Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.125
      1 /*	$NetBSD: sbdsp.c,v 1.125 2006/10/12 01:31:17 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.125 2006/10/12 01:31:17 christos Exp $");
     85 
     86 #include "midi.h"
     87 #include "mpu.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/kernel.h>
     92 #include <sys/errno.h>
     93 #include <sys/ioctl.h>
     94 #include <sys/syslog.h>
     95 #include <sys/device.h>
     96 #include <sys/proc.h>
     97 #include <sys/buf.h>
     98 
     99 #include <machine/cpu.h>
    100 #include <machine/intr.h>
    101 #include <machine/bus.h>
    102 
    103 #include <sys/audioio.h>
    104 #include <dev/audio_if.h>
    105 #include <dev/midi_if.h>
    106 #include <dev/mulaw.h>
    107 #include <dev/auconv.h>
    108 
    109 #include <dev/isa/isavar.h>
    110 #include <dev/isa/isadmavar.h>
    111 
    112 #include <dev/isa/sbreg.h>
    113 #include <dev/isa/sbdspvar.h>
    114 
    115 
    116 #ifdef AUDIO_DEBUG
    117 #define DPRINTF(x)	if (sbdspdebug) printf x
    118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    119 int	sbdspdebug = 0;
    120 #else
    121 #define DPRINTF(x)
    122 #define DPRINTFN(n,x)
    123 #endif
    124 
    125 #ifndef SBDSP_NPOLL
    126 #define SBDSP_NPOLL 3000
    127 #endif
    128 
    129 struct {
    130 	int wdsp;
    131 	int rdsp;
    132 	int wmidi;
    133 } sberr;
    134 
    135 /*
    136  * Time constant routines follow.  See SBK, section 12.
    137  * Although they don't come out and say it (in the docs),
    138  * the card clearly uses a 1MHz countdown timer, as the
    139  * low-speed formula (p. 12-4) is:
    140  *	tc = 256 - 10^6 / sr
    141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    142  * and a 256MHz clock is used:
    143  *	tc = 65536 - 256 * 10^ 6 / sr
    144  * Since we can only use the upper byte of the HS TC, the two formulae
    145  * are equivalent.  (Why didn't they say so?)  E.g.,
    146  *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    147  *
    148  * The crossover point (from low- to high-speed modes) is different
    149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    150  *
    151  *				SBPRO			SB20
    152  *				-----			--------
    153  * input ls min			4	kHz		4	kHz
    154  * input ls max			23	kHz		13	kHz
    155  * input hs max			44.1	kHz		15	kHz
    156  * output ls min		4	kHz		4	kHz
    157  * output ls max		23	kHz		23	kHz
    158  * output hs max		44.1	kHz		44.1	kHz
    159  */
    160 /* XXX Should we round the tc?
    161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    162 */
    163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    165 
    166 struct sbmode {
    167 	short	model;
    168 	u_char	channels;
    169 	u_char	precision;
    170 	u_short	lowrate, highrate;
    171 	u_char	cmd;
    172 	u_char	halt, cont;
    173 	u_char	cmdchan;
    174 };
    175 static struct sbmode sbpmodes[] = {
    176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    192 #define PLAY16 15 /* must be the index of the next entry in the table */
    193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    195  { .model = -1 }
    196 };
    197 static struct sbmode sbrmodes[] = {
    198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    215  { .model = -1 }
    216 };
    217 
    218 void	sbversion(struct sbdsp_softc *);
    219 void	sbdsp_jazz16_probe(struct sbdsp_softc *);
    220 void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
    221 void	sbdsp_pause(struct sbdsp_softc *);
    222 int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
    223 int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
    224 int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
    225 void	sbdsp_set_ifilter(void *, int);
    226 int	sbdsp_get_ifilter(void *);
    227 
    228 int	sbdsp_block_output(void *);
    229 int	sbdsp_block_input(void *);
    230 static	int sbdsp_adjust(int, int);
    231 
    232 int	sbdsp_midi_intr(void *);
    233 
    234 static void	sbdsp_powerhook(int, void*);
    235 
    236 #ifdef AUDIO_DEBUG
    237 void	sb_printsc(struct sbdsp_softc *);
    238 
    239 void
    240 sb_printsc(struct sbdsp_softc *sc)
    241 {
    242 	int i;
    243 
    244 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
    245 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    246 	    sc->sc_drq8, sc->sc_drq16,
    247 	    sc->sc_iobase, sc->sc_irq);
    248 	printf("irate %d itc %x orate %d otc %x\n",
    249 	    sc->sc_i.rate, sc->sc_i.tc,
    250 	    sc->sc_o.rate, sc->sc_o.tc);
    251 	printf("spkron %u nintr %lu\n",
    252 	    sc->spkr_state, sc->sc_interrupts);
    253 	printf("intr8 %p intr16 %p\n",
    254 	    sc->sc_intr8, sc->sc_intr16);
    255 	printf("gain:");
    256 	for (i = 0; i < SB_NDEVS; i++)
    257 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    258 	printf("\n");
    259 }
    260 #endif /* AUDIO_DEBUG */
    261 
    262 /*
    263  * Probe / attach routines.
    264  */
    265 
    266 /*
    267  * Probe for the soundblaster hardware.
    268  */
    269 int
    270 sbdsp_probe(struct sbdsp_softc *sc)
    271 {
    272 
    273 	if (sbdsp_reset(sc) < 0) {
    274 		DPRINTF(("sbdsp: couldn't reset card\n"));
    275 		return 0;
    276 	}
    277 	/* if flags set, go and probe the jazz16 stuff */
    278 	if (device_cfdata(&sc->sc_dev)->cf_flags & 1)
    279 		sbdsp_jazz16_probe(sc);
    280 	else
    281 		sbversion(sc);
    282 	if (sc->sc_model == SB_UNK) {
    283 		/* Unknown SB model found. */
    284 		DPRINTF(("sbdsp: unknown SB model found\n"));
    285 		return 0;
    286 	}
    287 	return 1;
    288 }
    289 
    290 /*
    291  * Try add-on stuff for Jazz16.
    292  */
    293 void
    294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
    295 {
    296 	static u_char jazz16_irq_conf[16] = {
    297 	    -1, -1, 0x02, 0x03,
    298 	    -1, 0x01, -1, 0x04,
    299 	    -1, 0x02, 0x05, -1,
    300 	    -1, -1, -1, 0x06};
    301 	static u_char jazz16_drq_conf[8] = {
    302 	    -1, 0x01, -1, 0x02,
    303 	    -1, 0x03, -1, 0x04};
    304 
    305 	bus_space_tag_t iot;
    306 	bus_space_handle_t ioh;
    307 
    308 	iot = sc->sc_iot;
    309 	sbversion(sc);
    310 
    311 	DPRINTF(("jazz16 probe\n"));
    312 
    313 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    314 		DPRINTF(("bus map failed\n"));
    315 		return;
    316 	}
    317 
    318 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    319 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    320 		DPRINTF(("drq/irq check failed\n"));
    321 		goto done;		/* give up, we can't do it. */
    322 	}
    323 
    324 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    325 	delay(10000);			/* delay 10 ms */
    326 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    327 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    328 
    329 	if (sbdsp_reset(sc) < 0) {
    330 		DPRINTF(("sbdsp_reset check failed\n"));
    331 		goto done;		/* XXX? what else could we do? */
    332 	}
    333 
    334 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    335 		DPRINTF(("read16 setup failed\n"));
    336 		goto done;
    337 	}
    338 
    339 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    340 		DPRINTF(("read16 failed\n"));
    341 		goto done;
    342 	}
    343 
    344 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    345 	sc->sc_drq16 = sc->sc_drq8;
    346 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    347 	    (sc->sc_drq16 >= 0 &&
    348 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    349 		jazz16_drq_conf[sc->sc_drq8])) ||
    350 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    351 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    352 	} else {
    353 		DPRINTF(("jazz16 detected!\n"));
    354 		sc->sc_model = SB_JAZZ;
    355 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    356 	}
    357 
    358 done:
    359 	bus_space_unmap(iot, ioh, 1);
    360 }
    361 
    362 /*
    363  * Attach hardware to driver, attach hardware driver to audio
    364  * pseudo-device driver .
    365  */
    366 void
    367 sbdsp_attach(struct sbdsp_softc *sc)
    368 {
    369 	int i, error;
    370 	u_int v;
    371 
    372 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    373 
    374 	if (sc->sc_mixer_model != SBM_NONE) {
    375 		/* Reset the mixer.*/
    376 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    377 		/* And set our own default values */
    378 		for (i = 0; i < SB_NDEVS; i++) {
    379 			switch(i) {
    380 			case SB_MIC_VOL:
    381 			case SB_LINE_IN_VOL:
    382 				v = 0;
    383 				break;
    384 			case SB_BASS:
    385 			case SB_TREBLE:
    386 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    387 				break;
    388 			case SB_CD_IN_MUTE:
    389 			case SB_MIC_IN_MUTE:
    390 			case SB_LINE_IN_MUTE:
    391 			case SB_MIDI_IN_MUTE:
    392 			case SB_CD_SWAP:
    393 			case SB_MIC_SWAP:
    394 			case SB_LINE_SWAP:
    395 			case SB_MIDI_SWAP:
    396 			case SB_CD_OUT_MUTE:
    397 			case SB_MIC_OUT_MUTE:
    398 			case SB_LINE_OUT_MUTE:
    399 				v = 0;
    400 				break;
    401 			default:
    402 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    403 				break;
    404 			}
    405 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    406 			sbdsp_set_mixer_gain(sc, i);
    407 		}
    408 		sc->in_filter = 0;	/* no filters turned on, please */
    409 	}
    410 
    411 	printf(": dsp v%d.%02d%s\n",
    412 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    413 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    414 
    415 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    416 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    417 	    sc->sc_drq8 != sc->sc_drq16;
    418 
    419 	if (sc->sc_drq8 != -1) {
    420 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    421 		    sc->sc_drq8);
    422 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    423 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    424 		if (error) {
    425 			printf("%s: can't create map for drq %d\n",
    426 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    427 			return;
    428 		}
    429 	}
    430 
    431 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    432 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    433 		    sc->sc_drq16);
    434 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    435 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    436 		if (error) {
    437 			printf("%s: can't create map for drq %d\n",
    438 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    439 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    440 			return;
    441 		}
    442 	}
    443 
    444 	powerhook_establish(sc->sc_dev.dv_xname, sbdsp_powerhook, sc);
    445 }
    446 
    447 static void
    448 sbdsp_powerhook(int why, void *arg)
    449 {
    450 	struct sbdsp_softc *sc;
    451 	int i;
    452 
    453 	sc = arg;
    454 	if (!sc || why != PWR_RESUME)
    455 		return;
    456 
    457 	/* Reset the mixer. */
    458 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    459 	for (i = 0; i < SB_NDEVS; i++)
    460 		sbdsp_set_mixer_gain (sc, i);
    461 }
    462 
    463 void
    464 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
    465 {
    466 	bus_space_tag_t iot;
    467 	bus_space_handle_t ioh;
    468 	int s;
    469 
    470 	iot = sc->sc_iot;
    471 	ioh = sc->sc_ioh;
    472 	s = splaudio();
    473 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    474 	delay(20);
    475 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    476 	delay(30);
    477 	splx(s);
    478 }
    479 
    480 int
    481 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
    482 {
    483 	bus_space_tag_t iot;
    484 	bus_space_handle_t ioh;
    485 	int val;
    486 	int s;
    487 
    488 	iot = sc->sc_iot;
    489 	ioh = sc->sc_ioh;
    490 	s = splaudio();
    491 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    492 	delay(20);
    493 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    494 	delay(30);
    495 	splx(s);
    496 	return val;
    497 }
    498 
    499 /*
    500  * Various routines to interface to higher level audio driver
    501  */
    502 
    503 int
    504 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
    505 {
    506 	struct sbdsp_softc *sc;
    507 	int emul;
    508 
    509 	sc = addr;
    510 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    511 
    512 	switch (fp->index) {
    513 	case 0:
    514 		strcpy(fp->name, AudioEulinear);
    515 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    516 		fp->precision = 8;
    517 		fp->flags = 0;
    518 		return 0;
    519 	case 1:
    520 		strcpy(fp->name, AudioEmulaw);
    521 		fp->encoding = AUDIO_ENCODING_ULAW;
    522 		fp->precision = 8;
    523 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    524 		return 0;
    525 	case 2:
    526 		strcpy(fp->name, AudioEalaw);
    527 		fp->encoding = AUDIO_ENCODING_ALAW;
    528 		fp->precision = 8;
    529 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    530 		return 0;
    531 	case 3:
    532 		strcpy(fp->name, AudioEslinear);
    533 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    534 		fp->precision = 8;
    535 		fp->flags = emul;
    536 		return 0;
    537 	}
    538 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    539 		return EINVAL;
    540 
    541 	switch(fp->index) {
    542 	case 4:
    543 		strcpy(fp->name, AudioEslinear_le);
    544 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    545 		fp->precision = 16;
    546 		fp->flags = 0;
    547 		return 0;
    548 	case 5:
    549 		strcpy(fp->name, AudioEulinear_le);
    550 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    551 		fp->precision = 16;
    552 		fp->flags = emul;
    553 		return 0;
    554 	case 6:
    555 		strcpy(fp->name, AudioEslinear_be);
    556 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    557 		fp->precision = 16;
    558 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    559 		return 0;
    560 	case 7:
    561 		strcpy(fp->name, AudioEulinear_be);
    562 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    563 		fp->precision = 16;
    564 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    565 		return 0;
    566 	default:
    567 		return EINVAL;
    568 	}
    569 	return 0;
    570 }
    571 
    572 int
    573 sbdsp_set_params(
    574 	void *addr,
    575 	int setmode, int usemode,
    576 	audio_params_t *play, audio_params_t *rec,
    577 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    578 {
    579 	struct sbdsp_softc *sc;
    580 	struct sbmode *m;
    581 	u_int rate, tc, bmode;
    582 	stream_filter_factory_t *swcode;
    583 	int model;
    584 	int chan;
    585 	struct audio_params *p;
    586 	audio_params_t hw;
    587 	stream_filter_list_t *fil;
    588 	int mode;
    589 
    590 	sc = addr;
    591 	if (sc->sc_open == SB_OPEN_MIDI)
    592 		return EBUSY;
    593 
    594 	/* Later models work like SB16. */
    595 	model = min(sc->sc_model, SB_16);
    596 
    597 	/*
    598 	 * Prior to the SB16, we have only one clock, so make the sample
    599 	 * rates match.
    600 	 */
    601 	if (!ISSB16CLASS(sc) &&
    602 	    play->sample_rate != rec->sample_rate &&
    603 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    604 		if (setmode == AUMODE_PLAY) {
    605 			rec->sample_rate = play->sample_rate;
    606 			setmode |= AUMODE_RECORD;
    607 		} else if (setmode == AUMODE_RECORD) {
    608 			play->sample_rate = rec->sample_rate;
    609 			setmode |= AUMODE_PLAY;
    610 		} else
    611 			return EINVAL;
    612 	}
    613 
    614 	/* Set first record info, then play info */
    615 	for (mode = AUMODE_RECORD; mode != -1;
    616 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    617 		if ((setmode & mode) == 0)
    618 			continue;
    619 
    620 		p = mode == AUMODE_PLAY ? play : rec;
    621 		/* Locate proper commands */
    622 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    623 		    m->model != -1; m++) {
    624 			if (model == m->model &&
    625 			    p->channels == m->channels &&
    626 			    p->precision == m->precision &&
    627 			    p->sample_rate >= m->lowrate &&
    628 			    p->sample_rate <= m->highrate)
    629 				break;
    630 		}
    631 		if (m->model == -1)
    632 			return EINVAL;
    633 		rate = p->sample_rate;
    634 		swcode = NULL;
    635 		fil = mode ==  AUMODE_PLAY ? pfil : rfil;
    636 		hw = *p;
    637 		tc = 1;
    638 		bmode = -1;
    639 		if (model == SB_16) {
    640 			switch (p->encoding) {
    641 			case AUDIO_ENCODING_SLINEAR_BE:
    642 				if (p->precision == 16) {
    643 					hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    644 					swcode = swap_bytes;
    645 				}
    646 				/* fall into */
    647 			case AUDIO_ENCODING_SLINEAR_LE:
    648 				bmode = SB_BMODE_SIGNED;
    649 				break;
    650 
    651 			case AUDIO_ENCODING_ULINEAR_BE:
    652 				if (p->precision == 16) {
    653 					hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    654 					swcode = swap_bytes;
    655 				}
    656 				/* fall into */
    657 			case AUDIO_ENCODING_ULINEAR_LE:
    658 				bmode = SB_BMODE_UNSIGNED;
    659 				break;
    660 
    661 			case AUDIO_ENCODING_ULAW:
    662 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    663 				if (mode == AUMODE_PLAY) {
    664 					hw.precision = hw.validbits = 16;
    665 					swcode = mulaw_to_linear16;
    666 					m = &sbpmodes[PLAY16];
    667 				} else
    668 					swcode = linear8_to_mulaw;
    669 				bmode = SB_BMODE_UNSIGNED;
    670 				break;
    671 
    672 			case AUDIO_ENCODING_ALAW:
    673 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    674 				if (mode == AUMODE_PLAY) {
    675 					hw.precision = hw.validbits = 16;
    676 					swcode = alaw_to_linear16;
    677 					m = &sbpmodes[PLAY16];
    678 				} else
    679 					swcode = linear8_to_alaw;
    680 				bmode = SB_BMODE_UNSIGNED;
    681 				break;
    682 			default:
    683 				return EINVAL;
    684 			}
    685 			if (p->channels == 2)
    686 				bmode |= SB_BMODE_STEREO;
    687 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    688 			switch (p->encoding) {
    689 			case AUDIO_ENCODING_SLINEAR_LE:
    690 				break;
    691 			case AUDIO_ENCODING_ULINEAR_LE:
    692 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    693 				swcode = change_sign16;
    694 				break;
    695 			case AUDIO_ENCODING_SLINEAR_BE:
    696 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    697 				swcode = swap_bytes;
    698 				break;
    699 			case AUDIO_ENCODING_ULINEAR_BE:
    700 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    701 				swcode = swap_bytes_change_sign16;
    702 				break;
    703 			case AUDIO_ENCODING_ULAW:
    704 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    705 				swcode = mode == AUMODE_PLAY ?
    706 					mulaw_to_linear8 : linear8_to_mulaw;
    707 				break;
    708 			case AUDIO_ENCODING_ALAW:
    709 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    710 				swcode = mode == AUMODE_PLAY ?
    711 					alaw_to_linear8 : linear8_to_alaw;
    712 				break;
    713 			default:
    714 				return EINVAL;
    715 			}
    716 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    717 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    718 			hw.sample_rate = p->sample_rate;
    719 		} else {
    720 			switch (p->encoding) {
    721 			case AUDIO_ENCODING_SLINEAR_BE:
    722 			case AUDIO_ENCODING_SLINEAR_LE:
    723 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    724 				swcode = change_sign8;
    725 				break;
    726 			case AUDIO_ENCODING_ULINEAR_BE:
    727 			case AUDIO_ENCODING_ULINEAR_LE:
    728 				break;
    729 			case AUDIO_ENCODING_ULAW:
    730 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    731 				swcode = mode == AUMODE_PLAY ?
    732 					mulaw_to_linear8 : linear8_to_mulaw;
    733 				break;
    734 			case AUDIO_ENCODING_ALAW:
    735 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    736 				swcode = mode == AUMODE_PLAY ?
    737 					alaw_to_linear8 : linear8_to_alaw;
    738 				break;
    739 			default:
    740 				return EINVAL;
    741 			}
    742 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    743 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    744 			hw.sample_rate = p->sample_rate;
    745 		}
    746 
    747 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    748 		if (mode == AUMODE_PLAY) {
    749 			sc->sc_o.rate = rate;
    750 			sc->sc_o.tc = tc;
    751 			sc->sc_o.modep = m;
    752 			sc->sc_o.bmode = bmode;
    753 			sc->sc_o.dmachan = chan;
    754 		} else {
    755 			sc->sc_i.rate = rate;
    756 			sc->sc_i.tc = tc;
    757 			sc->sc_i.modep = m;
    758 			sc->sc_i.bmode = bmode;
    759 			sc->sc_i.dmachan = chan;
    760 		}
    761 
    762 		if (swcode != NULL)
    763 			fil->append(fil, swcode, &hw);
    764 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
    765 			 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
    766 			 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
    767 			 p->sample_rate, p->precision, p->channels,
    768 			 p->encoding, tc, m->cmd, bmode, m->cmdchan));
    769 
    770 	}
    771 
    772 	if (sc->sc_fullduplex &&
    773 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    774 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    775 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
    776 			 "odma=%d\n", sc->sc_fullduplex, usemode,
    777 			 sc->sc_i.dmachan, sc->sc_o.dmachan));
    778 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    779 			/* Use 16 bit DMA for playing by expanding the samples. */
    780 			hw.precision = hw.validbits = 16;
    781 			pfil->append(pfil, linear8_to_linear16, &hw);
    782 			sc->sc_o.modep = &sbpmodes[PLAY16];
    783 			sc->sc_o.dmachan = sc->sc_drq16;
    784 		} else {
    785 			return EINVAL;
    786 		}
    787 	}
    788 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    789 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    790 
    791 	return 0;
    792 }
    793 
    794 void
    795 sbdsp_set_ifilter(void *addr, int which)
    796 {
    797 	struct sbdsp_softc *sc;
    798 	int mixval;
    799 
    800 	sc = addr;
    801 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    802 	switch (which) {
    803 	case 0:
    804 		mixval |= SBP_FILTER_OFF;
    805 		break;
    806 	case SB_TREBLE:
    807 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    808 		break;
    809 	case SB_BASS:
    810 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    811 		break;
    812 	default:
    813 		return;
    814 	}
    815 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    816 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    817 }
    818 
    819 int
    820 sbdsp_get_ifilter(void *addr)
    821 {
    822 	struct sbdsp_softc *sc;
    823 
    824 	sc = addr;
    825 	sc->in_filter =
    826 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    827 	switch (sc->in_filter) {
    828 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    829 		return SB_TREBLE;
    830 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    831 		return SB_BASS;
    832 	default:
    833 		return 0;
    834 	}
    835 }
    836 
    837 int
    838 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
    839 {
    840 	int bitsl, bitsr;
    841 	int sbport;
    842 
    843 	if (sc->sc_open == SB_OPEN_MIDI)
    844 		return EBUSY;
    845 
    846 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    847 		 sc->sc_mixer_model, mask));
    848 
    849 	switch(sc->sc_mixer_model) {
    850 	case SBM_NONE:
    851 		return EINVAL;
    852 	case SBM_CT1335:
    853 		if (mask != (1 << SB_MIC_VOL))
    854 			return EINVAL;
    855 		break;
    856 	case SBM_CT1345:
    857 		switch (mask) {
    858 		case 1 << SB_MIC_VOL:
    859 			sbport = SBP_FROM_MIC;
    860 			break;
    861 		case 1 << SB_LINE_IN_VOL:
    862 			sbport = SBP_FROM_LINE;
    863 			break;
    864 		case 1 << SB_CD_VOL:
    865 			sbport = SBP_FROM_CD;
    866 			break;
    867 		default:
    868 			return EINVAL;
    869 		}
    870 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    871 		break;
    872 	case SBM_CT1XX5:
    873 	case SBM_CT1745:
    874 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    875 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    876 			return EINVAL;
    877 		bitsr = 0;
    878 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    879 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    880 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    881 		bitsl = SB_SRC_R_TO_L(bitsr);
    882 		if (mask & (1<<SB_MIC_VOL)) {
    883 			bitsl |= SBP_MIC_SRC;
    884 			bitsr |= SBP_MIC_SRC;
    885 		}
    886 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    887 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    888 		break;
    889 	}
    890 	sc->in_mask = mask;
    891 
    892 	return 0;
    893 }
    894 
    895 int
    896 sbdsp_speaker_ctl(void *addr, int newstate)
    897 {
    898 	struct sbdsp_softc *sc;
    899 
    900 	sc = addr;
    901 	if (sc->sc_open == SB_OPEN_MIDI)
    902 		return EBUSY;
    903 
    904 	if ((newstate == SPKR_ON) &&
    905 	    (sc->spkr_state == SPKR_OFF)) {
    906 		sbdsp_spkron(sc);
    907 		sc->spkr_state = SPKR_ON;
    908 	}
    909 	if ((newstate == SPKR_OFF) &&
    910 	    (sc->spkr_state == SPKR_ON)) {
    911 		sbdsp_spkroff(sc);
    912 		sc->spkr_state = SPKR_OFF;
    913 	}
    914 	return 0;
    915 }
    916 
    917 int
    918 sbdsp_round_blocksize(void *addr __unused, int blk, int mode __unused,
    919     const audio_params_t *param __unused)
    920 {
    921 	return blk & -4;	/* round to biggest sample size */
    922 }
    923 
    924 int
    925 sbdsp_open(void *addr, int flags __unused)
    926 {
    927 	struct sbdsp_softc *sc;
    928 	int error, state;
    929 
    930 	sc = addr;
    931 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    932 
    933 	if (sc->sc_open != SB_CLOSED)
    934 		return EBUSY;
    935 	sc->sc_open = SB_OPEN_AUDIO;
    936 	state = 0;
    937 
    938 	if (sc->sc_drq8 != -1) {
    939 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
    940 		if (error != 0)
    941 			goto bad;
    942 		state |= 1;
    943 	}
    944 
    945 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    946 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
    947 		if (error != 0)
    948 			goto bad;
    949 		state |= 2;
    950 	}
    951 
    952 
    953 	if (sbdsp_reset(sc) != 0) {
    954 		error = EIO;
    955 		goto bad;
    956 	}
    957 
    958 	if (ISSBPRO(sc) &&
    959 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    960 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    961 		/* we'll readjust when it's time for DMA. */
    962 	}
    963 
    964 	/*
    965 	 * Leave most things as they were; users must change things if
    966 	 * the previous process didn't leave it they way they wanted.
    967 	 * Looked at another way, it's easy to set up a configuration
    968 	 * in one program and leave it for another to inherit.
    969 	 */
    970 	DPRINTF(("sbdsp_open: opened\n"));
    971 
    972 	return 0;
    973 
    974 bad:
    975 	if (state & 1)
    976 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    977 	if (state & 2)
    978 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    979 
    980 	sc->sc_open = SB_CLOSED;
    981 	return error;
    982 }
    983 
    984 void
    985 sbdsp_close(void *addr)
    986 {
    987 	struct sbdsp_softc *sc;
    988 
    989 	sc = addr;
    990 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    991 
    992 	sbdsp_spkroff(sc);
    993 	sc->spkr_state = SPKR_OFF;
    994 
    995 	sc->sc_intr8 = 0;
    996 	sc->sc_intr16 = 0;
    997 
    998 	if (sc->sc_drq8 != -1)
    999 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
   1000 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
   1001 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
   1002 
   1003 	sc->sc_open = SB_CLOSED;
   1004 	DPRINTF(("sbdsp_close: closed\n"));
   1005 }
   1006 
   1007 /*
   1008  * Lower-level routines
   1009  */
   1010 
   1011 /*
   1012  * Reset the card.
   1013  * Return non-zero if the card isn't detected.
   1014  */
   1015 int
   1016 sbdsp_reset(struct sbdsp_softc *sc)
   1017 {
   1018 	bus_space_tag_t iot;
   1019 	bus_space_handle_t ioh;
   1020 
   1021 	iot = sc->sc_iot;
   1022 	ioh = sc->sc_ioh;
   1023 	sc->sc_intr8 = 0;
   1024 	sc->sc_intr16 = 0;
   1025 	sc->sc_intrm = 0;
   1026 
   1027 	/*
   1028 	 * See SBK, section 11.3.
   1029 	 * We pulse a reset signal into the card.
   1030 	 * Gee, what a brilliant hardware design.
   1031 	 */
   1032 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1033 	delay(10);
   1034 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1035 	delay(30);
   1036 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1037 		return -1;
   1038 
   1039 	return 0;
   1040 }
   1041 
   1042 /*
   1043  * Write a byte to the dsp.
   1044  * We are at the mercy of the card as we use a
   1045  * polling loop and wait until it can take the byte.
   1046  */
   1047 int
   1048 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
   1049 {
   1050 	bus_space_tag_t iot;
   1051 	bus_space_handle_t ioh;
   1052 	int i;
   1053 	u_char x;
   1054 
   1055 	iot = sc->sc_iot;
   1056 	ioh = sc->sc_ioh;
   1057 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1058 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1059 		delay(10);
   1060 		if ((x & SB_DSP_BUSY) == 0) {
   1061 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1062 			delay(10);
   1063 			return 0;
   1064 		}
   1065 	}
   1066 	++sberr.wdsp;
   1067 	return -1;
   1068 }
   1069 
   1070 /*
   1071  * Read a byte from the DSP, using polling.
   1072  */
   1073 int
   1074 sbdsp_rdsp(struct sbdsp_softc *sc)
   1075 {
   1076 	bus_space_tag_t iot;
   1077 	bus_space_handle_t ioh;
   1078 	int i;
   1079 	u_char x;
   1080 
   1081 	iot = sc->sc_iot;
   1082 	ioh = sc->sc_ioh;
   1083 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1084 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1085 		delay(10);
   1086 		if (x & SB_DSP_READY) {
   1087 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1088 			delay(10);
   1089 			return x;
   1090 		}
   1091 	}
   1092 	++sberr.rdsp;
   1093 	return -1;
   1094 }
   1095 
   1096 void
   1097 sbdsp_pause(struct sbdsp_softc *sc __unused)
   1098 {
   1099 
   1100 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1101 }
   1102 
   1103 /*
   1104  * Turn on the speaker.  The SBK documention says this operation
   1105  * can take up to 1/10 of a second.  Higher level layers should
   1106  * probably let the task sleep for this amount of time after
   1107  * calling here.  Otherwise, things might not work (because
   1108  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1109  *
   1110  * These engineers had their heads up their ass when
   1111  * they designed this card.
   1112  */
   1113 void
   1114 sbdsp_spkron(struct sbdsp_softc *sc)
   1115 {
   1116 
   1117 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1118 	sbdsp_pause(sc);
   1119 }
   1120 
   1121 /*
   1122  * Turn off the speaker; see comment above.
   1123  */
   1124 void
   1125 sbdsp_spkroff(struct sbdsp_softc *sc)
   1126 {
   1127 
   1128 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1129 	sbdsp_pause(sc);
   1130 }
   1131 
   1132 /*
   1133  * Read the version number out of the card.
   1134  * Store version information in the softc.
   1135  */
   1136 void
   1137 sbversion(struct sbdsp_softc *sc)
   1138 {
   1139 	int v;
   1140 
   1141 	sc->sc_model = SB_UNK;
   1142 	sc->sc_version = 0;
   1143 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1144 		return;
   1145 	v = sbdsp_rdsp(sc) << 8;
   1146 	v |= sbdsp_rdsp(sc);
   1147 	if (v < 0)
   1148 		return;
   1149 	sc->sc_version = v;
   1150 	switch(SBVER_MAJOR(v)) {
   1151 	case 1:
   1152 		sc->sc_mixer_model = SBM_NONE;
   1153 		sc->sc_model = SB_1;
   1154 		break;
   1155 	case 2:
   1156 		/* Some SB2 have a mixer, some don't. */
   1157 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1158 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1159 		/* Check if we can read back the mixer values. */
   1160 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1161 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1162 			sc->sc_mixer_model = SBM_CT1335;
   1163 		else
   1164 			sc->sc_mixer_model = SBM_NONE;
   1165 		if (SBVER_MINOR(v) == 0)
   1166 			sc->sc_model = SB_20;
   1167 		else
   1168 			sc->sc_model = SB_2x;
   1169 		break;
   1170 	case 3:
   1171 		sc->sc_mixer_model = SBM_CT1345;
   1172 		sc->sc_model = SB_PRO;
   1173 		break;
   1174 	case 4:
   1175 #if 0
   1176 /* XXX This does not work */
   1177 		/* Most SB16 have a tone controls, but some don't. */
   1178 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1179 		/* Check if we can read back the mixer value. */
   1180 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1181 			sc->sc_mixer_model = SBM_CT1745;
   1182 		else
   1183 			sc->sc_mixer_model = SBM_CT1XX5;
   1184 #else
   1185 		sc->sc_mixer_model = SBM_CT1745;
   1186 #endif
   1187 #if 0
   1188 /* XXX figure out a good way of determining the model */
   1189 		/* XXX what about SB_32 */
   1190 		if (SBVER_MINOR(v) == 16)
   1191 			sc->sc_model = SB_64;
   1192 		else
   1193 #endif
   1194 			sc->sc_model = SB_16;
   1195 		break;
   1196 	}
   1197 }
   1198 
   1199 int
   1200 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
   1201 {
   1202 
   1203 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1204 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1205 	    sbdsp_wdsp(sc, tc) < 0)
   1206 		return EIO;
   1207 	return 0;
   1208 }
   1209 
   1210 int
   1211 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
   1212 {
   1213 
   1214 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1215 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1216 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1217 	    sbdsp_wdsp(sc, rate) < 0)
   1218 		return EIO;
   1219 	return 0;
   1220 }
   1221 
   1222 int
   1223 sbdsp_trigger_input(
   1224 	void *addr,
   1225 	void *start, void *end,
   1226 	int blksize,
   1227 	void (*intr)(void *),
   1228 	void *arg,
   1229 	const audio_params_t *param)
   1230 {
   1231 	struct sbdsp_softc *sc;
   1232 	int stereo;
   1233 	int width;
   1234 	int filter;
   1235 
   1236 	sc = addr;
   1237 	stereo = param->channels == 2;
   1238 	width = param->precision;
   1239 #ifdef DIAGNOSTIC
   1240 	if (stereo && (blksize & 1)) {
   1241 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1242 		return EIO;
   1243 	}
   1244 	if (sc->sc_i.run != SB_NOTRUNNING)
   1245 		printf("sbdsp_trigger_input: already running\n");
   1246 #endif
   1247 
   1248 	sc->sc_intrr = intr;
   1249 	sc->sc_argr = arg;
   1250 
   1251 	if (width == 8) {
   1252 #ifdef DIAGNOSTIC
   1253 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1254 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1255 			    width, sc->sc_i.dmachan);
   1256 			return EIO;
   1257 		}
   1258 #endif
   1259 		sc->sc_intr8 = sbdsp_block_input;
   1260 	} else {
   1261 #ifdef DIAGNOSTIC
   1262 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1263 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1264 			    width, sc->sc_i.dmachan);
   1265 			return EIO;
   1266 		}
   1267 #endif
   1268 		sc->sc_intr16 = sbdsp_block_input;
   1269 	}
   1270 
   1271 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1272 		blksize >>= 1;
   1273 	--blksize;
   1274 	sc->sc_i.blksize = blksize;
   1275 
   1276 	if (ISSBPRO(sc)) {
   1277 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1278 			return EIO;
   1279 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1280 		sbdsp_mix_write(sc, SBP_INFILTER,
   1281 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1282 		    filter);
   1283 	}
   1284 
   1285 	if (ISSB16CLASS(sc)) {
   1286 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1287 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1288 				 sc->sc_i.rate));
   1289 			return EIO;
   1290 		}
   1291 	} else {
   1292 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1293 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1294 				 sc->sc_i.rate));
   1295 			return EIO;
   1296 		}
   1297 	}
   1298 
   1299 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
   1300 	    start, end, sc->sc_i.dmachan));
   1301 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1302 	    (char *)end - (char *)start, NULL,
   1303 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1304 
   1305 	return sbdsp_block_input(addr);
   1306 }
   1307 
   1308 int
   1309 sbdsp_block_input(void *addr)
   1310 {
   1311 	struct sbdsp_softc *sc;
   1312 	int cc;
   1313 
   1314 	sc = addr;
   1315 	cc = sc->sc_i.blksize;
   1316 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1317 
   1318 	if (sc->sc_i.run != SB_NOTRUNNING)
   1319 		sc->sc_intrr(sc->sc_argr);
   1320 
   1321 	if (sc->sc_model == SB_1) {
   1322 		/* Non-looping mode, start DMA */
   1323 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1324 		    sbdsp_wdsp(sc, cc) < 0 ||
   1325 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1326 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1327 			return EIO;
   1328 		}
   1329 		sc->sc_i.run = SB_RUNNING;
   1330 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1331 		/* Initialize looping PCM */
   1332 		if (ISSB16CLASS(sc)) {
   1333 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1334 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1335 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1336 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1337 			    sbdsp_wdsp(sc, cc) < 0 ||
   1338 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1339 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1340 				return EIO;
   1341 			}
   1342 		} else {
   1343 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1344 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1345 			    sbdsp_wdsp(sc, cc) < 0 ||
   1346 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1347 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1348 				return EIO;
   1349 			}
   1350 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1351 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1352 				return EIO;
   1353 			}
   1354 		}
   1355 		sc->sc_i.run = SB_LOOPING;
   1356 	}
   1357 
   1358 	return 0;
   1359 }
   1360 
   1361 int
   1362 sbdsp_trigger_output(
   1363 	void *addr,
   1364 	void *start, void *end,
   1365 	int blksize,
   1366 	void (*intr)(void *),
   1367 	void *arg,
   1368 	const audio_params_t *param)
   1369 {
   1370 	struct sbdsp_softc *sc;
   1371 	int stereo;
   1372 	int width;
   1373 	int cmd;
   1374 
   1375 	sc = addr;
   1376 	stereo = param->channels == 2;
   1377 	width = param->precision;
   1378 #ifdef DIAGNOSTIC
   1379 	if (stereo && (blksize & 1)) {
   1380 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1381 		return EIO;
   1382 	}
   1383 	if (sc->sc_o.run != SB_NOTRUNNING)
   1384 		printf("sbdsp_trigger_output: already running\n");
   1385 #endif
   1386 
   1387 	sc->sc_intrp = intr;
   1388 	sc->sc_argp = arg;
   1389 
   1390 	if (width == 8) {
   1391 #ifdef DIAGNOSTIC
   1392 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1393 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1394 			    width, sc->sc_o.dmachan);
   1395 			return EIO;
   1396 		}
   1397 #endif
   1398 		sc->sc_intr8 = sbdsp_block_output;
   1399 	} else {
   1400 #ifdef DIAGNOSTIC
   1401 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1402 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1403 			    width, sc->sc_o.dmachan);
   1404 			return EIO;
   1405 		}
   1406 #endif
   1407 		sc->sc_intr16 = sbdsp_block_output;
   1408 	}
   1409 
   1410 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1411 		blksize >>= 1;
   1412 	--blksize;
   1413 	sc->sc_o.blksize = blksize;
   1414 
   1415 	if (ISSBPRO(sc)) {
   1416 		/* make sure we re-set stereo mixer bit when we start output. */
   1417 		sbdsp_mix_write(sc, SBP_STEREO,
   1418 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1419 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1420 		cmd = sc->sc_o.modep->cmdchan;
   1421 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1422 			return EIO;
   1423 	}
   1424 
   1425 	if (ISSB16CLASS(sc)) {
   1426 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1427 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1428 				 sc->sc_o.rate));
   1429 			return EIO;
   1430 		}
   1431 	} else {
   1432 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1433 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1434 				 sc->sc_o.rate));
   1435 			return EIO;
   1436 		}
   1437 	}
   1438 
   1439 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
   1440 	    start, end, sc->sc_o.dmachan));
   1441 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1442 	    (char *)end - (char *)start, NULL,
   1443 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1444 
   1445 	return sbdsp_block_output(addr);
   1446 }
   1447 
   1448 int
   1449 sbdsp_block_output(void *addr)
   1450 {
   1451 	struct sbdsp_softc *sc;
   1452 	int cc;
   1453 
   1454 	sc = addr;
   1455 	cc = sc->sc_o.blksize;
   1456 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1457 
   1458 	if (sc->sc_o.run != SB_NOTRUNNING)
   1459 		sc->sc_intrp(sc->sc_argp);
   1460 
   1461 	if (sc->sc_model == SB_1) {
   1462 		/* Non-looping mode, initialized. Start DMA and PCM */
   1463 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1464 		    sbdsp_wdsp(sc, cc) < 0 ||
   1465 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1466 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1467 			return EIO;
   1468 		}
   1469 		sc->sc_o.run = SB_RUNNING;
   1470 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1471 		/* Initialize looping PCM */
   1472 		if (ISSB16CLASS(sc)) {
   1473 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1474 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1475 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1476 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1477 			    sbdsp_wdsp(sc, cc) < 0 ||
   1478 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1479 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1480 				return EIO;
   1481 			}
   1482 		} else {
   1483 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1484 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1485 			    sbdsp_wdsp(sc, cc) < 0 ||
   1486 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1487 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1488 				return EIO;
   1489 			}
   1490 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1491 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1492 				return EIO;
   1493 			}
   1494 		}
   1495 		sc->sc_o.run = SB_LOOPING;
   1496 	}
   1497 
   1498 	return 0;
   1499 }
   1500 
   1501 int
   1502 sbdsp_halt_output(void *addr)
   1503 {
   1504 	struct sbdsp_softc *sc;
   1505 
   1506 	sc = addr;
   1507 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1508 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1509 			printf("sbdsp_halt_output: failed to halt\n");
   1510 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1511 		sc->sc_o.run = SB_NOTRUNNING;
   1512 	}
   1513 	return 0;
   1514 }
   1515 
   1516 int
   1517 sbdsp_halt_input(void *addr)
   1518 {
   1519 	struct sbdsp_softc *sc;
   1520 
   1521 	sc = addr;
   1522 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1523 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1524 			printf("sbdsp_halt_input: failed to halt\n");
   1525 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1526 		sc->sc_i.run = SB_NOTRUNNING;
   1527 	}
   1528 	return 0;
   1529 }
   1530 
   1531 /*
   1532  * Only the DSP unit on the sound blaster generates interrupts.
   1533  * There are three cases of interrupt: reception of a midi byte
   1534  * (when mode is enabled), completion of DMA transmission, or
   1535  * completion of a DMA reception.
   1536  *
   1537  * If there is interrupt sharing or a spurious interrupt occurs
   1538  * there is no way to distinguish this on an SB2.  So if you have
   1539  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1540  */
   1541 int
   1542 sbdsp_intr(void *arg)
   1543 {
   1544 	struct sbdsp_softc *sc;
   1545 	u_char irq;
   1546 
   1547 	sc = arg;
   1548 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1549 		   sc->sc_intr8, sc->sc_intr16));
   1550 	if (ISSB16CLASS(sc)) {
   1551 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1552 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1553 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1554 			return 0;
   1555 		}
   1556 	} else {
   1557 		/* XXXX CHECK FOR INTERRUPT */
   1558 		irq = SBP_IRQ_DMA8;
   1559 	}
   1560 
   1561 	sc->sc_interrupts++;
   1562 	delay(10);		/* XXX why? */
   1563 
   1564 	/* clear interrupt */
   1565 	if (irq & SBP_IRQ_DMA8) {
   1566 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1567 		if (sc->sc_intr8)
   1568 			sc->sc_intr8(arg);
   1569 	}
   1570 	if (irq & SBP_IRQ_DMA16) {
   1571 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1572 		if (sc->sc_intr16)
   1573 			sc->sc_intr16(arg);
   1574 	}
   1575 #if NMPU > 0
   1576 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1577 		mpu_intr(sc->sc_mpudev);
   1578 	}
   1579 #endif
   1580 	return 1;
   1581 }
   1582 
   1583 /* Like val & mask, but make sure the result is correctly rounded. */
   1584 #define MAXVAL 256
   1585 static int
   1586 sbdsp_adjust(int val, int mask)
   1587 {
   1588 
   1589 	val += (MAXVAL - mask) >> 1;
   1590 	if (val >= MAXVAL)
   1591 		val = MAXVAL-1;
   1592 	return val & mask;
   1593 }
   1594 
   1595 void
   1596 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
   1597 {
   1598 	int src, gain;
   1599 
   1600 	switch(sc->sc_mixer_model) {
   1601 	case SBM_NONE:
   1602 		return;
   1603 	case SBM_CT1335:
   1604 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1605 		switch(port) {
   1606 		case SB_MASTER_VOL:
   1607 			src = SBP_1335_MASTER_VOL;
   1608 			break;
   1609 		case SB_MIDI_VOL:
   1610 			src = SBP_1335_MIDI_VOL;
   1611 			break;
   1612 		case SB_CD_VOL:
   1613 			src = SBP_1335_CD_VOL;
   1614 			break;
   1615 		case SB_VOICE_VOL:
   1616 			src = SBP_1335_VOICE_VOL;
   1617 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1618 			break;
   1619 		default:
   1620 			return;
   1621 		}
   1622 		sbdsp_mix_write(sc, src, gain);
   1623 		break;
   1624 	case SBM_CT1345:
   1625 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1626 				      sc->gain[port][SB_RIGHT]);
   1627 		switch (port) {
   1628 		case SB_MIC_VOL:
   1629 			src = SBP_MIC_VOL;
   1630 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1631 			break;
   1632 		case SB_MASTER_VOL:
   1633 			src = SBP_MASTER_VOL;
   1634 			break;
   1635 		case SB_LINE_IN_VOL:
   1636 			src = SBP_LINE_VOL;
   1637 			break;
   1638 		case SB_VOICE_VOL:
   1639 			src = SBP_VOICE_VOL;
   1640 			break;
   1641 		case SB_MIDI_VOL:
   1642 			src = SBP_MIDI_VOL;
   1643 			break;
   1644 		case SB_CD_VOL:
   1645 			src = SBP_CD_VOL;
   1646 			break;
   1647 		default:
   1648 			return;
   1649 		}
   1650 		sbdsp_mix_write(sc, src, gain);
   1651 		break;
   1652 	case SBM_CT1XX5:
   1653 	case SBM_CT1745:
   1654 		switch (port) {
   1655 		case SB_MIC_VOL:
   1656 			src = SB16P_MIC_L;
   1657 			break;
   1658 		case SB_MASTER_VOL:
   1659 			src = SB16P_MASTER_L;
   1660 			break;
   1661 		case SB_LINE_IN_VOL:
   1662 			src = SB16P_LINE_L;
   1663 			break;
   1664 		case SB_VOICE_VOL:
   1665 			src = SB16P_VOICE_L;
   1666 			break;
   1667 		case SB_MIDI_VOL:
   1668 			src = SB16P_MIDI_L;
   1669 			break;
   1670 		case SB_CD_VOL:
   1671 			src = SB16P_CD_L;
   1672 			break;
   1673 		case SB_INPUT_GAIN:
   1674 			src = SB16P_INPUT_GAIN_L;
   1675 			break;
   1676 		case SB_OUTPUT_GAIN:
   1677 			src = SB16P_OUTPUT_GAIN_L;
   1678 			break;
   1679 		case SB_TREBLE:
   1680 			src = SB16P_TREBLE_L;
   1681 			break;
   1682 		case SB_BASS:
   1683 			src = SB16P_BASS_L;
   1684 			break;
   1685 		case SB_PCSPEAKER:
   1686 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1687 			return;
   1688 		default:
   1689 			return;
   1690 		}
   1691 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1692 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1693 		break;
   1694 	}
   1695 }
   1696 
   1697 int
   1698 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1699 {
   1700 	struct sbdsp_softc *sc;
   1701 	int lgain, rgain;
   1702 	int mask, bits;
   1703 	int lmask, rmask, lbits, rbits;
   1704 	int mute, swap;
   1705 
   1706 	sc = addr;
   1707 	if (sc->sc_open == SB_OPEN_MIDI)
   1708 		return EBUSY;
   1709 
   1710 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1711 	    cp->un.value.num_channels));
   1712 
   1713 	if (sc->sc_mixer_model == SBM_NONE)
   1714 		return EINVAL;
   1715 
   1716 	switch (cp->dev) {
   1717 	case SB_TREBLE:
   1718 	case SB_BASS:
   1719 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1720 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1721 			if (cp->type != AUDIO_MIXER_ENUM)
   1722 				return EINVAL;
   1723 			switch (cp->dev) {
   1724 			case SB_TREBLE:
   1725 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1726 				return 0;
   1727 			case SB_BASS:
   1728 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1729 				return 0;
   1730 			}
   1731 		}
   1732 	case SB_PCSPEAKER:
   1733 	case SB_INPUT_GAIN:
   1734 	case SB_OUTPUT_GAIN:
   1735 		if (!ISSBM1745(sc))
   1736 			return EINVAL;
   1737 	case SB_MIC_VOL:
   1738 	case SB_LINE_IN_VOL:
   1739 		if (sc->sc_mixer_model == SBM_CT1335)
   1740 			return EINVAL;
   1741 	case SB_VOICE_VOL:
   1742 	case SB_MIDI_VOL:
   1743 	case SB_CD_VOL:
   1744 	case SB_MASTER_VOL:
   1745 		if (cp->type != AUDIO_MIXER_VALUE)
   1746 			return EINVAL;
   1747 
   1748 		/*
   1749 		 * All the mixer ports are stereo except for the microphone.
   1750 		 * If we get a single-channel gain value passed in, then we
   1751 		 * duplicate it to both left and right channels.
   1752 		 */
   1753 
   1754 		switch (cp->dev) {
   1755 		case SB_MIC_VOL:
   1756 			if (cp->un.value.num_channels != 1)
   1757 				return EINVAL;
   1758 
   1759 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1760 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1761 			break;
   1762 		case SB_PCSPEAKER:
   1763 			if (cp->un.value.num_channels != 1)
   1764 				return EINVAL;
   1765 			/* fall into */
   1766 		case SB_INPUT_GAIN:
   1767 		case SB_OUTPUT_GAIN:
   1768 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1769 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1770 			break;
   1771 		default:
   1772 			switch (cp->un.value.num_channels) {
   1773 			case 1:
   1774 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1775 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1776 				break;
   1777 			case 2:
   1778 				if (sc->sc_mixer_model == SBM_CT1335)
   1779 					return EINVAL;
   1780 				lgain = SB_ADJUST_GAIN(sc,
   1781 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1782 				rgain = SB_ADJUST_GAIN(sc,
   1783 				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1784 				break;
   1785 			default:
   1786 				return EINVAL;
   1787 			}
   1788 			break;
   1789 		}
   1790 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1791 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1792 
   1793 		sbdsp_set_mixer_gain(sc, cp->dev);
   1794 		break;
   1795 
   1796 	case SB_RECORD_SOURCE:
   1797 		if (ISSBM1745(sc)) {
   1798 			if (cp->type != AUDIO_MIXER_SET)
   1799 				return EINVAL;
   1800 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1801 		} else {
   1802 			if (cp->type != AUDIO_MIXER_ENUM)
   1803 				return EINVAL;
   1804 			sc->in_port = cp->un.ord;
   1805 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1806 		}
   1807 		break;
   1808 
   1809 	case SB_AGC:
   1810 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1811 			return EINVAL;
   1812 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1813 		break;
   1814 
   1815 	case SB_CD_OUT_MUTE:
   1816 		mask = SB16P_SW_CD;
   1817 		goto omute;
   1818 	case SB_MIC_OUT_MUTE:
   1819 		mask = SB16P_SW_MIC;
   1820 		goto omute;
   1821 	case SB_LINE_OUT_MUTE:
   1822 		mask = SB16P_SW_LINE;
   1823 	omute:
   1824 		if (cp->type != AUDIO_MIXER_ENUM)
   1825 			return EINVAL;
   1826 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1827 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1828 		if (cp->un.ord)
   1829 			bits = bits & ~mask;
   1830 		else
   1831 			bits = bits | mask;
   1832 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1833 		break;
   1834 
   1835 	case SB_MIC_IN_MUTE:
   1836 	case SB_MIC_SWAP:
   1837 		lmask = rmask = SB16P_SW_MIC;
   1838 		goto imute;
   1839 	case SB_CD_IN_MUTE:
   1840 	case SB_CD_SWAP:
   1841 		lmask = SB16P_SW_CD_L;
   1842 		rmask = SB16P_SW_CD_R;
   1843 		goto imute;
   1844 	case SB_LINE_IN_MUTE:
   1845 	case SB_LINE_SWAP:
   1846 		lmask = SB16P_SW_LINE_L;
   1847 		rmask = SB16P_SW_LINE_R;
   1848 		goto imute;
   1849 	case SB_MIDI_IN_MUTE:
   1850 	case SB_MIDI_SWAP:
   1851 		lmask = SB16P_SW_MIDI_L;
   1852 		rmask = SB16P_SW_MIDI_R;
   1853 	imute:
   1854 		if (cp->type != AUDIO_MIXER_ENUM)
   1855 			return EINVAL;
   1856 		mask = lmask | rmask;
   1857 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1858 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1859 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1860 		if (SB_IS_IN_MUTE(cp->dev)) {
   1861 			mute = cp->dev;
   1862 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1863 		} else {
   1864 			swap = cp->dev;
   1865 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1866 		}
   1867 		if (sc->gain[swap][SB_LR]) {
   1868 			mask = lmask;
   1869 			lmask = rmask;
   1870 			rmask = mask;
   1871 		}
   1872 		if (!sc->gain[mute][SB_LR]) {
   1873 			lbits = lbits | lmask;
   1874 			rbits = rbits | rmask;
   1875 		}
   1876 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1877 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1878 		break;
   1879 
   1880 	default:
   1881 		return EINVAL;
   1882 	}
   1883 
   1884 	return 0;
   1885 }
   1886 
   1887 int
   1888 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1889 {
   1890 	struct sbdsp_softc *sc;
   1891 
   1892 	sc = addr;
   1893 	if (sc->sc_open == SB_OPEN_MIDI)
   1894 		return EBUSY;
   1895 
   1896 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1897 
   1898 	if (sc->sc_mixer_model == SBM_NONE)
   1899 		return EINVAL;
   1900 
   1901 	switch (cp->dev) {
   1902 	case SB_TREBLE:
   1903 	case SB_BASS:
   1904 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1905 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1906 			switch (cp->dev) {
   1907 			case SB_TREBLE:
   1908 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1909 				return 0;
   1910 			case SB_BASS:
   1911 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1912 				return 0;
   1913 			}
   1914 		}
   1915 	case SB_PCSPEAKER:
   1916 	case SB_INPUT_GAIN:
   1917 	case SB_OUTPUT_GAIN:
   1918 		if (!ISSBM1745(sc))
   1919 			return EINVAL;
   1920 	case SB_MIC_VOL:
   1921 	case SB_LINE_IN_VOL:
   1922 		if (sc->sc_mixer_model == SBM_CT1335)
   1923 			return EINVAL;
   1924 	case SB_VOICE_VOL:
   1925 	case SB_MIDI_VOL:
   1926 	case SB_CD_VOL:
   1927 	case SB_MASTER_VOL:
   1928 		switch (cp->dev) {
   1929 		case SB_MIC_VOL:
   1930 		case SB_PCSPEAKER:
   1931 			if (cp->un.value.num_channels != 1)
   1932 				return EINVAL;
   1933 			/* fall into */
   1934 		default:
   1935 			switch (cp->un.value.num_channels) {
   1936 			case 1:
   1937 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1938 				    sc->gain[cp->dev][SB_LEFT];
   1939 				break;
   1940 			case 2:
   1941 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1942 				    sc->gain[cp->dev][SB_LEFT];
   1943 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1944 				    sc->gain[cp->dev][SB_RIGHT];
   1945 				break;
   1946 			default:
   1947 				return EINVAL;
   1948 			}
   1949 			break;
   1950 		}
   1951 		break;
   1952 
   1953 	case SB_RECORD_SOURCE:
   1954 		if (ISSBM1745(sc))
   1955 			cp->un.mask = sc->in_mask;
   1956 		else
   1957 			cp->un.ord = sc->in_port;
   1958 		break;
   1959 
   1960 	case SB_AGC:
   1961 		if (!ISSBM1745(sc))
   1962 			return EINVAL;
   1963 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1964 		break;
   1965 
   1966 	case SB_CD_IN_MUTE:
   1967 	case SB_MIC_IN_MUTE:
   1968 	case SB_LINE_IN_MUTE:
   1969 	case SB_MIDI_IN_MUTE:
   1970 	case SB_CD_SWAP:
   1971 	case SB_MIC_SWAP:
   1972 	case SB_LINE_SWAP:
   1973 	case SB_MIDI_SWAP:
   1974 	case SB_CD_OUT_MUTE:
   1975 	case SB_MIC_OUT_MUTE:
   1976 	case SB_LINE_OUT_MUTE:
   1977 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1978 		break;
   1979 
   1980 	default:
   1981 		return EINVAL;
   1982 	}
   1983 
   1984 	return 0;
   1985 }
   1986 
   1987 int
   1988 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
   1989 {
   1990 	struct sbdsp_softc *sc = addr;
   1991 	int chan, class, is1745;
   1992 
   1993 	sc = addr;
   1994 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1995 		 sc->sc_mixer_model, dip->index));
   1996 
   1997 	if (sc->sc_mixer_model == SBM_NONE)
   1998 		return ENXIO;
   1999 
   2000 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   2001 	is1745 = ISSBM1745(sc);
   2002 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   2003 
   2004 	switch (dip->index) {
   2005 	case SB_MASTER_VOL:
   2006 		dip->type = AUDIO_MIXER_VALUE;
   2007 		dip->mixer_class = SB_OUTPUT_CLASS;
   2008 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2009 		strcpy(dip->label.name, AudioNmaster);
   2010 		dip->un.v.num_channels = chan;
   2011 		strcpy(dip->un.v.units.name, AudioNvolume);
   2012 		return 0;
   2013 	case SB_MIDI_VOL:
   2014 		dip->type = AUDIO_MIXER_VALUE;
   2015 		dip->mixer_class = class;
   2016 		dip->prev = AUDIO_MIXER_LAST;
   2017 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2018 		strcpy(dip->label.name, AudioNfmsynth);
   2019 		dip->un.v.num_channels = chan;
   2020 		strcpy(dip->un.v.units.name, AudioNvolume);
   2021 		return 0;
   2022 	case SB_CD_VOL:
   2023 		dip->type = AUDIO_MIXER_VALUE;
   2024 		dip->mixer_class = class;
   2025 		dip->prev = AUDIO_MIXER_LAST;
   2026 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2027 		strcpy(dip->label.name, AudioNcd);
   2028 		dip->un.v.num_channels = chan;
   2029 		strcpy(dip->un.v.units.name, AudioNvolume);
   2030 		return 0;
   2031 	case SB_VOICE_VOL:
   2032 		dip->type = AUDIO_MIXER_VALUE;
   2033 		dip->mixer_class = class;
   2034 		dip->prev = AUDIO_MIXER_LAST;
   2035 		dip->next = AUDIO_MIXER_LAST;
   2036 		strcpy(dip->label.name, AudioNdac);
   2037 		dip->un.v.num_channels = chan;
   2038 		strcpy(dip->un.v.units.name, AudioNvolume);
   2039 		return 0;
   2040 	case SB_OUTPUT_CLASS:
   2041 		dip->type = AUDIO_MIXER_CLASS;
   2042 		dip->mixer_class = SB_OUTPUT_CLASS;
   2043 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2044 		strcpy(dip->label.name, AudioCoutputs);
   2045 		return 0;
   2046 	}
   2047 
   2048 	if (sc->sc_mixer_model == SBM_CT1335)
   2049 		return ENXIO;
   2050 
   2051 	switch (dip->index) {
   2052 	case SB_MIC_VOL:
   2053 		dip->type = AUDIO_MIXER_VALUE;
   2054 		dip->mixer_class = class;
   2055 		dip->prev = AUDIO_MIXER_LAST;
   2056 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2057 		strcpy(dip->label.name, AudioNmicrophone);
   2058 		dip->un.v.num_channels = 1;
   2059 		strcpy(dip->un.v.units.name, AudioNvolume);
   2060 		return 0;
   2061 
   2062 	case SB_LINE_IN_VOL:
   2063 		dip->type = AUDIO_MIXER_VALUE;
   2064 		dip->mixer_class = class;
   2065 		dip->prev = AUDIO_MIXER_LAST;
   2066 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2067 		strcpy(dip->label.name, AudioNline);
   2068 		dip->un.v.num_channels = 2;
   2069 		strcpy(dip->un.v.units.name, AudioNvolume);
   2070 		return 0;
   2071 
   2072 	case SB_RECORD_SOURCE:
   2073 		dip->mixer_class = SB_RECORD_CLASS;
   2074 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2075 		strcpy(dip->label.name, AudioNsource);
   2076 		if (ISSBM1745(sc)) {
   2077 			dip->type = AUDIO_MIXER_SET;
   2078 			dip->un.s.num_mem = 4;
   2079 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2080 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2081 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2082 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2083 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2084 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2085 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2086 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2087 		} else {
   2088 			dip->type = AUDIO_MIXER_ENUM;
   2089 			dip->un.e.num_mem = 3;
   2090 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2091 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2092 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2093 			dip->un.e.member[1].ord = SB_CD_VOL;
   2094 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2095 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2096 		}
   2097 		return 0;
   2098 
   2099 	case SB_BASS:
   2100 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2101 		strcpy(dip->label.name, AudioNbass);
   2102 		if (sc->sc_mixer_model == SBM_CT1745) {
   2103 			dip->type = AUDIO_MIXER_VALUE;
   2104 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2105 			dip->un.v.num_channels = 2;
   2106 			strcpy(dip->un.v.units.name, AudioNbass);
   2107 		} else {
   2108 			dip->type = AUDIO_MIXER_ENUM;
   2109 			dip->mixer_class = SB_INPUT_CLASS;
   2110 			dip->un.e.num_mem = 2;
   2111 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2112 			dip->un.e.member[0].ord = 0;
   2113 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2114 			dip->un.e.member[1].ord = 1;
   2115 		}
   2116 		return 0;
   2117 
   2118 	case SB_TREBLE:
   2119 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2120 		strcpy(dip->label.name, AudioNtreble);
   2121 		if (sc->sc_mixer_model == SBM_CT1745) {
   2122 			dip->type = AUDIO_MIXER_VALUE;
   2123 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2124 			dip->un.v.num_channels = 2;
   2125 			strcpy(dip->un.v.units.name, AudioNtreble);
   2126 		} else {
   2127 			dip->type = AUDIO_MIXER_ENUM;
   2128 			dip->mixer_class = SB_INPUT_CLASS;
   2129 			dip->un.e.num_mem = 2;
   2130 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2131 			dip->un.e.member[0].ord = 0;
   2132 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2133 			dip->un.e.member[1].ord = 1;
   2134 		}
   2135 		return 0;
   2136 
   2137 	case SB_RECORD_CLASS:			/* record source class */
   2138 		dip->type = AUDIO_MIXER_CLASS;
   2139 		dip->mixer_class = SB_RECORD_CLASS;
   2140 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2141 		strcpy(dip->label.name, AudioCrecord);
   2142 		return 0;
   2143 
   2144 	case SB_INPUT_CLASS:
   2145 		dip->type = AUDIO_MIXER_CLASS;
   2146 		dip->mixer_class = SB_INPUT_CLASS;
   2147 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2148 		strcpy(dip->label.name, AudioCinputs);
   2149 		return 0;
   2150 
   2151 	}
   2152 
   2153 	if (sc->sc_mixer_model == SBM_CT1345)
   2154 		return ENXIO;
   2155 
   2156 	switch(dip->index) {
   2157 	case SB_PCSPEAKER:
   2158 		dip->type = AUDIO_MIXER_VALUE;
   2159 		dip->mixer_class = SB_INPUT_CLASS;
   2160 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2161 		strcpy(dip->label.name, "pc_speaker");
   2162 		dip->un.v.num_channels = 1;
   2163 		strcpy(dip->un.v.units.name, AudioNvolume);
   2164 		return 0;
   2165 
   2166 	case SB_INPUT_GAIN:
   2167 		dip->type = AUDIO_MIXER_VALUE;
   2168 		dip->mixer_class = SB_INPUT_CLASS;
   2169 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2170 		strcpy(dip->label.name, AudioNinput);
   2171 		dip->un.v.num_channels = 2;
   2172 		strcpy(dip->un.v.units.name, AudioNvolume);
   2173 		return 0;
   2174 
   2175 	case SB_OUTPUT_GAIN:
   2176 		dip->type = AUDIO_MIXER_VALUE;
   2177 		dip->mixer_class = SB_OUTPUT_CLASS;
   2178 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2179 		strcpy(dip->label.name, AudioNoutput);
   2180 		dip->un.v.num_channels = 2;
   2181 		strcpy(dip->un.v.units.name, AudioNvolume);
   2182 		return 0;
   2183 
   2184 	case SB_AGC:
   2185 		dip->type = AUDIO_MIXER_ENUM;
   2186 		dip->mixer_class = SB_INPUT_CLASS;
   2187 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2188 		strcpy(dip->label.name, "agc");
   2189 		dip->un.e.num_mem = 2;
   2190 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2191 		dip->un.e.member[0].ord = 0;
   2192 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2193 		dip->un.e.member[1].ord = 1;
   2194 		return 0;
   2195 
   2196 	case SB_EQUALIZATION_CLASS:
   2197 		dip->type = AUDIO_MIXER_CLASS;
   2198 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2199 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2200 		strcpy(dip->label.name, AudioCequalization);
   2201 		return 0;
   2202 
   2203 	case SB_CD_IN_MUTE:
   2204 		dip->prev = SB_CD_VOL;
   2205 		dip->next = SB_CD_SWAP;
   2206 		dip->mixer_class = SB_INPUT_CLASS;
   2207 		goto mute;
   2208 
   2209 	case SB_MIC_IN_MUTE:
   2210 		dip->prev = SB_MIC_VOL;
   2211 		dip->next = SB_MIC_SWAP;
   2212 		dip->mixer_class = SB_INPUT_CLASS;
   2213 		goto mute;
   2214 
   2215 	case SB_LINE_IN_MUTE:
   2216 		dip->prev = SB_LINE_IN_VOL;
   2217 		dip->next = SB_LINE_SWAP;
   2218 		dip->mixer_class = SB_INPUT_CLASS;
   2219 		goto mute;
   2220 
   2221 	case SB_MIDI_IN_MUTE:
   2222 		dip->prev = SB_MIDI_VOL;
   2223 		dip->next = SB_MIDI_SWAP;
   2224 		dip->mixer_class = SB_INPUT_CLASS;
   2225 		goto mute;
   2226 
   2227 	case SB_CD_SWAP:
   2228 		dip->prev = SB_CD_IN_MUTE;
   2229 		dip->next = SB_CD_OUT_MUTE;
   2230 		goto swap;
   2231 
   2232 	case SB_MIC_SWAP:
   2233 		dip->prev = SB_MIC_IN_MUTE;
   2234 		dip->next = SB_MIC_OUT_MUTE;
   2235 		goto swap;
   2236 
   2237 	case SB_LINE_SWAP:
   2238 		dip->prev = SB_LINE_IN_MUTE;
   2239 		dip->next = SB_LINE_OUT_MUTE;
   2240 		goto swap;
   2241 
   2242 	case SB_MIDI_SWAP:
   2243 		dip->prev = SB_MIDI_IN_MUTE;
   2244 		dip->next = AUDIO_MIXER_LAST;
   2245 	swap:
   2246 		dip->mixer_class = SB_INPUT_CLASS;
   2247 		strcpy(dip->label.name, AudioNswap);
   2248 		goto mute1;
   2249 
   2250 	case SB_CD_OUT_MUTE:
   2251 		dip->prev = SB_CD_SWAP;
   2252 		dip->next = AUDIO_MIXER_LAST;
   2253 		dip->mixer_class = SB_OUTPUT_CLASS;
   2254 		goto mute;
   2255 
   2256 	case SB_MIC_OUT_MUTE:
   2257 		dip->prev = SB_MIC_SWAP;
   2258 		dip->next = AUDIO_MIXER_LAST;
   2259 		dip->mixer_class = SB_OUTPUT_CLASS;
   2260 		goto mute;
   2261 
   2262 	case SB_LINE_OUT_MUTE:
   2263 		dip->prev = SB_LINE_SWAP;
   2264 		dip->next = AUDIO_MIXER_LAST;
   2265 		dip->mixer_class = SB_OUTPUT_CLASS;
   2266 	mute:
   2267 		strcpy(dip->label.name, AudioNmute);
   2268 	mute1:
   2269 		dip->type = AUDIO_MIXER_ENUM;
   2270 		dip->un.e.num_mem = 2;
   2271 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2272 		dip->un.e.member[0].ord = 0;
   2273 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2274 		dip->un.e.member[1].ord = 1;
   2275 		return 0;
   2276 
   2277 	}
   2278 
   2279 	return ENXIO;
   2280 }
   2281 
   2282 void *
   2283 sb_malloc(void *addr, int direction __unused, size_t size,
   2284     struct malloc_type *pool, int flags)
   2285 {
   2286 	struct sbdsp_softc *sc;
   2287 	int drq;
   2288 
   2289 	sc = addr;
   2290 	if (sc->sc_drq8 != -1)
   2291 		drq = sc->sc_drq8;
   2292 	else
   2293 		drq = sc->sc_drq16;
   2294 	return isa_malloc(sc->sc_ic, drq, size, pool, flags);
   2295 }
   2296 
   2297 void
   2298 sb_free(void *addr __unused, void *ptr, struct malloc_type *pool)
   2299 {
   2300 
   2301 	isa_free(ptr, pool);
   2302 }
   2303 
   2304 size_t
   2305 sb_round_buffersize(void *addr, int direction __unused, size_t size)
   2306 {
   2307 	struct sbdsp_softc *sc;
   2308 	bus_size_t maxsize;
   2309 
   2310 	sc = addr;
   2311 	if (sc->sc_drq8 != -1)
   2312 		maxsize = sc->sc_drq8_maxsize;
   2313 	else
   2314 		maxsize = sc->sc_drq16_maxsize;
   2315 
   2316 	if (size > maxsize)
   2317 		size = maxsize;
   2318 	return size;
   2319 }
   2320 
   2321 paddr_t
   2322 sb_mappage(void *addr __unused, void *mem, off_t off, int prot)
   2323 {
   2324 
   2325 	return isa_mappage(mem, off, prot);
   2326 }
   2327 
   2328 int
   2329 sbdsp_get_props(void *addr)
   2330 {
   2331 	struct sbdsp_softc *sc;
   2332 
   2333 	sc = addr;
   2334 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2335 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2336 }
   2337 
   2338 #if NMPU > 0
   2339 /*
   2340  * MIDI related routines.
   2341  */
   2342 
   2343 int
   2344 sbdsp_midi_open(void *addr, int flags __unused, void (*iintr)(void *, int),
   2345     void (*ointr)(void *) __unused, void *arg)
   2346 {
   2347 	struct sbdsp_softc *sc;
   2348 
   2349 	sc = addr;
   2350 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2351 
   2352 	if (sc->sc_open != SB_CLOSED)
   2353 		return EBUSY;
   2354 	if (sbdsp_reset(sc) != 0)
   2355 		return EIO;
   2356 
   2357 	sc->sc_open = SB_OPEN_MIDI;
   2358 
   2359 	if (sc->sc_model >= SB_20)
   2360 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2361 			return EIO;
   2362 
   2363 	sc->sc_intr8 = sbdsp_midi_intr;
   2364 	sc->sc_intrm = iintr;
   2365 	sc->sc_argm = arg;
   2366 
   2367 	return 0;
   2368 }
   2369 
   2370 void
   2371 sbdsp_midi_close(void *addr)
   2372 {
   2373 	struct sbdsp_softc *sc;
   2374 
   2375 	sc = addr;
   2376 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2377 
   2378 	if (sc->sc_model >= SB_20)
   2379 		sbdsp_reset(sc); /* exit UART mode */
   2380 
   2381 	sc->sc_intrm = 0;
   2382 	sc->sc_open = SB_CLOSED;
   2383 }
   2384 
   2385 int
   2386 sbdsp_midi_output(void *addr, int d)
   2387 {
   2388 	struct sbdsp_softc *sc;
   2389 
   2390 	sc = addr;
   2391 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2392 		return EIO;
   2393 	if (sbdsp_wdsp(sc, d))
   2394 		return EIO;
   2395 	return 0;
   2396 }
   2397 
   2398 void
   2399 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
   2400 {
   2401 	struct sbdsp_softc *sc;
   2402 
   2403 	sc = addr;
   2404 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2405 	mi->props = MIDI_PROP_CAN_INPUT;
   2406 }
   2407 
   2408 int
   2409 sbdsp_midi_intr(void *addr)
   2410 {
   2411 	struct sbdsp_softc *sc;
   2412 
   2413 	sc = addr;
   2414 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2415 	return (0);
   2416 }
   2417 
   2418 #endif
   2419 
   2420