Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.130.4.2
      1 /*	$NetBSD: sbdsp.c,v 1.130.4.2 2009/09/16 13:37:49 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  *
     64  */
     65 
     66 /*
     67  * SoundBlaster Pro code provided by John Kohl, based on lots of
     68  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     69  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     70  * <sachs (at) meibm15.cen.uiuc.edu>.
     71  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     72  * with information from SB "Hardware Programming Guide" and the
     73  * Linux drivers.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.130.4.2 2009/09/16 13:37:49 yamt Exp $");
     78 
     79 #include "midi.h"
     80 #include "mpu.h"
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/kernel.h>
     85 #include <sys/errno.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/syslog.h>
     88 #include <sys/device.h>
     89 #include <sys/proc.h>
     90 #include <sys/buf.h>
     91 
     92 #include <sys/cpu.h>
     93 #include <sys/intr.h>
     94 #include <sys/bus.h>
     95 
     96 #include <sys/audioio.h>
     97 #include <dev/audio_if.h>
     98 #include <dev/midi_if.h>
     99 #include <dev/mulaw.h>
    100 #include <dev/auconv.h>
    101 
    102 #include <dev/isa/isavar.h>
    103 #include <dev/isa/isadmavar.h>
    104 
    105 #include <dev/isa/sbreg.h>
    106 #include <dev/isa/sbdspvar.h>
    107 
    108 
    109 #ifdef AUDIO_DEBUG
    110 #define DPRINTF(x)	if (sbdspdebug) printf x
    111 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    112 int	sbdspdebug = 0;
    113 #else
    114 #define DPRINTF(x)
    115 #define DPRINTFN(n,x)
    116 #endif
    117 
    118 #ifndef SBDSP_NPOLL
    119 #define SBDSP_NPOLL 3000
    120 #endif
    121 
    122 struct {
    123 	int wdsp;
    124 	int rdsp;
    125 	int wmidi;
    126 } sberr;
    127 
    128 /*
    129  * Time constant routines follow.  See SBK, section 12.
    130  * Although they don't come out and say it (in the docs),
    131  * the card clearly uses a 1MHz countdown timer, as the
    132  * low-speed formula (p. 12-4) is:
    133  *	tc = 256 - 10^6 / sr
    134  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    135  * and a 256MHz clock is used:
    136  *	tc = 65536 - 256 * 10^ 6 / sr
    137  * Since we can only use the upper byte of the HS TC, the two formulae
    138  * are equivalent.  (Why didn't they say so?)  E.g.,
    139  *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    140  *
    141  * The crossover point (from low- to high-speed modes) is different
    142  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    143  *
    144  *				SBPRO			SB20
    145  *				-----			--------
    146  * input ls min			4	kHz		4	kHz
    147  * input ls max			23	kHz		13	kHz
    148  * input hs max			44.1	kHz		15	kHz
    149  * output ls min		4	kHz		4	kHz
    150  * output ls max		23	kHz		23	kHz
    151  * output hs max		44.1	kHz		44.1	kHz
    152  */
    153 /* XXX Should we round the tc?
    154 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    155 */
    156 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    157 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    158 
    159 struct sbmode {
    160 	short	model;
    161 	u_char	channels;
    162 	u_char	precision;
    163 	u_short	lowrate, highrate;
    164 	u_char	cmd;
    165 	u_char	halt, cont;
    166 	u_char	cmdchan;
    167 };
    168 static struct sbmode sbpmodes[] = {
    169  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    170  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    171  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    172  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    173  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    174  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    175  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    176  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    177  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    178  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    179  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    180  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    181  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    182  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    183  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    184  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    185 #define PLAY16 15 /* must be the index of the next entry in the table */
    186  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    187  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    188  { .model = -1 }
    189 };
    190 static struct sbmode sbrmodes[] = {
    191  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    192  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    193  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    194  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    195  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    196  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    197  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    198  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    199  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    200  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    201  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    202  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    203  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    204  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    205  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
    206  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    207  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
    208  { .model = -1 }
    209 };
    210 
    211 void	sbversion(struct sbdsp_softc *);
    212 void	sbdsp_jazz16_probe(struct sbdsp_softc *);
    213 void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
    214 void	sbdsp_pause(struct sbdsp_softc *);
    215 int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
    216 int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
    217 int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
    218 void	sbdsp_set_ifilter(void *, int);
    219 int	sbdsp_get_ifilter(void *);
    220 
    221 int	sbdsp_block_output(void *);
    222 int	sbdsp_block_input(void *);
    223 static	int sbdsp_adjust(int, int);
    224 
    225 int	sbdsp_midi_intr(void *);
    226 
    227 static bool	sbdsp_resume(device_t PMF_FN_PROTO);
    228 
    229 #ifdef AUDIO_DEBUG
    230 void	sb_printsc(struct sbdsp_softc *);
    231 
    232 void
    233 sb_printsc(struct sbdsp_softc *sc)
    234 {
    235 	int i;
    236 
    237 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
    238 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    239 	    sc->sc_drq8, sc->sc_drq16,
    240 	    sc->sc_iobase, sc->sc_irq);
    241 	printf("irate %d itc %x orate %d otc %x\n",
    242 	    sc->sc_i.rate, sc->sc_i.tc,
    243 	    sc->sc_o.rate, sc->sc_o.tc);
    244 	printf("spkron %u nintr %lu\n",
    245 	    sc->spkr_state, sc->sc_interrupts);
    246 	printf("intr8 %p intr16 %p\n",
    247 	    sc->sc_intr8, sc->sc_intr16);
    248 	printf("gain:");
    249 	for (i = 0; i < SB_NDEVS; i++)
    250 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    251 	printf("\n");
    252 }
    253 #endif /* AUDIO_DEBUG */
    254 
    255 /*
    256  * Probe / attach routines.
    257  */
    258 
    259 /*
    260  * Probe for the soundblaster hardware.
    261  */
    262 int
    263 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
    264 {
    265 
    266 	if (sbdsp_reset(sc) < 0) {
    267 		DPRINTF(("sbdsp: couldn't reset card\n"));
    268 		return 0;
    269 	}
    270 	/* if flags set, go and probe the jazz16 stuff */
    271 	if (match->cf_flags & 1)
    272 		sbdsp_jazz16_probe(sc);
    273 	else
    274 		sbversion(sc);
    275 	if (sc->sc_model == SB_UNK) {
    276 		/* Unknown SB model found. */
    277 		DPRINTF(("sbdsp: unknown SB model found\n"));
    278 		return 0;
    279 	}
    280 	return 1;
    281 }
    282 
    283 /*
    284  * Try add-on stuff for Jazz16.
    285  */
    286 void
    287 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
    288 {
    289 	static u_char jazz16_irq_conf[16] = {
    290 	    -1, -1, 0x02, 0x03,
    291 	    -1, 0x01, -1, 0x04,
    292 	    -1, 0x02, 0x05, -1,
    293 	    -1, -1, -1, 0x06};
    294 	static u_char jazz16_drq_conf[8] = {
    295 	    -1, 0x01, -1, 0x02,
    296 	    -1, 0x03, -1, 0x04};
    297 
    298 	bus_space_tag_t iot;
    299 	bus_space_handle_t ioh;
    300 
    301 	iot = sc->sc_iot;
    302 	sbversion(sc);
    303 
    304 	DPRINTF(("jazz16 probe\n"));
    305 
    306 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    307 		DPRINTF(("bus map failed\n"));
    308 		return;
    309 	}
    310 
    311 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    312 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    313 		DPRINTF(("drq/irq check failed\n"));
    314 		goto done;		/* give up, we can't do it. */
    315 	}
    316 
    317 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    318 	delay(10000);			/* delay 10 ms */
    319 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    320 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    321 
    322 	if (sbdsp_reset(sc) < 0) {
    323 		DPRINTF(("sbdsp_reset check failed\n"));
    324 		goto done;		/* XXX? what else could we do? */
    325 	}
    326 
    327 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    328 		DPRINTF(("read16 setup failed\n"));
    329 		goto done;
    330 	}
    331 
    332 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    333 		DPRINTF(("read16 failed\n"));
    334 		goto done;
    335 	}
    336 
    337 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    338 	sc->sc_drq16 = sc->sc_drq8;
    339 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    340 	    (sc->sc_drq16 >= 0 &&
    341 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    342 		jazz16_drq_conf[sc->sc_drq8])) ||
    343 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    344 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    345 	} else {
    346 		DPRINTF(("jazz16 detected!\n"));
    347 		sc->sc_model = SB_JAZZ;
    348 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    349 	}
    350 
    351 done:
    352 	bus_space_unmap(iot, ioh, 1);
    353 }
    354 
    355 /*
    356  * Attach hardware to driver, attach hardware driver to audio
    357  * pseudo-device driver .
    358  */
    359 void
    360 sbdsp_attach(struct sbdsp_softc *sc)
    361 {
    362 	int i, error;
    363 	u_int v;
    364 
    365 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    366 
    367 	if (sc->sc_mixer_model != SBM_NONE) {
    368 		/* Reset the mixer.*/
    369 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    370 		/* And set our own default values */
    371 		for (i = 0; i < SB_NDEVS; i++) {
    372 			switch(i) {
    373 			case SB_MIC_VOL:
    374 			case SB_LINE_IN_VOL:
    375 				v = 0;
    376 				break;
    377 			case SB_BASS:
    378 			case SB_TREBLE:
    379 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    380 				break;
    381 			case SB_CD_IN_MUTE:
    382 			case SB_MIC_IN_MUTE:
    383 			case SB_LINE_IN_MUTE:
    384 			case SB_MIDI_IN_MUTE:
    385 			case SB_CD_SWAP:
    386 			case SB_MIC_SWAP:
    387 			case SB_LINE_SWAP:
    388 			case SB_MIDI_SWAP:
    389 			case SB_CD_OUT_MUTE:
    390 			case SB_MIC_OUT_MUTE:
    391 			case SB_LINE_OUT_MUTE:
    392 				v = 0;
    393 				break;
    394 			default:
    395 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    396 				break;
    397 			}
    398 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    399 			sbdsp_set_mixer_gain(sc, i);
    400 		}
    401 		sc->in_filter = 0;	/* no filters turned on, please */
    402 	}
    403 
    404 	aprint_naive("\n");
    405 	aprint_normal(": dsp v%d.%02d%s\n",
    406 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    407 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    408 
    409 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    410 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    411 	    sc->sc_drq8 != sc->sc_drq16;
    412 
    413 	if (sc->sc_drq8 != -1) {
    414 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
    415 		    sc->sc_drq8);
    416 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    417 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    418 		if (error) {
    419 			aprint_error_dev(sc->sc_dev,
    420 			    "can't create map for drq %d\n", sc->sc_drq8);
    421 			return;
    422 		}
    423 	}
    424 
    425 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    426 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
    427 		    sc->sc_drq16);
    428 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    429 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
    430 		if (error) {
    431 			aprint_error_dev(sc->sc_dev,
    432 			    "can't create map for drq %d\n", sc->sc_drq16);
    433 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    434 			return;
    435 		}
    436 	}
    437 
    438 	if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
    439 		aprint_error_dev(sc->sc_dev, "couldn't establish power handler\n");
    440 }
    441 
    442 static bool
    443 sbdsp_resume(device_t dv PMF_FN_ARGS)
    444 {
    445 	struct sbdsp_softc *sc = device_private(dv);
    446 
    447 	/* Reset the mixer. */
    448 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    449 
    450 	return true;
    451 }
    452 
    453 void
    454 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
    455 {
    456 	bus_space_tag_t iot;
    457 	bus_space_handle_t ioh;
    458 	int s;
    459 
    460 	iot = sc->sc_iot;
    461 	ioh = sc->sc_ioh;
    462 	s = splaudio();
    463 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    464 	delay(20);
    465 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    466 	delay(30);
    467 	splx(s);
    468 }
    469 
    470 int
    471 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
    472 {
    473 	bus_space_tag_t iot;
    474 	bus_space_handle_t ioh;
    475 	int val;
    476 	int s;
    477 
    478 	iot = sc->sc_iot;
    479 	ioh = sc->sc_ioh;
    480 	s = splaudio();
    481 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    482 	delay(20);
    483 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    484 	delay(30);
    485 	splx(s);
    486 	return val;
    487 }
    488 
    489 /*
    490  * Various routines to interface to higher level audio driver
    491  */
    492 
    493 int
    494 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
    495 {
    496 	struct sbdsp_softc *sc;
    497 	int emul;
    498 
    499 	sc = addr;
    500 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    501 
    502 	switch (fp->index) {
    503 	case 0:
    504 		strcpy(fp->name, AudioEulinear);
    505 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    506 		fp->precision = 8;
    507 		fp->flags = 0;
    508 		return 0;
    509 	case 1:
    510 		strcpy(fp->name, AudioEmulaw);
    511 		fp->encoding = AUDIO_ENCODING_ULAW;
    512 		fp->precision = 8;
    513 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    514 		return 0;
    515 	case 2:
    516 		strcpy(fp->name, AudioEalaw);
    517 		fp->encoding = AUDIO_ENCODING_ALAW;
    518 		fp->precision = 8;
    519 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    520 		return 0;
    521 	case 3:
    522 		strcpy(fp->name, AudioEslinear);
    523 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    524 		fp->precision = 8;
    525 		fp->flags = emul;
    526 		return 0;
    527 	}
    528 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    529 		return EINVAL;
    530 
    531 	switch(fp->index) {
    532 	case 4:
    533 		strcpy(fp->name, AudioEslinear_le);
    534 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    535 		fp->precision = 16;
    536 		fp->flags = 0;
    537 		return 0;
    538 	case 5:
    539 		strcpy(fp->name, AudioEulinear_le);
    540 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    541 		fp->precision = 16;
    542 		fp->flags = emul;
    543 		return 0;
    544 	case 6:
    545 		strcpy(fp->name, AudioEslinear_be);
    546 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    547 		fp->precision = 16;
    548 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    549 		return 0;
    550 	case 7:
    551 		strcpy(fp->name, AudioEulinear_be);
    552 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    553 		fp->precision = 16;
    554 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    555 		return 0;
    556 	default:
    557 		return EINVAL;
    558 	}
    559 	return 0;
    560 }
    561 
    562 int
    563 sbdsp_set_params(
    564 	void *addr,
    565 	int setmode, int usemode,
    566 	audio_params_t *play, audio_params_t *rec,
    567 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    568 {
    569 	struct sbdsp_softc *sc;
    570 	struct sbmode *m;
    571 	u_int rate, tc, bmode;
    572 	stream_filter_factory_t *swcode;
    573 	int model;
    574 	int chan;
    575 	struct audio_params *p;
    576 	audio_params_t hw;
    577 	stream_filter_list_t *fil;
    578 	int mode;
    579 
    580 	sc = addr;
    581 	if (sc->sc_open == SB_OPEN_MIDI)
    582 		return EBUSY;
    583 
    584 	/* Later models work like SB16. */
    585 	model = min(sc->sc_model, SB_16);
    586 
    587 	/*
    588 	 * Prior to the SB16, we have only one clock, so make the sample
    589 	 * rates match.
    590 	 */
    591 	if (!ISSB16CLASS(sc) &&
    592 	    play->sample_rate != rec->sample_rate &&
    593 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    594 		if (setmode == AUMODE_PLAY) {
    595 			rec->sample_rate = play->sample_rate;
    596 			setmode |= AUMODE_RECORD;
    597 		} else if (setmode == AUMODE_RECORD) {
    598 			play->sample_rate = rec->sample_rate;
    599 			setmode |= AUMODE_PLAY;
    600 		} else
    601 			return EINVAL;
    602 	}
    603 
    604 	/* Set first record info, then play info */
    605 	for (mode = AUMODE_RECORD; mode != -1;
    606 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    607 		if ((setmode & mode) == 0)
    608 			continue;
    609 
    610 		p = mode == AUMODE_PLAY ? play : rec;
    611 		/* Locate proper commands */
    612 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    613 		    m->model != -1; m++) {
    614 			if (model == m->model &&
    615 			    p->channels == m->channels &&
    616 			    p->precision == m->precision &&
    617 			    p->sample_rate >= m->lowrate &&
    618 			    p->sample_rate <= m->highrate)
    619 				break;
    620 		}
    621 		if (m->model == -1)
    622 			return EINVAL;
    623 		rate = p->sample_rate;
    624 		swcode = NULL;
    625 		fil = mode ==  AUMODE_PLAY ? pfil : rfil;
    626 		hw = *p;
    627 		tc = 1;
    628 		bmode = -1;
    629 		if (model == SB_16) {
    630 			switch (p->encoding) {
    631 			case AUDIO_ENCODING_SLINEAR_BE:
    632 				if (p->precision == 16) {
    633 					hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    634 					swcode = swap_bytes;
    635 				}
    636 				/* fall into */
    637 			case AUDIO_ENCODING_SLINEAR_LE:
    638 				bmode = SB_BMODE_SIGNED;
    639 				break;
    640 
    641 			case AUDIO_ENCODING_ULINEAR_BE:
    642 				if (p->precision == 16) {
    643 					hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    644 					swcode = swap_bytes;
    645 				}
    646 				/* fall into */
    647 			case AUDIO_ENCODING_ULINEAR_LE:
    648 				bmode = SB_BMODE_UNSIGNED;
    649 				break;
    650 
    651 			case AUDIO_ENCODING_ULAW:
    652 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    653 				if (mode == AUMODE_PLAY) {
    654 					hw.precision = hw.validbits = 16;
    655 					swcode = mulaw_to_linear16;
    656 					m = &sbpmodes[PLAY16];
    657 				} else
    658 					swcode = linear8_to_mulaw;
    659 				bmode = SB_BMODE_UNSIGNED;
    660 				break;
    661 
    662 			case AUDIO_ENCODING_ALAW:
    663 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    664 				if (mode == AUMODE_PLAY) {
    665 					hw.precision = hw.validbits = 16;
    666 					swcode = alaw_to_linear16;
    667 					m = &sbpmodes[PLAY16];
    668 				} else
    669 					swcode = linear8_to_alaw;
    670 				bmode = SB_BMODE_UNSIGNED;
    671 				break;
    672 			default:
    673 				return EINVAL;
    674 			}
    675 			if (p->channels == 2)
    676 				bmode |= SB_BMODE_STEREO;
    677 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    678 			switch (p->encoding) {
    679 			case AUDIO_ENCODING_SLINEAR_LE:
    680 				break;
    681 			case AUDIO_ENCODING_ULINEAR_LE:
    682 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    683 				swcode = change_sign16;
    684 				break;
    685 			case AUDIO_ENCODING_SLINEAR_BE:
    686 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    687 				swcode = swap_bytes;
    688 				break;
    689 			case AUDIO_ENCODING_ULINEAR_BE:
    690 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    691 				swcode = swap_bytes_change_sign16;
    692 				break;
    693 			case AUDIO_ENCODING_ULAW:
    694 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    695 				swcode = mode == AUMODE_PLAY ?
    696 					mulaw_to_linear8 : linear8_to_mulaw;
    697 				break;
    698 			case AUDIO_ENCODING_ALAW:
    699 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    700 				swcode = mode == AUMODE_PLAY ?
    701 					alaw_to_linear8 : linear8_to_alaw;
    702 				break;
    703 			default:
    704 				return EINVAL;
    705 			}
    706 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    707 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    708 			hw.sample_rate = p->sample_rate;
    709 		} else {
    710 			switch (p->encoding) {
    711 			case AUDIO_ENCODING_SLINEAR_BE:
    712 			case AUDIO_ENCODING_SLINEAR_LE:
    713 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    714 				swcode = change_sign8;
    715 				break;
    716 			case AUDIO_ENCODING_ULINEAR_BE:
    717 			case AUDIO_ENCODING_ULINEAR_LE:
    718 				break;
    719 			case AUDIO_ENCODING_ULAW:
    720 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    721 				swcode = mode == AUMODE_PLAY ?
    722 					mulaw_to_linear8 : linear8_to_mulaw;
    723 				break;
    724 			case AUDIO_ENCODING_ALAW:
    725 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
    726 				swcode = mode == AUMODE_PLAY ?
    727 					alaw_to_linear8 : linear8_to_alaw;
    728 				break;
    729 			default:
    730 				return EINVAL;
    731 			}
    732 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    733 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    734 			hw.sample_rate = p->sample_rate;
    735 		}
    736 
    737 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    738 		if (mode == AUMODE_PLAY) {
    739 			sc->sc_o.rate = rate;
    740 			sc->sc_o.tc = tc;
    741 			sc->sc_o.modep = m;
    742 			sc->sc_o.bmode = bmode;
    743 			sc->sc_o.dmachan = chan;
    744 		} else {
    745 			sc->sc_i.rate = rate;
    746 			sc->sc_i.tc = tc;
    747 			sc->sc_i.modep = m;
    748 			sc->sc_i.bmode = bmode;
    749 			sc->sc_i.dmachan = chan;
    750 		}
    751 
    752 		if (swcode != NULL)
    753 			fil->append(fil, swcode, &hw);
    754 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
    755 			 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
    756 			 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
    757 			 p->sample_rate, p->precision, p->channels,
    758 			 p->encoding, tc, m->cmd, bmode, m->cmdchan));
    759 
    760 	}
    761 
    762 	if (sc->sc_fullduplex &&
    763 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    764 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    765 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
    766 			 "odma=%d\n", sc->sc_fullduplex, usemode,
    767 			 sc->sc_i.dmachan, sc->sc_o.dmachan));
    768 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    769 			/* Use 16 bit DMA for playing by expanding the samples. */
    770 			hw.precision = hw.validbits = 16;
    771 			pfil->append(pfil, linear8_to_linear16, &hw);
    772 			sc->sc_o.modep = &sbpmodes[PLAY16];
    773 			sc->sc_o.dmachan = sc->sc_drq16;
    774 		} else {
    775 			return EINVAL;
    776 		}
    777 	}
    778 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    779 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    780 
    781 	return 0;
    782 }
    783 
    784 void
    785 sbdsp_set_ifilter(void *addr, int which)
    786 {
    787 	struct sbdsp_softc *sc;
    788 	int mixval;
    789 
    790 	sc = addr;
    791 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    792 	switch (which) {
    793 	case 0:
    794 		mixval |= SBP_FILTER_OFF;
    795 		break;
    796 	case SB_TREBLE:
    797 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    798 		break;
    799 	case SB_BASS:
    800 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    801 		break;
    802 	default:
    803 		return;
    804 	}
    805 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    806 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    807 }
    808 
    809 int
    810 sbdsp_get_ifilter(void *addr)
    811 {
    812 	struct sbdsp_softc *sc;
    813 
    814 	sc = addr;
    815 	sc->in_filter =
    816 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    817 	switch (sc->in_filter) {
    818 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    819 		return SB_TREBLE;
    820 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    821 		return SB_BASS;
    822 	default:
    823 		return 0;
    824 	}
    825 }
    826 
    827 int
    828 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
    829 {
    830 	int bitsl, bitsr;
    831 	int sbport;
    832 
    833 	if (sc->sc_open == SB_OPEN_MIDI)
    834 		return EBUSY;
    835 
    836 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    837 		 sc->sc_mixer_model, mask));
    838 
    839 	switch(sc->sc_mixer_model) {
    840 	case SBM_NONE:
    841 		return EINVAL;
    842 	case SBM_CT1335:
    843 		if (mask != (1 << SB_MIC_VOL))
    844 			return EINVAL;
    845 		break;
    846 	case SBM_CT1345:
    847 		switch (mask) {
    848 		case 1 << SB_MIC_VOL:
    849 			sbport = SBP_FROM_MIC;
    850 			break;
    851 		case 1 << SB_LINE_IN_VOL:
    852 			sbport = SBP_FROM_LINE;
    853 			break;
    854 		case 1 << SB_CD_VOL:
    855 			sbport = SBP_FROM_CD;
    856 			break;
    857 		default:
    858 			return EINVAL;
    859 		}
    860 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    861 		break;
    862 	case SBM_CT1XX5:
    863 	case SBM_CT1745:
    864 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    865 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    866 			return EINVAL;
    867 		bitsr = 0;
    868 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    869 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    870 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    871 		bitsl = SB_SRC_R_TO_L(bitsr);
    872 		if (mask & (1<<SB_MIC_VOL)) {
    873 			bitsl |= SBP_MIC_SRC;
    874 			bitsr |= SBP_MIC_SRC;
    875 		}
    876 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    877 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    878 		break;
    879 	}
    880 	sc->in_mask = mask;
    881 
    882 	return 0;
    883 }
    884 
    885 int
    886 sbdsp_speaker_ctl(void *addr, int newstate)
    887 {
    888 	struct sbdsp_softc *sc;
    889 
    890 	sc = addr;
    891 	if (sc->sc_open == SB_OPEN_MIDI)
    892 		return EBUSY;
    893 
    894 	if ((newstate == SPKR_ON) &&
    895 	    (sc->spkr_state == SPKR_OFF)) {
    896 		sbdsp_spkron(sc);
    897 		sc->spkr_state = SPKR_ON;
    898 	}
    899 	if ((newstate == SPKR_OFF) &&
    900 	    (sc->spkr_state == SPKR_ON)) {
    901 		sbdsp_spkroff(sc);
    902 		sc->spkr_state = SPKR_OFF;
    903 	}
    904 	return 0;
    905 }
    906 
    907 int
    908 sbdsp_round_blocksize(void *addr, int blk, int mode,
    909     const audio_params_t *param)
    910 {
    911 	return blk & -4;	/* round to biggest sample size */
    912 }
    913 
    914 int
    915 sbdsp_open(void *addr, int flags)
    916 {
    917 	struct sbdsp_softc *sc;
    918 	int error, state;
    919 
    920 	sc = addr;
    921 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    922 
    923 	if (sc->sc_open != SB_CLOSED)
    924 		return EBUSY;
    925 	sc->sc_open = SB_OPEN_AUDIO;
    926 	state = 0;
    927 
    928 	if (sc->sc_drq8 != -1) {
    929 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
    930 		if (error != 0)
    931 			goto bad;
    932 		state |= 1;
    933 	}
    934 
    935 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    936 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
    937 		if (error != 0)
    938 			goto bad;
    939 		state |= 2;
    940 	}
    941 
    942 
    943 	if (sbdsp_reset(sc) != 0) {
    944 		error = EIO;
    945 		goto bad;
    946 	}
    947 
    948 	if (ISSBPRO(sc) &&
    949 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    950 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    951 		/* we'll readjust when it's time for DMA. */
    952 	}
    953 
    954 	/*
    955 	 * Leave most things as they were; users must change things if
    956 	 * the previous process didn't leave it they way they wanted.
    957 	 * Looked at another way, it's easy to set up a configuration
    958 	 * in one program and leave it for another to inherit.
    959 	 */
    960 	DPRINTF(("sbdsp_open: opened\n"));
    961 
    962 	return 0;
    963 
    964 bad:
    965 	if (state & 1)
    966 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    967 	if (state & 2)
    968 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    969 
    970 	sc->sc_open = SB_CLOSED;
    971 	return error;
    972 }
    973 
    974 void
    975 sbdsp_close(void *addr)
    976 {
    977 	struct sbdsp_softc *sc;
    978 
    979 	sc = addr;
    980 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    981 
    982 	sbdsp_spkroff(sc);
    983 	sc->spkr_state = SPKR_OFF;
    984 
    985 	sc->sc_intr8 = 0;
    986 	sc->sc_intr16 = 0;
    987 
    988 	if (sc->sc_drq8 != -1)
    989 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
    990 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    991 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
    992 
    993 	sc->sc_open = SB_CLOSED;
    994 	DPRINTF(("sbdsp_close: closed\n"));
    995 }
    996 
    997 /*
    998  * Lower-level routines
    999  */
   1000 
   1001 /*
   1002  * Reset the card.
   1003  * Return non-zero if the card isn't detected.
   1004  */
   1005 int
   1006 sbdsp_reset(struct sbdsp_softc *sc)
   1007 {
   1008 	bus_space_tag_t iot;
   1009 	bus_space_handle_t ioh;
   1010 
   1011 	iot = sc->sc_iot;
   1012 	ioh = sc->sc_ioh;
   1013 	sc->sc_intr8 = 0;
   1014 	sc->sc_intr16 = 0;
   1015 	sc->sc_intrm = 0;
   1016 
   1017 	/*
   1018 	 * See SBK, section 11.3.
   1019 	 * We pulse a reset signal into the card.
   1020 	 * Gee, what a brilliant hardware design.
   1021 	 */
   1022 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
   1023 	delay(10);
   1024 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
   1025 	delay(30);
   1026 	if (sbdsp_rdsp(sc) != SB_MAGIC)
   1027 		return -1;
   1028 
   1029 	return 0;
   1030 }
   1031 
   1032 /*
   1033  * Write a byte to the dsp.
   1034  * We are at the mercy of the card as we use a
   1035  * polling loop and wait until it can take the byte.
   1036  */
   1037 int
   1038 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
   1039 {
   1040 	bus_space_tag_t iot;
   1041 	bus_space_handle_t ioh;
   1042 	int i;
   1043 	u_char x;
   1044 
   1045 	iot = sc->sc_iot;
   1046 	ioh = sc->sc_ioh;
   1047 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1048 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1049 		delay(10);
   1050 		if ((x & SB_DSP_BUSY) == 0) {
   1051 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1052 			delay(10);
   1053 			return 0;
   1054 		}
   1055 	}
   1056 	++sberr.wdsp;
   1057 	return -1;
   1058 }
   1059 
   1060 /*
   1061  * Read a byte from the DSP, using polling.
   1062  */
   1063 int
   1064 sbdsp_rdsp(struct sbdsp_softc *sc)
   1065 {
   1066 	bus_space_tag_t iot;
   1067 	bus_space_handle_t ioh;
   1068 	int i;
   1069 	u_char x;
   1070 
   1071 	iot = sc->sc_iot;
   1072 	ioh = sc->sc_ioh;
   1073 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1074 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1075 		delay(10);
   1076 		if (x & SB_DSP_READY) {
   1077 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1078 			delay(10);
   1079 			return x;
   1080 		}
   1081 	}
   1082 	++sberr.rdsp;
   1083 	return -1;
   1084 }
   1085 
   1086 void
   1087 sbdsp_pause(struct sbdsp_softc *sc)
   1088 {
   1089 
   1090 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
   1091 }
   1092 
   1093 /*
   1094  * Turn on the speaker.  The SBK documention says this operation
   1095  * can take up to 1/10 of a second.  Higher level layers should
   1096  * probably let the task sleep for this amount of time after
   1097  * calling here.  Otherwise, things might not work (because
   1098  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1099  *
   1100  * These engineers had their heads up their ass when
   1101  * they designed this card.
   1102  */
   1103 void
   1104 sbdsp_spkron(struct sbdsp_softc *sc)
   1105 {
   1106 
   1107 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1108 	sbdsp_pause(sc);
   1109 }
   1110 
   1111 /*
   1112  * Turn off the speaker; see comment above.
   1113  */
   1114 void
   1115 sbdsp_spkroff(struct sbdsp_softc *sc)
   1116 {
   1117 
   1118 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1119 	sbdsp_pause(sc);
   1120 }
   1121 
   1122 /*
   1123  * Read the version number out of the card.
   1124  * Store version information in the softc.
   1125  */
   1126 void
   1127 sbversion(struct sbdsp_softc *sc)
   1128 {
   1129 	int v;
   1130 
   1131 	sc->sc_model = SB_UNK;
   1132 	sc->sc_version = 0;
   1133 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1134 		return;
   1135 	v = sbdsp_rdsp(sc) << 8;
   1136 	v |= sbdsp_rdsp(sc);
   1137 	if (v < 0)
   1138 		return;
   1139 	sc->sc_version = v;
   1140 	switch(SBVER_MAJOR(v)) {
   1141 	case 1:
   1142 		sc->sc_mixer_model = SBM_NONE;
   1143 		sc->sc_model = SB_1;
   1144 		break;
   1145 	case 2:
   1146 		/* Some SB2 have a mixer, some don't. */
   1147 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1148 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1149 		/* Check if we can read back the mixer values. */
   1150 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1151 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1152 			sc->sc_mixer_model = SBM_CT1335;
   1153 		else
   1154 			sc->sc_mixer_model = SBM_NONE;
   1155 		if (SBVER_MINOR(v) == 0)
   1156 			sc->sc_model = SB_20;
   1157 		else
   1158 			sc->sc_model = SB_2x;
   1159 		break;
   1160 	case 3:
   1161 		sc->sc_mixer_model = SBM_CT1345;
   1162 		sc->sc_model = SB_PRO;
   1163 		break;
   1164 	case 4:
   1165 #if 0
   1166 /* XXX This does not work */
   1167 		/* Most SB16 have a tone controls, but some don't. */
   1168 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1169 		/* Check if we can read back the mixer value. */
   1170 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1171 			sc->sc_mixer_model = SBM_CT1745;
   1172 		else
   1173 			sc->sc_mixer_model = SBM_CT1XX5;
   1174 #else
   1175 		sc->sc_mixer_model = SBM_CT1745;
   1176 #endif
   1177 #if 0
   1178 /* XXX figure out a good way of determining the model */
   1179 		/* XXX what about SB_32 */
   1180 		if (SBVER_MINOR(v) == 16)
   1181 			sc->sc_model = SB_64;
   1182 		else
   1183 #endif
   1184 			sc->sc_model = SB_16;
   1185 		break;
   1186 	}
   1187 }
   1188 
   1189 int
   1190 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
   1191 {
   1192 
   1193 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1194 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1195 	    sbdsp_wdsp(sc, tc) < 0)
   1196 		return EIO;
   1197 	return 0;
   1198 }
   1199 
   1200 int
   1201 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
   1202 {
   1203 
   1204 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1205 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1206 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1207 	    sbdsp_wdsp(sc, rate) < 0)
   1208 		return EIO;
   1209 	return 0;
   1210 }
   1211 
   1212 int
   1213 sbdsp_trigger_input(
   1214 	void *addr,
   1215 	void *start, void *end,
   1216 	int blksize,
   1217 	void (*intr)(void *),
   1218 	void *arg,
   1219 	const audio_params_t *param)
   1220 {
   1221 	struct sbdsp_softc *sc;
   1222 	int stereo;
   1223 	int width;
   1224 	int filter;
   1225 
   1226 	sc = addr;
   1227 	stereo = param->channels == 2;
   1228 	width = param->precision;
   1229 #ifdef DIAGNOSTIC
   1230 	if (stereo && (blksize & 1)) {
   1231 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1232 		return EIO;
   1233 	}
   1234 	if (sc->sc_i.run != SB_NOTRUNNING)
   1235 		printf("sbdsp_trigger_input: already running\n");
   1236 #endif
   1237 
   1238 	sc->sc_intrr = intr;
   1239 	sc->sc_argr = arg;
   1240 
   1241 	if (width == 8) {
   1242 #ifdef DIAGNOSTIC
   1243 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1244 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1245 			    width, sc->sc_i.dmachan);
   1246 			return EIO;
   1247 		}
   1248 #endif
   1249 		sc->sc_intr8 = sbdsp_block_input;
   1250 	} else {
   1251 #ifdef DIAGNOSTIC
   1252 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1253 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1254 			    width, sc->sc_i.dmachan);
   1255 			return EIO;
   1256 		}
   1257 #endif
   1258 		sc->sc_intr16 = sbdsp_block_input;
   1259 	}
   1260 
   1261 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1262 		blksize >>= 1;
   1263 	--blksize;
   1264 	sc->sc_i.blksize = blksize;
   1265 
   1266 	if (ISSBPRO(sc)) {
   1267 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1268 			return EIO;
   1269 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1270 		sbdsp_mix_write(sc, SBP_INFILTER,
   1271 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1272 		    filter);
   1273 	}
   1274 
   1275 	if (ISSB16CLASS(sc)) {
   1276 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1277 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1278 				 sc->sc_i.rate));
   1279 			return EIO;
   1280 		}
   1281 	} else {
   1282 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1283 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1284 				 sc->sc_i.rate));
   1285 			return EIO;
   1286 		}
   1287 	}
   1288 
   1289 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
   1290 	    start, end, sc->sc_i.dmachan));
   1291 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1292 	    (char *)end - (char *)start, NULL,
   1293 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1294 
   1295 	return sbdsp_block_input(addr);
   1296 }
   1297 
   1298 int
   1299 sbdsp_block_input(void *addr)
   1300 {
   1301 	struct sbdsp_softc *sc;
   1302 	int cc;
   1303 
   1304 	sc = addr;
   1305 	cc = sc->sc_i.blksize;
   1306 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1307 
   1308 	if (sc->sc_i.run != SB_NOTRUNNING)
   1309 		sc->sc_intrr(sc->sc_argr);
   1310 
   1311 	if (sc->sc_model == SB_1) {
   1312 		/* Non-looping mode, start DMA */
   1313 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1314 		    sbdsp_wdsp(sc, cc) < 0 ||
   1315 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1316 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1317 			return EIO;
   1318 		}
   1319 		sc->sc_i.run = SB_RUNNING;
   1320 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1321 		/* Initialize looping PCM */
   1322 		if (ISSB16CLASS(sc)) {
   1323 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1324 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1325 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1326 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1327 			    sbdsp_wdsp(sc, cc) < 0 ||
   1328 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1329 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1330 				return EIO;
   1331 			}
   1332 		} else {
   1333 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1334 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1335 			    sbdsp_wdsp(sc, cc) < 0 ||
   1336 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1337 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1338 				return EIO;
   1339 			}
   1340 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1341 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1342 				return EIO;
   1343 			}
   1344 		}
   1345 		sc->sc_i.run = SB_LOOPING;
   1346 	}
   1347 
   1348 	return 0;
   1349 }
   1350 
   1351 int
   1352 sbdsp_trigger_output(
   1353 	void *addr,
   1354 	void *start, void *end,
   1355 	int blksize,
   1356 	void (*intr)(void *),
   1357 	void *arg,
   1358 	const audio_params_t *param)
   1359 {
   1360 	struct sbdsp_softc *sc;
   1361 	int stereo;
   1362 	int width;
   1363 	int cmd;
   1364 
   1365 	sc = addr;
   1366 	stereo = param->channels == 2;
   1367 	width = param->precision;
   1368 #ifdef DIAGNOSTIC
   1369 	if (stereo && (blksize & 1)) {
   1370 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1371 		return EIO;
   1372 	}
   1373 	if (sc->sc_o.run != SB_NOTRUNNING)
   1374 		printf("sbdsp_trigger_output: already running\n");
   1375 #endif
   1376 
   1377 	sc->sc_intrp = intr;
   1378 	sc->sc_argp = arg;
   1379 
   1380 	if (width == 8) {
   1381 #ifdef DIAGNOSTIC
   1382 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1383 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1384 			    width, sc->sc_o.dmachan);
   1385 			return EIO;
   1386 		}
   1387 #endif
   1388 		sc->sc_intr8 = sbdsp_block_output;
   1389 	} else {
   1390 #ifdef DIAGNOSTIC
   1391 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1392 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1393 			    width, sc->sc_o.dmachan);
   1394 			return EIO;
   1395 		}
   1396 #endif
   1397 		sc->sc_intr16 = sbdsp_block_output;
   1398 	}
   1399 
   1400 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1401 		blksize >>= 1;
   1402 	--blksize;
   1403 	sc->sc_o.blksize = blksize;
   1404 
   1405 	if (ISSBPRO(sc)) {
   1406 		/* make sure we re-set stereo mixer bit when we start output. */
   1407 		sbdsp_mix_write(sc, SBP_STEREO,
   1408 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1409 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1410 		cmd = sc->sc_o.modep->cmdchan;
   1411 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1412 			return EIO;
   1413 	}
   1414 
   1415 	if (ISSB16CLASS(sc)) {
   1416 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1417 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1418 				 sc->sc_o.rate));
   1419 			return EIO;
   1420 		}
   1421 	} else {
   1422 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1423 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1424 				 sc->sc_o.rate));
   1425 			return EIO;
   1426 		}
   1427 	}
   1428 
   1429 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
   1430 	    start, end, sc->sc_o.dmachan));
   1431 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1432 	    (char *)end - (char *)start, NULL,
   1433 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1434 
   1435 	return sbdsp_block_output(addr);
   1436 }
   1437 
   1438 int
   1439 sbdsp_block_output(void *addr)
   1440 {
   1441 	struct sbdsp_softc *sc;
   1442 	int cc;
   1443 
   1444 	sc = addr;
   1445 	cc = sc->sc_o.blksize;
   1446 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1447 
   1448 	if (sc->sc_o.run != SB_NOTRUNNING)
   1449 		sc->sc_intrp(sc->sc_argp);
   1450 
   1451 	if (sc->sc_model == SB_1) {
   1452 		/* Non-looping mode, initialized. Start DMA and PCM */
   1453 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1454 		    sbdsp_wdsp(sc, cc) < 0 ||
   1455 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1456 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1457 			return EIO;
   1458 		}
   1459 		sc->sc_o.run = SB_RUNNING;
   1460 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1461 		/* Initialize looping PCM */
   1462 		if (ISSB16CLASS(sc)) {
   1463 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1464 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1465 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1466 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1467 			    sbdsp_wdsp(sc, cc) < 0 ||
   1468 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1469 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1470 				return EIO;
   1471 			}
   1472 		} else {
   1473 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1474 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1475 			    sbdsp_wdsp(sc, cc) < 0 ||
   1476 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1477 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1478 				return EIO;
   1479 			}
   1480 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1481 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1482 				return EIO;
   1483 			}
   1484 		}
   1485 		sc->sc_o.run = SB_LOOPING;
   1486 	}
   1487 
   1488 	return 0;
   1489 }
   1490 
   1491 int
   1492 sbdsp_halt_output(void *addr)
   1493 {
   1494 	struct sbdsp_softc *sc;
   1495 
   1496 	sc = addr;
   1497 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1498 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1499 			printf("sbdsp_halt_output: failed to halt\n");
   1500 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1501 		sc->sc_o.run = SB_NOTRUNNING;
   1502 	}
   1503 	return 0;
   1504 }
   1505 
   1506 int
   1507 sbdsp_halt_input(void *addr)
   1508 {
   1509 	struct sbdsp_softc *sc;
   1510 
   1511 	sc = addr;
   1512 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1513 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1514 			printf("sbdsp_halt_input: failed to halt\n");
   1515 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1516 		sc->sc_i.run = SB_NOTRUNNING;
   1517 	}
   1518 	return 0;
   1519 }
   1520 
   1521 /*
   1522  * Only the DSP unit on the sound blaster generates interrupts.
   1523  * There are three cases of interrupt: reception of a midi byte
   1524  * (when mode is enabled), completion of DMA transmission, or
   1525  * completion of a DMA reception.
   1526  *
   1527  * If there is interrupt sharing or a spurious interrupt occurs
   1528  * there is no way to distinguish this on an SB2.  So if you have
   1529  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1530  */
   1531 int
   1532 sbdsp_intr(void *arg)
   1533 {
   1534 	struct sbdsp_softc *sc = arg;
   1535 #if NMPU > 0
   1536 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
   1537 #endif
   1538 	u_char irq;
   1539 
   1540 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1541 		   sc->sc_intr8, sc->sc_intr16));
   1542 	if (ISSB16CLASS(sc)) {
   1543 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1544 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1545 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1546 			return 0;
   1547 		}
   1548 	} else {
   1549 		/* XXXX CHECK FOR INTERRUPT */
   1550 		irq = SBP_IRQ_DMA8;
   1551 	}
   1552 
   1553 	sc->sc_interrupts++;
   1554 	delay(10);		/* XXX why? */
   1555 
   1556 	/* clear interrupt */
   1557 	if (irq & SBP_IRQ_DMA8) {
   1558 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1559 		if (sc->sc_intr8)
   1560 			sc->sc_intr8(arg);
   1561 	}
   1562 	if (irq & SBP_IRQ_DMA16) {
   1563 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1564 		if (sc->sc_intr16)
   1565 			sc->sc_intr16(arg);
   1566 	}
   1567 #if NMPU > 0
   1568 	if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
   1569 		mpu_intr(sc_mpu);
   1570 	}
   1571 #endif
   1572 	return 1;
   1573 }
   1574 
   1575 /* Like val & mask, but make sure the result is correctly rounded. */
   1576 #define MAXVAL 256
   1577 static int
   1578 sbdsp_adjust(int val, int mask)
   1579 {
   1580 
   1581 	val += (MAXVAL - mask) >> 1;
   1582 	if (val >= MAXVAL)
   1583 		val = MAXVAL-1;
   1584 	return val & mask;
   1585 }
   1586 
   1587 void
   1588 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
   1589 {
   1590 	int src, gain;
   1591 
   1592 	switch(sc->sc_mixer_model) {
   1593 	case SBM_NONE:
   1594 		return;
   1595 	case SBM_CT1335:
   1596 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1597 		switch(port) {
   1598 		case SB_MASTER_VOL:
   1599 			src = SBP_1335_MASTER_VOL;
   1600 			break;
   1601 		case SB_MIDI_VOL:
   1602 			src = SBP_1335_MIDI_VOL;
   1603 			break;
   1604 		case SB_CD_VOL:
   1605 			src = SBP_1335_CD_VOL;
   1606 			break;
   1607 		case SB_VOICE_VOL:
   1608 			src = SBP_1335_VOICE_VOL;
   1609 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1610 			break;
   1611 		default:
   1612 			return;
   1613 		}
   1614 		sbdsp_mix_write(sc, src, gain);
   1615 		break;
   1616 	case SBM_CT1345:
   1617 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1618 				      sc->gain[port][SB_RIGHT]);
   1619 		switch (port) {
   1620 		case SB_MIC_VOL:
   1621 			src = SBP_MIC_VOL;
   1622 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1623 			break;
   1624 		case SB_MASTER_VOL:
   1625 			src = SBP_MASTER_VOL;
   1626 			break;
   1627 		case SB_LINE_IN_VOL:
   1628 			src = SBP_LINE_VOL;
   1629 			break;
   1630 		case SB_VOICE_VOL:
   1631 			src = SBP_VOICE_VOL;
   1632 			break;
   1633 		case SB_MIDI_VOL:
   1634 			src = SBP_MIDI_VOL;
   1635 			break;
   1636 		case SB_CD_VOL:
   1637 			src = SBP_CD_VOL;
   1638 			break;
   1639 		default:
   1640 			return;
   1641 		}
   1642 		sbdsp_mix_write(sc, src, gain);
   1643 		break;
   1644 	case SBM_CT1XX5:
   1645 	case SBM_CT1745:
   1646 		switch (port) {
   1647 		case SB_MIC_VOL:
   1648 			src = SB16P_MIC_L;
   1649 			break;
   1650 		case SB_MASTER_VOL:
   1651 			src = SB16P_MASTER_L;
   1652 			break;
   1653 		case SB_LINE_IN_VOL:
   1654 			src = SB16P_LINE_L;
   1655 			break;
   1656 		case SB_VOICE_VOL:
   1657 			src = SB16P_VOICE_L;
   1658 			break;
   1659 		case SB_MIDI_VOL:
   1660 			src = SB16P_MIDI_L;
   1661 			break;
   1662 		case SB_CD_VOL:
   1663 			src = SB16P_CD_L;
   1664 			break;
   1665 		case SB_INPUT_GAIN:
   1666 			src = SB16P_INPUT_GAIN_L;
   1667 			break;
   1668 		case SB_OUTPUT_GAIN:
   1669 			src = SB16P_OUTPUT_GAIN_L;
   1670 			break;
   1671 		case SB_TREBLE:
   1672 			src = SB16P_TREBLE_L;
   1673 			break;
   1674 		case SB_BASS:
   1675 			src = SB16P_BASS_L;
   1676 			break;
   1677 		case SB_PCSPEAKER:
   1678 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1679 			return;
   1680 		default:
   1681 			return;
   1682 		}
   1683 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1684 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1685 		break;
   1686 	}
   1687 }
   1688 
   1689 int
   1690 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1691 {
   1692 	struct sbdsp_softc *sc;
   1693 	int lgain, rgain;
   1694 	int mask, bits;
   1695 	int lmask, rmask, lbits, rbits;
   1696 	int mute, swap;
   1697 
   1698 	sc = addr;
   1699 	if (sc->sc_open == SB_OPEN_MIDI)
   1700 		return EBUSY;
   1701 
   1702 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1703 	    cp->un.value.num_channels));
   1704 
   1705 	if (sc->sc_mixer_model == SBM_NONE)
   1706 		return EINVAL;
   1707 
   1708 	switch (cp->dev) {
   1709 	case SB_TREBLE:
   1710 	case SB_BASS:
   1711 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1712 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1713 			if (cp->type != AUDIO_MIXER_ENUM)
   1714 				return EINVAL;
   1715 			switch (cp->dev) {
   1716 			case SB_TREBLE:
   1717 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1718 				return 0;
   1719 			case SB_BASS:
   1720 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1721 				return 0;
   1722 			}
   1723 		}
   1724 	case SB_PCSPEAKER:
   1725 	case SB_INPUT_GAIN:
   1726 	case SB_OUTPUT_GAIN:
   1727 		if (!ISSBM1745(sc))
   1728 			return EINVAL;
   1729 	case SB_MIC_VOL:
   1730 	case SB_LINE_IN_VOL:
   1731 		if (sc->sc_mixer_model == SBM_CT1335)
   1732 			return EINVAL;
   1733 	case SB_VOICE_VOL:
   1734 	case SB_MIDI_VOL:
   1735 	case SB_CD_VOL:
   1736 	case SB_MASTER_VOL:
   1737 		if (cp->type != AUDIO_MIXER_VALUE)
   1738 			return EINVAL;
   1739 
   1740 		/*
   1741 		 * All the mixer ports are stereo except for the microphone.
   1742 		 * If we get a single-channel gain value passed in, then we
   1743 		 * duplicate it to both left and right channels.
   1744 		 */
   1745 
   1746 		switch (cp->dev) {
   1747 		case SB_MIC_VOL:
   1748 			if (cp->un.value.num_channels != 1)
   1749 				return EINVAL;
   1750 
   1751 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1752 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1753 			break;
   1754 		case SB_PCSPEAKER:
   1755 			if (cp->un.value.num_channels != 1)
   1756 				return EINVAL;
   1757 			/* fall into */
   1758 		case SB_INPUT_GAIN:
   1759 		case SB_OUTPUT_GAIN:
   1760 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1761 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1762 			break;
   1763 		default:
   1764 			switch (cp->un.value.num_channels) {
   1765 			case 1:
   1766 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1767 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1768 				break;
   1769 			case 2:
   1770 				if (sc->sc_mixer_model == SBM_CT1335)
   1771 					return EINVAL;
   1772 				lgain = SB_ADJUST_GAIN(sc,
   1773 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1774 				rgain = SB_ADJUST_GAIN(sc,
   1775 				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1776 				break;
   1777 			default:
   1778 				return EINVAL;
   1779 			}
   1780 			break;
   1781 		}
   1782 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1783 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1784 
   1785 		sbdsp_set_mixer_gain(sc, cp->dev);
   1786 		break;
   1787 
   1788 	case SB_RECORD_SOURCE:
   1789 		if (ISSBM1745(sc)) {
   1790 			if (cp->type != AUDIO_MIXER_SET)
   1791 				return EINVAL;
   1792 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1793 		} else {
   1794 			if (cp->type != AUDIO_MIXER_ENUM)
   1795 				return EINVAL;
   1796 			sc->in_port = cp->un.ord;
   1797 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1798 		}
   1799 		break;
   1800 
   1801 	case SB_AGC:
   1802 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1803 			return EINVAL;
   1804 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1805 		break;
   1806 
   1807 	case SB_CD_OUT_MUTE:
   1808 		mask = SB16P_SW_CD;
   1809 		goto omute;
   1810 	case SB_MIC_OUT_MUTE:
   1811 		mask = SB16P_SW_MIC;
   1812 		goto omute;
   1813 	case SB_LINE_OUT_MUTE:
   1814 		mask = SB16P_SW_LINE;
   1815 	omute:
   1816 		if (cp->type != AUDIO_MIXER_ENUM)
   1817 			return EINVAL;
   1818 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1819 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1820 		if (cp->un.ord)
   1821 			bits = bits & ~mask;
   1822 		else
   1823 			bits = bits | mask;
   1824 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1825 		break;
   1826 
   1827 	case SB_MIC_IN_MUTE:
   1828 	case SB_MIC_SWAP:
   1829 		lmask = rmask = SB16P_SW_MIC;
   1830 		goto imute;
   1831 	case SB_CD_IN_MUTE:
   1832 	case SB_CD_SWAP:
   1833 		lmask = SB16P_SW_CD_L;
   1834 		rmask = SB16P_SW_CD_R;
   1835 		goto imute;
   1836 	case SB_LINE_IN_MUTE:
   1837 	case SB_LINE_SWAP:
   1838 		lmask = SB16P_SW_LINE_L;
   1839 		rmask = SB16P_SW_LINE_R;
   1840 		goto imute;
   1841 	case SB_MIDI_IN_MUTE:
   1842 	case SB_MIDI_SWAP:
   1843 		lmask = SB16P_SW_MIDI_L;
   1844 		rmask = SB16P_SW_MIDI_R;
   1845 	imute:
   1846 		if (cp->type != AUDIO_MIXER_ENUM)
   1847 			return EINVAL;
   1848 		mask = lmask | rmask;
   1849 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1850 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1851 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1852 		if (SB_IS_IN_MUTE(cp->dev)) {
   1853 			mute = cp->dev;
   1854 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1855 		} else {
   1856 			swap = cp->dev;
   1857 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1858 		}
   1859 		if (sc->gain[swap][SB_LR]) {
   1860 			mask = lmask;
   1861 			lmask = rmask;
   1862 			rmask = mask;
   1863 		}
   1864 		if (!sc->gain[mute][SB_LR]) {
   1865 			lbits = lbits | lmask;
   1866 			rbits = rbits | rmask;
   1867 		}
   1868 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1869 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1870 		break;
   1871 
   1872 	default:
   1873 		return EINVAL;
   1874 	}
   1875 
   1876 	return 0;
   1877 }
   1878 
   1879 int
   1880 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1881 {
   1882 	struct sbdsp_softc *sc;
   1883 
   1884 	sc = addr;
   1885 	if (sc->sc_open == SB_OPEN_MIDI)
   1886 		return EBUSY;
   1887 
   1888 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1889 
   1890 	if (sc->sc_mixer_model == SBM_NONE)
   1891 		return EINVAL;
   1892 
   1893 	switch (cp->dev) {
   1894 	case SB_TREBLE:
   1895 	case SB_BASS:
   1896 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1897 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1898 			switch (cp->dev) {
   1899 			case SB_TREBLE:
   1900 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1901 				return 0;
   1902 			case SB_BASS:
   1903 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1904 				return 0;
   1905 			}
   1906 		}
   1907 	case SB_PCSPEAKER:
   1908 	case SB_INPUT_GAIN:
   1909 	case SB_OUTPUT_GAIN:
   1910 		if (!ISSBM1745(sc))
   1911 			return EINVAL;
   1912 	case SB_MIC_VOL:
   1913 	case SB_LINE_IN_VOL:
   1914 		if (sc->sc_mixer_model == SBM_CT1335)
   1915 			return EINVAL;
   1916 	case SB_VOICE_VOL:
   1917 	case SB_MIDI_VOL:
   1918 	case SB_CD_VOL:
   1919 	case SB_MASTER_VOL:
   1920 		switch (cp->dev) {
   1921 		case SB_MIC_VOL:
   1922 		case SB_PCSPEAKER:
   1923 			if (cp->un.value.num_channels != 1)
   1924 				return EINVAL;
   1925 			/* fall into */
   1926 		default:
   1927 			switch (cp->un.value.num_channels) {
   1928 			case 1:
   1929 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1930 				    sc->gain[cp->dev][SB_LEFT];
   1931 				break;
   1932 			case 2:
   1933 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1934 				    sc->gain[cp->dev][SB_LEFT];
   1935 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1936 				    sc->gain[cp->dev][SB_RIGHT];
   1937 				break;
   1938 			default:
   1939 				return EINVAL;
   1940 			}
   1941 			break;
   1942 		}
   1943 		break;
   1944 
   1945 	case SB_RECORD_SOURCE:
   1946 		if (ISSBM1745(sc))
   1947 			cp->un.mask = sc->in_mask;
   1948 		else
   1949 			cp->un.ord = sc->in_port;
   1950 		break;
   1951 
   1952 	case SB_AGC:
   1953 		if (!ISSBM1745(sc))
   1954 			return EINVAL;
   1955 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1956 		break;
   1957 
   1958 	case SB_CD_IN_MUTE:
   1959 	case SB_MIC_IN_MUTE:
   1960 	case SB_LINE_IN_MUTE:
   1961 	case SB_MIDI_IN_MUTE:
   1962 	case SB_CD_SWAP:
   1963 	case SB_MIC_SWAP:
   1964 	case SB_LINE_SWAP:
   1965 	case SB_MIDI_SWAP:
   1966 	case SB_CD_OUT_MUTE:
   1967 	case SB_MIC_OUT_MUTE:
   1968 	case SB_LINE_OUT_MUTE:
   1969 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1970 		break;
   1971 
   1972 	default:
   1973 		return EINVAL;
   1974 	}
   1975 
   1976 	return 0;
   1977 }
   1978 
   1979 int
   1980 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
   1981 {
   1982 	struct sbdsp_softc *sc = addr;
   1983 	int chan, class, is1745;
   1984 
   1985 	sc = addr;
   1986 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1987 		 sc->sc_mixer_model, dip->index));
   1988 
   1989 	if (sc->sc_mixer_model == SBM_NONE)
   1990 		return ENXIO;
   1991 
   1992 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1993 	is1745 = ISSBM1745(sc);
   1994 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1995 
   1996 	switch (dip->index) {
   1997 	case SB_MASTER_VOL:
   1998 		dip->type = AUDIO_MIXER_VALUE;
   1999 		dip->mixer_class = SB_OUTPUT_CLASS;
   2000 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2001 		strcpy(dip->label.name, AudioNmaster);
   2002 		dip->un.v.num_channels = chan;
   2003 		strcpy(dip->un.v.units.name, AudioNvolume);
   2004 		return 0;
   2005 	case SB_MIDI_VOL:
   2006 		dip->type = AUDIO_MIXER_VALUE;
   2007 		dip->mixer_class = class;
   2008 		dip->prev = AUDIO_MIXER_LAST;
   2009 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   2010 		strcpy(dip->label.name, AudioNfmsynth);
   2011 		dip->un.v.num_channels = chan;
   2012 		strcpy(dip->un.v.units.name, AudioNvolume);
   2013 		return 0;
   2014 	case SB_CD_VOL:
   2015 		dip->type = AUDIO_MIXER_VALUE;
   2016 		dip->mixer_class = class;
   2017 		dip->prev = AUDIO_MIXER_LAST;
   2018 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   2019 		strcpy(dip->label.name, AudioNcd);
   2020 		dip->un.v.num_channels = chan;
   2021 		strcpy(dip->un.v.units.name, AudioNvolume);
   2022 		return 0;
   2023 	case SB_VOICE_VOL:
   2024 		dip->type = AUDIO_MIXER_VALUE;
   2025 		dip->mixer_class = class;
   2026 		dip->prev = AUDIO_MIXER_LAST;
   2027 		dip->next = AUDIO_MIXER_LAST;
   2028 		strcpy(dip->label.name, AudioNdac);
   2029 		dip->un.v.num_channels = chan;
   2030 		strcpy(dip->un.v.units.name, AudioNvolume);
   2031 		return 0;
   2032 	case SB_OUTPUT_CLASS:
   2033 		dip->type = AUDIO_MIXER_CLASS;
   2034 		dip->mixer_class = SB_OUTPUT_CLASS;
   2035 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2036 		strcpy(dip->label.name, AudioCoutputs);
   2037 		return 0;
   2038 	}
   2039 
   2040 	if (sc->sc_mixer_model == SBM_CT1335)
   2041 		return ENXIO;
   2042 
   2043 	switch (dip->index) {
   2044 	case SB_MIC_VOL:
   2045 		dip->type = AUDIO_MIXER_VALUE;
   2046 		dip->mixer_class = class;
   2047 		dip->prev = AUDIO_MIXER_LAST;
   2048 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2049 		strcpy(dip->label.name, AudioNmicrophone);
   2050 		dip->un.v.num_channels = 1;
   2051 		strcpy(dip->un.v.units.name, AudioNvolume);
   2052 		return 0;
   2053 
   2054 	case SB_LINE_IN_VOL:
   2055 		dip->type = AUDIO_MIXER_VALUE;
   2056 		dip->mixer_class = class;
   2057 		dip->prev = AUDIO_MIXER_LAST;
   2058 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2059 		strcpy(dip->label.name, AudioNline);
   2060 		dip->un.v.num_channels = 2;
   2061 		strcpy(dip->un.v.units.name, AudioNvolume);
   2062 		return 0;
   2063 
   2064 	case SB_RECORD_SOURCE:
   2065 		dip->mixer_class = SB_RECORD_CLASS;
   2066 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2067 		strcpy(dip->label.name, AudioNsource);
   2068 		if (ISSBM1745(sc)) {
   2069 			dip->type = AUDIO_MIXER_SET;
   2070 			dip->un.s.num_mem = 4;
   2071 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2072 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2073 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2074 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2075 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2076 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2077 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2078 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2079 		} else {
   2080 			dip->type = AUDIO_MIXER_ENUM;
   2081 			dip->un.e.num_mem = 3;
   2082 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2083 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2084 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2085 			dip->un.e.member[1].ord = SB_CD_VOL;
   2086 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2087 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2088 		}
   2089 		return 0;
   2090 
   2091 	case SB_BASS:
   2092 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2093 		strcpy(dip->label.name, AudioNbass);
   2094 		if (sc->sc_mixer_model == SBM_CT1745) {
   2095 			dip->type = AUDIO_MIXER_VALUE;
   2096 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2097 			dip->un.v.num_channels = 2;
   2098 			strcpy(dip->un.v.units.name, AudioNbass);
   2099 		} else {
   2100 			dip->type = AUDIO_MIXER_ENUM;
   2101 			dip->mixer_class = SB_INPUT_CLASS;
   2102 			dip->un.e.num_mem = 2;
   2103 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2104 			dip->un.e.member[0].ord = 0;
   2105 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2106 			dip->un.e.member[1].ord = 1;
   2107 		}
   2108 		return 0;
   2109 
   2110 	case SB_TREBLE:
   2111 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2112 		strcpy(dip->label.name, AudioNtreble);
   2113 		if (sc->sc_mixer_model == SBM_CT1745) {
   2114 			dip->type = AUDIO_MIXER_VALUE;
   2115 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2116 			dip->un.v.num_channels = 2;
   2117 			strcpy(dip->un.v.units.name, AudioNtreble);
   2118 		} else {
   2119 			dip->type = AUDIO_MIXER_ENUM;
   2120 			dip->mixer_class = SB_INPUT_CLASS;
   2121 			dip->un.e.num_mem = 2;
   2122 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2123 			dip->un.e.member[0].ord = 0;
   2124 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2125 			dip->un.e.member[1].ord = 1;
   2126 		}
   2127 		return 0;
   2128 
   2129 	case SB_RECORD_CLASS:			/* record source class */
   2130 		dip->type = AUDIO_MIXER_CLASS;
   2131 		dip->mixer_class = SB_RECORD_CLASS;
   2132 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2133 		strcpy(dip->label.name, AudioCrecord);
   2134 		return 0;
   2135 
   2136 	case SB_INPUT_CLASS:
   2137 		dip->type = AUDIO_MIXER_CLASS;
   2138 		dip->mixer_class = SB_INPUT_CLASS;
   2139 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2140 		strcpy(dip->label.name, AudioCinputs);
   2141 		return 0;
   2142 
   2143 	}
   2144 
   2145 	if (sc->sc_mixer_model == SBM_CT1345)
   2146 		return ENXIO;
   2147 
   2148 	switch(dip->index) {
   2149 	case SB_PCSPEAKER:
   2150 		dip->type = AUDIO_MIXER_VALUE;
   2151 		dip->mixer_class = SB_INPUT_CLASS;
   2152 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2153 		strcpy(dip->label.name, "pc_speaker");
   2154 		dip->un.v.num_channels = 1;
   2155 		strcpy(dip->un.v.units.name, AudioNvolume);
   2156 		return 0;
   2157 
   2158 	case SB_INPUT_GAIN:
   2159 		dip->type = AUDIO_MIXER_VALUE;
   2160 		dip->mixer_class = SB_INPUT_CLASS;
   2161 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2162 		strcpy(dip->label.name, AudioNinput);
   2163 		dip->un.v.num_channels = 2;
   2164 		strcpy(dip->un.v.units.name, AudioNvolume);
   2165 		return 0;
   2166 
   2167 	case SB_OUTPUT_GAIN:
   2168 		dip->type = AUDIO_MIXER_VALUE;
   2169 		dip->mixer_class = SB_OUTPUT_CLASS;
   2170 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2171 		strcpy(dip->label.name, AudioNoutput);
   2172 		dip->un.v.num_channels = 2;
   2173 		strcpy(dip->un.v.units.name, AudioNvolume);
   2174 		return 0;
   2175 
   2176 	case SB_AGC:
   2177 		dip->type = AUDIO_MIXER_ENUM;
   2178 		dip->mixer_class = SB_INPUT_CLASS;
   2179 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2180 		strcpy(dip->label.name, "agc");
   2181 		dip->un.e.num_mem = 2;
   2182 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2183 		dip->un.e.member[0].ord = 0;
   2184 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2185 		dip->un.e.member[1].ord = 1;
   2186 		return 0;
   2187 
   2188 	case SB_EQUALIZATION_CLASS:
   2189 		dip->type = AUDIO_MIXER_CLASS;
   2190 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2191 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2192 		strcpy(dip->label.name, AudioCequalization);
   2193 		return 0;
   2194 
   2195 	case SB_CD_IN_MUTE:
   2196 		dip->prev = SB_CD_VOL;
   2197 		dip->next = SB_CD_SWAP;
   2198 		dip->mixer_class = SB_INPUT_CLASS;
   2199 		goto mute;
   2200 
   2201 	case SB_MIC_IN_MUTE:
   2202 		dip->prev = SB_MIC_VOL;
   2203 		dip->next = SB_MIC_SWAP;
   2204 		dip->mixer_class = SB_INPUT_CLASS;
   2205 		goto mute;
   2206 
   2207 	case SB_LINE_IN_MUTE:
   2208 		dip->prev = SB_LINE_IN_VOL;
   2209 		dip->next = SB_LINE_SWAP;
   2210 		dip->mixer_class = SB_INPUT_CLASS;
   2211 		goto mute;
   2212 
   2213 	case SB_MIDI_IN_MUTE:
   2214 		dip->prev = SB_MIDI_VOL;
   2215 		dip->next = SB_MIDI_SWAP;
   2216 		dip->mixer_class = SB_INPUT_CLASS;
   2217 		goto mute;
   2218 
   2219 	case SB_CD_SWAP:
   2220 		dip->prev = SB_CD_IN_MUTE;
   2221 		dip->next = SB_CD_OUT_MUTE;
   2222 		goto swap;
   2223 
   2224 	case SB_MIC_SWAP:
   2225 		dip->prev = SB_MIC_IN_MUTE;
   2226 		dip->next = SB_MIC_OUT_MUTE;
   2227 		goto swap;
   2228 
   2229 	case SB_LINE_SWAP:
   2230 		dip->prev = SB_LINE_IN_MUTE;
   2231 		dip->next = SB_LINE_OUT_MUTE;
   2232 		goto swap;
   2233 
   2234 	case SB_MIDI_SWAP:
   2235 		dip->prev = SB_MIDI_IN_MUTE;
   2236 		dip->next = AUDIO_MIXER_LAST;
   2237 	swap:
   2238 		dip->mixer_class = SB_INPUT_CLASS;
   2239 		strcpy(dip->label.name, AudioNswap);
   2240 		goto mute1;
   2241 
   2242 	case SB_CD_OUT_MUTE:
   2243 		dip->prev = SB_CD_SWAP;
   2244 		dip->next = AUDIO_MIXER_LAST;
   2245 		dip->mixer_class = SB_OUTPUT_CLASS;
   2246 		goto mute;
   2247 
   2248 	case SB_MIC_OUT_MUTE:
   2249 		dip->prev = SB_MIC_SWAP;
   2250 		dip->next = AUDIO_MIXER_LAST;
   2251 		dip->mixer_class = SB_OUTPUT_CLASS;
   2252 		goto mute;
   2253 
   2254 	case SB_LINE_OUT_MUTE:
   2255 		dip->prev = SB_LINE_SWAP;
   2256 		dip->next = AUDIO_MIXER_LAST;
   2257 		dip->mixer_class = SB_OUTPUT_CLASS;
   2258 	mute:
   2259 		strcpy(dip->label.name, AudioNmute);
   2260 	mute1:
   2261 		dip->type = AUDIO_MIXER_ENUM;
   2262 		dip->un.e.num_mem = 2;
   2263 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2264 		dip->un.e.member[0].ord = 0;
   2265 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2266 		dip->un.e.member[1].ord = 1;
   2267 		return 0;
   2268 
   2269 	}
   2270 
   2271 	return ENXIO;
   2272 }
   2273 
   2274 void *
   2275 sb_malloc(void *addr, int direction, size_t size,
   2276     struct malloc_type *pool, int flags)
   2277 {
   2278 	struct sbdsp_softc *sc;
   2279 	int drq;
   2280 
   2281 	sc = addr;
   2282 	if (sc->sc_drq8 != -1)
   2283 		drq = sc->sc_drq8;
   2284 	else
   2285 		drq = sc->sc_drq16;
   2286 	return isa_malloc(sc->sc_ic, drq, size, pool, flags);
   2287 }
   2288 
   2289 void
   2290 sb_free(void *addr, void *ptr, struct malloc_type *pool)
   2291 {
   2292 
   2293 	isa_free(ptr, pool);
   2294 }
   2295 
   2296 size_t
   2297 sb_round_buffersize(void *addr, int direction, size_t size)
   2298 {
   2299 	struct sbdsp_softc *sc;
   2300 	bus_size_t maxsize;
   2301 
   2302 	sc = addr;
   2303 	if (sc->sc_drq8 != -1)
   2304 		maxsize = sc->sc_drq8_maxsize;
   2305 	else
   2306 		maxsize = sc->sc_drq16_maxsize;
   2307 
   2308 	if (size > maxsize)
   2309 		size = maxsize;
   2310 	return size;
   2311 }
   2312 
   2313 paddr_t
   2314 sb_mappage(void *addr, void *mem, off_t off, int prot)
   2315 {
   2316 
   2317 	return isa_mappage(mem, off, prot);
   2318 }
   2319 
   2320 int
   2321 sbdsp_get_props(void *addr)
   2322 {
   2323 	struct sbdsp_softc *sc;
   2324 
   2325 	sc = addr;
   2326 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2327 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2328 }
   2329 
   2330 #if NMPU > 0
   2331 /*
   2332  * MIDI related routines.
   2333  */
   2334 
   2335 int
   2336 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
   2337     void (*ointr)(void *), void *arg)
   2338 {
   2339 	struct sbdsp_softc *sc;
   2340 
   2341 	sc = addr;
   2342 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2343 
   2344 	if (sc->sc_open != SB_CLOSED)
   2345 		return EBUSY;
   2346 	if (sbdsp_reset(sc) != 0)
   2347 		return EIO;
   2348 
   2349 	sc->sc_open = SB_OPEN_MIDI;
   2350 
   2351 	if (sc->sc_model >= SB_20)
   2352 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2353 			return EIO;
   2354 
   2355 	sc->sc_intr8 = sbdsp_midi_intr;
   2356 	sc->sc_intrm = iintr;
   2357 	sc->sc_argm = arg;
   2358 
   2359 	return 0;
   2360 }
   2361 
   2362 void
   2363 sbdsp_midi_close(void *addr)
   2364 {
   2365 	struct sbdsp_softc *sc;
   2366 
   2367 	sc = addr;
   2368 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2369 
   2370 	if (sc->sc_model >= SB_20)
   2371 		sbdsp_reset(sc); /* exit UART mode */
   2372 
   2373 	sc->sc_intrm = 0;
   2374 	sc->sc_open = SB_CLOSED;
   2375 }
   2376 
   2377 int
   2378 sbdsp_midi_output(void *addr, int d)
   2379 {
   2380 	struct sbdsp_softc *sc;
   2381 
   2382 	sc = addr;
   2383 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2384 		return EIO;
   2385 	if (sbdsp_wdsp(sc, d))
   2386 		return EIO;
   2387 	return 0;
   2388 }
   2389 
   2390 void
   2391 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
   2392 {
   2393 	struct sbdsp_softc *sc;
   2394 
   2395 	sc = addr;
   2396 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2397 	mi->props = MIDI_PROP_CAN_INPUT;
   2398 }
   2399 
   2400 int
   2401 sbdsp_midi_intr(void *addr)
   2402 {
   2403 	struct sbdsp_softc *sc;
   2404 
   2405 	sc = addr;
   2406 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2407 	return (0);
   2408 }
   2409 
   2410 #endif
   2411 
   2412