case SB_INPUT_GAIN:
   1687 			src = SB16P_INPUT_GAIN_L;
   1688 			break;
   1689 		case SB_OUTPUT_GAIN:
   1690 			src = SB16P_OUTPUT_GAIN_L;
   1691 			break;
   1692 		case SB_TREBLE:
   1693 			src = SB16P_TREBLE_L;
   1694 			break;
   1695 		case SB_BASS:
   1696 			src = SB16P_BASS_L;
   1697 			break;
   1698 		case SB_PCSPEAKER:
   1699 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1700 			return;
   1701 		default:
   1702 			return;
   1703 		}
   1704 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1705 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1706 		break;
   1707 	}
   1708 }
   1709 
   1710 int
   1711 sbdsp_mixer_set_port(addr, cp)
   1712 	void *addr;
   1713 	mixer_ctrl_t *cp;
   1714 {
   1715 	struct sbdsp_softc *sc = addr;
   1716 	int lgain, rgain;
   1717 	int mask, bits;
   1718 	int lmask, rmask, lbits, rbits;
   1719 	int mute, swap;
   1720 
   1721 	if (sc->sc_open == SB_OPEN_MIDI)
   1722 		return EBUSY;
   1723 
   1724 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1725 	    cp->un.value.num_channels));
   1726 
   1727 	if (sc->sc_mixer_model == SBM_NONE)
   1728 		return EINVAL;
   1729 
   1730 	switch (cp->dev) {
   1731 	case SB_TREBLE:
   1732 	case SB_BASS:
   1733 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1734 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1735 			if (cp->type != AUDIO_MIXER_ENUM)
   1736 				return EINVAL;
   1737 			switch (cp->dev) {
   1738 			case SB_TREBLE:
   1739 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1740 				return 0;
   1741 			case SB_BASS:
   1742 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1743 				return 0;
   1744 			}
   1745 		}
   1746 	case SB_PCSPEAKER:
   1747 	case SB_INPUT_GAIN:
   1748 	case SB_OUTPUT_GAIN:
   1749 		if (!ISSBM1745(sc))
   1750 			return EINVAL;
   1751 	case SB_MIC_VOL:
   1752 	case SB_LINE_IN_VOL:
   1753 		if (sc->sc_mixer_model == SBM_CT1335)
   1754 			return EINVAL;
   1755 	case SB_VOICE_VOL:
   1756 	case SB_MIDI_VOL:
   1757 	case SB_CD_VOL:
   1758 	case SB_MASTER_VOL:
   1759 		if (cp->type != AUDIO_MIXER_VALUE)
   1760 			return EINVAL;
   1761 
   1762 		/*
   1763 		 * All the mixer ports are stereo except for the microphone.
   1764 		 * If we get a single-channel gain value passed in, then we
   1765 		 * duplicate it to both left and right channels.
   1766 		 */
   1767 
   1768 		switch (cp->dev) {
   1769 		case SB_MIC_VOL:
   1770 			if (cp->un.value.num_channels != 1)
   1771 				return EINVAL;
   1772 
   1773 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1774 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1775 			break;
   1776 		case SB_PCSPEAKER:
   1777 			if (cp->un.value.num_channels != 1)
   1778 				return EINVAL;
   1779 			/* fall into */
   1780 		case SB_INPUT_GAIN:
   1781 		case SB_OUTPUT_GAIN:
   1782 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1783 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1784 			break;
   1785 		default:
   1786 			switch (cp->un.value.num_channels) {
   1787 			case 1:
   1788 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1789 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1790 				break;
   1791 			case 2:
   1792 				if (sc->sc_mixer_model == SBM_CT1335)
   1793 					return EINVAL;
   1794 				lgain = SB_ADJUST_GAIN(sc,
   1795 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1796 				rgain = SB_ADJUST_GAIN(sc,
   1797 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1798 				break;
   1799 			default:
   1800 				return EINVAL;
   1801 			}
   1802 			break;
   1803 		}
   1804 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1805 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1806 
   1807 		sbdsp_set_mixer_gain(sc, cp->dev);
   1808 		break;
   1809 
   1810 	case SB_RECORD_SOURCE:
   1811 		if (ISSBM1745(sc)) {
   1812 			if (cp->type != AUDIO_MIXER_SET)
   1813 				return EINVAL;
   1814 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1815 		} else {
   1816 			if (cp->type != AUDIO_MIXER_ENUM)
   1817 				return EINVAL;
   1818 			sc->in_port = cp->un.ord;
   1819 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1820 		}
   1821 		break;
   1822 
   1823 	case SB_AGC:
   1824 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1825 			return EINVAL;
   1826 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1827 		break;
   1828 
   1829 	case SB_CD_OUT_MUTE:
   1830 		mask = SB16P_SW_CD;
   1831 		goto omute;
   1832 	case SB_MIC_OUT_MUTE:
   1833 		mask = SB16P_SW_MIC;
   1834 		goto omute;
   1835 	case SB_LINE_OUT_MUTE:
   1836 		mask = SB16P_SW_LINE;
   1837 	omute:
   1838 		if (cp->type != AUDIO_MIXER_ENUM)
   1839 			return EINVAL;
   1840 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1841 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1842 		if (cp->un.ord)
   1843 			bits = bits & ~mask;
   1844 		else
   1845 			bits = bits | mask;
   1846 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1847 		break;
   1848 
   1849 	case SB_MIC_IN_MUTE:
   1850 	case SB_MIC_SWAP:
   1851 		lmask = rmask = SB16P_SW_MIC;
   1852 		goto imute;
   1853 	case SB_CD_IN_MUTE:
   1854 	case SB_CD_SWAP:
   1855 		lmask = SB16P_SW_CD_L;
   1856 		rmask = SB16P_SW_CD_R;
   1857 		goto imute;
   1858 	case SB_LINE_IN_MUTE:
   1859 	case SB_LINE_SWAP:
   1860 		lmask = SB16P_SW_LINE_L;
   1861 		rmask = SB16P_SW_LINE_R;
   1862 		goto imute;
   1863 	case SB_MIDI_IN_MUTE:
   1864 	case SB_MIDI_SWAP:
   1865 		lmask = SB16P_SW_MIDI_L;
   1866 		rmask = SB16P_SW_MIDI_R;
   1867 	imute:
   1868 		if (cp->type != AUDIO_MIXER_ENUM)
   1869 			return EINVAL;
   1870 		mask = lmask | rmask;
   1871 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1872 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1873 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1874 		if (SB_IS_IN_MUTE(cp->dev)) {
   1875 			mute = cp->dev;
   1876 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1877 		} else {
   1878 			swap = cp->dev;
   1879 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1880 		}
   1881 		if (sc->gain[swap][SB_LR]) {
   1882 			mask = lmask;
   1883 			lmask = rmask;
   1884 			rmask = mask;
   1885 		}
   1886 		if (!sc->gain[mute][SB_LR]) {
   1887 			lbits = lbits | lmask;
   1888 			rbits = rbits | rmask;
   1889 		}
   1890 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1891 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1892 		break;
   1893 
   1894 	default:
   1895 		return EINVAL;
   1896 	}
   1897 
   1898 	return 0;
   1899 }
   1900 
   1901 int
   1902 sbdsp_mixer_get_port(addr, cp)
   1903 	void *addr;
   1904 	mixer_ctrl_t *cp;
   1905 {
   1906 	struct sbdsp_softc *sc = addr;
   1907 
   1908 	if (sc->sc_open == SB_OPEN_MIDI)
   1909 		return EBUSY;
   1910 
   1911 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1912 
   1913 	if (sc->sc_mixer_model == SBM_NONE)
   1914 		return EINVAL;
   1915 
   1916 	switch (cp->dev) {
   1917 	case SB_TREBLE:
   1918 	case SB_BASS:
   1919 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1920 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1921 			switch (cp->dev) {
   1922 			case SB_TREBLE:
   1923 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1924 				return 0;
   1925 			case SB_BASS:
   1926 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1927 				return 0;
   1928 			}
   1929 		}
   1930 	case SB_PCSPEAKER:
   1931 	case SB_INPUT_GAIN:
   1932 	case SB_OUTPUT_GAIN:
   1933 		if (!ISSBM1745(sc))
   1934 			return EINVAL;
   1935 	case SB_MIC_VOL:
   1936 	case SB_LINE_IN_VOL:
   1937 		if (sc->sc_mixer_model == SBM_CT1335)
   1938 			return EINVAL;
   1939 	case SB_VOICE_VOL:
   1940 	case SB_MIDI_VOL:
   1941 	case SB_CD_VOL:
   1942 	case SB_MASTER_VOL:
   1943 		switch (cp->dev) {
   1944 		case SB_MIC_VOL:
   1945 		case SB_PCSPEAKER:
   1946 			if (cp->un.value.num_channels != 1)
   1947 				return EINVAL;
   1948 			/* fall into */
   1949 		default:
   1950 			switch (cp->un.value.num_channels) {
   1951 			case 1:
   1952 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1953 					sc->gain[cp->dev][SB_LEFT];
   1954 				break;
   1955 			case 2:
   1956 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1957 					sc->gain[cp->dev][SB_LEFT];
   1958 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1959 					sc->gain[cp->dev][SB_RIGHT];
   1960 				break;
   1961 			default:
   1962 				return EINVAL;
   1963 			}
   1964 			break;
   1965 		}
   1966 		break;
   1967 
   1968 	case SB_RECORD_SOURCE:
   1969 		if (ISSBM1745(sc))
   1970 			cp->un.mask = sc->in_mask;
   1971 		else
   1972 			cp->un.ord = sc->in_port;
   1973 		break;
   1974 
   1975 	case SB_AGC:
   1976 		if (!ISSBM1745(sc))
   1977 			return EINVAL;
   1978 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1979 		break;
   1980 
   1981 	case SB_CD_IN_MUTE:
   1982 	case SB_MIC_IN_MUTE:
   1983 	case SB_LINE_IN_MUTE:
   1984 	case SB_MIDI_IN_MUTE:
   1985 	case SB_CD_SWAP:
   1986 	case SB_MIC_SWAP:
   1987 	case SB_LINE_SWAP:
   1988 	case SB_MIDI_SWAP:
   1989 	case SB_CD_OUT_MUTE:
   1990 	case SB_MIC_OUT_MUTE:
   1991 	case SB_LINE_OUT_MUTE:
   1992 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1993 		break;
   1994 
   1995 	default:
   1996 		return EINVAL;
   1997 	}
   1998 
   1999 	return 0;
   2000 }
   2001 
   2002 int
   2003 sbdsp_mixer_query_devinfo(addr, dip)
   2004 	void *addr;
   2005 	mixer_devinfo_t *dip;
   2006 {
   2007 	struct sbdsp_softc *sc = addr;
   2008 	int chan, class, is1745;
   2009 
   2010 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   2011 		 sc->sc_mixer_model, dip->index));
   2012 
   2013 	if (sc->sc_mixer_model == SBM_NONE)
   2014 		return ENXIO;
   2015 
   2016 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   2017 	is1745 = ISSBM1745(sc);
   2018 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   2019 
   2020 	switch (dip->index) {
   2021 	case SB_MASTER_VOL:
   2022 		dip->type = AUDIO_MIXER_VALUE;
   2023 		dip->mixer_class = SB_OUTPUT_CLASS;
   2024 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2025 		strcpy(dip->label.name, AudioNmaster);
   2026 		dip->un.v.num_channels = chan;
   2027 		strcpy(dip->un.v.units.name, AudioNvolume);
   2028 		return 0;
   2029 	case SB_MIDI_VOL:
   2030 		dip->type = AUDIO_MIXER_VALUE;
   2031 		dip->mixer_class = class;
   2032 		dip->prev = AUDIO_MIXER_LAST;
   2033 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2034 		strcpy(dip->label.name, AudioNfmsynth);
   2035 		dip->un.v.num_channels = chan;
   2036 		strcpy(dip->un.v.units.name, AudioNvolume);
   2037 		return 0;
   2038 	case SB_CD_VOL:
   2039 		dip->type = AUDIO_MIXER_VALUE;
   2040 		dip->mixer_class = class;
   2041 		dip->prev = AUDIO_MIXER_LAST;
   2042 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2043 		strcpy(dip->label.name, AudioNcd);
   2044 		dip->un.v.num_channels = chan;
   2045 		strcpy(dip->un.v.units.name, AudioNvolume);
   2046 		return 0;
   2047 	case SB_VOICE_VOL:
   2048 		dip->type = AUDIO_MIXER_VALUE;
   2049 		dip->mixer_class = class;
   2050 		dip->prev = AUDIO_MIXER_LAST;
   2051 		dip->next = AUDIO_MIXER_LAST;
   2052 		strcpy(dip->label.name, AudioNdac);
   2053 		dip->un.v.num_channels = chan;
   2054 		strcpy(dip->un.v.units.name, AudioNvolume);
   2055 		return 0;
   2056 	case SB_OUTPUT_CLASS:
   2057 		dip->type = AUDIO_MIXER_CLASS;
   2058 		dip->mixer_class = SB_OUTPUT_CLASS;
   2059 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2060 		strcpy(dip->label.name, AudioCoutputs);
   2061 		return 0;
   2062 	}
   2063 
   2064 	if (sc->sc_mixer_model == SBM_CT1335)
   2065 		return ENXIO;
   2066 
   2067 	switch (dip->index) {
   2068 	case SB_MIC_VOL:
   2069 		dip->type = AUDIO_MIXER_VALUE;
   2070 		dip->mixer_class = class;
   2071 		dip->prev = AUDIO_MIXER_LAST;
   2072 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2073 		strcpy(dip->label.name, AudioNmicrophone);
   2074 		dip->un.v.num_channels = 1;
   2075 		strcpy(dip->un.v.units.name, AudioNvolume);
   2076 		return 0;
   2077 
   2078 	case SB_LINE_IN_VOL:
   2079 		dip->type = AUDIO_MIXER_VALUE;
   2080 		dip->mixer_class = class;
   2081 		dip->prev = AUDIO_MIXER_LAST;
   2082 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2083 		strcpy(dip->label.name, AudioNline);
   2084 		dip->un.v.num_channels = 2;
   2085 		strcpy(dip->un.v.units.name, AudioNvolume);
   2086 		return 0;
   2087 
   2088 	case SB_RECORD_SOURCE:
   2089 		dip->mixer_class = SB_RECORD_CLASS;
   2090 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2091 		strcpy(dip->label.name, AudioNsource);
   2092 		if (ISSBM1745(sc)) {
   2093 			dip->type = AUDIO_MIXER_SET;
   2094 			dip->un.s.num_mem = 4;
   2095 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2096 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2097 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2098 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2099 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2100 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2101 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2102 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2103 		} else {
   2104 			dip->type = AUDIO_MIXER_ENUM;
   2105 			dip->un.e.num_mem = 3;
   2106 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2107 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2108 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2109 			dip->un.e.member[1].ord = SB_CD_VOL;
   2110 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2111 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2112 		}
   2113 		return 0;
   2114 
   2115 	case SB_BASS:
   2116 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2117 		strcpy(dip->label.name, AudioNbass);
   2118 		if (sc->sc_mixer_model == SBM_CT1745) {
   2119 			dip->type = AUDIO_MIXER_VALUE;
   2120 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2121 			dip->un.v.num_channels = 2;
   2122 			strcpy(dip->un.v.units.name, AudioNbass);
   2123 		} else {
   2124 			dip->type = AUDIO_MIXER_ENUM;
   2125 			dip->mixer_class = SB_INPUT_CLASS;
   2126 			dip->un.e.num_mem = 2;
   2127 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2128 			dip->un.e.member[0].ord = 0;
   2129 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2130 			dip->un.e.member[1].ord = 1;
   2131 		}
   2132 		return 0;
   2133 
   2134 	case SB_TREBLE:
   2135 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2136 		strcpy(dip->label.name, AudioNtreble);
   2137 		if (sc->sc_mixer_model == SBM_CT1745) {
   2138 			dip->type = AUDIO_MIXER_VALUE;
   2139 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2140 			dip->un.v.num_channels = 2;
   2141 			strcpy(dip->un.v.units.name, AudioNtreble);
   2142 		} else {
   2143 			dip->type = AUDIO_MIXER_ENUM;
   2144 			dip->mixer_class = SB_INPUT_CLASS;
   2145 			dip->un.e.num_mem = 2;
   2146 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2147 			dip->un.e.member[0].ord = 0;
   2148 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2149 			dip->un.e.member[1].ord = 1;
   2150 		}
   2151 		return 0;
   2152 
   2153 	case SB_RECORD_CLASS:			/* record source class */
   2154 		dip->type = AUDIO_MIXER_CLASS;
   2155 		dip->mixer_class = SB_RECORD_CLASS;
   2156 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2157 		strcpy(dip->label.name, AudioCrecord);
   2158 		return 0;
   2159 
   2160 	case SB_INPUT_CLASS:
   2161 		dip->type = AUDIO_MIXER_CLASS;
   2162 		dip->mixer_class = SB_INPUT_CLASS;
   2163 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2164 		strcpy(dip->label.name, AudioCinputs);
   2165 		return 0;
   2166 
   2167 	}
   2168 
   2169 	if (sc->sc_mixer_model == SBM_CT1345)
   2170 		return ENXIO;
   2171 
   2172 	switch(dip->index) {
   2173 	case SB_PCSPEAKER:
   2174 		dip->type = AUDIO_MIXER_VALUE;
   2175 		dip->mixer_class = SB_INPUT_CLASS;
   2176 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2177 		strcpy(dip->label.name, "pc_speaker");
   2178 		dip->un.v.num_channels = 1;
   2179 		strcpy(dip->un.v.units.name, AudioNvolume);
   2180 		return 0;
   2181 
   2182 	case SB_INPUT_GAIN:
   2183 		dip->type = AUDIO_MIXER_VALUE;
   2184 		dip->mixer_class = SB_INPUT_CLASS;
   2185 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2186 		strcpy(dip->label.name, AudioNinput);
   2187 		dip->un.v.num_channels = 2;
   2188 		strcpy(dip->un.v.units.name, AudioNvolume);
   2189 		return 0;
   2190 
   2191 	case SB_OUTPUT_GAIN:
   2192 		dip->type = AUDIO_MIXER_VALUE;
   2193 		dip->mixer_class = SB_OUTPUT_CLASS;
   2194 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2195 		strcpy(dip->label.name, AudioNoutput);
   2196 		dip->un.v.num_channels = 2;
   2197 		strcpy(dip->un.v.units.name, AudioNvolume);
   2198 		return 0;
   2199 
   2200 	case SB_AGC:
   2201 		dip->type = AUDIO_MIXER_ENUM;
   2202 		dip->mixer_class = SB_INPUT_CLASS;
   2203 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2204 		strcpy(dip->label.name, "agc");
   2205 		dip->un.e.num_mem = 2;
   2206 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2207 		dip->un.e.member[0].ord = 0;
   2208 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2209 		dip->un.e.member[1].ord = 1;
   2210 		return 0;
   2211 
   2212 	case SB_EQUALIZATION_CLASS:
   2213 		dip->type = AUDIO_MIXER_CLASS;
   2214 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2215 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2216 		strcpy(dip->label.name, AudioCequalization);
   2217 		return 0;
   2218 
   2219 	case SB_CD_IN_MUTE:
   2220 		dip->prev = SB_CD_VOL;
   2221 		dip->next = SB_CD_SWAP;
   2222 		dip->mixer_class = SB_INPUT_CLASS;
   2223 		goto mute;
   2224 
   2225 	case SB_MIC_IN_MUTE:
   2226 		dip->prev = SB_MIC_VOL;
   2227 		dip->next = SB_MIC_SWAP;
   2228 		dip->mixer_class = SB_INPUT_CLASS;
   2229 		goto mute;
   2230 
   2231 	case SB_LINE_IN_MUTE:
   2232 		dip->prev = SB_LINE_IN_VOL;
   2233 		dip->next = SB_LINE_SWAP;
   2234 		dip->mixer_class = SB_INPUT_CLASS;
   2235 		goto mute;
   2236 
   2237 	case SB_MIDI_IN_MUTE:
   2238 		dip->prev = SB_MIDI_VOL;
   2239 		dip->next = SB_MIDI_SWAP;
   2240 		dip->mixer_class = SB_INPUT_CLASS;
   2241 		goto mute;
   2242 
   2243 	case SB_CD_SWAP:
   2244 		dip->prev = SB_CD_IN_MUTE;
   2245 		dip->next = SB_CD_OUT_MUTE;
   2246 		goto swap;
   2247 
   2248 	case SB_MIC_SWAP:
   2249 		dip->prev = SB_MIC_IN_MUTE;
   2250 		dip->next = SB_MIC_OUT_MUTE;
   2251 		goto swap;
   2252 
   2253 	case SB_LINE_SWAP:
   2254 		dip->prev = SB_LINE_IN_MUTE;
   2255 		dip->next = SB_LINE_OUT_MUTE;
   2256 		goto swap;
   2257 
   2258 	case SB_MIDI_SWAP:
   2259 		dip->prev = SB_MIDI_IN_MUTE;
   2260 		dip->next = AUDIO_MIXER_LAST;
   2261 	swap:
   2262 		dip->mixer_class = SB_INPUT_CLASS;
   2263 		strcpy(dip->label.name, AudioNswap);
   2264 		goto mute1;
   2265 
   2266 	case SB_CD_OUT_MUTE:
   2267 		dip->prev = SB_CD_SWAP;
   2268 		dip->next = AUDIO_MIXER_LAST;
   2269 		dip->mixer_class = SB_OUTPUT_CLASS;
   2270 		goto mute;
   2271 
   2272 	case SB_MIC_OUT_MUTE:
   2273 		dip->prev = SB_MIC_SWAP;
   2274 		dip->next = AUDIO_MIXER_LAST;
   2275 		dip->mixer_class = SB_OUTPUT_CLASS;
   2276 		goto mute;
   2277 
   2278 	case SB_LINE_OUT_MUTE:
   2279 		dip->prev = SB_LINE_SWAP;
   2280 		dip->next = AUDIO_MIXER_LAST;
   2281 		dip->mixer_class = SB_OUTPUT_CLASS;
   2282 	mute:
   2283 		strcpy(dip->label.name, AudioNmute);
   2284 	mute1:
   2285 		dip->type = AUDIO_MIXER_ENUM;
   2286 		dip->un.e.num_mem = 2;
   2287 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2288 		dip->un.e.member[0].ord = 0;
   2289 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2290 		dip->un.e.member[1].ord = 1;
   2291 		return 0;
   2292 
   2293 	}
   2294 
   2295 	return ENXIO;
   2296 }
   2297 
   2298 void *
   2299 sb_malloc(addr, direction, size, pool, flags)
   2300 	void *addr;
   2301 	int direction;
   2302 	size_t size;
   2303 	struct malloc_type *pool;
   2304 	int flags;
   2305 {
   2306 	struct sbdsp_softc *sc = addr;
   2307 	int drq;
   2308 
   2309 	if (sc->sc_drq8 != -1)
   2310 		drq = sc->sc_drq8;
   2311 	else
   2312 		drq = sc->sc_drq16;
   2313 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2314 }
   2315 
   2316 void
   2317 sb_free(addr, ptr, pool)
   2318 	void *addr;
   2319 	void *ptr;
   2320 	struct malloc_type *pool;
   2321 {
   2322 	isa_free(ptr, pool);
   2323 }
   2324 
   2325 size_t
   2326 sb_round_buffersize(addr, direction, size)
   2327 	void *addr;
   2328 	int direction;
   2329 	size_t size;
   2330 {
   2331 	struct sbdsp_softc *sc = addr;
   2332 	bus_size_t maxsize;
   2333 
   2334 	if (sc->sc_drq8 != -1)
   2335 		maxsize = sc->sc_drq8_maxsize;
   2336 	else
   2337 		maxsize = sc->sc_drq16_maxsize;
   2338 
   2339 	if (size > maxsize)
   2340 		size = maxsize;
   2341 	return (size);
   2342 }
   2343 
   2344 paddr_t
   2345 sb_mappage(addr, mem, off, prot)
   2346 	void *addr;
   2347 	void *mem;
   2348 	off_t off;
   2349 	int prot;
   2350 {
   2351 	return isa_mappage(mem, off, prot);
   2352 }
   2353 
   2354 int
   2355 sbdsp_get_props(addr)
   2356 	void *addr;
   2357 {
   2358 	struct sbdsp_softc *sc = addr;
   2359 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2360 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2361 }
   2362 
   2363 #if NMPU > 0
   2364 /*
   2365  * MIDI related routines.
   2366  */
   2367 
   2368 int
   2369 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2370 	void *addr;
   2371 	int flags;
   2372 	void (*iintr)__P((void *, int));
   2373 	void (*ointr)__P((void *));
   2374 	void *arg;
   2375 {
   2376 	struct sbdsp_softc *sc = addr;
   2377 
   2378 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2379 
   2380 	if (sc->sc_open != SB_CLOSED)
   2381 		return EBUSY;
   2382 	if (sbdsp_reset(sc) != 0)
   2383 		return EIO;
   2384 
   2385 	sc->sc_open = SB_OPEN_MIDI;
   2386 
   2387 	if (sc->sc_model >= SB_20)
   2388 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2389 			return EIO;
   2390 
   2391 	sc->sc_intr8 = sbdsp_midi_intr;
   2392 	sc->sc_intrm = iintr;
   2393 	sc->sc_argm = arg;
   2394 
   2395 	return 0;
   2396 }
   2397 
   2398 void
   2399 sbdsp_midi_close(addr)
   2400 	void *addr;
   2401 {
   2402 	struct sbdsp_softc *sc = addr;
   2403 
   2404 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2405 
   2406 	if (sc->sc_model >= SB_20)
   2407 		sbdsp_reset(sc); /* exit UART mode */
   2408 
   2409 	sc->sc_intrm = 0;
   2410 	sc->sc_open = SB_CLOSED;
   2411 }
   2412 
   2413 int
   2414 sbdsp_midi_output(addr, d)
   2415 	void *addr;
   2416 	int d;
   2417 {
   2418 	struct sbdsp_softc *sc = addr;
   2419 
   2420 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2421 		return EIO;
   2422 	if (sbdsp_wdsp(sc, d))
   2423 		return EIO;
   2424 	return 0;
   2425 }
   2426 
   2427 void
   2428 sbdsp_midi_getinfo(addr, mi)
   2429 	void *addr;
   2430 	struct midi_info *mi;
   2431 {
   2432 	struct sbdsp_softc *sc = addr;
   2433 
   2434 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2435 	mi->props = MIDI_PROP_CAN_INPUT;
   2436 }
   2437 
   2438 int
   2439 sbdsp_midi_intr(addr)
   2440 	void *addr;
   2441 {
   2442 	struct sbdsp_softc *sc = addr;
   2443 
   2444 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2445 	return (0);
   2446 }
   2447 
   2448 #endif
   2449 
   2450