sbdsp.c revision 1.13 1 /* $NetBSD: sbdsp.c,v 1.13 1995/07/19 19:58:54 brezak Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/pio.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58
59 #include <dev/isa/isavar.h>
60 #include <dev/isa/isadmavar.h>
61 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
62
63 #include <dev/isa/sbreg.h>
64 #include <dev/isa/sbdspvar.h>
65
66 #ifdef AUDIO_DEBUG
67 extern void Dprintf __P((const char *, ...));
68 #define DPRINTF(x) if (sbdspdebug) Dprintf x
69 int sbdspdebug = 0;
70 #else
71 #define DPRINTF(x)
72 #endif
73
74 #ifndef SBDSP_NPOLL
75 #define SBDSP_NPOLL 3000
76 #endif
77
78 struct {
79 int wdsp;
80 int rdsp;
81 int wmidi;
82 } sberr;
83
84 #ifdef AUDIO_DEBUG
85 void
86 sb_printsc(struct sbdsp_softc *sc)
87 {
88 int i;
89
90 printf("open %d dmachan %d iobase %x locked %d\n", sc->sc_open, sc->sc_drq,
91 sc->sc_iobase, sc->sc_locked);
92 printf("hispeed %d irate %d orate %d encoding %x\n",
93 sc->sc_adacmode, sc->sc_irate, sc->sc_orate, sc->encoding);
94 printf("outport %d inport %d spkron %d nintr %d\n",
95 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
96 printf("tc %x chans %x scintr %x arg %x\n", sc->sc_adactc, sc->sc_chans,
97 sc->sc_intr, sc->sc_arg);
98 printf("gain: ");
99 for (i = 0; i < SB_NDEVS; i++)
100 printf("%d ", sc->gain[i]);
101 printf("\n");
102 }
103 #endif
104
105 /*
106 * Probe / attach routines.
107 */
108
109 /*
110 * Probe for the soundblaster hardware.
111 */
112 int
113 sbdsp_probe(sc)
114 struct sbdsp_softc *sc;
115 {
116 register u_short iobase = sc->sc_iobase;
117
118 if (sbdsp_reset(sc) < 0) {
119 DPRINTF(("sbdsp: couldn't reset card\n"));
120 return 0;
121 }
122 sc->sc_model = sbversion(sc);
123
124 return 1;
125 }
126
127 /*
128 * Attach hardware to driver, attach hardware driver to audio
129 * pseudo-device driver .
130 */
131 void
132 sbdsp_attach(sc)
133 struct sbdsp_softc *sc;
134 {
135 register u_short iobase = sc->sc_iobase;
136
137 sc->sc_locked = 0;
138
139 /* Set defaults */
140 if (ISSBPROCLASS(sc))
141 sc->sc_irate = sc->sc_orate = 45454;
142 else
143 sc->sc_irate = sc->sc_orate = 14925;
144 sc->sc_chans = 1;
145 sc->encoding = AUDIO_ENCODING_LINEAR;
146
147 (void) sbdsp_set_in_sr_real(sc, sc->sc_irate);
148 (void) sbdsp_set_out_sr_real(sc, sc->sc_orate);
149
150 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
151 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
152
153 if (ISSBPROCLASS(sc)) {
154 int i;
155
156 /* set mixer to default levels, by sending a mixer
157 reset command. */
158 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
159 /* then some adjustments :) */
160 sbdsp_mix_write(sc, SBP_CD_VOL,
161 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
162 sbdsp_mix_write(sc, SBP_DAC_VOL,
163 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
164 sbdsp_mix_write(sc, SBP_MASTER_VOL,
165 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
166 sbdsp_mix_write(sc, SBP_LINE_VOL,
167 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
168 for (i = 0; i < SB_NDEVS; i++)
169 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
170 }
171 printf(": dsp v%d.%02d\n",
172 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model));
173 }
174
175 /*
176 * Various routines to interface to higher level audio driver
177 */
178
179 void
180 sbdsp_mix_write(sc, mixerport, val)
181 struct sbdsp_softc *sc;
182 int mixerport;
183 int val;
184 {
185 int iobase = sc->sc_iobase;
186 outb(iobase + SBP_MIXER_ADDR, mixerport);
187 delay(10);
188 outb(iobase + SBP_MIXER_DATA, val);
189 delay(30);
190 }
191
192 int
193 sbdsp_mix_read(sc, mixerport)
194 struct sbdsp_softc *sc;
195 int mixerport;
196 {
197 int iobase = sc->sc_iobase;
198 outb(iobase + SBP_MIXER_ADDR, mixerport);
199 delay(10);
200 return inb(iobase + SBP_MIXER_DATA);
201 }
202
203 int
204 sbdsp_set_in_sr(addr, sr)
205 void *addr;
206 u_long sr;
207 {
208 register struct sbdsp_softc *sc = addr;
209
210 sc->sc_irate = sr;
211
212 return 0;
213 }
214
215 int
216 sbdsp_set_in_sr_real(addr, sr)
217 void *addr;
218 u_long sr;
219 {
220 register struct sbdsp_softc *sc = addr;
221 int rval;
222
223 if (rval = sbdsp_set_sr(sc, &sr, SB_INPUT_RATE))
224 return rval;
225 sc->sc_irate = sr;
226 sc->sc_dmain_inprogress = 0; /* do it again on next DMA out */
227 sc->sc_dmaout_inprogress = 0;
228 return(0);
229 }
230
231 u_long
232 sbdsp_get_in_sr(addr)
233 void *addr;
234 {
235 register struct sbdsp_softc *sc = addr;
236
237 return(sc->sc_irate);
238 }
239
240 int
241 sbdsp_set_out_sr(addr, sr)
242 void *addr;
243 u_long sr;
244 {
245 register struct sbdsp_softc *sc = addr;
246
247 sc->sc_orate = sr;
248 return(0);
249 }
250
251 int
252 sbdsp_set_out_sr_real(addr, sr)
253 void *addr;
254 u_long sr;
255 {
256 register struct sbdsp_softc *sc = addr;
257 int rval;
258
259 if (rval = sbdsp_set_sr(sc, &sr, SB_OUTPUT_RATE))
260 return rval;
261 sc->sc_orate = sr;
262 sc->sc_dmain_inprogress = 0; /* do it again on next DMA out */
263 return(0);
264 }
265
266 u_long
267 sbdsp_get_out_sr(addr)
268 void *addr;
269 {
270 register struct sbdsp_softc *sc = addr;
271
272 return(sc->sc_orate);
273 }
274
275 int
276 sbdsp_query_encoding(addr, fp)
277 void *addr;
278 struct audio_encoding *fp;
279 {
280 register struct sbdsp_softc *sc = addr;
281
282 switch (fp->index) {
283 case 0:
284 strcpy(fp->name, AudioEmulaw);
285 fp->format_id = AUDIO_ENCODING_ULAW;
286 break;
287 case 1:
288 strcpy(fp->name, AudioEpcm16);
289 fp->format_id = AUDIO_ENCODING_PCM16;
290 break;
291 default:
292 return(EINVAL);
293 /*NOTREACHED*/
294 }
295 return (0);
296 }
297
298 int
299 sbdsp_set_encoding(addr, enc)
300 void *addr;
301 u_int enc;
302 {
303 register struct sbdsp_softc *sc = addr;
304
305 switch(enc){
306 case AUDIO_ENCODING_ULAW:
307 sc->encoding = AUDIO_ENCODING_ULAW;
308 break;
309 case AUDIO_ENCODING_LINEAR:
310 sc->encoding = AUDIO_ENCODING_LINEAR;
311 break;
312 default:
313 return (EINVAL);
314 }
315 return (0);
316 }
317
318 int
319 sbdsp_get_encoding(addr)
320 void *addr;
321 {
322 register struct sbdsp_softc *sc = addr;
323
324 return(sc->encoding);
325 }
326
327 int
328 sbdsp_set_precision(addr, prec)
329 void *addr;
330 u_int prec;
331 {
332
333 if (prec != 8)
334 return(EINVAL);
335 return(0);
336 }
337
338 int
339 sbdsp_get_precision(addr)
340 void *addr;
341 {
342 return(8);
343 }
344
345 int
346 sbdsp_set_channels(addr, chans)
347 void *addr;
348 int chans;
349 {
350 register struct sbdsp_softc *sc = addr;
351 int rval;
352
353 if (ISSBPROCLASS(sc)) {
354 if (chans != 1 && chans != 2)
355 return(EINVAL);
356
357 sc->sc_chans = chans;
358 if (rval = sbdsp_set_in_sr_real(addr, sc->sc_irate))
359 return rval;
360 sbdsp_mix_write(sc, SBP_STEREO,
361 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
362 (chans == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
363 /* recording channels needs to be done right when we start
364 DMA recording. Just record number of channels for now
365 and set stereo when ready. */
366 }
367 else {
368 if (chans != 1)
369 return(EINVAL);
370 sc->sc_chans = 1;
371 }
372
373 return(0);
374 }
375
376 int
377 sbdsp_get_channels(addr)
378 void *addr;
379 {
380 register struct sbdsp_softc *sc = addr;
381
382 #if 0
383 /* recording stereo may frob the mixer output */
384 if (ISSBPROCLASS(sc)) {
385 if ((sbdsp_mix_read(sc, SBP_STEREO) & SBP_PLAYMODE_MASK) == SBP_PLAYMODE_STEREO) {
386 sc->sc_chans = 2;
387 }
388 else {
389 sc->sc_chans = 1;
390 }
391 }
392 else {
393 sc->sc_chans = 1;
394 }
395 #endif
396
397 return(sc->sc_chans);
398 }
399
400 int
401 sbdsp_set_out_port(addr, port)
402 void *addr;
403 int port;
404 {
405 register struct sbdsp_softc *sc = addr;
406
407 sc->out_port = port; /* Just record it */
408
409 return(0);
410 }
411
412 int
413 sbdsp_get_out_port(addr)
414 void *addr;
415 {
416 register struct sbdsp_softc *sc = addr;
417
418 return(sc->out_port);
419 }
420
421
422 int
423 sbdsp_set_in_port(addr, port)
424 void *addr;
425 int port;
426 {
427 register struct sbdsp_softc *sc = addr;
428 int mixport, sbport;
429
430 if (ISSBPROCLASS(sc)) {
431 switch (port) {
432 case SB_MIC_PORT:
433 sbport = SBP_FROM_MIC;
434 mixport = SBP_MIC_VOL;
435 break;
436 case SB_LINE_IN_PORT:
437 sbport = SBP_FROM_LINE;
438 mixport = SBP_LINE_VOL;
439 break;
440 case SB_CD_PORT:
441 sbport = SBP_FROM_CD;
442 mixport = SBP_CD_VOL;
443 break;
444 case SB_DAC_PORT:
445 case SB_FM_PORT:
446 default:
447 return(EINVAL);
448 /*NOTREACHED*/
449 }
450 }
451 else {
452 switch (port) {
453 case SB_MIC_PORT:
454 sbport = SBP_FROM_MIC;
455 mixport = SBP_MIC_VOL;
456 break;
457 default:
458 return(EINVAL);
459 /*NOTREACHED*/
460 }
461 }
462
463 sc->in_port = port; /* Just record it */
464
465 if (ISSBPROCLASS(sc)) {
466 /* record from that port */
467 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
468 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF,
469 SBP_FILTER_HIGH));
470 /* fetch gain from that port */
471 sc->gain[port] = sbdsp_mix_read(sc, mixport);
472 }
473
474 return(0);
475 }
476
477 int
478 sbdsp_get_in_port(addr)
479 void *addr;
480 {
481 register struct sbdsp_softc *sc = addr;
482
483 return(sc->in_port);
484 }
485
486
487 int
488 sbdsp_speaker_ctl(addr, newstate)
489 void *addr;
490 int newstate;
491 {
492 register struct sbdsp_softc *sc = addr;
493
494 if ((newstate == SPKR_ON) &&
495 (sc->spkr_state == SPKR_OFF)) {
496 sbdsp_spkron(sc);
497 sc->spkr_state = SPKR_ON;
498 }
499 if ((newstate == SPKR_OFF) &&
500 (sc->spkr_state == SPKR_ON)) {
501 sbdsp_spkroff(sc);
502 sc->spkr_state = SPKR_OFF;
503 }
504 return(0);
505 }
506
507 int
508 sbdsp_round_blocksize(addr, blk)
509 void *addr;
510 int blk;
511 {
512 register struct sbdsp_softc *sc = addr;
513
514 sc->sc_last_hsr_size = sc->sc_last_hsw_size = 0;
515
516 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
517 if ((sc->sc_orate > 8000 || sc->sc_irate > 8000) &&
518 (blk > NBPG/2 || blk < NBPG/4))
519 blk = NBPG/2;
520 /* don't try to DMA too much at once, though. */
521 if (blk > NBPG) blk = NBPG;
522 if (sc->sc_chans == 2)
523 return (blk & ~1); /* must be even to preserve stereo separation */
524 else
525 return(blk); /* Anything goes :-) */
526 }
527
528 int
529 sbdsp_commit_settings(addr)
530 void *addr;
531 {
532 /* due to potentially unfortunate ordering in the above layers,
533 re-do a few sets which may be important--input gains
534 (adjust the proper channels), number of input channels (hit the
535 record rate and set mode) */
536
537 register struct sbdsp_softc *sc = addr;
538
539 sbdsp_set_out_sr_real(addr, sc->sc_orate);
540 sbdsp_set_in_sr_real(addr, sc->sc_irate);
541
542 sc->sc_last_hsw_size = sc->sc_last_hsr_size = 0;
543 return(0);
544 }
545
546
547 int
548 sbdsp_open(sc, dev, flags)
549 register struct sbdsp_softc *sc;
550 dev_t dev;
551 int flags;
552 {
553 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
554
555 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
556 return ENXIO;
557
558 sc->sc_open = 1;
559 sc->sc_mintr = 0;
560 sc->sc_intr = 0;
561 sc->sc_arg = 0;
562 sc->sc_locked = 0;
563 if (ISSBPROCLASS(sc) &&
564 sbdsp_wdsp(sc->sc_iobase, SB_DSP_RECORD_MONO) < 0) {
565 DPRINTF(("sbdsp_open: can't set mono mode\n"));
566 /* we'll readjust when it's time for DMA. */
567 }
568 sc->sc_dmain_inprogress = 0;
569 sc->sc_dmaout_inprogress = 0;
570
571 /*
572 * Leave most things as they were; users must change things if
573 * the previous process didn't leave it they way they wanted.
574 * Looked at another way, it's easy to set up a configuration
575 * in one program and leave it for another to inherit.
576 */
577 DPRINTF(("sbdsp_open: opened\n"));
578
579 return 0;
580 }
581
582 void
583 sbdsp_close(addr)
584 void *addr;
585 {
586 struct sbdsp_softc *sc = addr;
587
588 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
589
590 sc->sc_open = 0;
591 sbdsp_spkroff(sc);
592 sc->spkr_state = SPKR_OFF;
593 sc->sc_intr = 0;
594 sc->sc_mintr = 0;
595 /* XXX this will turn off any dma */
596 sbdsp_reset(sc);
597
598 DPRINTF(("sbdsp_close: closed\n"));
599 }
600
601 /*
602 * Lower-level routines
603 */
604
605 /*
606 * Reset the card.
607 * Return non-zero if the card isn't detected.
608 */
609 int
610 sbdsp_reset(sc)
611 register struct sbdsp_softc *sc;
612 {
613 register u_short iobase = sc->sc_iobase;
614
615 /*
616 * erase any memory of last transfer size.
617 */
618 sc->sc_last_hsr_size = sc->sc_last_hsw_size = 0;
619 /*
620 * See SBK, section 11.3.
621 * We pulse a reset signal into the card.
622 * Gee, what a brilliant hardware design.
623 */
624 outb(iobase + SBP_DSP_RESET, 1);
625 delay(3);
626 outb(iobase + SBP_DSP_RESET, 0);
627 if (sbdsp_rdsp(iobase) != SB_MAGIC)
628 return -1;
629 return 0;
630 }
631
632 /*
633 * Write a byte to the dsp.
634 * XXX We are at the mercy of the card as we use a
635 * polling loop and wait until it can take the byte.
636 */
637 int
638 sbdsp_wdsp(u_short iobase, int v)
639 {
640 register int i;
641
642 for (i = SBDSP_NPOLL; --i >= 0; ) {
643 if ((inb(iobase + SBP_DSP_WSTAT) & SB_DSP_BUSY) != 0) {
644 delay(10); continue;
645 }
646 outb(iobase + SBP_DSP_WRITE, v);
647 return 0;
648 }
649 ++sberr.wdsp;
650 return -1;
651 }
652
653 /*
654 * Read a byte from the DSP, using polling.
655 */
656 int
657 sbdsp_rdsp(u_short iobase)
658 {
659 register int i;
660
661 for (i = SBDSP_NPOLL; --i >= 0; ) {
662 if ((inb(iobase + SBP_DSP_RSTAT) & SB_DSP_READY) == 0)
663 continue;
664 return inb(iobase + SBP_DSP_READ);
665 }
666 ++sberr.rdsp;
667 return -1;
668 }
669
670 /*
671 * Doing certain things (like toggling the speaker) make
672 * the SB hardware go away for a while, so pause a little.
673 */
674 void
675 sbdsp_to(arg)
676 void *arg;
677 {
678 wakeup(arg);
679 }
680
681 void
682 sbdsp_pause(sc)
683 struct sbdsp_softc *sc;
684 {
685 extern int hz;
686
687 timeout(sbdsp_to, sbdsp_to, hz/8);
688 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
689 }
690
691 /*
692 * Turn on the speaker. The SBK documention says this operation
693 * can take up to 1/10 of a second. Higher level layers should
694 * probably let the task sleep for this amount of time after
695 * calling here. Otherwise, things might not work (because
696 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
697 *
698 * These engineers had their heads up their ass when
699 * they designed this card.
700 */
701 void
702 sbdsp_spkron(sc)
703 struct sbdsp_softc *sc;
704 {
705 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
706 sbdsp_pause(sc);
707 }
708
709 /*
710 * Turn off the speaker; see comment above.
711 */
712 void
713 sbdsp_spkroff(sc)
714 struct sbdsp_softc *sc;
715 {
716 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
717 sbdsp_pause(sc);
718 }
719
720 /*
721 * Read the version number out of the card. Return major code
722 * in high byte, and minor code in low byte.
723 */
724 short
725 sbversion(sc)
726 struct sbdsp_softc *sc;
727 {
728 register u_short iobase = sc->sc_iobase;
729 short v;
730
731 if (sbdsp_wdsp(iobase, SB_DSP_VERSION) < 0)
732 return 0;
733 v = sbdsp_rdsp(iobase) << 8;
734 v |= sbdsp_rdsp(iobase);
735 return ((v >= 0) ? v : 0);
736 }
737
738 /*
739 * Halt a DMA in progress. A low-speed transfer can be
740 * resumed with sbdsp_contdma().
741 */
742 int
743 sbdsp_haltdma(addr)
744 void *addr;
745 {
746 register struct sbdsp_softc *sc = addr;
747
748 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
749
750 if (sc->sc_locked)
751 sbdsp_reset(sc);
752 else
753 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_HALT);
754
755 isa_dmaabort(sc->sc_drq);
756 sc->dmaaddr = 0;
757 sc->dmacnt = 0;
758 sc->sc_locked = 0;
759 sc->dmaflags = 0;
760 sc->sc_dmain_inprogress = sc->sc_dmaout_inprogress = 0;
761 return(0);
762 }
763
764 int
765 sbdsp_contdma(addr)
766 void *addr;
767 {
768 register struct sbdsp_softc *sc = addr;
769
770 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
771
772 /* XXX how do we reinitialize the DMA controller state? do we care? */
773 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_CONT);
774 return(0);
775 }
776
777 /*
778 * Time constant routines follow. See SBK, section 12.
779 * Although they don't come out and say it (in the docs),
780 * the card clearly uses a 1MHz countdown timer, as the
781 * low-speed formula (p. 12-4) is:
782 * tc = 256 - 10^6 / sr
783 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
784 * and a 256MHz clock is used:
785 * tc = 65536 - 256 * 10^ 6 / sr
786 * Since we can only use the upper byte of the HS TC, the two formulae
787 * are equivalent. (Why didn't they say so?) E.g.,
788 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
789 *
790 * The crossover point (from low- to high-speed modes) is different
791 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
792 *
793 * SBPRO SB20
794 * ----- --------
795 * input ls min 4 KHz 4 KHz
796 * input ls max 23 KHz 13 KHz
797 * input hs max 44.1 KHz 15 KHz
798 * output ls min 4 KHz 4 KHz
799 * output ls max 23 KHz 23 KHz
800 * output hs max 44.1 KHz 44.1 KHz
801 */
802 #define SB_LS_MIN 0x06 /* 4000 Hz */
803 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
804 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
805 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
806 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
807 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
808 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
809
810 /*
811 * Convert a linear sampling rate into the DAC time constant.
812 * Set *mode to indicate the high/low-speed DMA operation.
813 * Because of limitations of the card, not all rates are possible.
814 * We return the time constant of the closest possible rate.
815 * The sampling rate limits are different for the DAC and ADC,
816 * so isdac indicates output, and !isdac indicates input.
817 */
818 int
819 sbdsp_srtotc(sc, sr, mode, isdac)
820 register struct sbdsp_softc *sc;
821 int sr;
822 int *mode;
823 int isdac;
824 {
825 int adc_ls_max, adc_hs_max;
826 register int tc;
827
828 if (sr == 0) {
829 *mode = SB_ADAC_LS;
830 return SB_LS_MIN;
831 }
832 tc = 256 - 1000000 / sr;
833
834 /* XXX use better rounding--compare distance to nearest tc on both
835 sides of requested speed */
836 if (ISSBPROCLASS(sc)) {
837 adc_ls_max = SBPRO_ADC_LS_MAX;
838 adc_hs_max = SBPRO_ADC_HS_MAX;
839 }
840 else {
841 adc_ls_max = SBCLA_ADC_LS_MAX;
842 adc_hs_max = SBCLA_ADC_HS_MAX;
843 }
844
845 if (tc < SB_LS_MIN) {
846 tc = SB_LS_MIN;
847 *mode = SB_ADAC_LS;
848 } else if (isdac) {
849 if (tc <= SB_DAC_LS_MAX)
850 *mode = SB_ADAC_LS;
851 else {
852 *mode = SB_ADAC_HS;
853 if (tc > SB_DAC_HS_MAX)
854 tc = SB_DAC_HS_MAX;
855 }
856 } else {
857 if (tc <= adc_ls_max)
858 *mode = SB_ADAC_LS;
859 else {
860 *mode = SB_ADAC_HS;
861 if (tc > adc_hs_max)
862 tc = adc_hs_max;
863 }
864 }
865 return tc;
866 }
867
868 /*
869 * Convert a DAC time constant to a sampling rate.
870 * See SBK, section 12.
871 */
872 int
873 sbdsp_tctosr(sc, tc)
874 register struct sbdsp_softc *sc;
875 int tc;
876 {
877 int adc;
878
879 if (ISSBPROCLASS(sc))
880 adc = SBPRO_ADC_HS_MAX;
881 else
882 adc = SBCLA_ADC_HS_MAX;
883
884 if (tc > adc)
885 tc = adc;
886
887 return (1000000 / (256 - tc));
888 }
889
890 int
891 sbdsp_set_sr(sc, srp, isdac)
892 register struct sbdsp_softc *sc;
893 u_long *srp;
894 int isdac;
895 {
896 register int tc;
897 int mode;
898 int sr = *srp;
899 register u_short iobase;
900
901 /*
902 * A SBPro in stereo mode uses time constants at double the
903 * actual rate.
904 */
905 if (ISSBPRO(sc) && sc->sc_chans == 2) {
906 if (sr > 22727)
907 sr = 22727; /* Can't bounce it...order of
908 operations may yield bogus
909 sr here. */
910 sr *= 2;
911 }
912 else if (!ISSBPROCLASS(sc) && sc->sc_chans != 1)
913 return EINVAL;
914
915 tc = sbdsp_srtotc(sc, sr, &mode, isdac);
916 DPRINTF(("sbdsp_set_sr: sc=0x%x sr=%d mode=0x%x\n", sc, sr, mode));
917
918 iobase = sc->sc_iobase;
919 if (sbdsp_wdsp(iobase, SB_DSP_TIMECONST) < 0 ||
920 sbdsp_wdsp(iobase, tc) < 0)
921 return EIO;
922
923 sr = sbdsp_tctosr(sc, tc);
924 if (ISSBPRO(sc) && sc->sc_chans == 2)
925 *srp = sr / 2;
926 else
927 *srp = sr;
928
929 sc->sc_adacmode = mode;
930 sc->sc_adactc = tc;
931 return 0;
932 }
933
934 int
935 sbdsp_dma_input(addr, p, cc, intr, arg)
936 void *addr;
937 void *p;
938 int cc;
939 void (*intr)();
940 void *arg;
941 {
942 register struct sbdsp_softc *sc = addr;
943 register u_short iobase;
944 u_int phys;
945
946 #ifdef AUDIO_DEBUG
947 if (sbdspdebug > 1)
948 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
949 #endif
950 if (sc->sc_chans == 2 && (cc & 1)) {
951 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
952 return EIO;
953 }
954 iobase = sc->sc_iobase;
955 if (ISSBPROCLASS(sc) && !sc->sc_dmain_inprogress) {
956 if (sc->sc_chans == 2) {
957 if (sbdsp_wdsp(iobase, SB_DSP_RECORD_STEREO) < 0)
958 goto badmode;
959 sbdsp_mix_write(sc, SBP_STEREO,
960 sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK);
961 sbdsp_mix_write(sc, SBP_INFILTER,
962 sbdsp_mix_read(sc, SBP_INFILTER) | SBP_FILTER_OFF);
963 }
964 else {
965 if (sbdsp_wdsp(iobase, SB_DSP_RECORD_MONO) < 0)
966 goto badmode;
967 sbdsp_mix_write(sc, SBP_STEREO,
968 sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK);
969 sbdsp_mix_write(sc, SBP_INFILTER,
970 sc->sc_irate <= 8000 ?
971 sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_FILTER_MASK :
972 sbdsp_mix_read(sc, SBP_INFILTER) | SBP_FILTER_OFF);
973 }
974 sc->sc_dmain_inprogress = 1;
975 sc->sc_last_hsr_size = 0; /* restarting */
976 }
977 sc->sc_dmaout_inprogress = 0;
978
979 isa_dmastart(B_READ, p, cc, sc->sc_drq);
980 sc->sc_intr = intr;
981 sc->sc_arg = arg;
982 sc->dmaflags = B_READ;
983 sc->dmaaddr = p;
984 sc->dmacnt = --cc; /* DMA controller is strange...? */
985 if (sc->sc_adacmode == SB_ADAC_LS) {
986 if (sbdsp_wdsp(iobase, SB_DSP_RDMA) < 0 ||
987 sbdsp_wdsp(iobase, cc) < 0 ||
988 sbdsp_wdsp(iobase, cc >> 8) < 0) {
989 goto giveup;
990 }
991 }
992 else {
993 if (cc != sc->sc_last_hsr_size) {
994 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
995 sbdsp_wdsp(iobase, cc) < 0 ||
996 sbdsp_wdsp(iobase, cc >> 8) < 0)
997 goto giveup;
998 }
999 if (sbdsp_wdsp(iobase, SB_DSP_HS_INPUT) < 0)
1000 goto giveup;
1001 sc->sc_last_hsr_size = cc;
1002 sc->sc_locked = 1;
1003 }
1004 return 0;
1005
1006 giveup:
1007 isa_dmaabort(sc->sc_drq);
1008 sbdsp_reset(sc);
1009 sc->sc_intr = 0;
1010 sc->sc_arg = 0;
1011 return EIO;
1012 badmode:
1013 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1014 sc->sc_chans == 2 ? "stereo" : "mono"));
1015 return EIO;
1016 }
1017
1018 int
1019 sbdsp_dma_output(addr, p, cc, intr, arg)
1020 void *addr;
1021 void *p;
1022 int cc;
1023 void (*intr)();
1024 void *arg;
1025 {
1026 register struct sbdsp_softc *sc = addr;
1027 register u_short iobase;
1028
1029 #ifdef AUDIO_DEBUG
1030 if (sbdspdebug > 1)
1031 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1032 #endif
1033 if (sc->sc_chans == 2 && cc & 1) {
1034 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1035 return EIO;
1036 }
1037
1038 if (ISSBPROCLASS(sc) && !sc->sc_dmaout_inprogress) {
1039 /* make sure we re-set stereo mixer bit when we start
1040 output. */
1041 sbdsp_mix_write(sc, SBP_STEREO,
1042 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1043 (sc->sc_chans == 2 ?
1044 SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1045 sc->sc_dmaout_inprogress = 1;
1046 sc->sc_last_hsw_size = 0; /* restarting */
1047 }
1048 sc->sc_dmain_inprogress = 0;
1049 isa_dmastart(B_WRITE, p, cc, sc->sc_drq);
1050 sc->sc_intr = intr;
1051 sc->sc_arg = arg;
1052 sc->dmaflags = B_WRITE;
1053 sc->dmaaddr = p;
1054 sc->dmacnt = --cc; /* a vagary of how DMA works, apparently. */
1055
1056 iobase = sc->sc_iobase;
1057 if (sc->sc_adacmode == SB_ADAC_LS) {
1058 if (sbdsp_wdsp(iobase, SB_DSP_WDMA) < 0 ||
1059 sbdsp_wdsp(iobase, cc) < 0 ||
1060 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1061 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1062 goto giveup;
1063 }
1064 }
1065 else {
1066 if (cc != sc->sc_last_hsw_size) {
1067 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0) {
1068 /* sometimes fails initial startup?? */
1069 delay(100);
1070 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0) {
1071 DPRINTF(("sbdsp_dma_output: BLOCKSIZE failed\n"));
1072 goto giveup;
1073 }
1074 }
1075 if (sbdsp_wdsp(iobase, cc) < 0 ||
1076 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1077 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1078 goto giveup;
1079 }
1080 sc->sc_last_hsw_size = cc;
1081 }
1082 if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
1083 delay(100);
1084 if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
1085 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1086 goto giveup;
1087 }
1088 }
1089 sc->sc_locked = 1;
1090 }
1091
1092 return 0;
1093
1094 giveup:
1095 isa_dmaabort(sc->sc_drq);
1096 sbdsp_reset(sc);
1097 sc->sc_intr = 0;
1098 sc->sc_arg = 0;
1099 return EIO;
1100 }
1101
1102 /*
1103 * Only the DSP unit on the sound blaster generates interrupts.
1104 * There are three cases of interrupt: reception of a midi byte
1105 * (when mode is enabled), completion of dma transmission, or
1106 * completion of a dma reception. The three modes are mutually
1107 * exclusive so we know a priori which event has occurred.
1108 */
1109 int
1110 sbdsp_intr(arg)
1111 void *arg;
1112 {
1113 register struct sbdsp_softc *sc = arg;
1114
1115 #ifdef AUDIO_DEBUG
1116 if (sbdspdebug > 1)
1117 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1118 #endif
1119 sc->sc_interrupts++;
1120 sc->sc_locked = 0;
1121 /* clear interrupt */
1122 inb(sc->sc_iobase + SBP_DSP_RSTAT);
1123 #if 0
1124 if (sc->sc_mintr != 0) {
1125 int c = sbdsp_rdsp(sc->sc_iobase);
1126 (*sc->sc_mintr)(sc->sc_arg, c);
1127 } else
1128 #endif
1129 if (sc->sc_intr != 0) {
1130 /*
1131 * The SBPro used to develop and test this driver often
1132 * generated dma underruns--it interrupted to signal
1133 * completion of the DMA input recording block, but the
1134 * ISA DMA controller didn't think the channel was
1135 * finished. Maybe this is just a bus speed issue, I dunno,
1136 * but it seems strange and leads to channel-flipping with stereo
1137 * recording. Sigh.
1138 */
1139 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1140 sc->sc_drq);
1141 sc->dmaflags = 0;
1142 sc->dmaaddr = 0;
1143 sc->dmacnt = 0;
1144 (*sc->sc_intr)(sc->sc_arg);
1145 }
1146 else
1147 return 0;
1148 return 1;
1149 }
1150
1151 #if 0
1152 /*
1153 * Enter midi uart mode and arrange for read interrupts
1154 * to vector to `intr'. This puts the card in a mode
1155 * which allows only midi I/O; the card must be reset
1156 * to leave this mode. Unfortunately, the card does not
1157 * use transmit interrupts, so bytes must be output
1158 * using polling. To keep the polling overhead to a
1159 * minimum, output should be driven off a timer.
1160 * This is a little tricky since only 320us separate
1161 * consecutive midi bytes.
1162 */
1163 void
1164 sbdsp_set_midi_mode(sc, intr, arg)
1165 struct sbdsp_softc *sc;
1166 void (*intr)();
1167 void *arg;
1168 {
1169
1170 sbdsp_wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
1171 sc->sc_mintr = intr;
1172 sc->sc_intr = 0;
1173 sc->sc_arg = arg;
1174 }
1175
1176 /*
1177 * Write a byte to the midi port, when in midi uart mode.
1178 */
1179 void
1180 sbdsp_midi_output(sc, v)
1181 struct sbdsp_softc *sc;
1182 int v;
1183 {
1184
1185 if (sbdsp_wdsp(sc->sc_iobase, v) < 0)
1186 ++sberr.wmidi;
1187 }
1188 #endif
1189
1190 u_int
1191 sbdsp_get_silence(enc)
1192 int enc;
1193 {
1194 #define ULAW_SILENCE 0x7f
1195 #define LINEAR_SILENCE 0
1196 u_int auzero;
1197
1198 switch (enc) {
1199 case AUDIO_ENCODING_ULAW:
1200 auzero = ULAW_SILENCE;
1201 break;
1202 case AUDIO_ENCODING_PCM16:
1203 default:
1204 auzero = LINEAR_SILENCE;
1205 break;
1206 }
1207
1208 return(auzero);
1209 }
1210
1211 int
1212 sbdsp_setfd(addr, flag)
1213 void *addr;
1214 int flag;
1215 {
1216 /* Can't do full-duplex */
1217 return(ENOTTY);
1218 }
1219
1220 int
1221 sbdsp_mixer_set_port(addr, cp)
1222 void *addr;
1223 mixer_ctrl_t *cp;
1224 {
1225 register struct sbdsp_softc *sc = addr;
1226 int error = 0;
1227 int src, gain;
1228 int left, right;
1229
1230 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, cp->un.value.num_channels));
1231
1232 /*
1233 * Everything is a value except for SBPro special OUTPUT_MODE and
1234 * RECORD_SOURCE
1235 */
1236 if (cp->type != AUDIO_MIXER_VALUE) {
1237 if (!ISSBPROCLASS(sc) || (cp->dev != SB_OUTPUT_MODE &&
1238 cp->dev != SB_RECORD_SOURCE))
1239 return EINVAL;
1240 }
1241 else {
1242 /*
1243 * All the mixer ports are stereo except for the microphone.
1244 * If we get a single-channel gain value passed in, then we
1245 * duplicate it to both left and right channels.
1246 */
1247 if (cp->un.value.num_channels == 2) {
1248 left = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1249 right = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1250 }
1251 else
1252 left = right = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1253 }
1254
1255 if (ISSBPROCLASS(sc)) {
1256 /* The _PORT things are all signal inputs to the mixer.
1257 * Here we are tweaking their mixing level.
1258 *
1259 * We can also tweak the output stage volume (MASTER_VOL)
1260 */
1261 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(left),
1262 SBP_AGAIN_TO_SBGAIN(right));
1263 switch(cp->dev) {
1264 case SB_MIC_PORT:
1265 src = SBP_MIC_VOL;
1266 if (cp->un.value.num_channels != 1)
1267 error = EINVAL;
1268 else
1269 /* handle funny microphone gain */
1270 gain = SBP_AGAIN_TO_MICGAIN(left);
1271 break;
1272 case SB_LINE_IN_PORT:
1273 src = SBP_LINE_VOL;
1274 break;
1275 case SB_DAC_PORT:
1276 src = SBP_DAC_VOL;
1277 break;
1278 case SB_FM_PORT:
1279 src = SBP_FM_VOL;
1280 break;
1281 case SB_CD_PORT:
1282 src = SBP_CD_VOL;
1283 break;
1284 case SB_SPEAKER:
1285 cp->dev = SB_MASTER_VOL;
1286 case SB_MASTER_VOL:
1287 src = SBP_MASTER_VOL;
1288 break;
1289 #if 0
1290 case SB_OUTPUT_MODE:
1291 if (cp->type == AUDIO_MIXER_ENUM)
1292 return sbdsp_set_channels(addr, cp->un.ord);
1293 /* fall through...carefully! */
1294 #endif
1295 case SB_RECORD_SOURCE:
1296 if (cp->type == AUDIO_MIXER_ENUM)
1297 return sbdsp_set_in_port(addr, cp->un.ord);
1298 /* else fall through: bad input */
1299 case SB_TREBLE:
1300 case SB_BASS:
1301 default:
1302 error = EINVAL;
1303 break;
1304 }
1305 if (!error)
1306 sbdsp_mix_write(sc, src, gain);
1307 }
1308 else if (cp->dev != SB_MIC_PORT &&
1309 cp->dev != SB_SPEAKER)
1310 error = EINVAL;
1311
1312 if (!error)
1313 sc->gain[cp->dev] = gain;
1314
1315 return(error);
1316 }
1317
1318 int
1319 sbdsp_mixer_get_port(addr, cp)
1320 void *addr;
1321 mixer_ctrl_t *cp;
1322 {
1323 register struct sbdsp_softc *sc = addr;
1324 int error = 0;
1325 int done = 0;
1326
1327 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1328
1329 if (ISSBPROCLASS(sc))
1330 switch(cp->dev) {
1331 case SB_MIC_PORT:
1332 if (cp->un.value.num_channels == 1) {
1333 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1334 SBP_MICGAIN_TO_AGAIN(sc->gain[cp->dev]);
1335 return 0;
1336 }
1337 else
1338 return EINVAL;
1339 break;
1340 case SB_LINE_IN_PORT:
1341 case SB_DAC_PORT:
1342 case SB_FM_PORT:
1343 case SB_CD_PORT:
1344 case SB_MASTER_VOL:
1345 break;
1346 case SB_SPEAKER:
1347 cp->dev = SB_MASTER_VOL;
1348 break;
1349 default:
1350 error = EINVAL;
1351 break;
1352 }
1353 else {
1354 if (cp->un.value.num_channels != 1) /* no stereo on SB classic */
1355 error = EINVAL;
1356 else
1357 switch(cp->dev) {
1358 case SB_MIC_PORT:
1359 break;
1360 case SB_SPEAKER:
1361 break;
1362 default:
1363 error = EINVAL;
1364 break;
1365 }
1366 }
1367 if (error == 0) {
1368 if (cp->un.value.num_channels == 1) {
1369 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1370 SBP_SBGAIN_TO_AGAIN(sc->gain[cp->dev]);
1371 }
1372 else if (cp->un.value.num_channels == 2) {
1373 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1374 SBP_LEFTGAIN(sc->gain[cp->dev]);
1375 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1376 SBP_RIGHTGAIN(sc->gain[cp->dev]);
1377 } else
1378 return EINVAL;
1379 }
1380 return(error);
1381 }
1382
1383 int
1384 sbdsp_mixer_query_devinfo(addr, dip)
1385 void *addr;
1386 register mixer_devinfo_t *dip;
1387 {
1388 register struct sbdsp_softc *sc = addr;
1389 int done = 0;
1390
1391 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1392
1393 switch (dip->index) {
1394 case SB_MIC_PORT:
1395 dip->type = AUDIO_MIXER_VALUE;
1396 dip->mixer_class = SB_INPUT_CLASS;
1397 dip->prev = AUDIO_MIXER_LAST;
1398 dip->next = AUDIO_MIXER_LAST;
1399 strcpy(dip->label.name, AudioNmicrophone);
1400 dip->un.v.num_channels = 1;
1401 strcpy(dip->un.v.units.name, AudioNvolume);
1402 done = 1;
1403 break;
1404 case SB_SPEAKER:
1405 dip->type = AUDIO_MIXER_VALUE;
1406 dip->mixer_class = SB_OUTPUT_CLASS;
1407 dip->prev = AUDIO_MIXER_LAST;
1408 dip->next = AUDIO_MIXER_LAST;
1409 strcpy(dip->label.name, AudioNspeaker);
1410 dip->un.v.num_channels = 1;
1411 strcpy(dip->un.v.units.name, AudioNvolume);
1412 done = 1;
1413 break;
1414 case SB_INPUT_CLASS:
1415 dip->type = AUDIO_MIXER_CLASS;
1416 dip->mixer_class = SB_INPUT_CLASS;
1417 dip->next = dip->prev = AUDIO_MIXER_LAST;
1418 strcpy(dip->label.name, AudioCInputs);
1419 done = 1;
1420 break;
1421 case SB_OUTPUT_CLASS:
1422 dip->type = AUDIO_MIXER_CLASS;
1423 dip->mixer_class = SB_OUTPUT_CLASS;
1424 dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 strcpy(dip->label.name, AudioCOutputs);
1426 done = 1;
1427 break;
1428 }
1429
1430 if (!done) {
1431 if (ISSBPROCLASS(sc))
1432 switch(dip->index) {
1433 case SB_LINE_IN_PORT:
1434 dip->type = AUDIO_MIXER_VALUE;
1435 dip->mixer_class = SB_INPUT_CLASS;
1436 dip->prev = AUDIO_MIXER_LAST;
1437 dip->next = AUDIO_MIXER_LAST;
1438 strcpy(dip->label.name, AudioNline);
1439 dip->un.v.num_channels = 2;
1440 strcpy(dip->un.v.units.name, AudioNvolume);
1441 break;
1442 case SB_DAC_PORT:
1443 dip->type = AUDIO_MIXER_VALUE;
1444 dip->mixer_class = SB_OUTPUT_CLASS;
1445 dip->prev = AUDIO_MIXER_LAST;
1446 dip->next = AUDIO_MIXER_LAST;
1447 strcpy(dip->label.name, AudioNdac);
1448 dip->un.v.num_channels = 2;
1449 strcpy(dip->un.v.units.name, AudioNvolume);
1450 break;
1451 case SB_CD_PORT:
1452 dip->type = AUDIO_MIXER_VALUE;
1453 dip->mixer_class = SB_INPUT_CLASS;
1454 dip->prev = AUDIO_MIXER_LAST;
1455 dip->next = AUDIO_MIXER_LAST;
1456 strcpy(dip->label.name, AudioNcd);
1457 dip->un.v.num_channels = 2;
1458 strcpy(dip->un.v.units.name, AudioNvolume);
1459 break;
1460 case SB_FM_PORT:
1461 dip->type = AUDIO_MIXER_VALUE;
1462 dip->mixer_class = SB_OUTPUT_CLASS;
1463 dip->prev = AUDIO_MIXER_LAST;
1464 dip->next = AUDIO_MIXER_LAST;
1465 strcpy(dip->label.name, AudioNfmsynth);
1466 dip->un.v.num_channels = 2;
1467 strcpy(dip->un.v.units.name, AudioNvolume);
1468 break;
1469 case SB_MASTER_VOL:
1470 dip->type = AUDIO_MIXER_VALUE;
1471 dip->mixer_class = SB_OUTPUT_CLASS;
1472 dip->prev = AUDIO_MIXER_LAST;
1473 dip->next = /*TREBLE, BASS not handled, nor is SB_OUTPUT_MODE*/SB_RECORD_SOURCE;
1474 strcpy(dip->label.name, AudioNvolume);
1475 dip->un.v.num_channels = 2;
1476 strcpy(dip->un.v.units.name, AudioNvolume);
1477 break;
1478 #if 0
1479 case SB_OUTPUT_MODE:
1480 dip->mixer_class = SB_OUTPUT_CLASS;
1481 dip->type = AUDIO_MIXER_ENUM;
1482 dip->prev = SB_MASTER_VOL;
1483 dip->next = AUDIO_MIXER_LAST;
1484 strcpy(dip->label.name, AudioNmode);
1485 dip->un.e.num_mem = 2;
1486 strcpy(dip->un.e.member[0].label.name, AudioNmono);
1487 dip->un.e.member[0].ord = 1; /* nchans */
1488 strcpy(dip->un.e.member[1].label.name, AudioNstereo);
1489 dip->un.e.member[1].ord = 2; /* nchans */
1490 break;
1491 #endif
1492 case SB_RECORD_SOURCE:
1493 dip->mixer_class = SB_RECORD_CLASS;
1494 dip->type = AUDIO_MIXER_ENUM;
1495 dip->prev = AUDIO_MIXER_LAST;
1496 dip->next = AUDIO_MIXER_LAST;
1497 strcpy(dip->label.name, AudioNsource);
1498 dip->un.e.num_mem = 3;
1499 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1500 dip->un.e.member[0].ord = SB_MIC_PORT;
1501 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1502 dip->un.e.member[1].ord = SB_CD_PORT;
1503 strcpy(dip->un.e.member[2].label.name, AudioNline);
1504 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1505 break;
1506 case SB_BASS:
1507 case SB_TREBLE:
1508 default:
1509 return ENXIO;
1510 /*NOTREACHED*/
1511 }
1512 else
1513 return ENXIO;
1514 }
1515
1516 DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));
1517
1518 return 0;
1519 }
1520