sbdsp.c revision 1.125 1 /* $NetBSD: sbdsp.c,v 1.125 2006/10/12 01:31:17 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.125 2006/10/12 01:31:17 christos Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 kHz 4 kHz
154 * input ls max 23 kHz 13 kHz
155 * input hs max 44.1 kHz 15 kHz
156 * output ls min 4 kHz 4 kHz
157 * output ls max 23 kHz 23 kHz
158 * output hs max 44.1 kHz 44.1 kHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
195 { .model = -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
215 { .model = -1 }
216 };
217
218 void sbversion(struct sbdsp_softc *);
219 void sbdsp_jazz16_probe(struct sbdsp_softc *);
220 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
221 void sbdsp_pause(struct sbdsp_softc *);
222 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
223 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
224 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
225 void sbdsp_set_ifilter(void *, int);
226 int sbdsp_get_ifilter(void *);
227
228 int sbdsp_block_output(void *);
229 int sbdsp_block_input(void *);
230 static int sbdsp_adjust(int, int);
231
232 int sbdsp_midi_intr(void *);
233
234 static void sbdsp_powerhook(int, void*);
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc(struct sbdsp_softc *);
238
239 void
240 sb_printsc(struct sbdsp_softc *sc)
241 {
242 int i;
243
244 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
245 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
246 sc->sc_drq8, sc->sc_drq16,
247 sc->sc_iobase, sc->sc_irq);
248 printf("irate %d itc %x orate %d otc %x\n",
249 sc->sc_i.rate, sc->sc_i.tc,
250 sc->sc_o.rate, sc->sc_o.tc);
251 printf("spkron %u nintr %lu\n",
252 sc->spkr_state, sc->sc_interrupts);
253 printf("intr8 %p intr16 %p\n",
254 sc->sc_intr8, sc->sc_intr16);
255 printf("gain:");
256 for (i = 0; i < SB_NDEVS; i++)
257 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
258 printf("\n");
259 }
260 #endif /* AUDIO_DEBUG */
261
262 /*
263 * Probe / attach routines.
264 */
265
266 /*
267 * Probe for the soundblaster hardware.
268 */
269 int
270 sbdsp_probe(struct sbdsp_softc *sc)
271 {
272
273 if (sbdsp_reset(sc) < 0) {
274 DPRINTF(("sbdsp: couldn't reset card\n"));
275 return 0;
276 }
277 /* if flags set, go and probe the jazz16 stuff */
278 if (device_cfdata(&sc->sc_dev)->cf_flags & 1)
279 sbdsp_jazz16_probe(sc);
280 else
281 sbversion(sc);
282 if (sc->sc_model == SB_UNK) {
283 /* Unknown SB model found. */
284 DPRINTF(("sbdsp: unknown SB model found\n"));
285 return 0;
286 }
287 return 1;
288 }
289
290 /*
291 * Try add-on stuff for Jazz16.
292 */
293 void
294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
295 {
296 static u_char jazz16_irq_conf[16] = {
297 -1, -1, 0x02, 0x03,
298 -1, 0x01, -1, 0x04,
299 -1, 0x02, 0x05, -1,
300 -1, -1, -1, 0x06};
301 static u_char jazz16_drq_conf[8] = {
302 -1, 0x01, -1, 0x02,
303 -1, 0x03, -1, 0x04};
304
305 bus_space_tag_t iot;
306 bus_space_handle_t ioh;
307
308 iot = sc->sc_iot;
309 sbversion(sc);
310
311 DPRINTF(("jazz16 probe\n"));
312
313 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
314 DPRINTF(("bus map failed\n"));
315 return;
316 }
317
318 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
319 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
320 DPRINTF(("drq/irq check failed\n"));
321 goto done; /* give up, we can't do it. */
322 }
323
324 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
325 delay(10000); /* delay 10 ms */
326 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
327 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
328
329 if (sbdsp_reset(sc) < 0) {
330 DPRINTF(("sbdsp_reset check failed\n"));
331 goto done; /* XXX? what else could we do? */
332 }
333
334 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
335 DPRINTF(("read16 setup failed\n"));
336 goto done;
337 }
338
339 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
340 DPRINTF(("read16 failed\n"));
341 goto done;
342 }
343
344 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
345 sc->sc_drq16 = sc->sc_drq8;
346 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
347 (sc->sc_drq16 >= 0 &&
348 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
349 jazz16_drq_conf[sc->sc_drq8])) ||
350 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
351 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
352 } else {
353 DPRINTF(("jazz16 detected!\n"));
354 sc->sc_model = SB_JAZZ;
355 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
356 }
357
358 done:
359 bus_space_unmap(iot, ioh, 1);
360 }
361
362 /*
363 * Attach hardware to driver, attach hardware driver to audio
364 * pseudo-device driver .
365 */
366 void
367 sbdsp_attach(struct sbdsp_softc *sc)
368 {
369 int i, error;
370 u_int v;
371
372 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
373
374 if (sc->sc_mixer_model != SBM_NONE) {
375 /* Reset the mixer.*/
376 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
377 /* And set our own default values */
378 for (i = 0; i < SB_NDEVS; i++) {
379 switch(i) {
380 case SB_MIC_VOL:
381 case SB_LINE_IN_VOL:
382 v = 0;
383 break;
384 case SB_BASS:
385 case SB_TREBLE:
386 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
387 break;
388 case SB_CD_IN_MUTE:
389 case SB_MIC_IN_MUTE:
390 case SB_LINE_IN_MUTE:
391 case SB_MIDI_IN_MUTE:
392 case SB_CD_SWAP:
393 case SB_MIC_SWAP:
394 case SB_LINE_SWAP:
395 case SB_MIDI_SWAP:
396 case SB_CD_OUT_MUTE:
397 case SB_MIC_OUT_MUTE:
398 case SB_LINE_OUT_MUTE:
399 v = 0;
400 break;
401 default:
402 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
403 break;
404 }
405 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
406 sbdsp_set_mixer_gain(sc, i);
407 }
408 sc->in_filter = 0; /* no filters turned on, please */
409 }
410
411 printf(": dsp v%d.%02d%s\n",
412 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414
415 sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 sc->sc_drq8 != sc->sc_drq16;
418
419 if (sc->sc_drq8 != -1) {
420 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 sc->sc_drq8);
422 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
424 if (error) {
425 printf("%s: can't create map for drq %d\n",
426 sc->sc_dev.dv_xname, sc->sc_drq8);
427 return;
428 }
429 }
430
431 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 sc->sc_drq16);
434 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
436 if (error) {
437 printf("%s: can't create map for drq %d\n",
438 sc->sc_dev.dv_xname, sc->sc_drq16);
439 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 return;
441 }
442 }
443
444 powerhook_establish(sc->sc_dev.dv_xname, sbdsp_powerhook, sc);
445 }
446
447 static void
448 sbdsp_powerhook(int why, void *arg)
449 {
450 struct sbdsp_softc *sc;
451 int i;
452
453 sc = arg;
454 if (!sc || why != PWR_RESUME)
455 return;
456
457 /* Reset the mixer. */
458 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
459 for (i = 0; i < SB_NDEVS; i++)
460 sbdsp_set_mixer_gain (sc, i);
461 }
462
463 void
464 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
465 {
466 bus_space_tag_t iot;
467 bus_space_handle_t ioh;
468 int s;
469
470 iot = sc->sc_iot;
471 ioh = sc->sc_ioh;
472 s = splaudio();
473 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
474 delay(20);
475 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
476 delay(30);
477 splx(s);
478 }
479
480 int
481 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
482 {
483 bus_space_tag_t iot;
484 bus_space_handle_t ioh;
485 int val;
486 int s;
487
488 iot = sc->sc_iot;
489 ioh = sc->sc_ioh;
490 s = splaudio();
491 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
492 delay(20);
493 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
494 delay(30);
495 splx(s);
496 return val;
497 }
498
499 /*
500 * Various routines to interface to higher level audio driver
501 */
502
503 int
504 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
505 {
506 struct sbdsp_softc *sc;
507 int emul;
508
509 sc = addr;
510 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
511
512 switch (fp->index) {
513 case 0:
514 strcpy(fp->name, AudioEulinear);
515 fp->encoding = AUDIO_ENCODING_ULINEAR;
516 fp->precision = 8;
517 fp->flags = 0;
518 return 0;
519 case 1:
520 strcpy(fp->name, AudioEmulaw);
521 fp->encoding = AUDIO_ENCODING_ULAW;
522 fp->precision = 8;
523 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 return 0;
525 case 2:
526 strcpy(fp->name, AudioEalaw);
527 fp->encoding = AUDIO_ENCODING_ALAW;
528 fp->precision = 8;
529 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
530 return 0;
531 case 3:
532 strcpy(fp->name, AudioEslinear);
533 fp->encoding = AUDIO_ENCODING_SLINEAR;
534 fp->precision = 8;
535 fp->flags = emul;
536 return 0;
537 }
538 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
539 return EINVAL;
540
541 switch(fp->index) {
542 case 4:
543 strcpy(fp->name, AudioEslinear_le);
544 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
545 fp->precision = 16;
546 fp->flags = 0;
547 return 0;
548 case 5:
549 strcpy(fp->name, AudioEulinear_le);
550 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
551 fp->precision = 16;
552 fp->flags = emul;
553 return 0;
554 case 6:
555 strcpy(fp->name, AudioEslinear_be);
556 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
557 fp->precision = 16;
558 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
559 return 0;
560 case 7:
561 strcpy(fp->name, AudioEulinear_be);
562 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
563 fp->precision = 16;
564 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
565 return 0;
566 default:
567 return EINVAL;
568 }
569 return 0;
570 }
571
572 int
573 sbdsp_set_params(
574 void *addr,
575 int setmode, int usemode,
576 audio_params_t *play, audio_params_t *rec,
577 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
578 {
579 struct sbdsp_softc *sc;
580 struct sbmode *m;
581 u_int rate, tc, bmode;
582 stream_filter_factory_t *swcode;
583 int model;
584 int chan;
585 struct audio_params *p;
586 audio_params_t hw;
587 stream_filter_list_t *fil;
588 int mode;
589
590 sc = addr;
591 if (sc->sc_open == SB_OPEN_MIDI)
592 return EBUSY;
593
594 /* Later models work like SB16. */
595 model = min(sc->sc_model, SB_16);
596
597 /*
598 * Prior to the SB16, we have only one clock, so make the sample
599 * rates match.
600 */
601 if (!ISSB16CLASS(sc) &&
602 play->sample_rate != rec->sample_rate &&
603 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
604 if (setmode == AUMODE_PLAY) {
605 rec->sample_rate = play->sample_rate;
606 setmode |= AUMODE_RECORD;
607 } else if (setmode == AUMODE_RECORD) {
608 play->sample_rate = rec->sample_rate;
609 setmode |= AUMODE_PLAY;
610 } else
611 return EINVAL;
612 }
613
614 /* Set first record info, then play info */
615 for (mode = AUMODE_RECORD; mode != -1;
616 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
617 if ((setmode & mode) == 0)
618 continue;
619
620 p = mode == AUMODE_PLAY ? play : rec;
621 /* Locate proper commands */
622 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
623 m->model != -1; m++) {
624 if (model == m->model &&
625 p->channels == m->channels &&
626 p->precision == m->precision &&
627 p->sample_rate >= m->lowrate &&
628 p->sample_rate <= m->highrate)
629 break;
630 }
631 if (m->model == -1)
632 return EINVAL;
633 rate = p->sample_rate;
634 swcode = NULL;
635 fil = mode == AUMODE_PLAY ? pfil : rfil;
636 hw = *p;
637 tc = 1;
638 bmode = -1;
639 if (model == SB_16) {
640 switch (p->encoding) {
641 case AUDIO_ENCODING_SLINEAR_BE:
642 if (p->precision == 16) {
643 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
644 swcode = swap_bytes;
645 }
646 /* fall into */
647 case AUDIO_ENCODING_SLINEAR_LE:
648 bmode = SB_BMODE_SIGNED;
649 break;
650
651 case AUDIO_ENCODING_ULINEAR_BE:
652 if (p->precision == 16) {
653 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
654 swcode = swap_bytes;
655 }
656 /* fall into */
657 case AUDIO_ENCODING_ULINEAR_LE:
658 bmode = SB_BMODE_UNSIGNED;
659 break;
660
661 case AUDIO_ENCODING_ULAW:
662 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
663 if (mode == AUMODE_PLAY) {
664 hw.precision = hw.validbits = 16;
665 swcode = mulaw_to_linear16;
666 m = &sbpmodes[PLAY16];
667 } else
668 swcode = linear8_to_mulaw;
669 bmode = SB_BMODE_UNSIGNED;
670 break;
671
672 case AUDIO_ENCODING_ALAW:
673 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
674 if (mode == AUMODE_PLAY) {
675 hw.precision = hw.validbits = 16;
676 swcode = alaw_to_linear16;
677 m = &sbpmodes[PLAY16];
678 } else
679 swcode = linear8_to_alaw;
680 bmode = SB_BMODE_UNSIGNED;
681 break;
682 default:
683 return EINVAL;
684 }
685 if (p->channels == 2)
686 bmode |= SB_BMODE_STEREO;
687 } else if (m->model == SB_JAZZ && m->precision == 16) {
688 switch (p->encoding) {
689 case AUDIO_ENCODING_SLINEAR_LE:
690 break;
691 case AUDIO_ENCODING_ULINEAR_LE:
692 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
693 swcode = change_sign16;
694 break;
695 case AUDIO_ENCODING_SLINEAR_BE:
696 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
697 swcode = swap_bytes;
698 break;
699 case AUDIO_ENCODING_ULINEAR_BE:
700 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
701 swcode = swap_bytes_change_sign16;
702 break;
703 case AUDIO_ENCODING_ULAW:
704 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
705 swcode = mode == AUMODE_PLAY ?
706 mulaw_to_linear8 : linear8_to_mulaw;
707 break;
708 case AUDIO_ENCODING_ALAW:
709 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
710 swcode = mode == AUMODE_PLAY ?
711 alaw_to_linear8 : linear8_to_alaw;
712 break;
713 default:
714 return EINVAL;
715 }
716 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
717 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
718 hw.sample_rate = p->sample_rate;
719 } else {
720 switch (p->encoding) {
721 case AUDIO_ENCODING_SLINEAR_BE:
722 case AUDIO_ENCODING_SLINEAR_LE:
723 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
724 swcode = change_sign8;
725 break;
726 case AUDIO_ENCODING_ULINEAR_BE:
727 case AUDIO_ENCODING_ULINEAR_LE:
728 break;
729 case AUDIO_ENCODING_ULAW:
730 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
731 swcode = mode == AUMODE_PLAY ?
732 mulaw_to_linear8 : linear8_to_mulaw;
733 break;
734 case AUDIO_ENCODING_ALAW:
735 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
736 swcode = mode == AUMODE_PLAY ?
737 alaw_to_linear8 : linear8_to_alaw;
738 break;
739 default:
740 return EINVAL;
741 }
742 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
743 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
744 hw.sample_rate = p->sample_rate;
745 }
746
747 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
748 if (mode == AUMODE_PLAY) {
749 sc->sc_o.rate = rate;
750 sc->sc_o.tc = tc;
751 sc->sc_o.modep = m;
752 sc->sc_o.bmode = bmode;
753 sc->sc_o.dmachan = chan;
754 } else {
755 sc->sc_i.rate = rate;
756 sc->sc_i.tc = tc;
757 sc->sc_i.modep = m;
758 sc->sc_i.bmode = bmode;
759 sc->sc_i.dmachan = chan;
760 }
761
762 if (swcode != NULL)
763 fil->append(fil, swcode, &hw);
764 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
765 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
766 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
767 p->sample_rate, p->precision, p->channels,
768 p->encoding, tc, m->cmd, bmode, m->cmdchan));
769
770 }
771
772 if (sc->sc_fullduplex &&
773 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
774 sc->sc_i.dmachan == sc->sc_o.dmachan) {
775 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
776 "odma=%d\n", sc->sc_fullduplex, usemode,
777 sc->sc_i.dmachan, sc->sc_o.dmachan));
778 if (sc->sc_o.dmachan == sc->sc_drq8) {
779 /* Use 16 bit DMA for playing by expanding the samples. */
780 hw.precision = hw.validbits = 16;
781 pfil->append(pfil, linear8_to_linear16, &hw);
782 sc->sc_o.modep = &sbpmodes[PLAY16];
783 sc->sc_o.dmachan = sc->sc_drq16;
784 } else {
785 return EINVAL;
786 }
787 }
788 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
789 sc->sc_i.dmachan, sc->sc_o.dmachan));
790
791 return 0;
792 }
793
794 void
795 sbdsp_set_ifilter(void *addr, int which)
796 {
797 struct sbdsp_softc *sc;
798 int mixval;
799
800 sc = addr;
801 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
802 switch (which) {
803 case 0:
804 mixval |= SBP_FILTER_OFF;
805 break;
806 case SB_TREBLE:
807 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
808 break;
809 case SB_BASS:
810 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
811 break;
812 default:
813 return;
814 }
815 sc->in_filter = mixval & SBP_IFILTER_MASK;
816 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
817 }
818
819 int
820 sbdsp_get_ifilter(void *addr)
821 {
822 struct sbdsp_softc *sc;
823
824 sc = addr;
825 sc->in_filter =
826 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
827 switch (sc->in_filter) {
828 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
829 return SB_TREBLE;
830 case SBP_FILTER_ON|SBP_IFILTER_LOW:
831 return SB_BASS;
832 default:
833 return 0;
834 }
835 }
836
837 int
838 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
839 {
840 int bitsl, bitsr;
841 int sbport;
842
843 if (sc->sc_open == SB_OPEN_MIDI)
844 return EBUSY;
845
846 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
847 sc->sc_mixer_model, mask));
848
849 switch(sc->sc_mixer_model) {
850 case SBM_NONE:
851 return EINVAL;
852 case SBM_CT1335:
853 if (mask != (1 << SB_MIC_VOL))
854 return EINVAL;
855 break;
856 case SBM_CT1345:
857 switch (mask) {
858 case 1 << SB_MIC_VOL:
859 sbport = SBP_FROM_MIC;
860 break;
861 case 1 << SB_LINE_IN_VOL:
862 sbport = SBP_FROM_LINE;
863 break;
864 case 1 << SB_CD_VOL:
865 sbport = SBP_FROM_CD;
866 break;
867 default:
868 return EINVAL;
869 }
870 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
871 break;
872 case SBM_CT1XX5:
873 case SBM_CT1745:
874 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
875 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
876 return EINVAL;
877 bitsr = 0;
878 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
879 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
880 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
881 bitsl = SB_SRC_R_TO_L(bitsr);
882 if (mask & (1<<SB_MIC_VOL)) {
883 bitsl |= SBP_MIC_SRC;
884 bitsr |= SBP_MIC_SRC;
885 }
886 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
887 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
888 break;
889 }
890 sc->in_mask = mask;
891
892 return 0;
893 }
894
895 int
896 sbdsp_speaker_ctl(void *addr, int newstate)
897 {
898 struct sbdsp_softc *sc;
899
900 sc = addr;
901 if (sc->sc_open == SB_OPEN_MIDI)
902 return EBUSY;
903
904 if ((newstate == SPKR_ON) &&
905 (sc->spkr_state == SPKR_OFF)) {
906 sbdsp_spkron(sc);
907 sc->spkr_state = SPKR_ON;
908 }
909 if ((newstate == SPKR_OFF) &&
910 (sc->spkr_state == SPKR_ON)) {
911 sbdsp_spkroff(sc);
912 sc->spkr_state = SPKR_OFF;
913 }
914 return 0;
915 }
916
917 int
918 sbdsp_round_blocksize(void *addr __unused, int blk, int mode __unused,
919 const audio_params_t *param __unused)
920 {
921 return blk & -4; /* round to biggest sample size */
922 }
923
924 int
925 sbdsp_open(void *addr, int flags __unused)
926 {
927 struct sbdsp_softc *sc;
928 int error, state;
929
930 sc = addr;
931 DPRINTF(("sbdsp_open: sc=%p\n", sc));
932
933 if (sc->sc_open != SB_CLOSED)
934 return EBUSY;
935 sc->sc_open = SB_OPEN_AUDIO;
936 state = 0;
937
938 if (sc->sc_drq8 != -1) {
939 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
940 if (error != 0)
941 goto bad;
942 state |= 1;
943 }
944
945 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
946 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
947 if (error != 0)
948 goto bad;
949 state |= 2;
950 }
951
952
953 if (sbdsp_reset(sc) != 0) {
954 error = EIO;
955 goto bad;
956 }
957
958 if (ISSBPRO(sc) &&
959 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
960 DPRINTF(("sbdsp_open: can't set mono mode\n"));
961 /* we'll readjust when it's time for DMA. */
962 }
963
964 /*
965 * Leave most things as they were; users must change things if
966 * the previous process didn't leave it they way they wanted.
967 * Looked at another way, it's easy to set up a configuration
968 * in one program and leave it for another to inherit.
969 */
970 DPRINTF(("sbdsp_open: opened\n"));
971
972 return 0;
973
974 bad:
975 if (state & 1)
976 isa_drq_free(sc->sc_ic, sc->sc_drq8);
977 if (state & 2)
978 isa_drq_free(sc->sc_ic, sc->sc_drq16);
979
980 sc->sc_open = SB_CLOSED;
981 return error;
982 }
983
984 void
985 sbdsp_close(void *addr)
986 {
987 struct sbdsp_softc *sc;
988
989 sc = addr;
990 DPRINTF(("sbdsp_close: sc=%p\n", sc));
991
992 sbdsp_spkroff(sc);
993 sc->spkr_state = SPKR_OFF;
994
995 sc->sc_intr8 = 0;
996 sc->sc_intr16 = 0;
997
998 if (sc->sc_drq8 != -1)
999 isa_drq_free(sc->sc_ic, sc->sc_drq8);
1000 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1001 isa_drq_free(sc->sc_ic, sc->sc_drq16);
1002
1003 sc->sc_open = SB_CLOSED;
1004 DPRINTF(("sbdsp_close: closed\n"));
1005 }
1006
1007 /*
1008 * Lower-level routines
1009 */
1010
1011 /*
1012 * Reset the card.
1013 * Return non-zero if the card isn't detected.
1014 */
1015 int
1016 sbdsp_reset(struct sbdsp_softc *sc)
1017 {
1018 bus_space_tag_t iot;
1019 bus_space_handle_t ioh;
1020
1021 iot = sc->sc_iot;
1022 ioh = sc->sc_ioh;
1023 sc->sc_intr8 = 0;
1024 sc->sc_intr16 = 0;
1025 sc->sc_intrm = 0;
1026
1027 /*
1028 * See SBK, section 11.3.
1029 * We pulse a reset signal into the card.
1030 * Gee, what a brilliant hardware design.
1031 */
1032 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1033 delay(10);
1034 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1035 delay(30);
1036 if (sbdsp_rdsp(sc) != SB_MAGIC)
1037 return -1;
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Write a byte to the dsp.
1044 * We are at the mercy of the card as we use a
1045 * polling loop and wait until it can take the byte.
1046 */
1047 int
1048 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1049 {
1050 bus_space_tag_t iot;
1051 bus_space_handle_t ioh;
1052 int i;
1053 u_char x;
1054
1055 iot = sc->sc_iot;
1056 ioh = sc->sc_ioh;
1057 for (i = SBDSP_NPOLL; --i >= 0; ) {
1058 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1059 delay(10);
1060 if ((x & SB_DSP_BUSY) == 0) {
1061 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1062 delay(10);
1063 return 0;
1064 }
1065 }
1066 ++sberr.wdsp;
1067 return -1;
1068 }
1069
1070 /*
1071 * Read a byte from the DSP, using polling.
1072 */
1073 int
1074 sbdsp_rdsp(struct sbdsp_softc *sc)
1075 {
1076 bus_space_tag_t iot;
1077 bus_space_handle_t ioh;
1078 int i;
1079 u_char x;
1080
1081 iot = sc->sc_iot;
1082 ioh = sc->sc_ioh;
1083 for (i = SBDSP_NPOLL; --i >= 0; ) {
1084 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1085 delay(10);
1086 if (x & SB_DSP_READY) {
1087 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1088 delay(10);
1089 return x;
1090 }
1091 }
1092 ++sberr.rdsp;
1093 return -1;
1094 }
1095
1096 void
1097 sbdsp_pause(struct sbdsp_softc *sc __unused)
1098 {
1099
1100 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1101 }
1102
1103 /*
1104 * Turn on the speaker. The SBK documention says this operation
1105 * can take up to 1/10 of a second. Higher level layers should
1106 * probably let the task sleep for this amount of time after
1107 * calling here. Otherwise, things might not work (because
1108 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1109 *
1110 * These engineers had their heads up their ass when
1111 * they designed this card.
1112 */
1113 void
1114 sbdsp_spkron(struct sbdsp_softc *sc)
1115 {
1116
1117 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1118 sbdsp_pause(sc);
1119 }
1120
1121 /*
1122 * Turn off the speaker; see comment above.
1123 */
1124 void
1125 sbdsp_spkroff(struct sbdsp_softc *sc)
1126 {
1127
1128 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1129 sbdsp_pause(sc);
1130 }
1131
1132 /*
1133 * Read the version number out of the card.
1134 * Store version information in the softc.
1135 */
1136 void
1137 sbversion(struct sbdsp_softc *sc)
1138 {
1139 int v;
1140
1141 sc->sc_model = SB_UNK;
1142 sc->sc_version = 0;
1143 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1144 return;
1145 v = sbdsp_rdsp(sc) << 8;
1146 v |= sbdsp_rdsp(sc);
1147 if (v < 0)
1148 return;
1149 sc->sc_version = v;
1150 switch(SBVER_MAJOR(v)) {
1151 case 1:
1152 sc->sc_mixer_model = SBM_NONE;
1153 sc->sc_model = SB_1;
1154 break;
1155 case 2:
1156 /* Some SB2 have a mixer, some don't. */
1157 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1158 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1159 /* Check if we can read back the mixer values. */
1160 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1161 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1162 sc->sc_mixer_model = SBM_CT1335;
1163 else
1164 sc->sc_mixer_model = SBM_NONE;
1165 if (SBVER_MINOR(v) == 0)
1166 sc->sc_model = SB_20;
1167 else
1168 sc->sc_model = SB_2x;
1169 break;
1170 case 3:
1171 sc->sc_mixer_model = SBM_CT1345;
1172 sc->sc_model = SB_PRO;
1173 break;
1174 case 4:
1175 #if 0
1176 /* XXX This does not work */
1177 /* Most SB16 have a tone controls, but some don't. */
1178 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1179 /* Check if we can read back the mixer value. */
1180 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1181 sc->sc_mixer_model = SBM_CT1745;
1182 else
1183 sc->sc_mixer_model = SBM_CT1XX5;
1184 #else
1185 sc->sc_mixer_model = SBM_CT1745;
1186 #endif
1187 #if 0
1188 /* XXX figure out a good way of determining the model */
1189 /* XXX what about SB_32 */
1190 if (SBVER_MINOR(v) == 16)
1191 sc->sc_model = SB_64;
1192 else
1193 #endif
1194 sc->sc_model = SB_16;
1195 break;
1196 }
1197 }
1198
1199 int
1200 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1201 {
1202
1203 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1204 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1205 sbdsp_wdsp(sc, tc) < 0)
1206 return EIO;
1207 return 0;
1208 }
1209
1210 int
1211 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1212 {
1213
1214 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1215 if (sbdsp_wdsp(sc, cmd) < 0 ||
1216 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1217 sbdsp_wdsp(sc, rate) < 0)
1218 return EIO;
1219 return 0;
1220 }
1221
1222 int
1223 sbdsp_trigger_input(
1224 void *addr,
1225 void *start, void *end,
1226 int blksize,
1227 void (*intr)(void *),
1228 void *arg,
1229 const audio_params_t *param)
1230 {
1231 struct sbdsp_softc *sc;
1232 int stereo;
1233 int width;
1234 int filter;
1235
1236 sc = addr;
1237 stereo = param->channels == 2;
1238 width = param->precision;
1239 #ifdef DIAGNOSTIC
1240 if (stereo && (blksize & 1)) {
1241 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1242 return EIO;
1243 }
1244 if (sc->sc_i.run != SB_NOTRUNNING)
1245 printf("sbdsp_trigger_input: already running\n");
1246 #endif
1247
1248 sc->sc_intrr = intr;
1249 sc->sc_argr = arg;
1250
1251 if (width == 8) {
1252 #ifdef DIAGNOSTIC
1253 if (sc->sc_i.dmachan != sc->sc_drq8) {
1254 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1255 width, sc->sc_i.dmachan);
1256 return EIO;
1257 }
1258 #endif
1259 sc->sc_intr8 = sbdsp_block_input;
1260 } else {
1261 #ifdef DIAGNOSTIC
1262 if (sc->sc_i.dmachan != sc->sc_drq16) {
1263 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1264 width, sc->sc_i.dmachan);
1265 return EIO;
1266 }
1267 #endif
1268 sc->sc_intr16 = sbdsp_block_input;
1269 }
1270
1271 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1272 blksize >>= 1;
1273 --blksize;
1274 sc->sc_i.blksize = blksize;
1275
1276 if (ISSBPRO(sc)) {
1277 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1278 return EIO;
1279 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1280 sbdsp_mix_write(sc, SBP_INFILTER,
1281 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1282 filter);
1283 }
1284
1285 if (ISSB16CLASS(sc)) {
1286 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1287 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1288 sc->sc_i.rate));
1289 return EIO;
1290 }
1291 } else {
1292 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1293 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1294 sc->sc_i.rate));
1295 return EIO;
1296 }
1297 }
1298
1299 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1300 start, end, sc->sc_i.dmachan));
1301 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1302 (char *)end - (char *)start, NULL,
1303 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1304
1305 return sbdsp_block_input(addr);
1306 }
1307
1308 int
1309 sbdsp_block_input(void *addr)
1310 {
1311 struct sbdsp_softc *sc;
1312 int cc;
1313
1314 sc = addr;
1315 cc = sc->sc_i.blksize;
1316 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1317
1318 if (sc->sc_i.run != SB_NOTRUNNING)
1319 sc->sc_intrr(sc->sc_argr);
1320
1321 if (sc->sc_model == SB_1) {
1322 /* Non-looping mode, start DMA */
1323 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1324 sbdsp_wdsp(sc, cc) < 0 ||
1325 sbdsp_wdsp(sc, cc >> 8) < 0) {
1326 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1327 return EIO;
1328 }
1329 sc->sc_i.run = SB_RUNNING;
1330 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1331 /* Initialize looping PCM */
1332 if (ISSB16CLASS(sc)) {
1333 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1334 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1335 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1336 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1337 sbdsp_wdsp(sc, cc) < 0 ||
1338 sbdsp_wdsp(sc, cc >> 8) < 0) {
1339 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1340 return EIO;
1341 }
1342 } else {
1343 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1344 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1345 sbdsp_wdsp(sc, cc) < 0 ||
1346 sbdsp_wdsp(sc, cc >> 8) < 0) {
1347 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1348 return EIO;
1349 }
1350 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1351 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1352 return EIO;
1353 }
1354 }
1355 sc->sc_i.run = SB_LOOPING;
1356 }
1357
1358 return 0;
1359 }
1360
1361 int
1362 sbdsp_trigger_output(
1363 void *addr,
1364 void *start, void *end,
1365 int blksize,
1366 void (*intr)(void *),
1367 void *arg,
1368 const audio_params_t *param)
1369 {
1370 struct sbdsp_softc *sc;
1371 int stereo;
1372 int width;
1373 int cmd;
1374
1375 sc = addr;
1376 stereo = param->channels == 2;
1377 width = param->precision;
1378 #ifdef DIAGNOSTIC
1379 if (stereo && (blksize & 1)) {
1380 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1381 return EIO;
1382 }
1383 if (sc->sc_o.run != SB_NOTRUNNING)
1384 printf("sbdsp_trigger_output: already running\n");
1385 #endif
1386
1387 sc->sc_intrp = intr;
1388 sc->sc_argp = arg;
1389
1390 if (width == 8) {
1391 #ifdef DIAGNOSTIC
1392 if (sc->sc_o.dmachan != sc->sc_drq8) {
1393 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1394 width, sc->sc_o.dmachan);
1395 return EIO;
1396 }
1397 #endif
1398 sc->sc_intr8 = sbdsp_block_output;
1399 } else {
1400 #ifdef DIAGNOSTIC
1401 if (sc->sc_o.dmachan != sc->sc_drq16) {
1402 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1403 width, sc->sc_o.dmachan);
1404 return EIO;
1405 }
1406 #endif
1407 sc->sc_intr16 = sbdsp_block_output;
1408 }
1409
1410 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1411 blksize >>= 1;
1412 --blksize;
1413 sc->sc_o.blksize = blksize;
1414
1415 if (ISSBPRO(sc)) {
1416 /* make sure we re-set stereo mixer bit when we start output. */
1417 sbdsp_mix_write(sc, SBP_STEREO,
1418 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1419 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1420 cmd = sc->sc_o.modep->cmdchan;
1421 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1422 return EIO;
1423 }
1424
1425 if (ISSB16CLASS(sc)) {
1426 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1427 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1428 sc->sc_o.rate));
1429 return EIO;
1430 }
1431 } else {
1432 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1433 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1434 sc->sc_o.rate));
1435 return EIO;
1436 }
1437 }
1438
1439 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1440 start, end, sc->sc_o.dmachan));
1441 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1442 (char *)end - (char *)start, NULL,
1443 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1444
1445 return sbdsp_block_output(addr);
1446 }
1447
1448 int
1449 sbdsp_block_output(void *addr)
1450 {
1451 struct sbdsp_softc *sc;
1452 int cc;
1453
1454 sc = addr;
1455 cc = sc->sc_o.blksize;
1456 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1457
1458 if (sc->sc_o.run != SB_NOTRUNNING)
1459 sc->sc_intrp(sc->sc_argp);
1460
1461 if (sc->sc_model == SB_1) {
1462 /* Non-looping mode, initialized. Start DMA and PCM */
1463 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1464 sbdsp_wdsp(sc, cc) < 0 ||
1465 sbdsp_wdsp(sc, cc >> 8) < 0) {
1466 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1467 return EIO;
1468 }
1469 sc->sc_o.run = SB_RUNNING;
1470 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1471 /* Initialize looping PCM */
1472 if (ISSB16CLASS(sc)) {
1473 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1474 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1475 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1476 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1477 sbdsp_wdsp(sc, cc) < 0 ||
1478 sbdsp_wdsp(sc, cc >> 8) < 0) {
1479 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1480 return EIO;
1481 }
1482 } else {
1483 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1484 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1485 sbdsp_wdsp(sc, cc) < 0 ||
1486 sbdsp_wdsp(sc, cc >> 8) < 0) {
1487 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1488 return EIO;
1489 }
1490 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1491 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1492 return EIO;
1493 }
1494 }
1495 sc->sc_o.run = SB_LOOPING;
1496 }
1497
1498 return 0;
1499 }
1500
1501 int
1502 sbdsp_halt_output(void *addr)
1503 {
1504 struct sbdsp_softc *sc;
1505
1506 sc = addr;
1507 if (sc->sc_o.run != SB_NOTRUNNING) {
1508 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1509 printf("sbdsp_halt_output: failed to halt\n");
1510 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1511 sc->sc_o.run = SB_NOTRUNNING;
1512 }
1513 return 0;
1514 }
1515
1516 int
1517 sbdsp_halt_input(void *addr)
1518 {
1519 struct sbdsp_softc *sc;
1520
1521 sc = addr;
1522 if (sc->sc_i.run != SB_NOTRUNNING) {
1523 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1524 printf("sbdsp_halt_input: failed to halt\n");
1525 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1526 sc->sc_i.run = SB_NOTRUNNING;
1527 }
1528 return 0;
1529 }
1530
1531 /*
1532 * Only the DSP unit on the sound blaster generates interrupts.
1533 * There are three cases of interrupt: reception of a midi byte
1534 * (when mode is enabled), completion of DMA transmission, or
1535 * completion of a DMA reception.
1536 *
1537 * If there is interrupt sharing or a spurious interrupt occurs
1538 * there is no way to distinguish this on an SB2. So if you have
1539 * an SB2 and experience problems, buy an SB16 (it's only $40).
1540 */
1541 int
1542 sbdsp_intr(void *arg)
1543 {
1544 struct sbdsp_softc *sc;
1545 u_char irq;
1546
1547 sc = arg;
1548 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1549 sc->sc_intr8, sc->sc_intr16));
1550 if (ISSB16CLASS(sc)) {
1551 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1552 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1553 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1554 return 0;
1555 }
1556 } else {
1557 /* XXXX CHECK FOR INTERRUPT */
1558 irq = SBP_IRQ_DMA8;
1559 }
1560
1561 sc->sc_interrupts++;
1562 delay(10); /* XXX why? */
1563
1564 /* clear interrupt */
1565 if (irq & SBP_IRQ_DMA8) {
1566 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1567 if (sc->sc_intr8)
1568 sc->sc_intr8(arg);
1569 }
1570 if (irq & SBP_IRQ_DMA16) {
1571 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1572 if (sc->sc_intr16)
1573 sc->sc_intr16(arg);
1574 }
1575 #if NMPU > 0
1576 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1577 mpu_intr(sc->sc_mpudev);
1578 }
1579 #endif
1580 return 1;
1581 }
1582
1583 /* Like val & mask, but make sure the result is correctly rounded. */
1584 #define MAXVAL 256
1585 static int
1586 sbdsp_adjust(int val, int mask)
1587 {
1588
1589 val += (MAXVAL - mask) >> 1;
1590 if (val >= MAXVAL)
1591 val = MAXVAL-1;
1592 return val & mask;
1593 }
1594
1595 void
1596 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1597 {
1598 int src, gain;
1599
1600 switch(sc->sc_mixer_model) {
1601 case SBM_NONE:
1602 return;
1603 case SBM_CT1335:
1604 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1605 switch(port) {
1606 case SB_MASTER_VOL:
1607 src = SBP_1335_MASTER_VOL;
1608 break;
1609 case SB_MIDI_VOL:
1610 src = SBP_1335_MIDI_VOL;
1611 break;
1612 case SB_CD_VOL:
1613 src = SBP_1335_CD_VOL;
1614 break;
1615 case SB_VOICE_VOL:
1616 src = SBP_1335_VOICE_VOL;
1617 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1618 break;
1619 default:
1620 return;
1621 }
1622 sbdsp_mix_write(sc, src, gain);
1623 break;
1624 case SBM_CT1345:
1625 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1626 sc->gain[port][SB_RIGHT]);
1627 switch (port) {
1628 case SB_MIC_VOL:
1629 src = SBP_MIC_VOL;
1630 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1631 break;
1632 case SB_MASTER_VOL:
1633 src = SBP_MASTER_VOL;
1634 break;
1635 case SB_LINE_IN_VOL:
1636 src = SBP_LINE_VOL;
1637 break;
1638 case SB_VOICE_VOL:
1639 src = SBP_VOICE_VOL;
1640 break;
1641 case SB_MIDI_VOL:
1642 src = SBP_MIDI_VOL;
1643 break;
1644 case SB_CD_VOL:
1645 src = SBP_CD_VOL;
1646 break;
1647 default:
1648 return;
1649 }
1650 sbdsp_mix_write(sc, src, gain);
1651 break;
1652 case SBM_CT1XX5:
1653 case SBM_CT1745:
1654 switch (port) {
1655 case SB_MIC_VOL:
1656 src = SB16P_MIC_L;
1657 break;
1658 case SB_MASTER_VOL:
1659 src = SB16P_MASTER_L;
1660 break;
1661 case SB_LINE_IN_VOL:
1662 src = SB16P_LINE_L;
1663 break;
1664 case SB_VOICE_VOL:
1665 src = SB16P_VOICE_L;
1666 break;
1667 case SB_MIDI_VOL:
1668 src = SB16P_MIDI_L;
1669 break;
1670 case SB_CD_VOL:
1671 src = SB16P_CD_L;
1672 break;
1673 case SB_INPUT_GAIN:
1674 src = SB16P_INPUT_GAIN_L;
1675 break;
1676 case SB_OUTPUT_GAIN:
1677 src = SB16P_OUTPUT_GAIN_L;
1678 break;
1679 case SB_TREBLE:
1680 src = SB16P_TREBLE_L;
1681 break;
1682 case SB_BASS:
1683 src = SB16P_BASS_L;
1684 break;
1685 case SB_PCSPEAKER:
1686 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1687 return;
1688 default:
1689 return;
1690 }
1691 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1692 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1693 break;
1694 }
1695 }
1696
1697 int
1698 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1699 {
1700 struct sbdsp_softc *sc;
1701 int lgain, rgain;
1702 int mask, bits;
1703 int lmask, rmask, lbits, rbits;
1704 int mute, swap;
1705
1706 sc = addr;
1707 if (sc->sc_open == SB_OPEN_MIDI)
1708 return EBUSY;
1709
1710 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1711 cp->un.value.num_channels));
1712
1713 if (sc->sc_mixer_model == SBM_NONE)
1714 return EINVAL;
1715
1716 switch (cp->dev) {
1717 case SB_TREBLE:
1718 case SB_BASS:
1719 if (sc->sc_mixer_model == SBM_CT1345 ||
1720 sc->sc_mixer_model == SBM_CT1XX5) {
1721 if (cp->type != AUDIO_MIXER_ENUM)
1722 return EINVAL;
1723 switch (cp->dev) {
1724 case SB_TREBLE:
1725 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1726 return 0;
1727 case SB_BASS:
1728 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1729 return 0;
1730 }
1731 }
1732 case SB_PCSPEAKER:
1733 case SB_INPUT_GAIN:
1734 case SB_OUTPUT_GAIN:
1735 if (!ISSBM1745(sc))
1736 return EINVAL;
1737 case SB_MIC_VOL:
1738 case SB_LINE_IN_VOL:
1739 if (sc->sc_mixer_model == SBM_CT1335)
1740 return EINVAL;
1741 case SB_VOICE_VOL:
1742 case SB_MIDI_VOL:
1743 case SB_CD_VOL:
1744 case SB_MASTER_VOL:
1745 if (cp->type != AUDIO_MIXER_VALUE)
1746 return EINVAL;
1747
1748 /*
1749 * All the mixer ports are stereo except for the microphone.
1750 * If we get a single-channel gain value passed in, then we
1751 * duplicate it to both left and right channels.
1752 */
1753
1754 switch (cp->dev) {
1755 case SB_MIC_VOL:
1756 if (cp->un.value.num_channels != 1)
1757 return EINVAL;
1758
1759 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1760 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1761 break;
1762 case SB_PCSPEAKER:
1763 if (cp->un.value.num_channels != 1)
1764 return EINVAL;
1765 /* fall into */
1766 case SB_INPUT_GAIN:
1767 case SB_OUTPUT_GAIN:
1768 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1769 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1770 break;
1771 default:
1772 switch (cp->un.value.num_channels) {
1773 case 1:
1774 lgain = rgain = SB_ADJUST_GAIN(sc,
1775 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1776 break;
1777 case 2:
1778 if (sc->sc_mixer_model == SBM_CT1335)
1779 return EINVAL;
1780 lgain = SB_ADJUST_GAIN(sc,
1781 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1782 rgain = SB_ADJUST_GAIN(sc,
1783 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1784 break;
1785 default:
1786 return EINVAL;
1787 }
1788 break;
1789 }
1790 sc->gain[cp->dev][SB_LEFT] = lgain;
1791 sc->gain[cp->dev][SB_RIGHT] = rgain;
1792
1793 sbdsp_set_mixer_gain(sc, cp->dev);
1794 break;
1795
1796 case SB_RECORD_SOURCE:
1797 if (ISSBM1745(sc)) {
1798 if (cp->type != AUDIO_MIXER_SET)
1799 return EINVAL;
1800 return sbdsp_set_in_ports(sc, cp->un.mask);
1801 } else {
1802 if (cp->type != AUDIO_MIXER_ENUM)
1803 return EINVAL;
1804 sc->in_port = cp->un.ord;
1805 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1806 }
1807 break;
1808
1809 case SB_AGC:
1810 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1811 return EINVAL;
1812 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1813 break;
1814
1815 case SB_CD_OUT_MUTE:
1816 mask = SB16P_SW_CD;
1817 goto omute;
1818 case SB_MIC_OUT_MUTE:
1819 mask = SB16P_SW_MIC;
1820 goto omute;
1821 case SB_LINE_OUT_MUTE:
1822 mask = SB16P_SW_LINE;
1823 omute:
1824 if (cp->type != AUDIO_MIXER_ENUM)
1825 return EINVAL;
1826 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1827 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1828 if (cp->un.ord)
1829 bits = bits & ~mask;
1830 else
1831 bits = bits | mask;
1832 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1833 break;
1834
1835 case SB_MIC_IN_MUTE:
1836 case SB_MIC_SWAP:
1837 lmask = rmask = SB16P_SW_MIC;
1838 goto imute;
1839 case SB_CD_IN_MUTE:
1840 case SB_CD_SWAP:
1841 lmask = SB16P_SW_CD_L;
1842 rmask = SB16P_SW_CD_R;
1843 goto imute;
1844 case SB_LINE_IN_MUTE:
1845 case SB_LINE_SWAP:
1846 lmask = SB16P_SW_LINE_L;
1847 rmask = SB16P_SW_LINE_R;
1848 goto imute;
1849 case SB_MIDI_IN_MUTE:
1850 case SB_MIDI_SWAP:
1851 lmask = SB16P_SW_MIDI_L;
1852 rmask = SB16P_SW_MIDI_R;
1853 imute:
1854 if (cp->type != AUDIO_MIXER_ENUM)
1855 return EINVAL;
1856 mask = lmask | rmask;
1857 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1858 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1859 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1860 if (SB_IS_IN_MUTE(cp->dev)) {
1861 mute = cp->dev;
1862 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1863 } else {
1864 swap = cp->dev;
1865 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1866 }
1867 if (sc->gain[swap][SB_LR]) {
1868 mask = lmask;
1869 lmask = rmask;
1870 rmask = mask;
1871 }
1872 if (!sc->gain[mute][SB_LR]) {
1873 lbits = lbits | lmask;
1874 rbits = rbits | rmask;
1875 }
1876 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1877 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1878 break;
1879
1880 default:
1881 return EINVAL;
1882 }
1883
1884 return 0;
1885 }
1886
1887 int
1888 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1889 {
1890 struct sbdsp_softc *sc;
1891
1892 sc = addr;
1893 if (sc->sc_open == SB_OPEN_MIDI)
1894 return EBUSY;
1895
1896 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1897
1898 if (sc->sc_mixer_model == SBM_NONE)
1899 return EINVAL;
1900
1901 switch (cp->dev) {
1902 case SB_TREBLE:
1903 case SB_BASS:
1904 if (sc->sc_mixer_model == SBM_CT1345 ||
1905 sc->sc_mixer_model == SBM_CT1XX5) {
1906 switch (cp->dev) {
1907 case SB_TREBLE:
1908 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1909 return 0;
1910 case SB_BASS:
1911 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1912 return 0;
1913 }
1914 }
1915 case SB_PCSPEAKER:
1916 case SB_INPUT_GAIN:
1917 case SB_OUTPUT_GAIN:
1918 if (!ISSBM1745(sc))
1919 return EINVAL;
1920 case SB_MIC_VOL:
1921 case SB_LINE_IN_VOL:
1922 if (sc->sc_mixer_model == SBM_CT1335)
1923 return EINVAL;
1924 case SB_VOICE_VOL:
1925 case SB_MIDI_VOL:
1926 case SB_CD_VOL:
1927 case SB_MASTER_VOL:
1928 switch (cp->dev) {
1929 case SB_MIC_VOL:
1930 case SB_PCSPEAKER:
1931 if (cp->un.value.num_channels != 1)
1932 return EINVAL;
1933 /* fall into */
1934 default:
1935 switch (cp->un.value.num_channels) {
1936 case 1:
1937 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1938 sc->gain[cp->dev][SB_LEFT];
1939 break;
1940 case 2:
1941 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1942 sc->gain[cp->dev][SB_LEFT];
1943 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1944 sc->gain[cp->dev][SB_RIGHT];
1945 break;
1946 default:
1947 return EINVAL;
1948 }
1949 break;
1950 }
1951 break;
1952
1953 case SB_RECORD_SOURCE:
1954 if (ISSBM1745(sc))
1955 cp->un.mask = sc->in_mask;
1956 else
1957 cp->un.ord = sc->in_port;
1958 break;
1959
1960 case SB_AGC:
1961 if (!ISSBM1745(sc))
1962 return EINVAL;
1963 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1964 break;
1965
1966 case SB_CD_IN_MUTE:
1967 case SB_MIC_IN_MUTE:
1968 case SB_LINE_IN_MUTE:
1969 case SB_MIDI_IN_MUTE:
1970 case SB_CD_SWAP:
1971 case SB_MIC_SWAP:
1972 case SB_LINE_SWAP:
1973 case SB_MIDI_SWAP:
1974 case SB_CD_OUT_MUTE:
1975 case SB_MIC_OUT_MUTE:
1976 case SB_LINE_OUT_MUTE:
1977 cp->un.ord = sc->gain[cp->dev][SB_LR];
1978 break;
1979
1980 default:
1981 return EINVAL;
1982 }
1983
1984 return 0;
1985 }
1986
1987 int
1988 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1989 {
1990 struct sbdsp_softc *sc = addr;
1991 int chan, class, is1745;
1992
1993 sc = addr;
1994 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1995 sc->sc_mixer_model, dip->index));
1996
1997 if (sc->sc_mixer_model == SBM_NONE)
1998 return ENXIO;
1999
2000 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2001 is1745 = ISSBM1745(sc);
2002 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2003
2004 switch (dip->index) {
2005 case SB_MASTER_VOL:
2006 dip->type = AUDIO_MIXER_VALUE;
2007 dip->mixer_class = SB_OUTPUT_CLASS;
2008 dip->prev = dip->next = AUDIO_MIXER_LAST;
2009 strcpy(dip->label.name, AudioNmaster);
2010 dip->un.v.num_channels = chan;
2011 strcpy(dip->un.v.units.name, AudioNvolume);
2012 return 0;
2013 case SB_MIDI_VOL:
2014 dip->type = AUDIO_MIXER_VALUE;
2015 dip->mixer_class = class;
2016 dip->prev = AUDIO_MIXER_LAST;
2017 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2018 strcpy(dip->label.name, AudioNfmsynth);
2019 dip->un.v.num_channels = chan;
2020 strcpy(dip->un.v.units.name, AudioNvolume);
2021 return 0;
2022 case SB_CD_VOL:
2023 dip->type = AUDIO_MIXER_VALUE;
2024 dip->mixer_class = class;
2025 dip->prev = AUDIO_MIXER_LAST;
2026 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2027 strcpy(dip->label.name, AudioNcd);
2028 dip->un.v.num_channels = chan;
2029 strcpy(dip->un.v.units.name, AudioNvolume);
2030 return 0;
2031 case SB_VOICE_VOL:
2032 dip->type = AUDIO_MIXER_VALUE;
2033 dip->mixer_class = class;
2034 dip->prev = AUDIO_MIXER_LAST;
2035 dip->next = AUDIO_MIXER_LAST;
2036 strcpy(dip->label.name, AudioNdac);
2037 dip->un.v.num_channels = chan;
2038 strcpy(dip->un.v.units.name, AudioNvolume);
2039 return 0;
2040 case SB_OUTPUT_CLASS:
2041 dip->type = AUDIO_MIXER_CLASS;
2042 dip->mixer_class = SB_OUTPUT_CLASS;
2043 dip->next = dip->prev = AUDIO_MIXER_LAST;
2044 strcpy(dip->label.name, AudioCoutputs);
2045 return 0;
2046 }
2047
2048 if (sc->sc_mixer_model == SBM_CT1335)
2049 return ENXIO;
2050
2051 switch (dip->index) {
2052 case SB_MIC_VOL:
2053 dip->type = AUDIO_MIXER_VALUE;
2054 dip->mixer_class = class;
2055 dip->prev = AUDIO_MIXER_LAST;
2056 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2057 strcpy(dip->label.name, AudioNmicrophone);
2058 dip->un.v.num_channels = 1;
2059 strcpy(dip->un.v.units.name, AudioNvolume);
2060 return 0;
2061
2062 case SB_LINE_IN_VOL:
2063 dip->type = AUDIO_MIXER_VALUE;
2064 dip->mixer_class = class;
2065 dip->prev = AUDIO_MIXER_LAST;
2066 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2067 strcpy(dip->label.name, AudioNline);
2068 dip->un.v.num_channels = 2;
2069 strcpy(dip->un.v.units.name, AudioNvolume);
2070 return 0;
2071
2072 case SB_RECORD_SOURCE:
2073 dip->mixer_class = SB_RECORD_CLASS;
2074 dip->prev = dip->next = AUDIO_MIXER_LAST;
2075 strcpy(dip->label.name, AudioNsource);
2076 if (ISSBM1745(sc)) {
2077 dip->type = AUDIO_MIXER_SET;
2078 dip->un.s.num_mem = 4;
2079 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2080 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2081 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2082 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2083 strcpy(dip->un.s.member[2].label.name, AudioNline);
2084 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2085 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2086 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2087 } else {
2088 dip->type = AUDIO_MIXER_ENUM;
2089 dip->un.e.num_mem = 3;
2090 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2091 dip->un.e.member[0].ord = SB_MIC_VOL;
2092 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2093 dip->un.e.member[1].ord = SB_CD_VOL;
2094 strcpy(dip->un.e.member[2].label.name, AudioNline);
2095 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2096 }
2097 return 0;
2098
2099 case SB_BASS:
2100 dip->prev = dip->next = AUDIO_MIXER_LAST;
2101 strcpy(dip->label.name, AudioNbass);
2102 if (sc->sc_mixer_model == SBM_CT1745) {
2103 dip->type = AUDIO_MIXER_VALUE;
2104 dip->mixer_class = SB_EQUALIZATION_CLASS;
2105 dip->un.v.num_channels = 2;
2106 strcpy(dip->un.v.units.name, AudioNbass);
2107 } else {
2108 dip->type = AUDIO_MIXER_ENUM;
2109 dip->mixer_class = SB_INPUT_CLASS;
2110 dip->un.e.num_mem = 2;
2111 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2112 dip->un.e.member[0].ord = 0;
2113 strcpy(dip->un.e.member[1].label.name, AudioNon);
2114 dip->un.e.member[1].ord = 1;
2115 }
2116 return 0;
2117
2118 case SB_TREBLE:
2119 dip->prev = dip->next = AUDIO_MIXER_LAST;
2120 strcpy(dip->label.name, AudioNtreble);
2121 if (sc->sc_mixer_model == SBM_CT1745) {
2122 dip->type = AUDIO_MIXER_VALUE;
2123 dip->mixer_class = SB_EQUALIZATION_CLASS;
2124 dip->un.v.num_channels = 2;
2125 strcpy(dip->un.v.units.name, AudioNtreble);
2126 } else {
2127 dip->type = AUDIO_MIXER_ENUM;
2128 dip->mixer_class = SB_INPUT_CLASS;
2129 dip->un.e.num_mem = 2;
2130 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2131 dip->un.e.member[0].ord = 0;
2132 strcpy(dip->un.e.member[1].label.name, AudioNon);
2133 dip->un.e.member[1].ord = 1;
2134 }
2135 return 0;
2136
2137 case SB_RECORD_CLASS: /* record source class */
2138 dip->type = AUDIO_MIXER_CLASS;
2139 dip->mixer_class = SB_RECORD_CLASS;
2140 dip->next = dip->prev = AUDIO_MIXER_LAST;
2141 strcpy(dip->label.name, AudioCrecord);
2142 return 0;
2143
2144 case SB_INPUT_CLASS:
2145 dip->type = AUDIO_MIXER_CLASS;
2146 dip->mixer_class = SB_INPUT_CLASS;
2147 dip->next = dip->prev = AUDIO_MIXER_LAST;
2148 strcpy(dip->label.name, AudioCinputs);
2149 return 0;
2150
2151 }
2152
2153 if (sc->sc_mixer_model == SBM_CT1345)
2154 return ENXIO;
2155
2156 switch(dip->index) {
2157 case SB_PCSPEAKER:
2158 dip->type = AUDIO_MIXER_VALUE;
2159 dip->mixer_class = SB_INPUT_CLASS;
2160 dip->prev = dip->next = AUDIO_MIXER_LAST;
2161 strcpy(dip->label.name, "pc_speaker");
2162 dip->un.v.num_channels = 1;
2163 strcpy(dip->un.v.units.name, AudioNvolume);
2164 return 0;
2165
2166 case SB_INPUT_GAIN:
2167 dip->type = AUDIO_MIXER_VALUE;
2168 dip->mixer_class = SB_INPUT_CLASS;
2169 dip->prev = dip->next = AUDIO_MIXER_LAST;
2170 strcpy(dip->label.name, AudioNinput);
2171 dip->un.v.num_channels = 2;
2172 strcpy(dip->un.v.units.name, AudioNvolume);
2173 return 0;
2174
2175 case SB_OUTPUT_GAIN:
2176 dip->type = AUDIO_MIXER_VALUE;
2177 dip->mixer_class = SB_OUTPUT_CLASS;
2178 dip->prev = dip->next = AUDIO_MIXER_LAST;
2179 strcpy(dip->label.name, AudioNoutput);
2180 dip->un.v.num_channels = 2;
2181 strcpy(dip->un.v.units.name, AudioNvolume);
2182 return 0;
2183
2184 case SB_AGC:
2185 dip->type = AUDIO_MIXER_ENUM;
2186 dip->mixer_class = SB_INPUT_CLASS;
2187 dip->prev = dip->next = AUDIO_MIXER_LAST;
2188 strcpy(dip->label.name, "agc");
2189 dip->un.e.num_mem = 2;
2190 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2191 dip->un.e.member[0].ord = 0;
2192 strcpy(dip->un.e.member[1].label.name, AudioNon);
2193 dip->un.e.member[1].ord = 1;
2194 return 0;
2195
2196 case SB_EQUALIZATION_CLASS:
2197 dip->type = AUDIO_MIXER_CLASS;
2198 dip->mixer_class = SB_EQUALIZATION_CLASS;
2199 dip->next = dip->prev = AUDIO_MIXER_LAST;
2200 strcpy(dip->label.name, AudioCequalization);
2201 return 0;
2202
2203 case SB_CD_IN_MUTE:
2204 dip->prev = SB_CD_VOL;
2205 dip->next = SB_CD_SWAP;
2206 dip->mixer_class = SB_INPUT_CLASS;
2207 goto mute;
2208
2209 case SB_MIC_IN_MUTE:
2210 dip->prev = SB_MIC_VOL;
2211 dip->next = SB_MIC_SWAP;
2212 dip->mixer_class = SB_INPUT_CLASS;
2213 goto mute;
2214
2215 case SB_LINE_IN_MUTE:
2216 dip->prev = SB_LINE_IN_VOL;
2217 dip->next = SB_LINE_SWAP;
2218 dip->mixer_class = SB_INPUT_CLASS;
2219 goto mute;
2220
2221 case SB_MIDI_IN_MUTE:
2222 dip->prev = SB_MIDI_VOL;
2223 dip->next = SB_MIDI_SWAP;
2224 dip->mixer_class = SB_INPUT_CLASS;
2225 goto mute;
2226
2227 case SB_CD_SWAP:
2228 dip->prev = SB_CD_IN_MUTE;
2229 dip->next = SB_CD_OUT_MUTE;
2230 goto swap;
2231
2232 case SB_MIC_SWAP:
2233 dip->prev = SB_MIC_IN_MUTE;
2234 dip->next = SB_MIC_OUT_MUTE;
2235 goto swap;
2236
2237 case SB_LINE_SWAP:
2238 dip->prev = SB_LINE_IN_MUTE;
2239 dip->next = SB_LINE_OUT_MUTE;
2240 goto swap;
2241
2242 case SB_MIDI_SWAP:
2243 dip->prev = SB_MIDI_IN_MUTE;
2244 dip->next = AUDIO_MIXER_LAST;
2245 swap:
2246 dip->mixer_class = SB_INPUT_CLASS;
2247 strcpy(dip->label.name, AudioNswap);
2248 goto mute1;
2249
2250 case SB_CD_OUT_MUTE:
2251 dip->prev = SB_CD_SWAP;
2252 dip->next = AUDIO_MIXER_LAST;
2253 dip->mixer_class = SB_OUTPUT_CLASS;
2254 goto mute;
2255
2256 case SB_MIC_OUT_MUTE:
2257 dip->prev = SB_MIC_SWAP;
2258 dip->next = AUDIO_MIXER_LAST;
2259 dip->mixer_class = SB_OUTPUT_CLASS;
2260 goto mute;
2261
2262 case SB_LINE_OUT_MUTE:
2263 dip->prev = SB_LINE_SWAP;
2264 dip->next = AUDIO_MIXER_LAST;
2265 dip->mixer_class = SB_OUTPUT_CLASS;
2266 mute:
2267 strcpy(dip->label.name, AudioNmute);
2268 mute1:
2269 dip->type = AUDIO_MIXER_ENUM;
2270 dip->un.e.num_mem = 2;
2271 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2272 dip->un.e.member[0].ord = 0;
2273 strcpy(dip->un.e.member[1].label.name, AudioNon);
2274 dip->un.e.member[1].ord = 1;
2275 return 0;
2276
2277 }
2278
2279 return ENXIO;
2280 }
2281
2282 void *
2283 sb_malloc(void *addr, int direction __unused, size_t size,
2284 struct malloc_type *pool, int flags)
2285 {
2286 struct sbdsp_softc *sc;
2287 int drq;
2288
2289 sc = addr;
2290 if (sc->sc_drq8 != -1)
2291 drq = sc->sc_drq8;
2292 else
2293 drq = sc->sc_drq16;
2294 return isa_malloc(sc->sc_ic, drq, size, pool, flags);
2295 }
2296
2297 void
2298 sb_free(void *addr __unused, void *ptr, struct malloc_type *pool)
2299 {
2300
2301 isa_free(ptr, pool);
2302 }
2303
2304 size_t
2305 sb_round_buffersize(void *addr, int direction __unused, size_t size)
2306 {
2307 struct sbdsp_softc *sc;
2308 bus_size_t maxsize;
2309
2310 sc = addr;
2311 if (sc->sc_drq8 != -1)
2312 maxsize = sc->sc_drq8_maxsize;
2313 else
2314 maxsize = sc->sc_drq16_maxsize;
2315
2316 if (size > maxsize)
2317 size = maxsize;
2318 return size;
2319 }
2320
2321 paddr_t
2322 sb_mappage(void *addr __unused, void *mem, off_t off, int prot)
2323 {
2324
2325 return isa_mappage(mem, off, prot);
2326 }
2327
2328 int
2329 sbdsp_get_props(void *addr)
2330 {
2331 struct sbdsp_softc *sc;
2332
2333 sc = addr;
2334 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2335 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2336 }
2337
2338 #if NMPU > 0
2339 /*
2340 * MIDI related routines.
2341 */
2342
2343 int
2344 sbdsp_midi_open(void *addr, int flags __unused, void (*iintr)(void *, int),
2345 void (*ointr)(void *) __unused, void *arg)
2346 {
2347 struct sbdsp_softc *sc;
2348
2349 sc = addr;
2350 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2351
2352 if (sc->sc_open != SB_CLOSED)
2353 return EBUSY;
2354 if (sbdsp_reset(sc) != 0)
2355 return EIO;
2356
2357 sc->sc_open = SB_OPEN_MIDI;
2358
2359 if (sc->sc_model >= SB_20)
2360 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2361 return EIO;
2362
2363 sc->sc_intr8 = sbdsp_midi_intr;
2364 sc->sc_intrm = iintr;
2365 sc->sc_argm = arg;
2366
2367 return 0;
2368 }
2369
2370 void
2371 sbdsp_midi_close(void *addr)
2372 {
2373 struct sbdsp_softc *sc;
2374
2375 sc = addr;
2376 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2377
2378 if (sc->sc_model >= SB_20)
2379 sbdsp_reset(sc); /* exit UART mode */
2380
2381 sc->sc_intrm = 0;
2382 sc->sc_open = SB_CLOSED;
2383 }
2384
2385 int
2386 sbdsp_midi_output(void *addr, int d)
2387 {
2388 struct sbdsp_softc *sc;
2389
2390 sc = addr;
2391 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2392 return EIO;
2393 if (sbdsp_wdsp(sc, d))
2394 return EIO;
2395 return 0;
2396 }
2397
2398 void
2399 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2400 {
2401 struct sbdsp_softc *sc;
2402
2403 sc = addr;
2404 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2405 mi->props = MIDI_PROP_CAN_INPUT;
2406 }
2407
2408 int
2409 sbdsp_midi_intr(void *addr)
2410 {
2411 struct sbdsp_softc *sc;
2412
2413 sc = addr;
2414 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2415 return (0);
2416 }
2417
2418 #endif
2419
2420