sbdsp.c revision 1.130 1 /* $NetBSD: sbdsp.c,v 1.130 2008/04/11 13:00:47 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.130 2008/04/11 13:00:47 cegger Exp $");
85
86 #include "midi.h"
87 #include "mpu.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98
99 #include <sys/cpu.h>
100 #include <sys/intr.h>
101 #include <sys/bus.h>
102
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114
115
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x) if (sbdspdebug) printf x
118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
119 int sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128
129 struct {
130 int wdsp;
131 int rdsp;
132 int wmidi;
133 } sberr;
134
135 /*
136 * Time constant routines follow. See SBK, section 12.
137 * Although they don't come out and say it (in the docs),
138 * the card clearly uses a 1MHz countdown timer, as the
139 * low-speed formula (p. 12-4) is:
140 * tc = 256 - 10^6 / sr
141 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142 * and a 256MHz clock is used:
143 * tc = 65536 - 256 * 10^ 6 / sr
144 * Since we can only use the upper byte of the HS TC, the two formulae
145 * are equivalent. (Why didn't they say so?) E.g.,
146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147 *
148 * The crossover point (from low- to high-speed modes) is different
149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
150 *
151 * SBPRO SB20
152 * ----- --------
153 * input ls min 4 kHz 4 kHz
154 * input ls max 23 kHz 13 kHz
155 * input hs max 44.1 kHz 15 kHz
156 * output ls min 4 kHz 4 kHz
157 * output ls max 23 kHz 23 kHz
158 * output hs max 44.1 kHz 44.1 kHz
159 */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165
166 struct sbmode {
167 short model;
168 u_char channels;
169 u_char precision;
170 u_short lowrate, highrate;
171 u_char cmd;
172 u_char halt, cont;
173 u_char cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
195 { .model = -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
215 { .model = -1 }
216 };
217
218 void sbversion(struct sbdsp_softc *);
219 void sbdsp_jazz16_probe(struct sbdsp_softc *);
220 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
221 void sbdsp_pause(struct sbdsp_softc *);
222 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
223 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
224 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
225 void sbdsp_set_ifilter(void *, int);
226 int sbdsp_get_ifilter(void *);
227
228 int sbdsp_block_output(void *);
229 int sbdsp_block_input(void *);
230 static int sbdsp_adjust(int, int);
231
232 int sbdsp_midi_intr(void *);
233
234 static bool sbdsp_resume(device_t PMF_FN_PROTO);
235
236 #ifdef AUDIO_DEBUG
237 void sb_printsc(struct sbdsp_softc *);
238
239 void
240 sb_printsc(struct sbdsp_softc *sc)
241 {
242 int i;
243
244 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
245 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
246 sc->sc_drq8, sc->sc_drq16,
247 sc->sc_iobase, sc->sc_irq);
248 printf("irate %d itc %x orate %d otc %x\n",
249 sc->sc_i.rate, sc->sc_i.tc,
250 sc->sc_o.rate, sc->sc_o.tc);
251 printf("spkron %u nintr %lu\n",
252 sc->spkr_state, sc->sc_interrupts);
253 printf("intr8 %p intr16 %p\n",
254 sc->sc_intr8, sc->sc_intr16);
255 printf("gain:");
256 for (i = 0; i < SB_NDEVS; i++)
257 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
258 printf("\n");
259 }
260 #endif /* AUDIO_DEBUG */
261
262 /*
263 * Probe / attach routines.
264 */
265
266 /*
267 * Probe for the soundblaster hardware.
268 */
269 int
270 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
271 {
272
273 if (sbdsp_reset(sc) < 0) {
274 DPRINTF(("sbdsp: couldn't reset card\n"));
275 return 0;
276 }
277 /* if flags set, go and probe the jazz16 stuff */
278 if (match->cf_flags & 1)
279 sbdsp_jazz16_probe(sc);
280 else
281 sbversion(sc);
282 if (sc->sc_model == SB_UNK) {
283 /* Unknown SB model found. */
284 DPRINTF(("sbdsp: unknown SB model found\n"));
285 return 0;
286 }
287 return 1;
288 }
289
290 /*
291 * Try add-on stuff for Jazz16.
292 */
293 void
294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
295 {
296 static u_char jazz16_irq_conf[16] = {
297 -1, -1, 0x02, 0x03,
298 -1, 0x01, -1, 0x04,
299 -1, 0x02, 0x05, -1,
300 -1, -1, -1, 0x06};
301 static u_char jazz16_drq_conf[8] = {
302 -1, 0x01, -1, 0x02,
303 -1, 0x03, -1, 0x04};
304
305 bus_space_tag_t iot;
306 bus_space_handle_t ioh;
307
308 iot = sc->sc_iot;
309 sbversion(sc);
310
311 DPRINTF(("jazz16 probe\n"));
312
313 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
314 DPRINTF(("bus map failed\n"));
315 return;
316 }
317
318 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
319 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
320 DPRINTF(("drq/irq check failed\n"));
321 goto done; /* give up, we can't do it. */
322 }
323
324 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
325 delay(10000); /* delay 10 ms */
326 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
327 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
328
329 if (sbdsp_reset(sc) < 0) {
330 DPRINTF(("sbdsp_reset check failed\n"));
331 goto done; /* XXX? what else could we do? */
332 }
333
334 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
335 DPRINTF(("read16 setup failed\n"));
336 goto done;
337 }
338
339 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
340 DPRINTF(("read16 failed\n"));
341 goto done;
342 }
343
344 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
345 sc->sc_drq16 = sc->sc_drq8;
346 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
347 (sc->sc_drq16 >= 0 &&
348 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
349 jazz16_drq_conf[sc->sc_drq8])) ||
350 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
351 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
352 } else {
353 DPRINTF(("jazz16 detected!\n"));
354 sc->sc_model = SB_JAZZ;
355 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
356 }
357
358 done:
359 bus_space_unmap(iot, ioh, 1);
360 }
361
362 /*
363 * Attach hardware to driver, attach hardware driver to audio
364 * pseudo-device driver .
365 */
366 void
367 sbdsp_attach(struct sbdsp_softc *sc)
368 {
369 int i, error;
370 u_int v;
371
372 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
373
374 if (sc->sc_mixer_model != SBM_NONE) {
375 /* Reset the mixer.*/
376 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
377 /* And set our own default values */
378 for (i = 0; i < SB_NDEVS; i++) {
379 switch(i) {
380 case SB_MIC_VOL:
381 case SB_LINE_IN_VOL:
382 v = 0;
383 break;
384 case SB_BASS:
385 case SB_TREBLE:
386 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
387 break;
388 case SB_CD_IN_MUTE:
389 case SB_MIC_IN_MUTE:
390 case SB_LINE_IN_MUTE:
391 case SB_MIDI_IN_MUTE:
392 case SB_CD_SWAP:
393 case SB_MIC_SWAP:
394 case SB_LINE_SWAP:
395 case SB_MIDI_SWAP:
396 case SB_CD_OUT_MUTE:
397 case SB_MIC_OUT_MUTE:
398 case SB_LINE_OUT_MUTE:
399 v = 0;
400 break;
401 default:
402 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
403 break;
404 }
405 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
406 sbdsp_set_mixer_gain(sc, i);
407 }
408 sc->in_filter = 0; /* no filters turned on, please */
409 }
410
411 printf(": dsp v%d.%02d%s\n",
412 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414
415 sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 sc->sc_drq8 != sc->sc_drq16;
418
419 if (sc->sc_drq8 != -1) {
420 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 sc->sc_drq8);
422 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
424 if (error) {
425 aprint_error_dev(sc->sc_dev,
426 "can't create map for drq %d\n", sc->sc_drq8);
427 return;
428 }
429 }
430
431 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 sc->sc_drq16);
434 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
436 if (error) {
437 aprint_error_dev(sc->sc_dev,
438 "can't create map for drq %d\n", sc->sc_drq16);
439 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 return;
441 }
442 }
443
444 if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
445 aprint_error_dev(sc->sc_dev, "couldn't establish power handler\n");
446 }
447
448 static bool
449 sbdsp_resume(device_t dv PMF_FN_ARGS)
450 {
451 struct sbdsp_softc *sc = device_private(dv);
452
453 /* Reset the mixer. */
454 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
455
456 return true;
457 }
458
459 void
460 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
461 {
462 bus_space_tag_t iot;
463 bus_space_handle_t ioh;
464 int s;
465
466 iot = sc->sc_iot;
467 ioh = sc->sc_ioh;
468 s = splaudio();
469 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
470 delay(20);
471 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
472 delay(30);
473 splx(s);
474 }
475
476 int
477 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
478 {
479 bus_space_tag_t iot;
480 bus_space_handle_t ioh;
481 int val;
482 int s;
483
484 iot = sc->sc_iot;
485 ioh = sc->sc_ioh;
486 s = splaudio();
487 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
488 delay(20);
489 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
490 delay(30);
491 splx(s);
492 return val;
493 }
494
495 /*
496 * Various routines to interface to higher level audio driver
497 */
498
499 int
500 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
501 {
502 struct sbdsp_softc *sc;
503 int emul;
504
505 sc = addr;
506 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
507
508 switch (fp->index) {
509 case 0:
510 strcpy(fp->name, AudioEulinear);
511 fp->encoding = AUDIO_ENCODING_ULINEAR;
512 fp->precision = 8;
513 fp->flags = 0;
514 return 0;
515 case 1:
516 strcpy(fp->name, AudioEmulaw);
517 fp->encoding = AUDIO_ENCODING_ULAW;
518 fp->precision = 8;
519 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
520 return 0;
521 case 2:
522 strcpy(fp->name, AudioEalaw);
523 fp->encoding = AUDIO_ENCODING_ALAW;
524 fp->precision = 8;
525 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
526 return 0;
527 case 3:
528 strcpy(fp->name, AudioEslinear);
529 fp->encoding = AUDIO_ENCODING_SLINEAR;
530 fp->precision = 8;
531 fp->flags = emul;
532 return 0;
533 }
534 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
535 return EINVAL;
536
537 switch(fp->index) {
538 case 4:
539 strcpy(fp->name, AudioEslinear_le);
540 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
541 fp->precision = 16;
542 fp->flags = 0;
543 return 0;
544 case 5:
545 strcpy(fp->name, AudioEulinear_le);
546 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
547 fp->precision = 16;
548 fp->flags = emul;
549 return 0;
550 case 6:
551 strcpy(fp->name, AudioEslinear_be);
552 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
553 fp->precision = 16;
554 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
555 return 0;
556 case 7:
557 strcpy(fp->name, AudioEulinear_be);
558 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
559 fp->precision = 16;
560 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
561 return 0;
562 default:
563 return EINVAL;
564 }
565 return 0;
566 }
567
568 int
569 sbdsp_set_params(
570 void *addr,
571 int setmode, int usemode,
572 audio_params_t *play, audio_params_t *rec,
573 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
574 {
575 struct sbdsp_softc *sc;
576 struct sbmode *m;
577 u_int rate, tc, bmode;
578 stream_filter_factory_t *swcode;
579 int model;
580 int chan;
581 struct audio_params *p;
582 audio_params_t hw;
583 stream_filter_list_t *fil;
584 int mode;
585
586 sc = addr;
587 if (sc->sc_open == SB_OPEN_MIDI)
588 return EBUSY;
589
590 /* Later models work like SB16. */
591 model = min(sc->sc_model, SB_16);
592
593 /*
594 * Prior to the SB16, we have only one clock, so make the sample
595 * rates match.
596 */
597 if (!ISSB16CLASS(sc) &&
598 play->sample_rate != rec->sample_rate &&
599 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
600 if (setmode == AUMODE_PLAY) {
601 rec->sample_rate = play->sample_rate;
602 setmode |= AUMODE_RECORD;
603 } else if (setmode == AUMODE_RECORD) {
604 play->sample_rate = rec->sample_rate;
605 setmode |= AUMODE_PLAY;
606 } else
607 return EINVAL;
608 }
609
610 /* Set first record info, then play info */
611 for (mode = AUMODE_RECORD; mode != -1;
612 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
613 if ((setmode & mode) == 0)
614 continue;
615
616 p = mode == AUMODE_PLAY ? play : rec;
617 /* Locate proper commands */
618 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
619 m->model != -1; m++) {
620 if (model == m->model &&
621 p->channels == m->channels &&
622 p->precision == m->precision &&
623 p->sample_rate >= m->lowrate &&
624 p->sample_rate <= m->highrate)
625 break;
626 }
627 if (m->model == -1)
628 return EINVAL;
629 rate = p->sample_rate;
630 swcode = NULL;
631 fil = mode == AUMODE_PLAY ? pfil : rfil;
632 hw = *p;
633 tc = 1;
634 bmode = -1;
635 if (model == SB_16) {
636 switch (p->encoding) {
637 case AUDIO_ENCODING_SLINEAR_BE:
638 if (p->precision == 16) {
639 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
640 swcode = swap_bytes;
641 }
642 /* fall into */
643 case AUDIO_ENCODING_SLINEAR_LE:
644 bmode = SB_BMODE_SIGNED;
645 break;
646
647 case AUDIO_ENCODING_ULINEAR_BE:
648 if (p->precision == 16) {
649 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
650 swcode = swap_bytes;
651 }
652 /* fall into */
653 case AUDIO_ENCODING_ULINEAR_LE:
654 bmode = SB_BMODE_UNSIGNED;
655 break;
656
657 case AUDIO_ENCODING_ULAW:
658 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
659 if (mode == AUMODE_PLAY) {
660 hw.precision = hw.validbits = 16;
661 swcode = mulaw_to_linear16;
662 m = &sbpmodes[PLAY16];
663 } else
664 swcode = linear8_to_mulaw;
665 bmode = SB_BMODE_UNSIGNED;
666 break;
667
668 case AUDIO_ENCODING_ALAW:
669 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
670 if (mode == AUMODE_PLAY) {
671 hw.precision = hw.validbits = 16;
672 swcode = alaw_to_linear16;
673 m = &sbpmodes[PLAY16];
674 } else
675 swcode = linear8_to_alaw;
676 bmode = SB_BMODE_UNSIGNED;
677 break;
678 default:
679 return EINVAL;
680 }
681 if (p->channels == 2)
682 bmode |= SB_BMODE_STEREO;
683 } else if (m->model == SB_JAZZ && m->precision == 16) {
684 switch (p->encoding) {
685 case AUDIO_ENCODING_SLINEAR_LE:
686 break;
687 case AUDIO_ENCODING_ULINEAR_LE:
688 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
689 swcode = change_sign16;
690 break;
691 case AUDIO_ENCODING_SLINEAR_BE:
692 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
693 swcode = swap_bytes;
694 break;
695 case AUDIO_ENCODING_ULINEAR_BE:
696 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
697 swcode = swap_bytes_change_sign16;
698 break;
699 case AUDIO_ENCODING_ULAW:
700 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
701 swcode = mode == AUMODE_PLAY ?
702 mulaw_to_linear8 : linear8_to_mulaw;
703 break;
704 case AUDIO_ENCODING_ALAW:
705 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
706 swcode = mode == AUMODE_PLAY ?
707 alaw_to_linear8 : linear8_to_alaw;
708 break;
709 default:
710 return EINVAL;
711 }
712 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
713 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
714 hw.sample_rate = p->sample_rate;
715 } else {
716 switch (p->encoding) {
717 case AUDIO_ENCODING_SLINEAR_BE:
718 case AUDIO_ENCODING_SLINEAR_LE:
719 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
720 swcode = change_sign8;
721 break;
722 case AUDIO_ENCODING_ULINEAR_BE:
723 case AUDIO_ENCODING_ULINEAR_LE:
724 break;
725 case AUDIO_ENCODING_ULAW:
726 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
727 swcode = mode == AUMODE_PLAY ?
728 mulaw_to_linear8 : linear8_to_mulaw;
729 break;
730 case AUDIO_ENCODING_ALAW:
731 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
732 swcode = mode == AUMODE_PLAY ?
733 alaw_to_linear8 : linear8_to_alaw;
734 break;
735 default:
736 return EINVAL;
737 }
738 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
739 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
740 hw.sample_rate = p->sample_rate;
741 }
742
743 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
744 if (mode == AUMODE_PLAY) {
745 sc->sc_o.rate = rate;
746 sc->sc_o.tc = tc;
747 sc->sc_o.modep = m;
748 sc->sc_o.bmode = bmode;
749 sc->sc_o.dmachan = chan;
750 } else {
751 sc->sc_i.rate = rate;
752 sc->sc_i.tc = tc;
753 sc->sc_i.modep = m;
754 sc->sc_i.bmode = bmode;
755 sc->sc_i.dmachan = chan;
756 }
757
758 if (swcode != NULL)
759 fil->append(fil, swcode, &hw);
760 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
761 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
762 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
763 p->sample_rate, p->precision, p->channels,
764 p->encoding, tc, m->cmd, bmode, m->cmdchan));
765
766 }
767
768 if (sc->sc_fullduplex &&
769 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
770 sc->sc_i.dmachan == sc->sc_o.dmachan) {
771 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
772 "odma=%d\n", sc->sc_fullduplex, usemode,
773 sc->sc_i.dmachan, sc->sc_o.dmachan));
774 if (sc->sc_o.dmachan == sc->sc_drq8) {
775 /* Use 16 bit DMA for playing by expanding the samples. */
776 hw.precision = hw.validbits = 16;
777 pfil->append(pfil, linear8_to_linear16, &hw);
778 sc->sc_o.modep = &sbpmodes[PLAY16];
779 sc->sc_o.dmachan = sc->sc_drq16;
780 } else {
781 return EINVAL;
782 }
783 }
784 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
785 sc->sc_i.dmachan, sc->sc_o.dmachan));
786
787 return 0;
788 }
789
790 void
791 sbdsp_set_ifilter(void *addr, int which)
792 {
793 struct sbdsp_softc *sc;
794 int mixval;
795
796 sc = addr;
797 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
798 switch (which) {
799 case 0:
800 mixval |= SBP_FILTER_OFF;
801 break;
802 case SB_TREBLE:
803 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
804 break;
805 case SB_BASS:
806 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
807 break;
808 default:
809 return;
810 }
811 sc->in_filter = mixval & SBP_IFILTER_MASK;
812 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
813 }
814
815 int
816 sbdsp_get_ifilter(void *addr)
817 {
818 struct sbdsp_softc *sc;
819
820 sc = addr;
821 sc->in_filter =
822 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
823 switch (sc->in_filter) {
824 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
825 return SB_TREBLE;
826 case SBP_FILTER_ON|SBP_IFILTER_LOW:
827 return SB_BASS;
828 default:
829 return 0;
830 }
831 }
832
833 int
834 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
835 {
836 int bitsl, bitsr;
837 int sbport;
838
839 if (sc->sc_open == SB_OPEN_MIDI)
840 return EBUSY;
841
842 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
843 sc->sc_mixer_model, mask));
844
845 switch(sc->sc_mixer_model) {
846 case SBM_NONE:
847 return EINVAL;
848 case SBM_CT1335:
849 if (mask != (1 << SB_MIC_VOL))
850 return EINVAL;
851 break;
852 case SBM_CT1345:
853 switch (mask) {
854 case 1 << SB_MIC_VOL:
855 sbport = SBP_FROM_MIC;
856 break;
857 case 1 << SB_LINE_IN_VOL:
858 sbport = SBP_FROM_LINE;
859 break;
860 case 1 << SB_CD_VOL:
861 sbport = SBP_FROM_CD;
862 break;
863 default:
864 return EINVAL;
865 }
866 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
867 break;
868 case SBM_CT1XX5:
869 case SBM_CT1745:
870 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
871 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
872 return EINVAL;
873 bitsr = 0;
874 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
875 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
876 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
877 bitsl = SB_SRC_R_TO_L(bitsr);
878 if (mask & (1<<SB_MIC_VOL)) {
879 bitsl |= SBP_MIC_SRC;
880 bitsr |= SBP_MIC_SRC;
881 }
882 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
883 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
884 break;
885 }
886 sc->in_mask = mask;
887
888 return 0;
889 }
890
891 int
892 sbdsp_speaker_ctl(void *addr, int newstate)
893 {
894 struct sbdsp_softc *sc;
895
896 sc = addr;
897 if (sc->sc_open == SB_OPEN_MIDI)
898 return EBUSY;
899
900 if ((newstate == SPKR_ON) &&
901 (sc->spkr_state == SPKR_OFF)) {
902 sbdsp_spkron(sc);
903 sc->spkr_state = SPKR_ON;
904 }
905 if ((newstate == SPKR_OFF) &&
906 (sc->spkr_state == SPKR_ON)) {
907 sbdsp_spkroff(sc);
908 sc->spkr_state = SPKR_OFF;
909 }
910 return 0;
911 }
912
913 int
914 sbdsp_round_blocksize(void *addr, int blk, int mode,
915 const audio_params_t *param)
916 {
917 return blk & -4; /* round to biggest sample size */
918 }
919
920 int
921 sbdsp_open(void *addr, int flags)
922 {
923 struct sbdsp_softc *sc;
924 int error, state;
925
926 sc = addr;
927 DPRINTF(("sbdsp_open: sc=%p\n", sc));
928
929 if (sc->sc_open != SB_CLOSED)
930 return EBUSY;
931 sc->sc_open = SB_OPEN_AUDIO;
932 state = 0;
933
934 if (sc->sc_drq8 != -1) {
935 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
936 if (error != 0)
937 goto bad;
938 state |= 1;
939 }
940
941 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
942 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
943 if (error != 0)
944 goto bad;
945 state |= 2;
946 }
947
948
949 if (sbdsp_reset(sc) != 0) {
950 error = EIO;
951 goto bad;
952 }
953
954 if (ISSBPRO(sc) &&
955 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
956 DPRINTF(("sbdsp_open: can't set mono mode\n"));
957 /* we'll readjust when it's time for DMA. */
958 }
959
960 /*
961 * Leave most things as they were; users must change things if
962 * the previous process didn't leave it they way they wanted.
963 * Looked at another way, it's easy to set up a configuration
964 * in one program and leave it for another to inherit.
965 */
966 DPRINTF(("sbdsp_open: opened\n"));
967
968 return 0;
969
970 bad:
971 if (state & 1)
972 isa_drq_free(sc->sc_ic, sc->sc_drq8);
973 if (state & 2)
974 isa_drq_free(sc->sc_ic, sc->sc_drq16);
975
976 sc->sc_open = SB_CLOSED;
977 return error;
978 }
979
980 void
981 sbdsp_close(void *addr)
982 {
983 struct sbdsp_softc *sc;
984
985 sc = addr;
986 DPRINTF(("sbdsp_close: sc=%p\n", sc));
987
988 sbdsp_spkroff(sc);
989 sc->spkr_state = SPKR_OFF;
990
991 sc->sc_intr8 = 0;
992 sc->sc_intr16 = 0;
993
994 if (sc->sc_drq8 != -1)
995 isa_drq_free(sc->sc_ic, sc->sc_drq8);
996 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
997 isa_drq_free(sc->sc_ic, sc->sc_drq16);
998
999 sc->sc_open = SB_CLOSED;
1000 DPRINTF(("sbdsp_close: closed\n"));
1001 }
1002
1003 /*
1004 * Lower-level routines
1005 */
1006
1007 /*
1008 * Reset the card.
1009 * Return non-zero if the card isn't detected.
1010 */
1011 int
1012 sbdsp_reset(struct sbdsp_softc *sc)
1013 {
1014 bus_space_tag_t iot;
1015 bus_space_handle_t ioh;
1016
1017 iot = sc->sc_iot;
1018 ioh = sc->sc_ioh;
1019 sc->sc_intr8 = 0;
1020 sc->sc_intr16 = 0;
1021 sc->sc_intrm = 0;
1022
1023 /*
1024 * See SBK, section 11.3.
1025 * We pulse a reset signal into the card.
1026 * Gee, what a brilliant hardware design.
1027 */
1028 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1029 delay(10);
1030 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1031 delay(30);
1032 if (sbdsp_rdsp(sc) != SB_MAGIC)
1033 return -1;
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * Write a byte to the dsp.
1040 * We are at the mercy of the card as we use a
1041 * polling loop and wait until it can take the byte.
1042 */
1043 int
1044 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1045 {
1046 bus_space_tag_t iot;
1047 bus_space_handle_t ioh;
1048 int i;
1049 u_char x;
1050
1051 iot = sc->sc_iot;
1052 ioh = sc->sc_ioh;
1053 for (i = SBDSP_NPOLL; --i >= 0; ) {
1054 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1055 delay(10);
1056 if ((x & SB_DSP_BUSY) == 0) {
1057 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1058 delay(10);
1059 return 0;
1060 }
1061 }
1062 ++sberr.wdsp;
1063 return -1;
1064 }
1065
1066 /*
1067 * Read a byte from the DSP, using polling.
1068 */
1069 int
1070 sbdsp_rdsp(struct sbdsp_softc *sc)
1071 {
1072 bus_space_tag_t iot;
1073 bus_space_handle_t ioh;
1074 int i;
1075 u_char x;
1076
1077 iot = sc->sc_iot;
1078 ioh = sc->sc_ioh;
1079 for (i = SBDSP_NPOLL; --i >= 0; ) {
1080 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1081 delay(10);
1082 if (x & SB_DSP_READY) {
1083 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1084 delay(10);
1085 return x;
1086 }
1087 }
1088 ++sberr.rdsp;
1089 return -1;
1090 }
1091
1092 void
1093 sbdsp_pause(struct sbdsp_softc *sc)
1094 {
1095
1096 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1097 }
1098
1099 /*
1100 * Turn on the speaker. The SBK documention says this operation
1101 * can take up to 1/10 of a second. Higher level layers should
1102 * probably let the task sleep for this amount of time after
1103 * calling here. Otherwise, things might not work (because
1104 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1105 *
1106 * These engineers had their heads up their ass when
1107 * they designed this card.
1108 */
1109 void
1110 sbdsp_spkron(struct sbdsp_softc *sc)
1111 {
1112
1113 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1114 sbdsp_pause(sc);
1115 }
1116
1117 /*
1118 * Turn off the speaker; see comment above.
1119 */
1120 void
1121 sbdsp_spkroff(struct sbdsp_softc *sc)
1122 {
1123
1124 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1125 sbdsp_pause(sc);
1126 }
1127
1128 /*
1129 * Read the version number out of the card.
1130 * Store version information in the softc.
1131 */
1132 void
1133 sbversion(struct sbdsp_softc *sc)
1134 {
1135 int v;
1136
1137 sc->sc_model = SB_UNK;
1138 sc->sc_version = 0;
1139 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1140 return;
1141 v = sbdsp_rdsp(sc) << 8;
1142 v |= sbdsp_rdsp(sc);
1143 if (v < 0)
1144 return;
1145 sc->sc_version = v;
1146 switch(SBVER_MAJOR(v)) {
1147 case 1:
1148 sc->sc_mixer_model = SBM_NONE;
1149 sc->sc_model = SB_1;
1150 break;
1151 case 2:
1152 /* Some SB2 have a mixer, some don't. */
1153 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1154 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1155 /* Check if we can read back the mixer values. */
1156 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1157 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1158 sc->sc_mixer_model = SBM_CT1335;
1159 else
1160 sc->sc_mixer_model = SBM_NONE;
1161 if (SBVER_MINOR(v) == 0)
1162 sc->sc_model = SB_20;
1163 else
1164 sc->sc_model = SB_2x;
1165 break;
1166 case 3:
1167 sc->sc_mixer_model = SBM_CT1345;
1168 sc->sc_model = SB_PRO;
1169 break;
1170 case 4:
1171 #if 0
1172 /* XXX This does not work */
1173 /* Most SB16 have a tone controls, but some don't. */
1174 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1175 /* Check if we can read back the mixer value. */
1176 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1177 sc->sc_mixer_model = SBM_CT1745;
1178 else
1179 sc->sc_mixer_model = SBM_CT1XX5;
1180 #else
1181 sc->sc_mixer_model = SBM_CT1745;
1182 #endif
1183 #if 0
1184 /* XXX figure out a good way of determining the model */
1185 /* XXX what about SB_32 */
1186 if (SBVER_MINOR(v) == 16)
1187 sc->sc_model = SB_64;
1188 else
1189 #endif
1190 sc->sc_model = SB_16;
1191 break;
1192 }
1193 }
1194
1195 int
1196 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1197 {
1198
1199 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1200 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1201 sbdsp_wdsp(sc, tc) < 0)
1202 return EIO;
1203 return 0;
1204 }
1205
1206 int
1207 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1208 {
1209
1210 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1211 if (sbdsp_wdsp(sc, cmd) < 0 ||
1212 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1213 sbdsp_wdsp(sc, rate) < 0)
1214 return EIO;
1215 return 0;
1216 }
1217
1218 int
1219 sbdsp_trigger_input(
1220 void *addr,
1221 void *start, void *end,
1222 int blksize,
1223 void (*intr)(void *),
1224 void *arg,
1225 const audio_params_t *param)
1226 {
1227 struct sbdsp_softc *sc;
1228 int stereo;
1229 int width;
1230 int filter;
1231
1232 sc = addr;
1233 stereo = param->channels == 2;
1234 width = param->precision;
1235 #ifdef DIAGNOSTIC
1236 if (stereo && (blksize & 1)) {
1237 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1238 return EIO;
1239 }
1240 if (sc->sc_i.run != SB_NOTRUNNING)
1241 printf("sbdsp_trigger_input: already running\n");
1242 #endif
1243
1244 sc->sc_intrr = intr;
1245 sc->sc_argr = arg;
1246
1247 if (width == 8) {
1248 #ifdef DIAGNOSTIC
1249 if (sc->sc_i.dmachan != sc->sc_drq8) {
1250 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1251 width, sc->sc_i.dmachan);
1252 return EIO;
1253 }
1254 #endif
1255 sc->sc_intr8 = sbdsp_block_input;
1256 } else {
1257 #ifdef DIAGNOSTIC
1258 if (sc->sc_i.dmachan != sc->sc_drq16) {
1259 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1260 width, sc->sc_i.dmachan);
1261 return EIO;
1262 }
1263 #endif
1264 sc->sc_intr16 = sbdsp_block_input;
1265 }
1266
1267 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1268 blksize >>= 1;
1269 --blksize;
1270 sc->sc_i.blksize = blksize;
1271
1272 if (ISSBPRO(sc)) {
1273 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1274 return EIO;
1275 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1276 sbdsp_mix_write(sc, SBP_INFILTER,
1277 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1278 filter);
1279 }
1280
1281 if (ISSB16CLASS(sc)) {
1282 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1283 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1284 sc->sc_i.rate));
1285 return EIO;
1286 }
1287 } else {
1288 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1289 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1290 sc->sc_i.rate));
1291 return EIO;
1292 }
1293 }
1294
1295 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1296 start, end, sc->sc_i.dmachan));
1297 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1298 (char *)end - (char *)start, NULL,
1299 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1300
1301 return sbdsp_block_input(addr);
1302 }
1303
1304 int
1305 sbdsp_block_input(void *addr)
1306 {
1307 struct sbdsp_softc *sc;
1308 int cc;
1309
1310 sc = addr;
1311 cc = sc->sc_i.blksize;
1312 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1313
1314 if (sc->sc_i.run != SB_NOTRUNNING)
1315 sc->sc_intrr(sc->sc_argr);
1316
1317 if (sc->sc_model == SB_1) {
1318 /* Non-looping mode, start DMA */
1319 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1320 sbdsp_wdsp(sc, cc) < 0 ||
1321 sbdsp_wdsp(sc, cc >> 8) < 0) {
1322 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1323 return EIO;
1324 }
1325 sc->sc_i.run = SB_RUNNING;
1326 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1327 /* Initialize looping PCM */
1328 if (ISSB16CLASS(sc)) {
1329 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1330 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1331 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1332 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1333 sbdsp_wdsp(sc, cc) < 0 ||
1334 sbdsp_wdsp(sc, cc >> 8) < 0) {
1335 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1336 return EIO;
1337 }
1338 } else {
1339 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1340 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1341 sbdsp_wdsp(sc, cc) < 0 ||
1342 sbdsp_wdsp(sc, cc >> 8) < 0) {
1343 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1344 return EIO;
1345 }
1346 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1347 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1348 return EIO;
1349 }
1350 }
1351 sc->sc_i.run = SB_LOOPING;
1352 }
1353
1354 return 0;
1355 }
1356
1357 int
1358 sbdsp_trigger_output(
1359 void *addr,
1360 void *start, void *end,
1361 int blksize,
1362 void (*intr)(void *),
1363 void *arg,
1364 const audio_params_t *param)
1365 {
1366 struct sbdsp_softc *sc;
1367 int stereo;
1368 int width;
1369 int cmd;
1370
1371 sc = addr;
1372 stereo = param->channels == 2;
1373 width = param->precision;
1374 #ifdef DIAGNOSTIC
1375 if (stereo && (blksize & 1)) {
1376 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1377 return EIO;
1378 }
1379 if (sc->sc_o.run != SB_NOTRUNNING)
1380 printf("sbdsp_trigger_output: already running\n");
1381 #endif
1382
1383 sc->sc_intrp = intr;
1384 sc->sc_argp = arg;
1385
1386 if (width == 8) {
1387 #ifdef DIAGNOSTIC
1388 if (sc->sc_o.dmachan != sc->sc_drq8) {
1389 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1390 width, sc->sc_o.dmachan);
1391 return EIO;
1392 }
1393 #endif
1394 sc->sc_intr8 = sbdsp_block_output;
1395 } else {
1396 #ifdef DIAGNOSTIC
1397 if (sc->sc_o.dmachan != sc->sc_drq16) {
1398 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1399 width, sc->sc_o.dmachan);
1400 return EIO;
1401 }
1402 #endif
1403 sc->sc_intr16 = sbdsp_block_output;
1404 }
1405
1406 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1407 blksize >>= 1;
1408 --blksize;
1409 sc->sc_o.blksize = blksize;
1410
1411 if (ISSBPRO(sc)) {
1412 /* make sure we re-set stereo mixer bit when we start output. */
1413 sbdsp_mix_write(sc, SBP_STEREO,
1414 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1415 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1416 cmd = sc->sc_o.modep->cmdchan;
1417 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1418 return EIO;
1419 }
1420
1421 if (ISSB16CLASS(sc)) {
1422 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1423 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1424 sc->sc_o.rate));
1425 return EIO;
1426 }
1427 } else {
1428 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1429 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1430 sc->sc_o.rate));
1431 return EIO;
1432 }
1433 }
1434
1435 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1436 start, end, sc->sc_o.dmachan));
1437 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1438 (char *)end - (char *)start, NULL,
1439 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1440
1441 return sbdsp_block_output(addr);
1442 }
1443
1444 int
1445 sbdsp_block_output(void *addr)
1446 {
1447 struct sbdsp_softc *sc;
1448 int cc;
1449
1450 sc = addr;
1451 cc = sc->sc_o.blksize;
1452 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1453
1454 if (sc->sc_o.run != SB_NOTRUNNING)
1455 sc->sc_intrp(sc->sc_argp);
1456
1457 if (sc->sc_model == SB_1) {
1458 /* Non-looping mode, initialized. Start DMA and PCM */
1459 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1460 sbdsp_wdsp(sc, cc) < 0 ||
1461 sbdsp_wdsp(sc, cc >> 8) < 0) {
1462 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1463 return EIO;
1464 }
1465 sc->sc_o.run = SB_RUNNING;
1466 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1467 /* Initialize looping PCM */
1468 if (ISSB16CLASS(sc)) {
1469 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1470 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1471 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1472 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1473 sbdsp_wdsp(sc, cc) < 0 ||
1474 sbdsp_wdsp(sc, cc >> 8) < 0) {
1475 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1476 return EIO;
1477 }
1478 } else {
1479 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1480 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1481 sbdsp_wdsp(sc, cc) < 0 ||
1482 sbdsp_wdsp(sc, cc >> 8) < 0) {
1483 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1484 return EIO;
1485 }
1486 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1487 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1488 return EIO;
1489 }
1490 }
1491 sc->sc_o.run = SB_LOOPING;
1492 }
1493
1494 return 0;
1495 }
1496
1497 int
1498 sbdsp_halt_output(void *addr)
1499 {
1500 struct sbdsp_softc *sc;
1501
1502 sc = addr;
1503 if (sc->sc_o.run != SB_NOTRUNNING) {
1504 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1505 printf("sbdsp_halt_output: failed to halt\n");
1506 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1507 sc->sc_o.run = SB_NOTRUNNING;
1508 }
1509 return 0;
1510 }
1511
1512 int
1513 sbdsp_halt_input(void *addr)
1514 {
1515 struct sbdsp_softc *sc;
1516
1517 sc = addr;
1518 if (sc->sc_i.run != SB_NOTRUNNING) {
1519 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1520 printf("sbdsp_halt_input: failed to halt\n");
1521 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1522 sc->sc_i.run = SB_NOTRUNNING;
1523 }
1524 return 0;
1525 }
1526
1527 /*
1528 * Only the DSP unit on the sound blaster generates interrupts.
1529 * There are three cases of interrupt: reception of a midi byte
1530 * (when mode is enabled), completion of DMA transmission, or
1531 * completion of a DMA reception.
1532 *
1533 * If there is interrupt sharing or a spurious interrupt occurs
1534 * there is no way to distinguish this on an SB2. So if you have
1535 * an SB2 and experience problems, buy an SB16 (it's only $40).
1536 */
1537 int
1538 sbdsp_intr(void *arg)
1539 {
1540 struct sbdsp_softc *sc = arg;
1541 #if NMPU > 0
1542 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
1543 #endif
1544 u_char irq;
1545
1546 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1547 sc->sc_intr8, sc->sc_intr16));
1548 if (ISSB16CLASS(sc)) {
1549 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1550 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1551 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1552 return 0;
1553 }
1554 } else {
1555 /* XXXX CHECK FOR INTERRUPT */
1556 irq = SBP_IRQ_DMA8;
1557 }
1558
1559 sc->sc_interrupts++;
1560 delay(10); /* XXX why? */
1561
1562 /* clear interrupt */
1563 if (irq & SBP_IRQ_DMA8) {
1564 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1565 if (sc->sc_intr8)
1566 sc->sc_intr8(arg);
1567 }
1568 if (irq & SBP_IRQ_DMA16) {
1569 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1570 if (sc->sc_intr16)
1571 sc->sc_intr16(arg);
1572 }
1573 #if NMPU > 0
1574 if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
1575 mpu_intr(sc_mpu);
1576 }
1577 #endif
1578 return 1;
1579 }
1580
1581 /* Like val & mask, but make sure the result is correctly rounded. */
1582 #define MAXVAL 256
1583 static int
1584 sbdsp_adjust(int val, int mask)
1585 {
1586
1587 val += (MAXVAL - mask) >> 1;
1588 if (val >= MAXVAL)
1589 val = MAXVAL-1;
1590 return val & mask;
1591 }
1592
1593 void
1594 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1595 {
1596 int src, gain;
1597
1598 switch(sc->sc_mixer_model) {
1599 case SBM_NONE:
1600 return;
1601 case SBM_CT1335:
1602 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1603 switch(port) {
1604 case SB_MASTER_VOL:
1605 src = SBP_1335_MASTER_VOL;
1606 break;
1607 case SB_MIDI_VOL:
1608 src = SBP_1335_MIDI_VOL;
1609 break;
1610 case SB_CD_VOL:
1611 src = SBP_1335_CD_VOL;
1612 break;
1613 case SB_VOICE_VOL:
1614 src = SBP_1335_VOICE_VOL;
1615 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1616 break;
1617 default:
1618 return;
1619 }
1620 sbdsp_mix_write(sc, src, gain);
1621 break;
1622 case SBM_CT1345:
1623 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1624 sc->gain[port][SB_RIGHT]);
1625 switch (port) {
1626 case SB_MIC_VOL:
1627 src = SBP_MIC_VOL;
1628 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1629 break;
1630 case SB_MASTER_VOL:
1631 src = SBP_MASTER_VOL;
1632 break;
1633 case SB_LINE_IN_VOL:
1634 src = SBP_LINE_VOL;
1635 break;
1636 case SB_VOICE_VOL:
1637 src = SBP_VOICE_VOL;
1638 break;
1639 case SB_MIDI_VOL:
1640 src = SBP_MIDI_VOL;
1641 break;
1642 case SB_CD_VOL:
1643 src = SBP_CD_VOL;
1644 break;
1645 default:
1646 return;
1647 }
1648 sbdsp_mix_write(sc, src, gain);
1649 break;
1650 case SBM_CT1XX5:
1651 case SBM_CT1745:
1652 switch (port) {
1653 case SB_MIC_VOL:
1654 src = SB16P_MIC_L;
1655 break;
1656 case SB_MASTER_VOL:
1657 src = SB16P_MASTER_L;
1658 break;
1659 case SB_LINE_IN_VOL:
1660 src = SB16P_LINE_L;
1661 break;
1662 case SB_VOICE_VOL:
1663 src = SB16P_VOICE_L;
1664 break;
1665 case SB_MIDI_VOL:
1666 src = SB16P_MIDI_L;
1667 break;
1668 case SB_CD_VOL:
1669 src = SB16P_CD_L;
1670 break;
1671 case SB_INPUT_GAIN:
1672 src = SB16P_INPUT_GAIN_L;
1673 break;
1674 case SB_OUTPUT_GAIN:
1675 src = SB16P_OUTPUT_GAIN_L;
1676 break;
1677 case SB_TREBLE:
1678 src = SB16P_TREBLE_L;
1679 break;
1680 case SB_BASS:
1681 src = SB16P_BASS_L;
1682 break;
1683 case SB_PCSPEAKER:
1684 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1685 return;
1686 default:
1687 return;
1688 }
1689 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1690 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1691 break;
1692 }
1693 }
1694
1695 int
1696 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1697 {
1698 struct sbdsp_softc *sc;
1699 int lgain, rgain;
1700 int mask, bits;
1701 int lmask, rmask, lbits, rbits;
1702 int mute, swap;
1703
1704 sc = addr;
1705 if (sc->sc_open == SB_OPEN_MIDI)
1706 return EBUSY;
1707
1708 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1709 cp->un.value.num_channels));
1710
1711 if (sc->sc_mixer_model == SBM_NONE)
1712 return EINVAL;
1713
1714 switch (cp->dev) {
1715 case SB_TREBLE:
1716 case SB_BASS:
1717 if (sc->sc_mixer_model == SBM_CT1345 ||
1718 sc->sc_mixer_model == SBM_CT1XX5) {
1719 if (cp->type != AUDIO_MIXER_ENUM)
1720 return EINVAL;
1721 switch (cp->dev) {
1722 case SB_TREBLE:
1723 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1724 return 0;
1725 case SB_BASS:
1726 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1727 return 0;
1728 }
1729 }
1730 case SB_PCSPEAKER:
1731 case SB_INPUT_GAIN:
1732 case SB_OUTPUT_GAIN:
1733 if (!ISSBM1745(sc))
1734 return EINVAL;
1735 case SB_MIC_VOL:
1736 case SB_LINE_IN_VOL:
1737 if (sc->sc_mixer_model == SBM_CT1335)
1738 return EINVAL;
1739 case SB_VOICE_VOL:
1740 case SB_MIDI_VOL:
1741 case SB_CD_VOL:
1742 case SB_MASTER_VOL:
1743 if (cp->type != AUDIO_MIXER_VALUE)
1744 return EINVAL;
1745
1746 /*
1747 * All the mixer ports are stereo except for the microphone.
1748 * If we get a single-channel gain value passed in, then we
1749 * duplicate it to both left and right channels.
1750 */
1751
1752 switch (cp->dev) {
1753 case SB_MIC_VOL:
1754 if (cp->un.value.num_channels != 1)
1755 return EINVAL;
1756
1757 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1758 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1759 break;
1760 case SB_PCSPEAKER:
1761 if (cp->un.value.num_channels != 1)
1762 return EINVAL;
1763 /* fall into */
1764 case SB_INPUT_GAIN:
1765 case SB_OUTPUT_GAIN:
1766 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1767 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1768 break;
1769 default:
1770 switch (cp->un.value.num_channels) {
1771 case 1:
1772 lgain = rgain = SB_ADJUST_GAIN(sc,
1773 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1774 break;
1775 case 2:
1776 if (sc->sc_mixer_model == SBM_CT1335)
1777 return EINVAL;
1778 lgain = SB_ADJUST_GAIN(sc,
1779 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1780 rgain = SB_ADJUST_GAIN(sc,
1781 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1782 break;
1783 default:
1784 return EINVAL;
1785 }
1786 break;
1787 }
1788 sc->gain[cp->dev][SB_LEFT] = lgain;
1789 sc->gain[cp->dev][SB_RIGHT] = rgain;
1790
1791 sbdsp_set_mixer_gain(sc, cp->dev);
1792 break;
1793
1794 case SB_RECORD_SOURCE:
1795 if (ISSBM1745(sc)) {
1796 if (cp->type != AUDIO_MIXER_SET)
1797 return EINVAL;
1798 return sbdsp_set_in_ports(sc, cp->un.mask);
1799 } else {
1800 if (cp->type != AUDIO_MIXER_ENUM)
1801 return EINVAL;
1802 sc->in_port = cp->un.ord;
1803 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1804 }
1805 break;
1806
1807 case SB_AGC:
1808 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1809 return EINVAL;
1810 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1811 break;
1812
1813 case SB_CD_OUT_MUTE:
1814 mask = SB16P_SW_CD;
1815 goto omute;
1816 case SB_MIC_OUT_MUTE:
1817 mask = SB16P_SW_MIC;
1818 goto omute;
1819 case SB_LINE_OUT_MUTE:
1820 mask = SB16P_SW_LINE;
1821 omute:
1822 if (cp->type != AUDIO_MIXER_ENUM)
1823 return EINVAL;
1824 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1825 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1826 if (cp->un.ord)
1827 bits = bits & ~mask;
1828 else
1829 bits = bits | mask;
1830 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1831 break;
1832
1833 case SB_MIC_IN_MUTE:
1834 case SB_MIC_SWAP:
1835 lmask = rmask = SB16P_SW_MIC;
1836 goto imute;
1837 case SB_CD_IN_MUTE:
1838 case SB_CD_SWAP:
1839 lmask = SB16P_SW_CD_L;
1840 rmask = SB16P_SW_CD_R;
1841 goto imute;
1842 case SB_LINE_IN_MUTE:
1843 case SB_LINE_SWAP:
1844 lmask = SB16P_SW_LINE_L;
1845 rmask = SB16P_SW_LINE_R;
1846 goto imute;
1847 case SB_MIDI_IN_MUTE:
1848 case SB_MIDI_SWAP:
1849 lmask = SB16P_SW_MIDI_L;
1850 rmask = SB16P_SW_MIDI_R;
1851 imute:
1852 if (cp->type != AUDIO_MIXER_ENUM)
1853 return EINVAL;
1854 mask = lmask | rmask;
1855 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1856 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1857 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1858 if (SB_IS_IN_MUTE(cp->dev)) {
1859 mute = cp->dev;
1860 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1861 } else {
1862 swap = cp->dev;
1863 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1864 }
1865 if (sc->gain[swap][SB_LR]) {
1866 mask = lmask;
1867 lmask = rmask;
1868 rmask = mask;
1869 }
1870 if (!sc->gain[mute][SB_LR]) {
1871 lbits = lbits | lmask;
1872 rbits = rbits | rmask;
1873 }
1874 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1875 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1876 break;
1877
1878 default:
1879 return EINVAL;
1880 }
1881
1882 return 0;
1883 }
1884
1885 int
1886 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1887 {
1888 struct sbdsp_softc *sc;
1889
1890 sc = addr;
1891 if (sc->sc_open == SB_OPEN_MIDI)
1892 return EBUSY;
1893
1894 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1895
1896 if (sc->sc_mixer_model == SBM_NONE)
1897 return EINVAL;
1898
1899 switch (cp->dev) {
1900 case SB_TREBLE:
1901 case SB_BASS:
1902 if (sc->sc_mixer_model == SBM_CT1345 ||
1903 sc->sc_mixer_model == SBM_CT1XX5) {
1904 switch (cp->dev) {
1905 case SB_TREBLE:
1906 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1907 return 0;
1908 case SB_BASS:
1909 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1910 return 0;
1911 }
1912 }
1913 case SB_PCSPEAKER:
1914 case SB_INPUT_GAIN:
1915 case SB_OUTPUT_GAIN:
1916 if (!ISSBM1745(sc))
1917 return EINVAL;
1918 case SB_MIC_VOL:
1919 case SB_LINE_IN_VOL:
1920 if (sc->sc_mixer_model == SBM_CT1335)
1921 return EINVAL;
1922 case SB_VOICE_VOL:
1923 case SB_MIDI_VOL:
1924 case SB_CD_VOL:
1925 case SB_MASTER_VOL:
1926 switch (cp->dev) {
1927 case SB_MIC_VOL:
1928 case SB_PCSPEAKER:
1929 if (cp->un.value.num_channels != 1)
1930 return EINVAL;
1931 /* fall into */
1932 default:
1933 switch (cp->un.value.num_channels) {
1934 case 1:
1935 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1936 sc->gain[cp->dev][SB_LEFT];
1937 break;
1938 case 2:
1939 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1940 sc->gain[cp->dev][SB_LEFT];
1941 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1942 sc->gain[cp->dev][SB_RIGHT];
1943 break;
1944 default:
1945 return EINVAL;
1946 }
1947 break;
1948 }
1949 break;
1950
1951 case SB_RECORD_SOURCE:
1952 if (ISSBM1745(sc))
1953 cp->un.mask = sc->in_mask;
1954 else
1955 cp->un.ord = sc->in_port;
1956 break;
1957
1958 case SB_AGC:
1959 if (!ISSBM1745(sc))
1960 return EINVAL;
1961 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1962 break;
1963
1964 case SB_CD_IN_MUTE:
1965 case SB_MIC_IN_MUTE:
1966 case SB_LINE_IN_MUTE:
1967 case SB_MIDI_IN_MUTE:
1968 case SB_CD_SWAP:
1969 case SB_MIC_SWAP:
1970 case SB_LINE_SWAP:
1971 case SB_MIDI_SWAP:
1972 case SB_CD_OUT_MUTE:
1973 case SB_MIC_OUT_MUTE:
1974 case SB_LINE_OUT_MUTE:
1975 cp->un.ord = sc->gain[cp->dev][SB_LR];
1976 break;
1977
1978 default:
1979 return EINVAL;
1980 }
1981
1982 return 0;
1983 }
1984
1985 int
1986 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1987 {
1988 struct sbdsp_softc *sc = addr;
1989 int chan, class, is1745;
1990
1991 sc = addr;
1992 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1993 sc->sc_mixer_model, dip->index));
1994
1995 if (sc->sc_mixer_model == SBM_NONE)
1996 return ENXIO;
1997
1998 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1999 is1745 = ISSBM1745(sc);
2000 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2001
2002 switch (dip->index) {
2003 case SB_MASTER_VOL:
2004 dip->type = AUDIO_MIXER_VALUE;
2005 dip->mixer_class = SB_OUTPUT_CLASS;
2006 dip->prev = dip->next = AUDIO_MIXER_LAST;
2007 strcpy(dip->label.name, AudioNmaster);
2008 dip->un.v.num_channels = chan;
2009 strcpy(dip->un.v.units.name, AudioNvolume);
2010 return 0;
2011 case SB_MIDI_VOL:
2012 dip->type = AUDIO_MIXER_VALUE;
2013 dip->mixer_class = class;
2014 dip->prev = AUDIO_MIXER_LAST;
2015 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2016 strcpy(dip->label.name, AudioNfmsynth);
2017 dip->un.v.num_channels = chan;
2018 strcpy(dip->un.v.units.name, AudioNvolume);
2019 return 0;
2020 case SB_CD_VOL:
2021 dip->type = AUDIO_MIXER_VALUE;
2022 dip->mixer_class = class;
2023 dip->prev = AUDIO_MIXER_LAST;
2024 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2025 strcpy(dip->label.name, AudioNcd);
2026 dip->un.v.num_channels = chan;
2027 strcpy(dip->un.v.units.name, AudioNvolume);
2028 return 0;
2029 case SB_VOICE_VOL:
2030 dip->type = AUDIO_MIXER_VALUE;
2031 dip->mixer_class = class;
2032 dip->prev = AUDIO_MIXER_LAST;
2033 dip->next = AUDIO_MIXER_LAST;
2034 strcpy(dip->label.name, AudioNdac);
2035 dip->un.v.num_channels = chan;
2036 strcpy(dip->un.v.units.name, AudioNvolume);
2037 return 0;
2038 case SB_OUTPUT_CLASS:
2039 dip->type = AUDIO_MIXER_CLASS;
2040 dip->mixer_class = SB_OUTPUT_CLASS;
2041 dip->next = dip->prev = AUDIO_MIXER_LAST;
2042 strcpy(dip->label.name, AudioCoutputs);
2043 return 0;
2044 }
2045
2046 if (sc->sc_mixer_model == SBM_CT1335)
2047 return ENXIO;
2048
2049 switch (dip->index) {
2050 case SB_MIC_VOL:
2051 dip->type = AUDIO_MIXER_VALUE;
2052 dip->mixer_class = class;
2053 dip->prev = AUDIO_MIXER_LAST;
2054 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2055 strcpy(dip->label.name, AudioNmicrophone);
2056 dip->un.v.num_channels = 1;
2057 strcpy(dip->un.v.units.name, AudioNvolume);
2058 return 0;
2059
2060 case SB_LINE_IN_VOL:
2061 dip->type = AUDIO_MIXER_VALUE;
2062 dip->mixer_class = class;
2063 dip->prev = AUDIO_MIXER_LAST;
2064 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2065 strcpy(dip->label.name, AudioNline);
2066 dip->un.v.num_channels = 2;
2067 strcpy(dip->un.v.units.name, AudioNvolume);
2068 return 0;
2069
2070 case SB_RECORD_SOURCE:
2071 dip->mixer_class = SB_RECORD_CLASS;
2072 dip->prev = dip->next = AUDIO_MIXER_LAST;
2073 strcpy(dip->label.name, AudioNsource);
2074 if (ISSBM1745(sc)) {
2075 dip->type = AUDIO_MIXER_SET;
2076 dip->un.s.num_mem = 4;
2077 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2078 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2079 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2080 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2081 strcpy(dip->un.s.member[2].label.name, AudioNline);
2082 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2083 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2084 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2085 } else {
2086 dip->type = AUDIO_MIXER_ENUM;
2087 dip->un.e.num_mem = 3;
2088 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2089 dip->un.e.member[0].ord = SB_MIC_VOL;
2090 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2091 dip->un.e.member[1].ord = SB_CD_VOL;
2092 strcpy(dip->un.e.member[2].label.name, AudioNline);
2093 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2094 }
2095 return 0;
2096
2097 case SB_BASS:
2098 dip->prev = dip->next = AUDIO_MIXER_LAST;
2099 strcpy(dip->label.name, AudioNbass);
2100 if (sc->sc_mixer_model == SBM_CT1745) {
2101 dip->type = AUDIO_MIXER_VALUE;
2102 dip->mixer_class = SB_EQUALIZATION_CLASS;
2103 dip->un.v.num_channels = 2;
2104 strcpy(dip->un.v.units.name, AudioNbass);
2105 } else {
2106 dip->type = AUDIO_MIXER_ENUM;
2107 dip->mixer_class = SB_INPUT_CLASS;
2108 dip->un.e.num_mem = 2;
2109 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2110 dip->un.e.member[0].ord = 0;
2111 strcpy(dip->un.e.member[1].label.name, AudioNon);
2112 dip->un.e.member[1].ord = 1;
2113 }
2114 return 0;
2115
2116 case SB_TREBLE:
2117 dip->prev = dip->next = AUDIO_MIXER_LAST;
2118 strcpy(dip->label.name, AudioNtreble);
2119 if (sc->sc_mixer_model == SBM_CT1745) {
2120 dip->type = AUDIO_MIXER_VALUE;
2121 dip->mixer_class = SB_EQUALIZATION_CLASS;
2122 dip->un.v.num_channels = 2;
2123 strcpy(dip->un.v.units.name, AudioNtreble);
2124 } else {
2125 dip->type = AUDIO_MIXER_ENUM;
2126 dip->mixer_class = SB_INPUT_CLASS;
2127 dip->un.e.num_mem = 2;
2128 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2129 dip->un.e.member[0].ord = 0;
2130 strcpy(dip->un.e.member[1].label.name, AudioNon);
2131 dip->un.e.member[1].ord = 1;
2132 }
2133 return 0;
2134
2135 case SB_RECORD_CLASS: /* record source class */
2136 dip->type = AUDIO_MIXER_CLASS;
2137 dip->mixer_class = SB_RECORD_CLASS;
2138 dip->next = dip->prev = AUDIO_MIXER_LAST;
2139 strcpy(dip->label.name, AudioCrecord);
2140 return 0;
2141
2142 case SB_INPUT_CLASS:
2143 dip->type = AUDIO_MIXER_CLASS;
2144 dip->mixer_class = SB_INPUT_CLASS;
2145 dip->next = dip->prev = AUDIO_MIXER_LAST;
2146 strcpy(dip->label.name, AudioCinputs);
2147 return 0;
2148
2149 }
2150
2151 if (sc->sc_mixer_model == SBM_CT1345)
2152 return ENXIO;
2153
2154 switch(dip->index) {
2155 case SB_PCSPEAKER:
2156 dip->type = AUDIO_MIXER_VALUE;
2157 dip->mixer_class = SB_INPUT_CLASS;
2158 dip->prev = dip->next = AUDIO_MIXER_LAST;
2159 strcpy(dip->label.name, "pc_speaker");
2160 dip->un.v.num_channels = 1;
2161 strcpy(dip->un.v.units.name, AudioNvolume);
2162 return 0;
2163
2164 case SB_INPUT_GAIN:
2165 dip->type = AUDIO_MIXER_VALUE;
2166 dip->mixer_class = SB_INPUT_CLASS;
2167 dip->prev = dip->next = AUDIO_MIXER_LAST;
2168 strcpy(dip->label.name, AudioNinput);
2169 dip->un.v.num_channels = 2;
2170 strcpy(dip->un.v.units.name, AudioNvolume);
2171 return 0;
2172
2173 case SB_OUTPUT_GAIN:
2174 dip->type = AUDIO_MIXER_VALUE;
2175 dip->mixer_class = SB_OUTPUT_CLASS;
2176 dip->prev = dip->next = AUDIO_MIXER_LAST;
2177 strcpy(dip->label.name, AudioNoutput);
2178 dip->un.v.num_channels = 2;
2179 strcpy(dip->un.v.units.name, AudioNvolume);
2180 return 0;
2181
2182 case SB_AGC:
2183 dip->type = AUDIO_MIXER_ENUM;
2184 dip->mixer_class = SB_INPUT_CLASS;
2185 dip->prev = dip->next = AUDIO_MIXER_LAST;
2186 strcpy(dip->label.name, "agc");
2187 dip->un.e.num_mem = 2;
2188 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2189 dip->un.e.member[0].ord = 0;
2190 strcpy(dip->un.e.member[1].label.name, AudioNon);
2191 dip->un.e.member[1].ord = 1;
2192 return 0;
2193
2194 case SB_EQUALIZATION_CLASS:
2195 dip->type = AUDIO_MIXER_CLASS;
2196 dip->mixer_class = SB_EQUALIZATION_CLASS;
2197 dip->next = dip->prev = AUDIO_MIXER_LAST;
2198 strcpy(dip->label.name, AudioCequalization);
2199 return 0;
2200
2201 case SB_CD_IN_MUTE:
2202 dip->prev = SB_CD_VOL;
2203 dip->next = SB_CD_SWAP;
2204 dip->mixer_class = SB_INPUT_CLASS;
2205 goto mute;
2206
2207 case SB_MIC_IN_MUTE:
2208 dip->prev = SB_MIC_VOL;
2209 dip->next = SB_MIC_SWAP;
2210 dip->mixer_class = SB_INPUT_CLASS;
2211 goto mute;
2212
2213 case SB_LINE_IN_MUTE:
2214 dip->prev = SB_LINE_IN_VOL;
2215 dip->next = SB_LINE_SWAP;
2216 dip->mixer_class = SB_INPUT_CLASS;
2217 goto mute;
2218
2219 case SB_MIDI_IN_MUTE:
2220 dip->prev = SB_MIDI_VOL;
2221 dip->next = SB_MIDI_SWAP;
2222 dip->mixer_class = SB_INPUT_CLASS;
2223 goto mute;
2224
2225 case SB_CD_SWAP:
2226 dip->prev = SB_CD_IN_MUTE;
2227 dip->next = SB_CD_OUT_MUTE;
2228 goto swap;
2229
2230 case SB_MIC_SWAP:
2231 dip->prev = SB_MIC_IN_MUTE;
2232 dip->next = SB_MIC_OUT_MUTE;
2233 goto swap;
2234
2235 case SB_LINE_SWAP:
2236 dip->prev = SB_LINE_IN_MUTE;
2237 dip->next = SB_LINE_OUT_MUTE;
2238 goto swap;
2239
2240 case SB_MIDI_SWAP:
2241 dip->prev = SB_MIDI_IN_MUTE;
2242 dip->next = AUDIO_MIXER_LAST;
2243 swap:
2244 dip->mixer_class = SB_INPUT_CLASS;
2245 strcpy(dip->label.name, AudioNswap);
2246 goto mute1;
2247
2248 case SB_CD_OUT_MUTE:
2249 dip->prev = SB_CD_SWAP;
2250 dip->next = AUDIO_MIXER_LAST;
2251 dip->mixer_class = SB_OUTPUT_CLASS;
2252 goto mute;
2253
2254 case SB_MIC_OUT_MUTE:
2255 dip->prev = SB_MIC_SWAP;
2256 dip->next = AUDIO_MIXER_LAST;
2257 dip->mixer_class = SB_OUTPUT_CLASS;
2258 goto mute;
2259
2260 case SB_LINE_OUT_MUTE:
2261 dip->prev = SB_LINE_SWAP;
2262 dip->next = AUDIO_MIXER_LAST;
2263 dip->mixer_class = SB_OUTPUT_CLASS;
2264 mute:
2265 strcpy(dip->label.name, AudioNmute);
2266 mute1:
2267 dip->type = AUDIO_MIXER_ENUM;
2268 dip->un.e.num_mem = 2;
2269 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2270 dip->un.e.member[0].ord = 0;
2271 strcpy(dip->un.e.member[1].label.name, AudioNon);
2272 dip->un.e.member[1].ord = 1;
2273 return 0;
2274
2275 }
2276
2277 return ENXIO;
2278 }
2279
2280 void *
2281 sb_malloc(void *addr, int direction, size_t size,
2282 struct malloc_type *pool, int flags)
2283 {
2284 struct sbdsp_softc *sc;
2285 int drq;
2286
2287 sc = addr;
2288 if (sc->sc_drq8 != -1)
2289 drq = sc->sc_drq8;
2290 else
2291 drq = sc->sc_drq16;
2292 return isa_malloc(sc->sc_ic, drq, size, pool, flags);
2293 }
2294
2295 void
2296 sb_free(void *addr, void *ptr, struct malloc_type *pool)
2297 {
2298
2299 isa_free(ptr, pool);
2300 }
2301
2302 size_t
2303 sb_round_buffersize(void *addr, int direction, size_t size)
2304 {
2305 struct sbdsp_softc *sc;
2306 bus_size_t maxsize;
2307
2308 sc = addr;
2309 if (sc->sc_drq8 != -1)
2310 maxsize = sc->sc_drq8_maxsize;
2311 else
2312 maxsize = sc->sc_drq16_maxsize;
2313
2314 if (size > maxsize)
2315 size = maxsize;
2316 return size;
2317 }
2318
2319 paddr_t
2320 sb_mappage(void *addr, void *mem, off_t off, int prot)
2321 {
2322
2323 return isa_mappage(mem, off, prot);
2324 }
2325
2326 int
2327 sbdsp_get_props(void *addr)
2328 {
2329 struct sbdsp_softc *sc;
2330
2331 sc = addr;
2332 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2333 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2334 }
2335
2336 #if NMPU > 0
2337 /*
2338 * MIDI related routines.
2339 */
2340
2341 int
2342 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2343 void (*ointr)(void *), void *arg)
2344 {
2345 struct sbdsp_softc *sc;
2346
2347 sc = addr;
2348 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2349
2350 if (sc->sc_open != SB_CLOSED)
2351 return EBUSY;
2352 if (sbdsp_reset(sc) != 0)
2353 return EIO;
2354
2355 sc->sc_open = SB_OPEN_MIDI;
2356
2357 if (sc->sc_model >= SB_20)
2358 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2359 return EIO;
2360
2361 sc->sc_intr8 = sbdsp_midi_intr;
2362 sc->sc_intrm = iintr;
2363 sc->sc_argm = arg;
2364
2365 return 0;
2366 }
2367
2368 void
2369 sbdsp_midi_close(void *addr)
2370 {
2371 struct sbdsp_softc *sc;
2372
2373 sc = addr;
2374 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2375
2376 if (sc->sc_model >= SB_20)
2377 sbdsp_reset(sc); /* exit UART mode */
2378
2379 sc->sc_intrm = 0;
2380 sc->sc_open = SB_CLOSED;
2381 }
2382
2383 int
2384 sbdsp_midi_output(void *addr, int d)
2385 {
2386 struct sbdsp_softc *sc;
2387
2388 sc = addr;
2389 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2390 return EIO;
2391 if (sbdsp_wdsp(sc, d))
2392 return EIO;
2393 return 0;
2394 }
2395
2396 void
2397 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2398 {
2399 struct sbdsp_softc *sc;
2400
2401 sc = addr;
2402 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2403 mi->props = MIDI_PROP_CAN_INPUT;
2404 }
2405
2406 int
2407 sbdsp_midi_intr(void *addr)
2408 {
2409 struct sbdsp_softc *sc;
2410
2411 sc = addr;
2412 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2413 return (0);
2414 }
2415
2416 #endif
2417
2418