sbdsp.c revision 1.124 1 /* $NetBSD: sbdsp.c,v 1.124 2006/09/24 03:53:08 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.124 2006/09/24 03:53:08 jmcneill Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 kHz 4 kHz
154 * input ls max 23 kHz 13 kHz
155 * input hs max 44.1 kHz 15 kHz
156 * output ls min 4 kHz 4 kHz
157 * output ls max 23 kHz 23 kHz
158 * output hs max 44.1 kHz 44.1 kHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
195 { .model = -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
215 { .model = -1 }
216 };
217
218 void sbversion(struct sbdsp_softc *);
219 void sbdsp_jazz16_probe(struct sbdsp_softc *);
220 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
221 void sbdsp_pause(struct sbdsp_softc *);
222 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
223 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
224 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
225 void sbdsp_set_ifilter(void *, int);
226 int sbdsp_get_ifilter(void *);
227
228 int sbdsp_block_output(void *);
229 int sbdsp_block_input(void *);
230 static int sbdsp_adjust(int, int);
231
232 int sbdsp_midi_intr(void *);
233
234 static void sbdsp_powerhook(int, void*);
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc(struct sbdsp_softc *);
238
239 void
240 sb_printsc(struct sbdsp_softc *sc)
241 {
242 int i;
243
244 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
245 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
246 sc->sc_drq8, sc->sc_drq16,
247 sc->sc_iobase, sc->sc_irq);
248 printf("irate %d itc %x orate %d otc %x\n",
249 sc->sc_i.rate, sc->sc_i.tc,
250 sc->sc_o.rate, sc->sc_o.tc);
251 printf("spkron %u nintr %lu\n",
252 sc->spkr_state, sc->sc_interrupts);
253 printf("intr8 %p intr16 %p\n",
254 sc->sc_intr8, sc->sc_intr16);
255 printf("gain:");
256 for (i = 0; i < SB_NDEVS; i++)
257 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
258 printf("\n");
259 }
260 #endif /* AUDIO_DEBUG */
261
262 /*
263 * Probe / attach routines.
264 */
265
266 /*
267 * Probe for the soundblaster hardware.
268 */
269 int
270 sbdsp_probe(struct sbdsp_softc *sc)
271 {
272
273 if (sbdsp_reset(sc) < 0) {
274 DPRINTF(("sbdsp: couldn't reset card\n"));
275 return 0;
276 }
277 /* if flags set, go and probe the jazz16 stuff */
278 if (device_cfdata(&sc->sc_dev)->cf_flags & 1)
279 sbdsp_jazz16_probe(sc);
280 else
281 sbversion(sc);
282 if (sc->sc_model == SB_UNK) {
283 /* Unknown SB model found. */
284 DPRINTF(("sbdsp: unknown SB model found\n"));
285 return 0;
286 }
287 return 1;
288 }
289
290 /*
291 * Try add-on stuff for Jazz16.
292 */
293 void
294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
295 {
296 static u_char jazz16_irq_conf[16] = {
297 -1, -1, 0x02, 0x03,
298 -1, 0x01, -1, 0x04,
299 -1, 0x02, 0x05, -1,
300 -1, -1, -1, 0x06};
301 static u_char jazz16_drq_conf[8] = {
302 -1, 0x01, -1, 0x02,
303 -1, 0x03, -1, 0x04};
304
305 bus_space_tag_t iot;
306 bus_space_handle_t ioh;
307
308 iot = sc->sc_iot;
309 sbversion(sc);
310
311 DPRINTF(("jazz16 probe\n"));
312
313 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
314 DPRINTF(("bus map failed\n"));
315 return;
316 }
317
318 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
319 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
320 DPRINTF(("drq/irq check failed\n"));
321 goto done; /* give up, we can't do it. */
322 }
323
324 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
325 delay(10000); /* delay 10 ms */
326 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
327 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
328
329 if (sbdsp_reset(sc) < 0) {
330 DPRINTF(("sbdsp_reset check failed\n"));
331 goto done; /* XXX? what else could we do? */
332 }
333
334 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
335 DPRINTF(("read16 setup failed\n"));
336 goto done;
337 }
338
339 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
340 DPRINTF(("read16 failed\n"));
341 goto done;
342 }
343
344 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
345 sc->sc_drq16 = sc->sc_drq8;
346 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
347 (sc->sc_drq16 >= 0 &&
348 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
349 jazz16_drq_conf[sc->sc_drq8])) ||
350 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
351 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
352 } else {
353 DPRINTF(("jazz16 detected!\n"));
354 sc->sc_model = SB_JAZZ;
355 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
356 }
357
358 done:
359 bus_space_unmap(iot, ioh, 1);
360 }
361
362 /*
363 * Attach hardware to driver, attach hardware driver to audio
364 * pseudo-device driver .
365 */
366 void
367 sbdsp_attach(struct sbdsp_softc *sc)
368 {
369 int i, error;
370 u_int v;
371
372 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
373
374 if (sc->sc_mixer_model != SBM_NONE) {
375 /* Reset the mixer.*/
376 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
377 /* And set our own default values */
378 for (i = 0; i < SB_NDEVS; i++) {
379 switch(i) {
380 case SB_MIC_VOL:
381 case SB_LINE_IN_VOL:
382 v = 0;
383 break;
384 case SB_BASS:
385 case SB_TREBLE:
386 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
387 break;
388 case SB_CD_IN_MUTE:
389 case SB_MIC_IN_MUTE:
390 case SB_LINE_IN_MUTE:
391 case SB_MIDI_IN_MUTE:
392 case SB_CD_SWAP:
393 case SB_MIC_SWAP:
394 case SB_LINE_SWAP:
395 case SB_MIDI_SWAP:
396 case SB_CD_OUT_MUTE:
397 case SB_MIC_OUT_MUTE:
398 case SB_LINE_OUT_MUTE:
399 v = 0;
400 break;
401 default:
402 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
403 break;
404 }
405 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
406 sbdsp_set_mixer_gain(sc, i);
407 }
408 sc->in_filter = 0; /* no filters turned on, please */
409 }
410
411 printf(": dsp v%d.%02d%s\n",
412 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414
415 sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 sc->sc_drq8 != sc->sc_drq16;
418
419 if (sc->sc_drq8 != -1) {
420 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 sc->sc_drq8);
422 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
424 if (error) {
425 printf("%s: can't create map for drq %d\n",
426 sc->sc_dev.dv_xname, sc->sc_drq8);
427 return;
428 }
429 }
430
431 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 sc->sc_drq16);
434 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
436 if (error) {
437 printf("%s: can't create map for drq %d\n",
438 sc->sc_dev.dv_xname, sc->sc_drq16);
439 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 return;
441 }
442 }
443
444 powerhook_establish(sc->sc_dev.dv_xname, sbdsp_powerhook, sc);
445 }
446
447 static void
448 sbdsp_powerhook(int why, void *arg)
449 {
450 struct sbdsp_softc *sc;
451 int i;
452
453 sc = arg;
454 if (!sc || why != PWR_RESUME)
455 return;
456
457 /* Reset the mixer. */
458 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
459 for (i = 0; i < SB_NDEVS; i++)
460 sbdsp_set_mixer_gain (sc, i);
461 }
462
463 void
464 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
465 {
466 bus_space_tag_t iot;
467 bus_space_handle_t ioh;
468 int s;
469
470 iot = sc->sc_iot;
471 ioh = sc->sc_ioh;
472 s = splaudio();
473 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
474 delay(20);
475 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
476 delay(30);
477 splx(s);
478 }
479
480 int
481 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
482 {
483 bus_space_tag_t iot;
484 bus_space_handle_t ioh;
485 int val;
486 int s;
487
488 iot = sc->sc_iot;
489 ioh = sc->sc_ioh;
490 s = splaudio();
491 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
492 delay(20);
493 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
494 delay(30);
495 splx(s);
496 return val;
497 }
498
499 /*
500 * Various routines to interface to higher level audio driver
501 */
502
503 int
504 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
505 {
506 struct sbdsp_softc *sc;
507 int emul;
508
509 sc = addr;
510 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
511
512 switch (fp->index) {
513 case 0:
514 strcpy(fp->name, AudioEulinear);
515 fp->encoding = AUDIO_ENCODING_ULINEAR;
516 fp->precision = 8;
517 fp->flags = 0;
518 return 0;
519 case 1:
520 strcpy(fp->name, AudioEmulaw);
521 fp->encoding = AUDIO_ENCODING_ULAW;
522 fp->precision = 8;
523 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 return 0;
525 case 2:
526 strcpy(fp->name, AudioEalaw);
527 fp->encoding = AUDIO_ENCODING_ALAW;
528 fp->precision = 8;
529 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
530 return 0;
531 case 3:
532 strcpy(fp->name, AudioEslinear);
533 fp->encoding = AUDIO_ENCODING_SLINEAR;
534 fp->precision = 8;
535 fp->flags = emul;
536 return 0;
537 }
538 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
539 return EINVAL;
540
541 switch(fp->index) {
542 case 4:
543 strcpy(fp->name, AudioEslinear_le);
544 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
545 fp->precision = 16;
546 fp->flags = 0;
547 return 0;
548 case 5:
549 strcpy(fp->name, AudioEulinear_le);
550 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
551 fp->precision = 16;
552 fp->flags = emul;
553 return 0;
554 case 6:
555 strcpy(fp->name, AudioEslinear_be);
556 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
557 fp->precision = 16;
558 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
559 return 0;
560 case 7:
561 strcpy(fp->name, AudioEulinear_be);
562 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
563 fp->precision = 16;
564 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
565 return 0;
566 default:
567 return EINVAL;
568 }
569 return 0;
570 }
571
572 int
573 sbdsp_set_params(
574 void *addr,
575 int setmode, int usemode,
576 audio_params_t *play, audio_params_t *rec,
577 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
578 {
579 struct sbdsp_softc *sc;
580 struct sbmode *m;
581 u_int rate, tc, bmode;
582 stream_filter_factory_t *swcode;
583 int model;
584 int chan;
585 struct audio_params *p;
586 audio_params_t hw;
587 stream_filter_list_t *fil;
588 int mode;
589
590 sc = addr;
591 if (sc->sc_open == SB_OPEN_MIDI)
592 return EBUSY;
593
594 /* Later models work like SB16. */
595 model = min(sc->sc_model, SB_16);
596
597 /*
598 * Prior to the SB16, we have only one clock, so make the sample
599 * rates match.
600 */
601 if (!ISSB16CLASS(sc) &&
602 play->sample_rate != rec->sample_rate &&
603 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
604 if (setmode == AUMODE_PLAY) {
605 rec->sample_rate = play->sample_rate;
606 setmode |= AUMODE_RECORD;
607 } else if (setmode == AUMODE_RECORD) {
608 play->sample_rate = rec->sample_rate;
609 setmode |= AUMODE_PLAY;
610 } else
611 return EINVAL;
612 }
613
614 /* Set first record info, then play info */
615 for (mode = AUMODE_RECORD; mode != -1;
616 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
617 if ((setmode & mode) == 0)
618 continue;
619
620 p = mode == AUMODE_PLAY ? play : rec;
621 /* Locate proper commands */
622 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
623 m->model != -1; m++) {
624 if (model == m->model &&
625 p->channels == m->channels &&
626 p->precision == m->precision &&
627 p->sample_rate >= m->lowrate &&
628 p->sample_rate <= m->highrate)
629 break;
630 }
631 if (m->model == -1)
632 return EINVAL;
633 rate = p->sample_rate;
634 swcode = NULL;
635 fil = mode == AUMODE_PLAY ? pfil : rfil;
636 hw = *p;
637 tc = 1;
638 bmode = -1;
639 if (model == SB_16) {
640 switch (p->encoding) {
641 case AUDIO_ENCODING_SLINEAR_BE:
642 if (p->precision == 16) {
643 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
644 swcode = swap_bytes;
645 }
646 /* fall into */
647 case AUDIO_ENCODING_SLINEAR_LE:
648 bmode = SB_BMODE_SIGNED;
649 break;
650
651 case AUDIO_ENCODING_ULINEAR_BE:
652 if (p->precision == 16) {
653 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
654 swcode = swap_bytes;
655 }
656 /* fall into */
657 case AUDIO_ENCODING_ULINEAR_LE:
658 bmode = SB_BMODE_UNSIGNED;
659 break;
660
661 case AUDIO_ENCODING_ULAW:
662 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
663 if (mode == AUMODE_PLAY) {
664 hw.precision = hw.validbits = 16;
665 swcode = mulaw_to_linear16;
666 m = &sbpmodes[PLAY16];
667 } else
668 swcode = linear8_to_mulaw;
669 bmode = SB_BMODE_UNSIGNED;
670 break;
671
672 case AUDIO_ENCODING_ALAW:
673 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
674 if (mode == AUMODE_PLAY) {
675 hw.precision = hw.validbits = 16;
676 swcode = alaw_to_linear16;
677 m = &sbpmodes[PLAY16];
678 } else
679 swcode = linear8_to_alaw;
680 bmode = SB_BMODE_UNSIGNED;
681 break;
682 default:
683 return EINVAL;
684 }
685 if (p->channels == 2)
686 bmode |= SB_BMODE_STEREO;
687 } else if (m->model == SB_JAZZ && m->precision == 16) {
688 switch (p->encoding) {
689 case AUDIO_ENCODING_SLINEAR_LE:
690 break;
691 case AUDIO_ENCODING_ULINEAR_LE:
692 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
693 swcode = change_sign16;
694 break;
695 case AUDIO_ENCODING_SLINEAR_BE:
696 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
697 swcode = swap_bytes;
698 break;
699 case AUDIO_ENCODING_ULINEAR_BE:
700 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
701 swcode = swap_bytes_change_sign16;
702 break;
703 case AUDIO_ENCODING_ULAW:
704 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
705 swcode = mode == AUMODE_PLAY ?
706 mulaw_to_linear8 : linear8_to_mulaw;
707 break;
708 case AUDIO_ENCODING_ALAW:
709 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
710 swcode = mode == AUMODE_PLAY ?
711 alaw_to_linear8 : linear8_to_alaw;
712 break;
713 default:
714 return EINVAL;
715 }
716 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
717 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
718 hw.sample_rate = p->sample_rate;
719 } else {
720 switch (p->encoding) {
721 case AUDIO_ENCODING_SLINEAR_BE:
722 case AUDIO_ENCODING_SLINEAR_LE:
723 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
724 swcode = change_sign8;
725 break;
726 case AUDIO_ENCODING_ULINEAR_BE:
727 case AUDIO_ENCODING_ULINEAR_LE:
728 break;
729 case AUDIO_ENCODING_ULAW:
730 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
731 swcode = mode == AUMODE_PLAY ?
732 mulaw_to_linear8 : linear8_to_mulaw;
733 break;
734 case AUDIO_ENCODING_ALAW:
735 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
736 swcode = mode == AUMODE_PLAY ?
737 alaw_to_linear8 : linear8_to_alaw;
738 break;
739 default:
740 return EINVAL;
741 }
742 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
743 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
744 hw.sample_rate = p->sample_rate;
745 }
746
747 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
748 if (mode == AUMODE_PLAY) {
749 sc->sc_o.rate = rate;
750 sc->sc_o.tc = tc;
751 sc->sc_o.modep = m;
752 sc->sc_o.bmode = bmode;
753 sc->sc_o.dmachan = chan;
754 } else {
755 sc->sc_i.rate = rate;
756 sc->sc_i.tc = tc;
757 sc->sc_i.modep = m;
758 sc->sc_i.bmode = bmode;
759 sc->sc_i.dmachan = chan;
760 }
761
762 if (swcode != NULL)
763 fil->append(fil, swcode, &hw);
764 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
765 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
766 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
767 p->sample_rate, p->precision, p->channels,
768 p->encoding, tc, m->cmd, bmode, m->cmdchan));
769
770 }
771
772 if (sc->sc_fullduplex &&
773 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
774 sc->sc_i.dmachan == sc->sc_o.dmachan) {
775 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
776 "odma=%d\n", sc->sc_fullduplex, usemode,
777 sc->sc_i.dmachan, sc->sc_o.dmachan));
778 if (sc->sc_o.dmachan == sc->sc_drq8) {
779 /* Use 16 bit DMA for playing by expanding the samples. */
780 hw.precision = hw.validbits = 16;
781 pfil->append(pfil, linear8_to_linear16, &hw);
782 sc->sc_o.modep = &sbpmodes[PLAY16];
783 sc->sc_o.dmachan = sc->sc_drq16;
784 } else {
785 return EINVAL;
786 }
787 }
788 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
789 sc->sc_i.dmachan, sc->sc_o.dmachan));
790
791 return 0;
792 }
793
794 void
795 sbdsp_set_ifilter(void *addr, int which)
796 {
797 struct sbdsp_softc *sc;
798 int mixval;
799
800 sc = addr;
801 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
802 switch (which) {
803 case 0:
804 mixval |= SBP_FILTER_OFF;
805 break;
806 case SB_TREBLE:
807 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
808 break;
809 case SB_BASS:
810 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
811 break;
812 default:
813 return;
814 }
815 sc->in_filter = mixval & SBP_IFILTER_MASK;
816 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
817 }
818
819 int
820 sbdsp_get_ifilter(void *addr)
821 {
822 struct sbdsp_softc *sc;
823
824 sc = addr;
825 sc->in_filter =
826 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
827 switch (sc->in_filter) {
828 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
829 return SB_TREBLE;
830 case SBP_FILTER_ON|SBP_IFILTER_LOW:
831 return SB_BASS;
832 default:
833 return 0;
834 }
835 }
836
837 int
838 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
839 {
840 int bitsl, bitsr;
841 int sbport;
842
843 if (sc->sc_open == SB_OPEN_MIDI)
844 return EBUSY;
845
846 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
847 sc->sc_mixer_model, mask));
848
849 switch(sc->sc_mixer_model) {
850 case SBM_NONE:
851 return EINVAL;
852 case SBM_CT1335:
853 if (mask != (1 << SB_MIC_VOL))
854 return EINVAL;
855 break;
856 case SBM_CT1345:
857 switch (mask) {
858 case 1 << SB_MIC_VOL:
859 sbport = SBP_FROM_MIC;
860 break;
861 case 1 << SB_LINE_IN_VOL:
862 sbport = SBP_FROM_LINE;
863 break;
864 case 1 << SB_CD_VOL:
865 sbport = SBP_FROM_CD;
866 break;
867 default:
868 return EINVAL;
869 }
870 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
871 break;
872 case SBM_CT1XX5:
873 case SBM_CT1745:
874 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
875 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
876 return EINVAL;
877 bitsr = 0;
878 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
879 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
880 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
881 bitsl = SB_SRC_R_TO_L(bitsr);
882 if (mask & (1<<SB_MIC_VOL)) {
883 bitsl |= SBP_MIC_SRC;
884 bitsr |= SBP_MIC_SRC;
885 }
886 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
887 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
888 break;
889 }
890 sc->in_mask = mask;
891
892 return 0;
893 }
894
895 int
896 sbdsp_speaker_ctl(void *addr, int newstate)
897 {
898 struct sbdsp_softc *sc;
899
900 sc = addr;
901 if (sc->sc_open == SB_OPEN_MIDI)
902 return EBUSY;
903
904 if ((newstate == SPKR_ON) &&
905 (sc->spkr_state == SPKR_OFF)) {
906 sbdsp_spkron(sc);
907 sc->spkr_state = SPKR_ON;
908 }
909 if ((newstate == SPKR_OFF) &&
910 (sc->spkr_state == SPKR_ON)) {
911 sbdsp_spkroff(sc);
912 sc->spkr_state = SPKR_OFF;
913 }
914 return 0;
915 }
916
917 int
918 sbdsp_round_blocksize(
919 void *addr,
920 int blk,
921 int mode,
922 const audio_params_t *param)
923 {
924 return blk & -4; /* round to biggest sample size */
925 }
926
927 int
928 sbdsp_open(void *addr, int flags)
929 {
930 struct sbdsp_softc *sc;
931 int error, state;
932
933 sc = addr;
934 DPRINTF(("sbdsp_open: sc=%p\n", sc));
935
936 if (sc->sc_open != SB_CLOSED)
937 return EBUSY;
938 sc->sc_open = SB_OPEN_AUDIO;
939 state = 0;
940
941 if (sc->sc_drq8 != -1) {
942 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
943 if (error != 0)
944 goto bad;
945 state |= 1;
946 }
947
948 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
949 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
950 if (error != 0)
951 goto bad;
952 state |= 2;
953 }
954
955
956 if (sbdsp_reset(sc) != 0) {
957 error = EIO;
958 goto bad;
959 }
960
961 if (ISSBPRO(sc) &&
962 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
963 DPRINTF(("sbdsp_open: can't set mono mode\n"));
964 /* we'll readjust when it's time for DMA. */
965 }
966
967 /*
968 * Leave most things as they were; users must change things if
969 * the previous process didn't leave it they way they wanted.
970 * Looked at another way, it's easy to set up a configuration
971 * in one program and leave it for another to inherit.
972 */
973 DPRINTF(("sbdsp_open: opened\n"));
974
975 return 0;
976
977 bad:
978 if (state & 1)
979 isa_drq_free(sc->sc_ic, sc->sc_drq8);
980 if (state & 2)
981 isa_drq_free(sc->sc_ic, sc->sc_drq16);
982
983 sc->sc_open = SB_CLOSED;
984 return error;
985 }
986
987 void
988 sbdsp_close(void *addr)
989 {
990 struct sbdsp_softc *sc;
991
992 sc = addr;
993 DPRINTF(("sbdsp_close: sc=%p\n", sc));
994
995 sbdsp_spkroff(sc);
996 sc->spkr_state = SPKR_OFF;
997
998 sc->sc_intr8 = 0;
999 sc->sc_intr16 = 0;
1000
1001 if (sc->sc_drq8 != -1)
1002 isa_drq_free(sc->sc_ic, sc->sc_drq8);
1003 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1004 isa_drq_free(sc->sc_ic, sc->sc_drq16);
1005
1006 sc->sc_open = SB_CLOSED;
1007 DPRINTF(("sbdsp_close: closed\n"));
1008 }
1009
1010 /*
1011 * Lower-level routines
1012 */
1013
1014 /*
1015 * Reset the card.
1016 * Return non-zero if the card isn't detected.
1017 */
1018 int
1019 sbdsp_reset(struct sbdsp_softc *sc)
1020 {
1021 bus_space_tag_t iot;
1022 bus_space_handle_t ioh;
1023
1024 iot = sc->sc_iot;
1025 ioh = sc->sc_ioh;
1026 sc->sc_intr8 = 0;
1027 sc->sc_intr16 = 0;
1028 sc->sc_intrm = 0;
1029
1030 /*
1031 * See SBK, section 11.3.
1032 * We pulse a reset signal into the card.
1033 * Gee, what a brilliant hardware design.
1034 */
1035 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1036 delay(10);
1037 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1038 delay(30);
1039 if (sbdsp_rdsp(sc) != SB_MAGIC)
1040 return -1;
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * Write a byte to the dsp.
1047 * We are at the mercy of the card as we use a
1048 * polling loop and wait until it can take the byte.
1049 */
1050 int
1051 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1052 {
1053 bus_space_tag_t iot;
1054 bus_space_handle_t ioh;
1055 int i;
1056 u_char x;
1057
1058 iot = sc->sc_iot;
1059 ioh = sc->sc_ioh;
1060 for (i = SBDSP_NPOLL; --i >= 0; ) {
1061 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1062 delay(10);
1063 if ((x & SB_DSP_BUSY) == 0) {
1064 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1065 delay(10);
1066 return 0;
1067 }
1068 }
1069 ++sberr.wdsp;
1070 return -1;
1071 }
1072
1073 /*
1074 * Read a byte from the DSP, using polling.
1075 */
1076 int
1077 sbdsp_rdsp(struct sbdsp_softc *sc)
1078 {
1079 bus_space_tag_t iot;
1080 bus_space_handle_t ioh;
1081 int i;
1082 u_char x;
1083
1084 iot = sc->sc_iot;
1085 ioh = sc->sc_ioh;
1086 for (i = SBDSP_NPOLL; --i >= 0; ) {
1087 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1088 delay(10);
1089 if (x & SB_DSP_READY) {
1090 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1091 delay(10);
1092 return x;
1093 }
1094 }
1095 ++sberr.rdsp;
1096 return -1;
1097 }
1098
1099 void
1100 sbdsp_pause(struct sbdsp_softc *sc)
1101 {
1102
1103 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1104 }
1105
1106 /*
1107 * Turn on the speaker. The SBK documention says this operation
1108 * can take up to 1/10 of a second. Higher level layers should
1109 * probably let the task sleep for this amount of time after
1110 * calling here. Otherwise, things might not work (because
1111 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1112 *
1113 * These engineers had their heads up their ass when
1114 * they designed this card.
1115 */
1116 void
1117 sbdsp_spkron(struct sbdsp_softc *sc)
1118 {
1119
1120 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1121 sbdsp_pause(sc);
1122 }
1123
1124 /*
1125 * Turn off the speaker; see comment above.
1126 */
1127 void
1128 sbdsp_spkroff(struct sbdsp_softc *sc)
1129 {
1130
1131 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1132 sbdsp_pause(sc);
1133 }
1134
1135 /*
1136 * Read the version number out of the card.
1137 * Store version information in the softc.
1138 */
1139 void
1140 sbversion(struct sbdsp_softc *sc)
1141 {
1142 int v;
1143
1144 sc->sc_model = SB_UNK;
1145 sc->sc_version = 0;
1146 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1147 return;
1148 v = sbdsp_rdsp(sc) << 8;
1149 v |= sbdsp_rdsp(sc);
1150 if (v < 0)
1151 return;
1152 sc->sc_version = v;
1153 switch(SBVER_MAJOR(v)) {
1154 case 1:
1155 sc->sc_mixer_model = SBM_NONE;
1156 sc->sc_model = SB_1;
1157 break;
1158 case 2:
1159 /* Some SB2 have a mixer, some don't. */
1160 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1161 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1162 /* Check if we can read back the mixer values. */
1163 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1164 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1165 sc->sc_mixer_model = SBM_CT1335;
1166 else
1167 sc->sc_mixer_model = SBM_NONE;
1168 if (SBVER_MINOR(v) == 0)
1169 sc->sc_model = SB_20;
1170 else
1171 sc->sc_model = SB_2x;
1172 break;
1173 case 3:
1174 sc->sc_mixer_model = SBM_CT1345;
1175 sc->sc_model = SB_PRO;
1176 break;
1177 case 4:
1178 #if 0
1179 /* XXX This does not work */
1180 /* Most SB16 have a tone controls, but some don't. */
1181 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1182 /* Check if we can read back the mixer value. */
1183 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1184 sc->sc_mixer_model = SBM_CT1745;
1185 else
1186 sc->sc_mixer_model = SBM_CT1XX5;
1187 #else
1188 sc->sc_mixer_model = SBM_CT1745;
1189 #endif
1190 #if 0
1191 /* XXX figure out a good way of determining the model */
1192 /* XXX what about SB_32 */
1193 if (SBVER_MINOR(v) == 16)
1194 sc->sc_model = SB_64;
1195 else
1196 #endif
1197 sc->sc_model = SB_16;
1198 break;
1199 }
1200 }
1201
1202 int
1203 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1204 {
1205
1206 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1207 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1208 sbdsp_wdsp(sc, tc) < 0)
1209 return EIO;
1210 return 0;
1211 }
1212
1213 int
1214 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1215 {
1216
1217 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1218 if (sbdsp_wdsp(sc, cmd) < 0 ||
1219 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1220 sbdsp_wdsp(sc, rate) < 0)
1221 return EIO;
1222 return 0;
1223 }
1224
1225 int
1226 sbdsp_trigger_input(
1227 void *addr,
1228 void *start, void *end,
1229 int blksize,
1230 void (*intr)(void *),
1231 void *arg,
1232 const audio_params_t *param)
1233 {
1234 struct sbdsp_softc *sc;
1235 int stereo;
1236 int width;
1237 int filter;
1238
1239 sc = addr;
1240 stereo = param->channels == 2;
1241 width = param->precision;
1242 #ifdef DIAGNOSTIC
1243 if (stereo && (blksize & 1)) {
1244 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1245 return EIO;
1246 }
1247 if (sc->sc_i.run != SB_NOTRUNNING)
1248 printf("sbdsp_trigger_input: already running\n");
1249 #endif
1250
1251 sc->sc_intrr = intr;
1252 sc->sc_argr = arg;
1253
1254 if (width == 8) {
1255 #ifdef DIAGNOSTIC
1256 if (sc->sc_i.dmachan != sc->sc_drq8) {
1257 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1258 width, sc->sc_i.dmachan);
1259 return EIO;
1260 }
1261 #endif
1262 sc->sc_intr8 = sbdsp_block_input;
1263 } else {
1264 #ifdef DIAGNOSTIC
1265 if (sc->sc_i.dmachan != sc->sc_drq16) {
1266 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1267 width, sc->sc_i.dmachan);
1268 return EIO;
1269 }
1270 #endif
1271 sc->sc_intr16 = sbdsp_block_input;
1272 }
1273
1274 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1275 blksize >>= 1;
1276 --blksize;
1277 sc->sc_i.blksize = blksize;
1278
1279 if (ISSBPRO(sc)) {
1280 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1281 return EIO;
1282 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1283 sbdsp_mix_write(sc, SBP_INFILTER,
1284 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1285 filter);
1286 }
1287
1288 if (ISSB16CLASS(sc)) {
1289 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1290 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1291 sc->sc_i.rate));
1292 return EIO;
1293 }
1294 } else {
1295 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1296 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1297 sc->sc_i.rate));
1298 return EIO;
1299 }
1300 }
1301
1302 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1303 start, end, sc->sc_i.dmachan));
1304 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1305 (char *)end - (char *)start, NULL,
1306 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1307
1308 return sbdsp_block_input(addr);
1309 }
1310
1311 int
1312 sbdsp_block_input(void *addr)
1313 {
1314 struct sbdsp_softc *sc;
1315 int cc;
1316
1317 sc = addr;
1318 cc = sc->sc_i.blksize;
1319 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1320
1321 if (sc->sc_i.run != SB_NOTRUNNING)
1322 sc->sc_intrr(sc->sc_argr);
1323
1324 if (sc->sc_model == SB_1) {
1325 /* Non-looping mode, start DMA */
1326 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1327 sbdsp_wdsp(sc, cc) < 0 ||
1328 sbdsp_wdsp(sc, cc >> 8) < 0) {
1329 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1330 return EIO;
1331 }
1332 sc->sc_i.run = SB_RUNNING;
1333 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1334 /* Initialize looping PCM */
1335 if (ISSB16CLASS(sc)) {
1336 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1337 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1338 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1339 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1340 sbdsp_wdsp(sc, cc) < 0 ||
1341 sbdsp_wdsp(sc, cc >> 8) < 0) {
1342 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1343 return EIO;
1344 }
1345 } else {
1346 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1347 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1348 sbdsp_wdsp(sc, cc) < 0 ||
1349 sbdsp_wdsp(sc, cc >> 8) < 0) {
1350 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1351 return EIO;
1352 }
1353 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1354 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1355 return EIO;
1356 }
1357 }
1358 sc->sc_i.run = SB_LOOPING;
1359 }
1360
1361 return 0;
1362 }
1363
1364 int
1365 sbdsp_trigger_output(
1366 void *addr,
1367 void *start, void *end,
1368 int blksize,
1369 void (*intr)(void *),
1370 void *arg,
1371 const audio_params_t *param)
1372 {
1373 struct sbdsp_softc *sc;
1374 int stereo;
1375 int width;
1376 int cmd;
1377
1378 sc = addr;
1379 stereo = param->channels == 2;
1380 width = param->precision;
1381 #ifdef DIAGNOSTIC
1382 if (stereo && (blksize & 1)) {
1383 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1384 return EIO;
1385 }
1386 if (sc->sc_o.run != SB_NOTRUNNING)
1387 printf("sbdsp_trigger_output: already running\n");
1388 #endif
1389
1390 sc->sc_intrp = intr;
1391 sc->sc_argp = arg;
1392
1393 if (width == 8) {
1394 #ifdef DIAGNOSTIC
1395 if (sc->sc_o.dmachan != sc->sc_drq8) {
1396 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1397 width, sc->sc_o.dmachan);
1398 return EIO;
1399 }
1400 #endif
1401 sc->sc_intr8 = sbdsp_block_output;
1402 } else {
1403 #ifdef DIAGNOSTIC
1404 if (sc->sc_o.dmachan != sc->sc_drq16) {
1405 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1406 width, sc->sc_o.dmachan);
1407 return EIO;
1408 }
1409 #endif
1410 sc->sc_intr16 = sbdsp_block_output;
1411 }
1412
1413 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1414 blksize >>= 1;
1415 --blksize;
1416 sc->sc_o.blksize = blksize;
1417
1418 if (ISSBPRO(sc)) {
1419 /* make sure we re-set stereo mixer bit when we start output. */
1420 sbdsp_mix_write(sc, SBP_STEREO,
1421 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1422 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1423 cmd = sc->sc_o.modep->cmdchan;
1424 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1425 return EIO;
1426 }
1427
1428 if (ISSB16CLASS(sc)) {
1429 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1430 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1431 sc->sc_o.rate));
1432 return EIO;
1433 }
1434 } else {
1435 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1436 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1437 sc->sc_o.rate));
1438 return EIO;
1439 }
1440 }
1441
1442 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1443 start, end, sc->sc_o.dmachan));
1444 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1445 (char *)end - (char *)start, NULL,
1446 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1447
1448 return sbdsp_block_output(addr);
1449 }
1450
1451 int
1452 sbdsp_block_output(void *addr)
1453 {
1454 struct sbdsp_softc *sc;
1455 int cc;
1456
1457 sc = addr;
1458 cc = sc->sc_o.blksize;
1459 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1460
1461 if (sc->sc_o.run != SB_NOTRUNNING)
1462 sc->sc_intrp(sc->sc_argp);
1463
1464 if (sc->sc_model == SB_1) {
1465 /* Non-looping mode, initialized. Start DMA and PCM */
1466 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1467 sbdsp_wdsp(sc, cc) < 0 ||
1468 sbdsp_wdsp(sc, cc >> 8) < 0) {
1469 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1470 return EIO;
1471 }
1472 sc->sc_o.run = SB_RUNNING;
1473 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1474 /* Initialize looping PCM */
1475 if (ISSB16CLASS(sc)) {
1476 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1477 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1478 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1479 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1480 sbdsp_wdsp(sc, cc) < 0 ||
1481 sbdsp_wdsp(sc, cc >> 8) < 0) {
1482 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1483 return EIO;
1484 }
1485 } else {
1486 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1487 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1488 sbdsp_wdsp(sc, cc) < 0 ||
1489 sbdsp_wdsp(sc, cc >> 8) < 0) {
1490 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1491 return EIO;
1492 }
1493 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1494 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1495 return EIO;
1496 }
1497 }
1498 sc->sc_o.run = SB_LOOPING;
1499 }
1500
1501 return 0;
1502 }
1503
1504 int
1505 sbdsp_halt_output(void *addr)
1506 {
1507 struct sbdsp_softc *sc;
1508
1509 sc = addr;
1510 if (sc->sc_o.run != SB_NOTRUNNING) {
1511 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1512 printf("sbdsp_halt_output: failed to halt\n");
1513 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1514 sc->sc_o.run = SB_NOTRUNNING;
1515 }
1516 return 0;
1517 }
1518
1519 int
1520 sbdsp_halt_input(void *addr)
1521 {
1522 struct sbdsp_softc *sc;
1523
1524 sc = addr;
1525 if (sc->sc_i.run != SB_NOTRUNNING) {
1526 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1527 printf("sbdsp_halt_input: failed to halt\n");
1528 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1529 sc->sc_i.run = SB_NOTRUNNING;
1530 }
1531 return 0;
1532 }
1533
1534 /*
1535 * Only the DSP unit on the sound blaster generates interrupts.
1536 * There are three cases of interrupt: reception of a midi byte
1537 * (when mode is enabled), completion of DMA transmission, or
1538 * completion of a DMA reception.
1539 *
1540 * If there is interrupt sharing or a spurious interrupt occurs
1541 * there is no way to distinguish this on an SB2. So if you have
1542 * an SB2 and experience problems, buy an SB16 (it's only $40).
1543 */
1544 int
1545 sbdsp_intr(void *arg)
1546 {
1547 struct sbdsp_softc *sc;
1548 u_char irq;
1549
1550 sc = arg;
1551 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1552 sc->sc_intr8, sc->sc_intr16));
1553 if (ISSB16CLASS(sc)) {
1554 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1555 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1556 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1557 return 0;
1558 }
1559 } else {
1560 /* XXXX CHECK FOR INTERRUPT */
1561 irq = SBP_IRQ_DMA8;
1562 }
1563
1564 sc->sc_interrupts++;
1565 delay(10); /* XXX why? */
1566
1567 /* clear interrupt */
1568 if (irq & SBP_IRQ_DMA8) {
1569 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1570 if (sc->sc_intr8)
1571 sc->sc_intr8(arg);
1572 }
1573 if (irq & SBP_IRQ_DMA16) {
1574 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1575 if (sc->sc_intr16)
1576 sc->sc_intr16(arg);
1577 }
1578 #if NMPU > 0
1579 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1580 mpu_intr(sc->sc_mpudev);
1581 }
1582 #endif
1583 return 1;
1584 }
1585
1586 /* Like val & mask, but make sure the result is correctly rounded. */
1587 #define MAXVAL 256
1588 static int
1589 sbdsp_adjust(int val, int mask)
1590 {
1591
1592 val += (MAXVAL - mask) >> 1;
1593 if (val >= MAXVAL)
1594 val = MAXVAL-1;
1595 return val & mask;
1596 }
1597
1598 void
1599 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1600 {
1601 int src, gain;
1602
1603 switch(sc->sc_mixer_model) {
1604 case SBM_NONE:
1605 return;
1606 case SBM_CT1335:
1607 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1608 switch(port) {
1609 case SB_MASTER_VOL:
1610 src = SBP_1335_MASTER_VOL;
1611 break;
1612 case SB_MIDI_VOL:
1613 src = SBP_1335_MIDI_VOL;
1614 break;
1615 case SB_CD_VOL:
1616 src = SBP_1335_CD_VOL;
1617 break;
1618 case SB_VOICE_VOL:
1619 src = SBP_1335_VOICE_VOL;
1620 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1621 break;
1622 default:
1623 return;
1624 }
1625 sbdsp_mix_write(sc, src, gain);
1626 break;
1627 case SBM_CT1345:
1628 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1629 sc->gain[port][SB_RIGHT]);
1630 switch (port) {
1631 case SB_MIC_VOL:
1632 src = SBP_MIC_VOL;
1633 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1634 break;
1635 case SB_MASTER_VOL:
1636 src = SBP_MASTER_VOL;
1637 break;
1638 case SB_LINE_IN_VOL:
1639 src = SBP_LINE_VOL;
1640 break;
1641 case SB_VOICE_VOL:
1642 src = SBP_VOICE_VOL;
1643 break;
1644 case SB_MIDI_VOL:
1645 src = SBP_MIDI_VOL;
1646 break;
1647 case SB_CD_VOL:
1648 src = SBP_CD_VOL;
1649 break;
1650 default:
1651 return;
1652 }
1653 sbdsp_mix_write(sc, src, gain);
1654 break;
1655 case SBM_CT1XX5:
1656 case SBM_CT1745:
1657 switch (port) {
1658 case SB_MIC_VOL:
1659 src = SB16P_MIC_L;
1660 break;
1661 case SB_MASTER_VOL:
1662 src = SB16P_MASTER_L;
1663 break;
1664 case SB_LINE_IN_VOL:
1665 src = SB16P_LINE_L;
1666 break;
1667 case SB_VOICE_VOL:
1668 src = SB16P_VOICE_L;
1669 break;
1670 case SB_MIDI_VOL:
1671 src = SB16P_MIDI_L;
1672 break;
1673 case SB_CD_VOL:
1674 src = SB16P_CD_L;
1675 break;
1676 case SB_INPUT_GAIN:
1677 src = SB16P_INPUT_GAIN_L;
1678 break;
1679 case SB_OUTPUT_GAIN:
1680 src = SB16P_OUTPUT_GAIN_L;
1681 break;
1682 case SB_TREBLE:
1683 src = SB16P_TREBLE_L;
1684 break;
1685 case SB_BASS:
1686 src = SB16P_BASS_L;
1687 break;
1688 case SB_PCSPEAKER:
1689 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1690 return;
1691 default:
1692 return;
1693 }
1694 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1695 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1696 break;
1697 }
1698 }
1699
1700 int
1701 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1702 {
1703 struct sbdsp_softc *sc;
1704 int lgain, rgain;
1705 int mask, bits;
1706 int lmask, rmask, lbits, rbits;
1707 int mute, swap;
1708
1709 sc = addr;
1710 if (sc->sc_open == SB_OPEN_MIDI)
1711 return EBUSY;
1712
1713 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1714 cp->un.value.num_channels));
1715
1716 if (sc->sc_mixer_model == SBM_NONE)
1717 return EINVAL;
1718
1719 switch (cp->dev) {
1720 case SB_TREBLE:
1721 case SB_BASS:
1722 if (sc->sc_mixer_model == SBM_CT1345 ||
1723 sc->sc_mixer_model == SBM_CT1XX5) {
1724 if (cp->type != AUDIO_MIXER_ENUM)
1725 return EINVAL;
1726 switch (cp->dev) {
1727 case SB_TREBLE:
1728 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1729 return 0;
1730 case SB_BASS:
1731 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1732 return 0;
1733 }
1734 }
1735 case SB_PCSPEAKER:
1736 case SB_INPUT_GAIN:
1737 case SB_OUTPUT_GAIN:
1738 if (!ISSBM1745(sc))
1739 return EINVAL;
1740 case SB_MIC_VOL:
1741 case SB_LINE_IN_VOL:
1742 if (sc->sc_mixer_model == SBM_CT1335)
1743 return EINVAL;
1744 case SB_VOICE_VOL:
1745 case SB_MIDI_VOL:
1746 case SB_CD_VOL:
1747 case SB_MASTER_VOL:
1748 if (cp->type != AUDIO_MIXER_VALUE)
1749 return EINVAL;
1750
1751 /*
1752 * All the mixer ports are stereo except for the microphone.
1753 * If we get a single-channel gain value passed in, then we
1754 * duplicate it to both left and right channels.
1755 */
1756
1757 switch (cp->dev) {
1758 case SB_MIC_VOL:
1759 if (cp->un.value.num_channels != 1)
1760 return EINVAL;
1761
1762 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1763 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1764 break;
1765 case SB_PCSPEAKER:
1766 if (cp->un.value.num_channels != 1)
1767 return EINVAL;
1768 /* fall into */
1769 case SB_INPUT_GAIN:
1770 case SB_OUTPUT_GAIN:
1771 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1772 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1773 break;
1774 default:
1775 switch (cp->un.value.num_channels) {
1776 case 1:
1777 lgain = rgain = SB_ADJUST_GAIN(sc,
1778 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1779 break;
1780 case 2:
1781 if (sc->sc_mixer_model == SBM_CT1335)
1782 return EINVAL;
1783 lgain = SB_ADJUST_GAIN(sc,
1784 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1785 rgain = SB_ADJUST_GAIN(sc,
1786 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1787 break;
1788 default:
1789 return EINVAL;
1790 }
1791 break;
1792 }
1793 sc->gain[cp->dev][SB_LEFT] = lgain;
1794 sc->gain[cp->dev][SB_RIGHT] = rgain;
1795
1796 sbdsp_set_mixer_gain(sc, cp->dev);
1797 break;
1798
1799 case SB_RECORD_SOURCE:
1800 if (ISSBM1745(sc)) {
1801 if (cp->type != AUDIO_MIXER_SET)
1802 return EINVAL;
1803 return sbdsp_set_in_ports(sc, cp->un.mask);
1804 } else {
1805 if (cp->type != AUDIO_MIXER_ENUM)
1806 return EINVAL;
1807 sc->in_port = cp->un.ord;
1808 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1809 }
1810 break;
1811
1812 case SB_AGC:
1813 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1814 return EINVAL;
1815 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1816 break;
1817
1818 case SB_CD_OUT_MUTE:
1819 mask = SB16P_SW_CD;
1820 goto omute;
1821 case SB_MIC_OUT_MUTE:
1822 mask = SB16P_SW_MIC;
1823 goto omute;
1824 case SB_LINE_OUT_MUTE:
1825 mask = SB16P_SW_LINE;
1826 omute:
1827 if (cp->type != AUDIO_MIXER_ENUM)
1828 return EINVAL;
1829 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1830 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1831 if (cp->un.ord)
1832 bits = bits & ~mask;
1833 else
1834 bits = bits | mask;
1835 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1836 break;
1837
1838 case SB_MIC_IN_MUTE:
1839 case SB_MIC_SWAP:
1840 lmask = rmask = SB16P_SW_MIC;
1841 goto imute;
1842 case SB_CD_IN_MUTE:
1843 case SB_CD_SWAP:
1844 lmask = SB16P_SW_CD_L;
1845 rmask = SB16P_SW_CD_R;
1846 goto imute;
1847 case SB_LINE_IN_MUTE:
1848 case SB_LINE_SWAP:
1849 lmask = SB16P_SW_LINE_L;
1850 rmask = SB16P_SW_LINE_R;
1851 goto imute;
1852 case SB_MIDI_IN_MUTE:
1853 case SB_MIDI_SWAP:
1854 lmask = SB16P_SW_MIDI_L;
1855 rmask = SB16P_SW_MIDI_R;
1856 imute:
1857 if (cp->type != AUDIO_MIXER_ENUM)
1858 return EINVAL;
1859 mask = lmask | rmask;
1860 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1861 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1862 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1863 if (SB_IS_IN_MUTE(cp->dev)) {
1864 mute = cp->dev;
1865 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1866 } else {
1867 swap = cp->dev;
1868 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1869 }
1870 if (sc->gain[swap][SB_LR]) {
1871 mask = lmask;
1872 lmask = rmask;
1873 rmask = mask;
1874 }
1875 if (!sc->gain[mute][SB_LR]) {
1876 lbits = lbits | lmask;
1877 rbits = rbits | rmask;
1878 }
1879 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1880 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1881 break;
1882
1883 default:
1884 return EINVAL;
1885 }
1886
1887 return 0;
1888 }
1889
1890 int
1891 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1892 {
1893 struct sbdsp_softc *sc;
1894
1895 sc = addr;
1896 if (sc->sc_open == SB_OPEN_MIDI)
1897 return EBUSY;
1898
1899 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1900
1901 if (sc->sc_mixer_model == SBM_NONE)
1902 return EINVAL;
1903
1904 switch (cp->dev) {
1905 case SB_TREBLE:
1906 case SB_BASS:
1907 if (sc->sc_mixer_model == SBM_CT1345 ||
1908 sc->sc_mixer_model == SBM_CT1XX5) {
1909 switch (cp->dev) {
1910 case SB_TREBLE:
1911 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1912 return 0;
1913 case SB_BASS:
1914 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1915 return 0;
1916 }
1917 }
1918 case SB_PCSPEAKER:
1919 case SB_INPUT_GAIN:
1920 case SB_OUTPUT_GAIN:
1921 if (!ISSBM1745(sc))
1922 return EINVAL;
1923 case SB_MIC_VOL:
1924 case SB_LINE_IN_VOL:
1925 if (sc->sc_mixer_model == SBM_CT1335)
1926 return EINVAL;
1927 case SB_VOICE_VOL:
1928 case SB_MIDI_VOL:
1929 case SB_CD_VOL:
1930 case SB_MASTER_VOL:
1931 switch (cp->dev) {
1932 case SB_MIC_VOL:
1933 case SB_PCSPEAKER:
1934 if (cp->un.value.num_channels != 1)
1935 return EINVAL;
1936 /* fall into */
1937 default:
1938 switch (cp->un.value.num_channels) {
1939 case 1:
1940 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1941 sc->gain[cp->dev][SB_LEFT];
1942 break;
1943 case 2:
1944 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1945 sc->gain[cp->dev][SB_LEFT];
1946 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1947 sc->gain[cp->dev][SB_RIGHT];
1948 break;
1949 default:
1950 return EINVAL;
1951 }
1952 break;
1953 }
1954 break;
1955
1956 case SB_RECORD_SOURCE:
1957 if (ISSBM1745(sc))
1958 cp->un.mask = sc->in_mask;
1959 else
1960 cp->un.ord = sc->in_port;
1961 break;
1962
1963 case SB_AGC:
1964 if (!ISSBM1745(sc))
1965 return EINVAL;
1966 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1967 break;
1968
1969 case SB_CD_IN_MUTE:
1970 case SB_MIC_IN_MUTE:
1971 case SB_LINE_IN_MUTE:
1972 case SB_MIDI_IN_MUTE:
1973 case SB_CD_SWAP:
1974 case SB_MIC_SWAP:
1975 case SB_LINE_SWAP:
1976 case SB_MIDI_SWAP:
1977 case SB_CD_OUT_MUTE:
1978 case SB_MIC_OUT_MUTE:
1979 case SB_LINE_OUT_MUTE:
1980 cp->un.ord = sc->gain[cp->dev][SB_LR];
1981 break;
1982
1983 default:
1984 return EINVAL;
1985 }
1986
1987 return 0;
1988 }
1989
1990 int
1991 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1992 {
1993 struct sbdsp_softc *sc = addr;
1994 int chan, class, is1745;
1995
1996 sc = addr;
1997 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1998 sc->sc_mixer_model, dip->index));
1999
2000 if (sc->sc_mixer_model == SBM_NONE)
2001 return ENXIO;
2002
2003 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2004 is1745 = ISSBM1745(sc);
2005 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2006
2007 switch (dip->index) {
2008 case SB_MASTER_VOL:
2009 dip->type = AUDIO_MIXER_VALUE;
2010 dip->mixer_class = SB_OUTPUT_CLASS;
2011 dip->prev = dip->next = AUDIO_MIXER_LAST;
2012 strcpy(dip->label.name, AudioNmaster);
2013 dip->un.v.num_channels = chan;
2014 strcpy(dip->un.v.units.name, AudioNvolume);
2015 return 0;
2016 case SB_MIDI_VOL:
2017 dip->type = AUDIO_MIXER_VALUE;
2018 dip->mixer_class = class;
2019 dip->prev = AUDIO_MIXER_LAST;
2020 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2021 strcpy(dip->label.name, AudioNfmsynth);
2022 dip->un.v.num_channels = chan;
2023 strcpy(dip->un.v.units.name, AudioNvolume);
2024 return 0;
2025 case SB_CD_VOL:
2026 dip->type = AUDIO_MIXER_VALUE;
2027 dip->mixer_class = class;
2028 dip->prev = AUDIO_MIXER_LAST;
2029 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2030 strcpy(dip->label.name, AudioNcd);
2031 dip->un.v.num_channels = chan;
2032 strcpy(dip->un.v.units.name, AudioNvolume);
2033 return 0;
2034 case SB_VOICE_VOL:
2035 dip->type = AUDIO_MIXER_VALUE;
2036 dip->mixer_class = class;
2037 dip->prev = AUDIO_MIXER_LAST;
2038 dip->next = AUDIO_MIXER_LAST;
2039 strcpy(dip->label.name, AudioNdac);
2040 dip->un.v.num_channels = chan;
2041 strcpy(dip->un.v.units.name, AudioNvolume);
2042 return 0;
2043 case SB_OUTPUT_CLASS:
2044 dip->type = AUDIO_MIXER_CLASS;
2045 dip->mixer_class = SB_OUTPUT_CLASS;
2046 dip->next = dip->prev = AUDIO_MIXER_LAST;
2047 strcpy(dip->label.name, AudioCoutputs);
2048 return 0;
2049 }
2050
2051 if (sc->sc_mixer_model == SBM_CT1335)
2052 return ENXIO;
2053
2054 switch (dip->index) {
2055 case SB_MIC_VOL:
2056 dip->type = AUDIO_MIXER_VALUE;
2057 dip->mixer_class = class;
2058 dip->prev = AUDIO_MIXER_LAST;
2059 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2060 strcpy(dip->label.name, AudioNmicrophone);
2061 dip->un.v.num_channels = 1;
2062 strcpy(dip->un.v.units.name, AudioNvolume);
2063 return 0;
2064
2065 case SB_LINE_IN_VOL:
2066 dip->type = AUDIO_MIXER_VALUE;
2067 dip->mixer_class = class;
2068 dip->prev = AUDIO_MIXER_LAST;
2069 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2070 strcpy(dip->label.name, AudioNline);
2071 dip->un.v.num_channels = 2;
2072 strcpy(dip->un.v.units.name, AudioNvolume);
2073 return 0;
2074
2075 case SB_RECORD_SOURCE:
2076 dip->mixer_class = SB_RECORD_CLASS;
2077 dip->prev = dip->next = AUDIO_MIXER_LAST;
2078 strcpy(dip->label.name, AudioNsource);
2079 if (ISSBM1745(sc)) {
2080 dip->type = AUDIO_MIXER_SET;
2081 dip->un.s.num_mem = 4;
2082 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2083 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2084 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2085 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2086 strcpy(dip->un.s.member[2].label.name, AudioNline);
2087 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2088 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2089 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2090 } else {
2091 dip->type = AUDIO_MIXER_ENUM;
2092 dip->un.e.num_mem = 3;
2093 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2094 dip->un.e.member[0].ord = SB_MIC_VOL;
2095 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2096 dip->un.e.member[1].ord = SB_CD_VOL;
2097 strcpy(dip->un.e.member[2].label.name, AudioNline);
2098 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2099 }
2100 return 0;
2101
2102 case SB_BASS:
2103 dip->prev = dip->next = AUDIO_MIXER_LAST;
2104 strcpy(dip->label.name, AudioNbass);
2105 if (sc->sc_mixer_model == SBM_CT1745) {
2106 dip->type = AUDIO_MIXER_VALUE;
2107 dip->mixer_class = SB_EQUALIZATION_CLASS;
2108 dip->un.v.num_channels = 2;
2109 strcpy(dip->un.v.units.name, AudioNbass);
2110 } else {
2111 dip->type = AUDIO_MIXER_ENUM;
2112 dip->mixer_class = SB_INPUT_CLASS;
2113 dip->un.e.num_mem = 2;
2114 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2115 dip->un.e.member[0].ord = 0;
2116 strcpy(dip->un.e.member[1].label.name, AudioNon);
2117 dip->un.e.member[1].ord = 1;
2118 }
2119 return 0;
2120
2121 case SB_TREBLE:
2122 dip->prev = dip->next = AUDIO_MIXER_LAST;
2123 strcpy(dip->label.name, AudioNtreble);
2124 if (sc->sc_mixer_model == SBM_CT1745) {
2125 dip->type = AUDIO_MIXER_VALUE;
2126 dip->mixer_class = SB_EQUALIZATION_CLASS;
2127 dip->un.v.num_channels = 2;
2128 strcpy(dip->un.v.units.name, AudioNtreble);
2129 } else {
2130 dip->type = AUDIO_MIXER_ENUM;
2131 dip->mixer_class = SB_INPUT_CLASS;
2132 dip->un.e.num_mem = 2;
2133 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2134 dip->un.e.member[0].ord = 0;
2135 strcpy(dip->un.e.member[1].label.name, AudioNon);
2136 dip->un.e.member[1].ord = 1;
2137 }
2138 return 0;
2139
2140 case SB_RECORD_CLASS: /* record source class */
2141 dip->type = AUDIO_MIXER_CLASS;
2142 dip->mixer_class = SB_RECORD_CLASS;
2143 dip->next = dip->prev = AUDIO_MIXER_LAST;
2144 strcpy(dip->label.name, AudioCrecord);
2145 return 0;
2146
2147 case SB_INPUT_CLASS:
2148 dip->type = AUDIO_MIXER_CLASS;
2149 dip->mixer_class = SB_INPUT_CLASS;
2150 dip->next = dip->prev = AUDIO_MIXER_LAST;
2151 strcpy(dip->label.name, AudioCinputs);
2152 return 0;
2153
2154 }
2155
2156 if (sc->sc_mixer_model == SBM_CT1345)
2157 return ENXIO;
2158
2159 switch(dip->index) {
2160 case SB_PCSPEAKER:
2161 dip->type = AUDIO_MIXER_VALUE;
2162 dip->mixer_class = SB_INPUT_CLASS;
2163 dip->prev = dip->next = AUDIO_MIXER_LAST;
2164 strcpy(dip->label.name, "pc_speaker");
2165 dip->un.v.num_channels = 1;
2166 strcpy(dip->un.v.units.name, AudioNvolume);
2167 return 0;
2168
2169 case SB_INPUT_GAIN:
2170 dip->type = AUDIO_MIXER_VALUE;
2171 dip->mixer_class = SB_INPUT_CLASS;
2172 dip->prev = dip->next = AUDIO_MIXER_LAST;
2173 strcpy(dip->label.name, AudioNinput);
2174 dip->un.v.num_channels = 2;
2175 strcpy(dip->un.v.units.name, AudioNvolume);
2176 return 0;
2177
2178 case SB_OUTPUT_GAIN:
2179 dip->type = AUDIO_MIXER_VALUE;
2180 dip->mixer_class = SB_OUTPUT_CLASS;
2181 dip->prev = dip->next = AUDIO_MIXER_LAST;
2182 strcpy(dip->label.name, AudioNoutput);
2183 dip->un.v.num_channels = 2;
2184 strcpy(dip->un.v.units.name, AudioNvolume);
2185 return 0;
2186
2187 case SB_AGC:
2188 dip->type = AUDIO_MIXER_ENUM;
2189 dip->mixer_class = SB_INPUT_CLASS;
2190 dip->prev = dip->next = AUDIO_MIXER_LAST;
2191 strcpy(dip->label.name, "agc");
2192 dip->un.e.num_mem = 2;
2193 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2194 dip->un.e.member[0].ord = 0;
2195 strcpy(dip->un.e.member[1].label.name, AudioNon);
2196 dip->un.e.member[1].ord = 1;
2197 return 0;
2198
2199 case SB_EQUALIZATION_CLASS:
2200 dip->type = AUDIO_MIXER_CLASS;
2201 dip->mixer_class = SB_EQUALIZATION_CLASS;
2202 dip->next = dip->prev = AUDIO_MIXER_LAST;
2203 strcpy(dip->label.name, AudioCequalization);
2204 return 0;
2205
2206 case SB_CD_IN_MUTE:
2207 dip->prev = SB_CD_VOL;
2208 dip->next = SB_CD_SWAP;
2209 dip->mixer_class = SB_INPUT_CLASS;
2210 goto mute;
2211
2212 case SB_MIC_IN_MUTE:
2213 dip->prev = SB_MIC_VOL;
2214 dip->next = SB_MIC_SWAP;
2215 dip->mixer_class = SB_INPUT_CLASS;
2216 goto mute;
2217
2218 case SB_LINE_IN_MUTE:
2219 dip->prev = SB_LINE_IN_VOL;
2220 dip->next = SB_LINE_SWAP;
2221 dip->mixer_class = SB_INPUT_CLASS;
2222 goto mute;
2223
2224 case SB_MIDI_IN_MUTE:
2225 dip->prev = SB_MIDI_VOL;
2226 dip->next = SB_MIDI_SWAP;
2227 dip->mixer_class = SB_INPUT_CLASS;
2228 goto mute;
2229
2230 case SB_CD_SWAP:
2231 dip->prev = SB_CD_IN_MUTE;
2232 dip->next = SB_CD_OUT_MUTE;
2233 goto swap;
2234
2235 case SB_MIC_SWAP:
2236 dip->prev = SB_MIC_IN_MUTE;
2237 dip->next = SB_MIC_OUT_MUTE;
2238 goto swap;
2239
2240 case SB_LINE_SWAP:
2241 dip->prev = SB_LINE_IN_MUTE;
2242 dip->next = SB_LINE_OUT_MUTE;
2243 goto swap;
2244
2245 case SB_MIDI_SWAP:
2246 dip->prev = SB_MIDI_IN_MUTE;
2247 dip->next = AUDIO_MIXER_LAST;
2248 swap:
2249 dip->mixer_class = SB_INPUT_CLASS;
2250 strcpy(dip->label.name, AudioNswap);
2251 goto mute1;
2252
2253 case SB_CD_OUT_MUTE:
2254 dip->prev = SB_CD_SWAP;
2255 dip->next = AUDIO_MIXER_LAST;
2256 dip->mixer_class = SB_OUTPUT_CLASS;
2257 goto mute;
2258
2259 case SB_MIC_OUT_MUTE:
2260 dip->prev = SB_MIC_SWAP;
2261 dip->next = AUDIO_MIXER_LAST;
2262 dip->mixer_class = SB_OUTPUT_CLASS;
2263 goto mute;
2264
2265 case SB_LINE_OUT_MUTE:
2266 dip->prev = SB_LINE_SWAP;
2267 dip->next = AUDIO_MIXER_LAST;
2268 dip->mixer_class = SB_OUTPUT_CLASS;
2269 mute:
2270 strcpy(dip->label.name, AudioNmute);
2271 mute1:
2272 dip->type = AUDIO_MIXER_ENUM;
2273 dip->un.e.num_mem = 2;
2274 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2275 dip->un.e.member[0].ord = 0;
2276 strcpy(dip->un.e.member[1].label.name, AudioNon);
2277 dip->un.e.member[1].ord = 1;
2278 return 0;
2279
2280 }
2281
2282 return ENXIO;
2283 }
2284
2285 void *
2286 sb_malloc(void *addr, int direction, size_t size,
2287 struct malloc_type *pool, int flags)
2288 {
2289 struct sbdsp_softc *sc;
2290 int drq;
2291
2292 sc = addr;
2293 if (sc->sc_drq8 != -1)
2294 drq = sc->sc_drq8;
2295 else
2296 drq = sc->sc_drq16;
2297 return isa_malloc(sc->sc_ic, drq, size, pool, flags);
2298 }
2299
2300 void
2301 sb_free(void *addr, void *ptr, struct malloc_type *pool)
2302 {
2303
2304 isa_free(ptr, pool);
2305 }
2306
2307 size_t
2308 sb_round_buffersize(void *addr, int direction, size_t size)
2309 {
2310 struct sbdsp_softc *sc;
2311 bus_size_t maxsize;
2312
2313 sc = addr;
2314 if (sc->sc_drq8 != -1)
2315 maxsize = sc->sc_drq8_maxsize;
2316 else
2317 maxsize = sc->sc_drq16_maxsize;
2318
2319 if (size > maxsize)
2320 size = maxsize;
2321 return size;
2322 }
2323
2324 paddr_t
2325 sb_mappage(void *addr, void *mem, off_t off, int prot)
2326 {
2327
2328 return isa_mappage(mem, off, prot);
2329 }
2330
2331 int
2332 sbdsp_get_props(void *addr)
2333 {
2334 struct sbdsp_softc *sc;
2335
2336 sc = addr;
2337 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2338 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2339 }
2340
2341 #if NMPU > 0
2342 /*
2343 * MIDI related routines.
2344 */
2345
2346 int
2347 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2348 void (*ointr)(void *), void *arg)
2349 {
2350 struct sbdsp_softc *sc;
2351
2352 sc = addr;
2353 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2354
2355 if (sc->sc_open != SB_CLOSED)
2356 return EBUSY;
2357 if (sbdsp_reset(sc) != 0)
2358 return EIO;
2359
2360 sc->sc_open = SB_OPEN_MIDI;
2361
2362 if (sc->sc_model >= SB_20)
2363 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2364 return EIO;
2365
2366 sc->sc_intr8 = sbdsp_midi_intr;
2367 sc->sc_intrm = iintr;
2368 sc->sc_argm = arg;
2369
2370 return 0;
2371 }
2372
2373 void
2374 sbdsp_midi_close(void *addr)
2375 {
2376 struct sbdsp_softc *sc;
2377
2378 sc = addr;
2379 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2380
2381 if (sc->sc_model >= SB_20)
2382 sbdsp_reset(sc); /* exit UART mode */
2383
2384 sc->sc_intrm = 0;
2385 sc->sc_open = SB_CLOSED;
2386 }
2387
2388 int
2389 sbdsp_midi_output(void *addr, int d)
2390 {
2391 struct sbdsp_softc *sc;
2392
2393 sc = addr;
2394 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2395 return EIO;
2396 if (sbdsp_wdsp(sc, d))
2397 return EIO;
2398 return 0;
2399 }
2400
2401 void
2402 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2403 {
2404 struct sbdsp_softc *sc;
2405
2406 sc = addr;
2407 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2408 mi->props = MIDI_PROP_CAN_INPUT;
2409 }
2410
2411 int
2412 sbdsp_midi_intr(void *addr)
2413 {
2414 struct sbdsp_softc *sc;
2415
2416 sc = addr;
2417 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2418 return (0);
2419 }
2420
2421 #endif
2422
2423