sbdsp.c revision 1.135 1 /* $NetBSD: sbdsp.c,v 1.135 2011/11/23 23:07:32 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 */
65
66 /*
67 * SoundBlaster Pro code provided by John Kohl, based on lots of
68 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
69 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
70 * <sachs (at) meibm15.cen.uiuc.edu>.
71 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
72 * with information from SB "Hardware Programming Guide" and the
73 * Linux drivers.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.135 2011/11/23 23:07:32 jmcneill Exp $");
78
79 #include "midi.h"
80 #include "mpu.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/errno.h>
86 #include <sys/ioctl.h>
87 #include <sys/syslog.h>
88 #include <sys/device.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/malloc.h>
92 #include <sys/cpu.h>
93 #include <sys/intr.h>
94 #include <sys/bus.h>
95
96 #include <sys/audioio.h>
97 #include <dev/audio_if.h>
98 #include <dev/midi_if.h>
99 #include <dev/mulaw.h>
100 #include <dev/auconv.h>
101
102 #include <dev/isa/isavar.h>
103 #include <dev/isa/isadmavar.h>
104
105 #include <dev/isa/sbreg.h>
106 #include <dev/isa/sbdspvar.h>
107
108
109 #ifdef AUDIO_DEBUG
110 #define DPRINTF(x) if (sbdspdebug) printf x
111 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
112 int sbdspdebug = 0;
113 #else
114 #define DPRINTF(x)
115 #define DPRINTFN(n,x)
116 #endif
117
118 #ifndef SBDSP_NPOLL
119 #define SBDSP_NPOLL 3000
120 #endif
121
122 struct {
123 int wdsp;
124 int rdsp;
125 int wmidi;
126 } sberr;
127
128 /*
129 * Time constant routines follow. See SBK, section 12.
130 * Although they don't come out and say it (in the docs),
131 * the card clearly uses a 1MHz countdown timer, as the
132 * low-speed formula (p. 12-4) is:
133 * tc = 256 - 10^6 / sr
134 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
135 * and a 256MHz clock is used:
136 * tc = 65536 - 256 * 10^ 6 / sr
137 * Since we can only use the upper byte of the HS TC, the two formulae
138 * are equivalent. (Why didn't they say so?) E.g.,
139 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
140 *
141 * The crossover point (from low- to high-speed modes) is different
142 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
143 *
144 * SBPRO SB20
145 * ----- --------
146 * input ls min 4 kHz 4 kHz
147 * input ls max 23 kHz 13 kHz
148 * input hs max 44.1 kHz 15 kHz
149 * output ls min 4 kHz 4 kHz
150 * output ls max 23 kHz 23 kHz
151 * output hs max 44.1 kHz 44.1 kHz
152 */
153 /* XXX Should we round the tc?
154 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
155 */
156 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
157 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
158
159 struct sbmode {
160 short model;
161 u_char channels;
162 u_char precision;
163 u_short lowrate, highrate;
164 u_char cmd;
165 u_char halt, cont;
166 u_char cmdchan;
167 };
168 static struct sbmode sbpmodes[] = {
169 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
170 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
171 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
172 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
173 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
174 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
175 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
176 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
177 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
178 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
179 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
180 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
181 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
182 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
183 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
184 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
185 #define PLAY16 15 /* must be the index of the next entry in the table */
186 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
187 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
188 { .model = -1 }
189 };
190 static struct sbmode sbrmodes[] = {
191 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
193 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
194 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
195 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
196 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
197 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
198 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
199 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
201 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
202 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
203 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
204 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
205 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
206 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
207 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
208 { .model = -1 }
209 };
210
211 void sbversion(struct sbdsp_softc *);
212 void sbdsp_jazz16_probe(struct sbdsp_softc *);
213 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
214 void sbdsp_pause(struct sbdsp_softc *);
215 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
216 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
217 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
218 void sbdsp_set_ifilter(void *, int);
219 int sbdsp_get_ifilter(void *);
220
221 int sbdsp_block_output(void *);
222 int sbdsp_block_input(void *);
223 static int sbdsp_adjust(int, int);
224
225 int sbdsp_midi_intr(void *);
226
227 static bool sbdsp_resume(device_t, const pmf_qual_t *);
228
229 #ifdef AUDIO_DEBUG
230 void sb_printsc(struct sbdsp_softc *);
231
232 void
233 sb_printsc(struct sbdsp_softc *sc)
234 {
235 int i;
236
237 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
238 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
239 sc->sc_drq8, sc->sc_drq16,
240 sc->sc_iobase, sc->sc_irq);
241 printf("irate %d itc %x orate %d otc %x\n",
242 sc->sc_i.rate, sc->sc_i.tc,
243 sc->sc_o.rate, sc->sc_o.tc);
244 printf("spkron %u nintr %lu\n",
245 sc->spkr_state, sc->sc_interrupts);
246 printf("intr8 %p intr16 %p\n",
247 sc->sc_intr8, sc->sc_intr16);
248 printf("gain:");
249 for (i = 0; i < SB_NDEVS; i++)
250 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
251 printf("\n");
252 }
253 #endif /* AUDIO_DEBUG */
254
255 /*
256 * Probe / attach routines.
257 */
258
259 /*
260 * Probe for the soundblaster hardware.
261 */
262 int
263 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
264 {
265
266 if (sbdsp_reset(sc) < 0) {
267 DPRINTF(("sbdsp: couldn't reset card\n"));
268 return 0;
269 }
270 /* if flags set, go and probe the jazz16 stuff */
271 if (match->cf_flags & 1)
272 sbdsp_jazz16_probe(sc);
273 else
274 sbversion(sc);
275 if (sc->sc_model == SB_UNK) {
276 /* Unknown SB model found. */
277 DPRINTF(("sbdsp: unknown SB model found\n"));
278 return 0;
279 }
280 return 1;
281 }
282
283 /*
284 * Try add-on stuff for Jazz16.
285 */
286 void
287 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
288 {
289 static u_char jazz16_irq_conf[16] = {
290 -1, -1, 0x02, 0x03,
291 -1, 0x01, -1, 0x04,
292 -1, 0x02, 0x05, -1,
293 -1, -1, -1, 0x06};
294 static u_char jazz16_drq_conf[8] = {
295 -1, 0x01, -1, 0x02,
296 -1, 0x03, -1, 0x04};
297
298 bus_space_tag_t iot;
299 bus_space_handle_t ioh;
300
301 iot = sc->sc_iot;
302 sbversion(sc);
303
304 DPRINTF(("jazz16 probe\n"));
305
306 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
307 DPRINTF(("bus map failed\n"));
308 return;
309 }
310
311 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
312 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
313 DPRINTF(("drq/irq check failed\n"));
314 goto done; /* give up, we can't do it. */
315 }
316
317 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
318 delay(10000); /* delay 10 ms */
319 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
320 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
321
322 if (sbdsp_reset(sc) < 0) {
323 DPRINTF(("sbdsp_reset check failed\n"));
324 goto done; /* XXX? what else could we do? */
325 }
326
327 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
328 DPRINTF(("read16 setup failed\n"));
329 goto done;
330 }
331
332 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
333 DPRINTF(("read16 failed\n"));
334 goto done;
335 }
336
337 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
338 sc->sc_drq16 = sc->sc_drq8;
339 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
340 (sc->sc_drq16 >= 0 &&
341 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
342 jazz16_drq_conf[sc->sc_drq8])) ||
343 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
344 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
345 } else {
346 DPRINTF(("jazz16 detected!\n"));
347 sc->sc_model = SB_JAZZ;
348 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
349 }
350
351 done:
352 bus_space_unmap(iot, ioh, 1);
353 }
354
355 /*
356 * Attach hardware to driver, attach hardware driver to audio
357 * pseudo-device driver .
358 */
359 void
360 sbdsp_attach(struct sbdsp_softc *sc)
361 {
362 int i, error;
363 u_int v;
364
365 mutex_enter(&sc->sc_lock);
366 mutex_spin_enter(&sc->sc_intr_lock);
367
368 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
369
370 if (sc->sc_mixer_model != SBM_NONE) {
371 /* Reset the mixer.*/
372 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
373 /* And set our own default values */
374 for (i = 0; i < SB_NDEVS; i++) {
375 switch(i) {
376 case SB_MIC_VOL:
377 case SB_LINE_IN_VOL:
378 v = 0;
379 break;
380 case SB_BASS:
381 case SB_TREBLE:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
383 break;
384 case SB_CD_IN_MUTE:
385 case SB_MIC_IN_MUTE:
386 case SB_LINE_IN_MUTE:
387 case SB_MIDI_IN_MUTE:
388 case SB_CD_SWAP:
389 case SB_MIC_SWAP:
390 case SB_LINE_SWAP:
391 case SB_MIDI_SWAP:
392 case SB_CD_OUT_MUTE:
393 case SB_MIC_OUT_MUTE:
394 case SB_LINE_OUT_MUTE:
395 v = 0;
396 break;
397 default:
398 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
399 break;
400 }
401 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
402 sbdsp_set_mixer_gain(sc, i);
403 }
404 sc->in_filter = 0; /* no filters turned on, please */
405 }
406
407 mutex_spin_exit(&sc->sc_intr_lock);
408 mutex_exit(&sc->sc_lock);
409
410 aprint_naive("\n");
411 aprint_normal(": dsp v%d.%02d%s\n",
412 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414
415 sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 sc->sc_drq8 != sc->sc_drq16;
418
419 if (sc->sc_drq8 != -1) {
420 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 sc->sc_drq8);
422 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 sc->sc_drq8_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
424 if (error) {
425 aprint_error_dev(sc->sc_dev,
426 "can't create map for drq %d\n", sc->sc_drq8);
427 return;
428 }
429 }
430
431 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 sc->sc_drq16);
434 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 sc->sc_drq16_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
436 if (error) {
437 aprint_error_dev(sc->sc_dev,
438 "can't create map for drq %d\n", sc->sc_drq16);
439 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 return;
441 }
442 }
443
444 if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
445 aprint_error_dev(sc->sc_dev, "couldn't establish power handler\n");
446 }
447
448 static bool
449 sbdsp_resume(device_t dv, const pmf_qual_t *qual)
450 {
451 struct sbdsp_softc *sc = device_private(dv);
452
453 /* Reset the mixer. */
454 mutex_enter(&sc->sc_lock);
455 mutex_spin_enter(&sc->sc_intr_lock);
456 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
457 mutex_spin_exit(&sc->sc_intr_lock);
458 mutex_exit(&sc->sc_lock);
459
460 return true;
461 }
462
463 void
464 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
465 {
466 bus_space_tag_t iot;
467 bus_space_handle_t ioh;
468
469 iot = sc->sc_iot;
470 ioh = sc->sc_ioh;
471 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
472 delay(20);
473 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
474 delay(30);
475 }
476
477 int
478 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
479 {
480 bus_space_tag_t iot;
481 bus_space_handle_t ioh;
482 int val;
483
484 iot = sc->sc_iot;
485 ioh = sc->sc_ioh;
486 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
487 delay(20);
488 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
489 delay(30);
490 return val;
491 }
492
493 /*
494 * Various routines to interface to higher level audio driver
495 */
496
497 int
498 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
499 {
500 struct sbdsp_softc *sc;
501 int emul;
502
503 sc = addr;
504 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
505
506 switch (fp->index) {
507 case 0:
508 strcpy(fp->name, AudioEulinear);
509 fp->encoding = AUDIO_ENCODING_ULINEAR;
510 fp->precision = 8;
511 fp->flags = 0;
512 return 0;
513 case 1:
514 strcpy(fp->name, AudioEmulaw);
515 fp->encoding = AUDIO_ENCODING_ULAW;
516 fp->precision = 8;
517 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
518 return 0;
519 case 2:
520 strcpy(fp->name, AudioEalaw);
521 fp->encoding = AUDIO_ENCODING_ALAW;
522 fp->precision = 8;
523 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 return 0;
525 case 3:
526 strcpy(fp->name, AudioEslinear);
527 fp->encoding = AUDIO_ENCODING_SLINEAR;
528 fp->precision = 8;
529 fp->flags = emul;
530 return 0;
531 }
532 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
533 return EINVAL;
534
535 switch(fp->index) {
536 case 4:
537 strcpy(fp->name, AudioEslinear_le);
538 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
539 fp->precision = 16;
540 fp->flags = 0;
541 return 0;
542 case 5:
543 strcpy(fp->name, AudioEulinear_le);
544 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
545 fp->precision = 16;
546 fp->flags = emul;
547 return 0;
548 case 6:
549 strcpy(fp->name, AudioEslinear_be);
550 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
551 fp->precision = 16;
552 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
553 return 0;
554 case 7:
555 strcpy(fp->name, AudioEulinear_be);
556 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
557 fp->precision = 16;
558 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
559 return 0;
560 default:
561 return EINVAL;
562 }
563 return 0;
564 }
565
566 int
567 sbdsp_set_params(
568 void *addr,
569 int setmode, int usemode,
570 audio_params_t *play, audio_params_t *rec,
571 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
572 {
573 struct sbdsp_softc *sc;
574 struct sbmode *m;
575 u_int rate, tc, bmode;
576 stream_filter_factory_t *swcode;
577 int model;
578 int chan;
579 struct audio_params *p;
580 audio_params_t hw;
581 stream_filter_list_t *fil;
582 int mode;
583
584 sc = addr;
585
586 if (sc->sc_open == SB_OPEN_MIDI)
587 return EBUSY;
588
589 /* Later models work like SB16. */
590 model = min(sc->sc_model, SB_16);
591
592 /*
593 * Prior to the SB16, we have only one clock, so make the sample
594 * rates match.
595 */
596 if (!ISSB16CLASS(sc) &&
597 play->sample_rate != rec->sample_rate &&
598 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
599 if (setmode == AUMODE_PLAY) {
600 rec->sample_rate = play->sample_rate;
601 setmode |= AUMODE_RECORD;
602 } else if (setmode == AUMODE_RECORD) {
603 play->sample_rate = rec->sample_rate;
604 setmode |= AUMODE_PLAY;
605 } else
606 return EINVAL;
607 }
608
609 /* Set first record info, then play info */
610 for (mode = AUMODE_RECORD; mode != -1;
611 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
612 if ((setmode & mode) == 0)
613 continue;
614
615 p = mode == AUMODE_PLAY ? play : rec;
616 /* Locate proper commands */
617 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
618 m->model != -1; m++) {
619 if (model == m->model &&
620 p->channels == m->channels &&
621 p->precision == m->precision &&
622 p->sample_rate >= m->lowrate &&
623 p->sample_rate <= m->highrate)
624 break;
625 }
626 if (m->model == -1)
627 return EINVAL;
628 rate = p->sample_rate;
629 swcode = NULL;
630 fil = mode == AUMODE_PLAY ? pfil : rfil;
631 hw = *p;
632 tc = 1;
633 bmode = -1;
634 if (model == SB_16) {
635 switch (p->encoding) {
636 case AUDIO_ENCODING_SLINEAR_BE:
637 if (p->precision == 16) {
638 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
639 swcode = swap_bytes;
640 }
641 /* fall into */
642 case AUDIO_ENCODING_SLINEAR_LE:
643 bmode = SB_BMODE_SIGNED;
644 break;
645
646 case AUDIO_ENCODING_ULINEAR_BE:
647 if (p->precision == 16) {
648 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
649 swcode = swap_bytes;
650 }
651 /* fall into */
652 case AUDIO_ENCODING_ULINEAR_LE:
653 bmode = SB_BMODE_UNSIGNED;
654 break;
655
656 case AUDIO_ENCODING_ULAW:
657 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
658 if (mode == AUMODE_PLAY) {
659 hw.precision = hw.validbits = 16;
660 swcode = mulaw_to_linear16;
661 m = &sbpmodes[PLAY16];
662 } else
663 swcode = linear8_to_mulaw;
664 bmode = SB_BMODE_UNSIGNED;
665 break;
666
667 case AUDIO_ENCODING_ALAW:
668 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
669 if (mode == AUMODE_PLAY) {
670 hw.precision = hw.validbits = 16;
671 swcode = alaw_to_linear16;
672 m = &sbpmodes[PLAY16];
673 } else
674 swcode = linear8_to_alaw;
675 bmode = SB_BMODE_UNSIGNED;
676 break;
677 default:
678 return EINVAL;
679 }
680 if (p->channels == 2)
681 bmode |= SB_BMODE_STEREO;
682 } else if (m->model == SB_JAZZ && m->precision == 16) {
683 switch (p->encoding) {
684 case AUDIO_ENCODING_SLINEAR_LE:
685 break;
686 case AUDIO_ENCODING_ULINEAR_LE:
687 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
688 swcode = change_sign16;
689 break;
690 case AUDIO_ENCODING_SLINEAR_BE:
691 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
692 swcode = swap_bytes;
693 break;
694 case AUDIO_ENCODING_ULINEAR_BE:
695 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
696 swcode = swap_bytes_change_sign16;
697 break;
698 case AUDIO_ENCODING_ULAW:
699 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
700 swcode = mode == AUMODE_PLAY ?
701 mulaw_to_linear8 : linear8_to_mulaw;
702 break;
703 case AUDIO_ENCODING_ALAW:
704 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
705 swcode = mode == AUMODE_PLAY ?
706 alaw_to_linear8 : linear8_to_alaw;
707 break;
708 default:
709 return EINVAL;
710 }
711 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
712 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
713 hw.sample_rate = p->sample_rate;
714 } else {
715 switch (p->encoding) {
716 case AUDIO_ENCODING_SLINEAR_BE:
717 case AUDIO_ENCODING_SLINEAR_LE:
718 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
719 swcode = change_sign8;
720 break;
721 case AUDIO_ENCODING_ULINEAR_BE:
722 case AUDIO_ENCODING_ULINEAR_LE:
723 break;
724 case AUDIO_ENCODING_ULAW:
725 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
726 swcode = mode == AUMODE_PLAY ?
727 mulaw_to_linear8 : linear8_to_mulaw;
728 break;
729 case AUDIO_ENCODING_ALAW:
730 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
731 swcode = mode == AUMODE_PLAY ?
732 alaw_to_linear8 : linear8_to_alaw;
733 break;
734 default:
735 return EINVAL;
736 }
737 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
738 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
739 hw.sample_rate = p->sample_rate;
740 }
741
742 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
743 if (mode == AUMODE_PLAY) {
744 sc->sc_o.rate = rate;
745 sc->sc_o.tc = tc;
746 sc->sc_o.modep = m;
747 sc->sc_o.bmode = bmode;
748 sc->sc_o.dmachan = chan;
749 } else {
750 sc->sc_i.rate = rate;
751 sc->sc_i.tc = tc;
752 sc->sc_i.modep = m;
753 sc->sc_i.bmode = bmode;
754 sc->sc_i.dmachan = chan;
755 }
756
757 if (swcode != NULL)
758 fil->append(fil, swcode, &hw);
759 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
760 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
761 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
762 p->sample_rate, p->precision, p->channels,
763 p->encoding, tc, m->cmd, bmode, m->cmdchan));
764
765 }
766
767 if (sc->sc_fullduplex &&
768 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
769 sc->sc_i.dmachan == sc->sc_o.dmachan) {
770 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
771 "odma=%d\n", sc->sc_fullduplex, usemode,
772 sc->sc_i.dmachan, sc->sc_o.dmachan));
773 if (sc->sc_o.dmachan == sc->sc_drq8) {
774 /* Use 16 bit DMA for playing by expanding the samples. */
775 hw.precision = hw.validbits = 16;
776 pfil->append(pfil, linear8_to_linear16, &hw);
777 sc->sc_o.modep = &sbpmodes[PLAY16];
778 sc->sc_o.dmachan = sc->sc_drq16;
779 } else {
780 return EINVAL;
781 }
782 }
783 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
784 sc->sc_i.dmachan, sc->sc_o.dmachan));
785
786 return 0;
787 }
788
789 void
790 sbdsp_set_ifilter(void *addr, int which)
791 {
792 struct sbdsp_softc *sc;
793 int mixval;
794
795 sc = addr;
796
797 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
798 switch (which) {
799 case 0:
800 mixval |= SBP_FILTER_OFF;
801 break;
802 case SB_TREBLE:
803 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
804 break;
805 case SB_BASS:
806 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
807 break;
808 default:
809 return;
810 }
811 sc->in_filter = mixval & SBP_IFILTER_MASK;
812 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
813 }
814
815 int
816 sbdsp_get_ifilter(void *addr)
817 {
818 struct sbdsp_softc *sc;
819
820 sc = addr;
821 sc->in_filter =
822 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
823 switch (sc->in_filter) {
824 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
825 return SB_TREBLE;
826 case SBP_FILTER_ON|SBP_IFILTER_LOW:
827 return SB_BASS;
828 default:
829 return 0;
830 }
831 }
832
833 int
834 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
835 {
836 int bitsl, bitsr;
837 int sbport;
838
839 KASSERT(mutex_owned(&sc->sc_lock));
840 KASSERT(mutex_owned(&sc->sc_intr_lock));
841
842 if (sc->sc_open == SB_OPEN_MIDI)
843 return EBUSY;
844
845 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
846 sc->sc_mixer_model, mask));
847
848 switch(sc->sc_mixer_model) {
849 case SBM_NONE:
850 return EINVAL;
851 case SBM_CT1335:
852 if (mask != (1 << SB_MIC_VOL))
853 return EINVAL;
854 break;
855 case SBM_CT1345:
856 switch (mask) {
857 case 1 << SB_MIC_VOL:
858 sbport = SBP_FROM_MIC;
859 break;
860 case 1 << SB_LINE_IN_VOL:
861 sbport = SBP_FROM_LINE;
862 break;
863 case 1 << SB_CD_VOL:
864 sbport = SBP_FROM_CD;
865 break;
866 default:
867 return EINVAL;
868 }
869 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
870 break;
871 case SBM_CT1XX5:
872 case SBM_CT1745:
873 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
874 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
875 return EINVAL;
876 bitsr = 0;
877 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
878 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
879 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
880 bitsl = SB_SRC_R_TO_L(bitsr);
881 if (mask & (1<<SB_MIC_VOL)) {
882 bitsl |= SBP_MIC_SRC;
883 bitsr |= SBP_MIC_SRC;
884 }
885 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
886 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
887 break;
888 }
889 sc->in_mask = mask;
890
891 return 0;
892 }
893
894 int
895 sbdsp_speaker_ctl(void *addr, int newstate)
896 {
897 struct sbdsp_softc *sc;
898
899 sc = addr;
900 if (sc->sc_open == SB_OPEN_MIDI)
901 return EBUSY;
902
903 if ((newstate == SPKR_ON) &&
904 (sc->spkr_state == SPKR_OFF)) {
905 sbdsp_spkron(sc);
906 sc->spkr_state = SPKR_ON;
907 }
908 if ((newstate == SPKR_OFF) &&
909 (sc->spkr_state == SPKR_ON)) {
910 sbdsp_spkroff(sc);
911 sc->spkr_state = SPKR_OFF;
912 }
913 return 0;
914 }
915
916 int
917 sbdsp_round_blocksize(void *addr, int blk, int mode,
918 const audio_params_t *param)
919 {
920 return blk & -4; /* round to biggest sample size */
921 }
922
923 int
924 sbdsp_open(void *addr, int flags)
925 {
926 struct sbdsp_softc *sc;
927 int error, state;
928
929 sc = addr;
930 DPRINTF(("sbdsp_open: sc=%p\n", sc));
931
932 if (sc->sc_open != SB_CLOSED)
933 return EBUSY;
934 sc->sc_open = SB_OPEN_AUDIO;
935 state = 0;
936
937 if (sc->sc_drq8 != -1) {
938 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
939 if (error != 0)
940 goto bad;
941 state |= 1;
942 }
943
944 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
945 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
946 if (error != 0)
947 goto bad;
948 state |= 2;
949 }
950
951
952 if (sbdsp_reset(sc) != 0) {
953 error = EIO;
954 goto bad;
955 }
956
957 if (ISSBPRO(sc) &&
958 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
959 DPRINTF(("sbdsp_open: can't set mono mode\n"));
960 /* we'll readjust when it's time for DMA. */
961 }
962
963 /*
964 * Leave most things as they were; users must change things if
965 * the previous process didn't leave it they way they wanted.
966 * Looked at another way, it's easy to set up a configuration
967 * in one program and leave it for another to inherit.
968 */
969 DPRINTF(("sbdsp_open: opened\n"));
970
971 return 0;
972
973 bad:
974 if (state & 1)
975 isa_drq_free(sc->sc_ic, sc->sc_drq8);
976 if (state & 2)
977 isa_drq_free(sc->sc_ic, sc->sc_drq16);
978
979 sc->sc_open = SB_CLOSED;
980 return error;
981 }
982
983 void
984 sbdsp_close(void *addr)
985 {
986 struct sbdsp_softc *sc;
987
988 sc = addr;
989 DPRINTF(("sbdsp_close: sc=%p\n", sc));
990
991 sbdsp_spkroff(sc);
992 sc->spkr_state = SPKR_OFF;
993
994 sc->sc_intr8 = 0;
995 sc->sc_intr16 = 0;
996
997 if (sc->sc_drq8 != -1)
998 isa_drq_free(sc->sc_ic, sc->sc_drq8);
999 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1000 isa_drq_free(sc->sc_ic, sc->sc_drq16);
1001
1002 sc->sc_open = SB_CLOSED;
1003 DPRINTF(("sbdsp_close: closed\n"));
1004 }
1005
1006 /*
1007 * Lower-level routines
1008 */
1009
1010 /*
1011 * Reset the card.
1012 * Return non-zero if the card isn't detected.
1013 */
1014 int
1015 sbdsp_reset(struct sbdsp_softc *sc)
1016 {
1017 bus_space_tag_t iot;
1018 bus_space_handle_t ioh;
1019
1020 iot = sc->sc_iot;
1021 ioh = sc->sc_ioh;
1022 sc->sc_intr8 = 0;
1023 sc->sc_intr16 = 0;
1024 sc->sc_intrm = 0;
1025
1026 /*
1027 * See SBK, section 11.3.
1028 * We pulse a reset signal into the card.
1029 * Gee, what a brilliant hardware design.
1030 */
1031 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1032 delay(10);
1033 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1034 delay(30);
1035 if (sbdsp_rdsp(sc) != SB_MAGIC)
1036 return -1;
1037
1038 return 0;
1039 }
1040
1041 /*
1042 * Write a byte to the dsp.
1043 * We are at the mercy of the card as we use a
1044 * polling loop and wait until it can take the byte.
1045 */
1046 int
1047 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1048 {
1049 bus_space_tag_t iot;
1050 bus_space_handle_t ioh;
1051 int i;
1052 u_char x;
1053
1054 iot = sc->sc_iot;
1055 ioh = sc->sc_ioh;
1056 for (i = SBDSP_NPOLL; --i >= 0; ) {
1057 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1058 delay(10);
1059 if ((x & SB_DSP_BUSY) == 0) {
1060 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1061 delay(10);
1062 return 0;
1063 }
1064 }
1065 ++sberr.wdsp;
1066 return -1;
1067 }
1068
1069 /*
1070 * Read a byte from the DSP, using polling.
1071 */
1072 int
1073 sbdsp_rdsp(struct sbdsp_softc *sc)
1074 {
1075 bus_space_tag_t iot;
1076 bus_space_handle_t ioh;
1077 int i;
1078 u_char x;
1079
1080 iot = sc->sc_iot;
1081 ioh = sc->sc_ioh;
1082 for (i = SBDSP_NPOLL; --i >= 0; ) {
1083 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1084 delay(10);
1085 if (x & SB_DSP_READY) {
1086 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1087 delay(10);
1088 return x;
1089 }
1090 }
1091 ++sberr.rdsp;
1092 return -1;
1093 }
1094
1095 void
1096 sbdsp_pause(struct sbdsp_softc *sc)
1097 {
1098
1099 KASSERT(mutex_owned(&sc->sc_intr_lock));
1100 mutex_spin_exit(&sc->sc_intr_lock);
1101 (void)kpause("sbpause", false, hz/8, &sc->sc_lock);
1102 mutex_spin_enter(&sc->sc_intr_lock);
1103 }
1104
1105 /*
1106 * Turn on the speaker. The SBK documention says this operation
1107 * can take up to 1/10 of a second. Higher level layers should
1108 * probably let the task sleep for this amount of time after
1109 * calling here. Otherwise, things might not work (because
1110 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1111 *
1112 * These engineers had their heads up their ass when
1113 * they designed this card.
1114 */
1115 void
1116 sbdsp_spkron(struct sbdsp_softc *sc)
1117 {
1118
1119 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1120 sbdsp_pause(sc);
1121 }
1122
1123 /*
1124 * Turn off the speaker; see comment above.
1125 */
1126 void
1127 sbdsp_spkroff(struct sbdsp_softc *sc)
1128 {
1129
1130 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1131 sbdsp_pause(sc);
1132 }
1133
1134 /*
1135 * Read the version number out of the card.
1136 * Store version information in the softc.
1137 */
1138 void
1139 sbversion(struct sbdsp_softc *sc)
1140 {
1141 int v;
1142
1143 sc->sc_model = SB_UNK;
1144 sc->sc_version = 0;
1145 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1146 return;
1147 v = sbdsp_rdsp(sc) << 8;
1148 v |= sbdsp_rdsp(sc);
1149 if (v < 0)
1150 return;
1151 sc->sc_version = v;
1152 switch(SBVER_MAJOR(v)) {
1153 case 1:
1154 sc->sc_mixer_model = SBM_NONE;
1155 sc->sc_model = SB_1;
1156 break;
1157 case 2:
1158 /* Some SB2 have a mixer, some don't. */
1159 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1160 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1161 /* Check if we can read back the mixer values. */
1162 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1163 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1164 sc->sc_mixer_model = SBM_CT1335;
1165 else
1166 sc->sc_mixer_model = SBM_NONE;
1167 if (SBVER_MINOR(v) == 0)
1168 sc->sc_model = SB_20;
1169 else
1170 sc->sc_model = SB_2x;
1171 break;
1172 case 3:
1173 sc->sc_mixer_model = SBM_CT1345;
1174 sc->sc_model = SB_PRO;
1175 break;
1176 case 4:
1177 #if 0
1178 /* XXX This does not work */
1179 /* Most SB16 have a tone controls, but some don't. */
1180 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1181 /* Check if we can read back the mixer value. */
1182 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1183 sc->sc_mixer_model = SBM_CT1745;
1184 else
1185 sc->sc_mixer_model = SBM_CT1XX5;
1186 #else
1187 sc->sc_mixer_model = SBM_CT1745;
1188 #endif
1189 #if 0
1190 /* XXX figure out a good way of determining the model */
1191 /* XXX what about SB_32 */
1192 if (SBVER_MINOR(v) == 16)
1193 sc->sc_model = SB_64;
1194 else
1195 #endif
1196 sc->sc_model = SB_16;
1197 break;
1198 }
1199 }
1200
1201 int
1202 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1203 {
1204
1205 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1206 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1207 sbdsp_wdsp(sc, tc) < 0)
1208 return EIO;
1209 return 0;
1210 }
1211
1212 int
1213 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1214 {
1215
1216 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1217 if (sbdsp_wdsp(sc, cmd) < 0 ||
1218 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1219 sbdsp_wdsp(sc, rate) < 0)
1220 return EIO;
1221 return 0;
1222 }
1223
1224 int
1225 sbdsp_trigger_input(
1226 void *addr,
1227 void *start, void *end,
1228 int blksize,
1229 void (*intr)(void *),
1230 void *arg,
1231 const audio_params_t *param)
1232 {
1233 struct sbdsp_softc *sc;
1234 int stereo;
1235 int width;
1236 int filter;
1237
1238 sc = addr;
1239 stereo = param->channels == 2;
1240 width = param->precision;
1241 #ifdef DIAGNOSTIC
1242 if (stereo && (blksize & 1)) {
1243 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1244 return EIO;
1245 }
1246 if (sc->sc_i.run != SB_NOTRUNNING)
1247 printf("sbdsp_trigger_input: already running\n");
1248 #endif
1249
1250 sc->sc_intrr = intr;
1251 sc->sc_argr = arg;
1252
1253 if (width == 8) {
1254 #ifdef DIAGNOSTIC
1255 if (sc->sc_i.dmachan != sc->sc_drq8) {
1256 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1257 width, sc->sc_i.dmachan);
1258 return EIO;
1259 }
1260 #endif
1261 sc->sc_intr8 = sbdsp_block_input;
1262 } else {
1263 #ifdef DIAGNOSTIC
1264 if (sc->sc_i.dmachan != sc->sc_drq16) {
1265 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1266 width, sc->sc_i.dmachan);
1267 return EIO;
1268 }
1269 #endif
1270 sc->sc_intr16 = sbdsp_block_input;
1271 }
1272
1273 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1274 blksize >>= 1;
1275 --blksize;
1276 sc->sc_i.blksize = blksize;
1277
1278 if (ISSBPRO(sc)) {
1279 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1280 return EIO;
1281 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1282 sbdsp_mix_write(sc, SBP_INFILTER,
1283 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1284 filter);
1285 }
1286
1287 if (ISSB16CLASS(sc)) {
1288 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1289 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1290 sc->sc_i.rate));
1291 return EIO;
1292 }
1293 } else {
1294 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1295 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1296 sc->sc_i.rate));
1297 return EIO;
1298 }
1299 }
1300
1301 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1302 start, end, sc->sc_i.dmachan));
1303 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1304 (char *)end - (char *)start, NULL,
1305 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1306
1307 return sbdsp_block_input(addr);
1308 }
1309
1310 int
1311 sbdsp_block_input(void *addr)
1312 {
1313 struct sbdsp_softc *sc;
1314 int cc;
1315
1316 sc = addr;
1317 cc = sc->sc_i.blksize;
1318 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1319
1320 if (sc->sc_i.run != SB_NOTRUNNING)
1321 sc->sc_intrr(sc->sc_argr);
1322
1323 if (sc->sc_model == SB_1) {
1324 /* Non-looping mode, start DMA */
1325 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1326 sbdsp_wdsp(sc, cc) < 0 ||
1327 sbdsp_wdsp(sc, cc >> 8) < 0) {
1328 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1329 return EIO;
1330 }
1331 sc->sc_i.run = SB_RUNNING;
1332 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1333 /* Initialize looping PCM */
1334 if (ISSB16CLASS(sc)) {
1335 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1336 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1337 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1338 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1339 sbdsp_wdsp(sc, cc) < 0 ||
1340 sbdsp_wdsp(sc, cc >> 8) < 0) {
1341 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1342 return EIO;
1343 }
1344 } else {
1345 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1346 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1347 sbdsp_wdsp(sc, cc) < 0 ||
1348 sbdsp_wdsp(sc, cc >> 8) < 0) {
1349 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1350 return EIO;
1351 }
1352 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1353 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1354 return EIO;
1355 }
1356 }
1357 sc->sc_i.run = SB_LOOPING;
1358 }
1359
1360 return 0;
1361 }
1362
1363 int
1364 sbdsp_trigger_output(
1365 void *addr,
1366 void *start, void *end,
1367 int blksize,
1368 void (*intr)(void *),
1369 void *arg,
1370 const audio_params_t *param)
1371 {
1372 struct sbdsp_softc *sc;
1373 int stereo;
1374 int width;
1375 int cmd;
1376
1377 sc = addr;
1378 stereo = param->channels == 2;
1379 width = param->precision;
1380 #ifdef DIAGNOSTIC
1381 if (stereo && (blksize & 1)) {
1382 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1383 return EIO;
1384 }
1385 if (sc->sc_o.run != SB_NOTRUNNING)
1386 printf("sbdsp_trigger_output: already running\n");
1387 #endif
1388
1389 sc->sc_intrp = intr;
1390 sc->sc_argp = arg;
1391
1392 if (width == 8) {
1393 #ifdef DIAGNOSTIC
1394 if (sc->sc_o.dmachan != sc->sc_drq8) {
1395 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1396 width, sc->sc_o.dmachan);
1397 return EIO;
1398 }
1399 #endif
1400 sc->sc_intr8 = sbdsp_block_output;
1401 } else {
1402 #ifdef DIAGNOSTIC
1403 if (sc->sc_o.dmachan != sc->sc_drq16) {
1404 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1405 width, sc->sc_o.dmachan);
1406 return EIO;
1407 }
1408 #endif
1409 sc->sc_intr16 = sbdsp_block_output;
1410 }
1411
1412 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1413 blksize >>= 1;
1414 --blksize;
1415 sc->sc_o.blksize = blksize;
1416
1417 if (ISSBPRO(sc)) {
1418 /* make sure we re-set stereo mixer bit when we start output. */
1419 sbdsp_mix_write(sc, SBP_STEREO,
1420 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1421 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1422 cmd = sc->sc_o.modep->cmdchan;
1423 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1424 return EIO;
1425 }
1426
1427 if (ISSB16CLASS(sc)) {
1428 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1429 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1430 sc->sc_o.rate));
1431 return EIO;
1432 }
1433 } else {
1434 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1435 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1436 sc->sc_o.rate));
1437 return EIO;
1438 }
1439 }
1440
1441 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1442 start, end, sc->sc_o.dmachan));
1443 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1444 (char *)end - (char *)start, NULL,
1445 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1446
1447 return sbdsp_block_output(addr);
1448 }
1449
1450 int
1451 sbdsp_block_output(void *addr)
1452 {
1453 struct sbdsp_softc *sc;
1454 int cc;
1455
1456 sc = addr;
1457 cc = sc->sc_o.blksize;
1458 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1459
1460 if (sc->sc_o.run != SB_NOTRUNNING)
1461 sc->sc_intrp(sc->sc_argp);
1462
1463 if (sc->sc_model == SB_1) {
1464 /* Non-looping mode, initialized. Start DMA and PCM */
1465 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1466 sbdsp_wdsp(sc, cc) < 0 ||
1467 sbdsp_wdsp(sc, cc >> 8) < 0) {
1468 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1469 return EIO;
1470 }
1471 sc->sc_o.run = SB_RUNNING;
1472 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1473 /* Initialize looping PCM */
1474 if (ISSB16CLASS(sc)) {
1475 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1476 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1477 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1478 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1479 sbdsp_wdsp(sc, cc) < 0 ||
1480 sbdsp_wdsp(sc, cc >> 8) < 0) {
1481 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1482 return EIO;
1483 }
1484 } else {
1485 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1486 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1487 sbdsp_wdsp(sc, cc) < 0 ||
1488 sbdsp_wdsp(sc, cc >> 8) < 0) {
1489 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1490 return EIO;
1491 }
1492 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1493 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1494 return EIO;
1495 }
1496 }
1497 sc->sc_o.run = SB_LOOPING;
1498 }
1499
1500 return 0;
1501 }
1502
1503 int
1504 sbdsp_halt_output(void *addr)
1505 {
1506 struct sbdsp_softc *sc;
1507
1508 sc = addr;
1509 if (sc->sc_o.run != SB_NOTRUNNING) {
1510 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1511 printf("sbdsp_halt_output: failed to halt\n");
1512 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1513 sc->sc_o.run = SB_NOTRUNNING;
1514 }
1515 return 0;
1516 }
1517
1518 int
1519 sbdsp_halt_input(void *addr)
1520 {
1521 struct sbdsp_softc *sc;
1522
1523 sc = addr;
1524 if (sc->sc_i.run != SB_NOTRUNNING) {
1525 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1526 printf("sbdsp_halt_input: failed to halt\n");
1527 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1528 sc->sc_i.run = SB_NOTRUNNING;
1529 }
1530 return 0;
1531 }
1532
1533 /*
1534 * Only the DSP unit on the sound blaster generates interrupts.
1535 * There are three cases of interrupt: reception of a midi byte
1536 * (when mode is enabled), completion of DMA transmission, or
1537 * completion of a DMA reception.
1538 *
1539 * If there is interrupt sharing or a spurious interrupt occurs
1540 * there is no way to distinguish this on an SB2. So if you have
1541 * an SB2 and experience problems, buy an SB16 (it's only $40).
1542 */
1543 int
1544 sbdsp_intr(void *arg)
1545 {
1546 struct sbdsp_softc *sc = arg;
1547 #if NMPU > 0
1548 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
1549 #endif
1550 u_char irq;
1551
1552 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1553 sc->sc_intr8, sc->sc_intr16));
1554
1555 mutex_spin_enter(&sc->sc_intr_lock);
1556 if (ISSB16CLASS(sc)) {
1557 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1558 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1559 mutex_spin_exit(&sc->sc_intr_lock);
1560 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1561 return 0;
1562 }
1563 } else {
1564 /* XXXX CHECK FOR INTERRUPT */
1565 irq = SBP_IRQ_DMA8;
1566 }
1567
1568 sc->sc_interrupts++;
1569 delay(10); /* XXX why? */
1570
1571 /* clear interrupt */
1572 if (irq & SBP_IRQ_DMA8) {
1573 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1574 if (sc->sc_intr8)
1575 sc->sc_intr8(arg);
1576 }
1577 if (irq & SBP_IRQ_DMA16) {
1578 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1579 if (sc->sc_intr16)
1580 sc->sc_intr16(arg);
1581 }
1582 #if NMPU > 0
1583 if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
1584 mpu_intr(sc_mpu);
1585 }
1586 #endif
1587
1588 mutex_spin_exit(&sc->sc_intr_lock);
1589 return 1;
1590 }
1591
1592 /* Like val & mask, but make sure the result is correctly rounded. */
1593 #define MAXVAL 256
1594 static int
1595 sbdsp_adjust(int val, int mask)
1596 {
1597
1598 val += (MAXVAL - mask) >> 1;
1599 if (val >= MAXVAL)
1600 val = MAXVAL-1;
1601 return val & mask;
1602 }
1603
1604 void
1605 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1606 {
1607 int src, gain;
1608
1609 KASSERT(mutex_owned(&sc->sc_lock));
1610 KASSERT(mutex_owned(&sc->sc_intr_lock));
1611
1612 switch(sc->sc_mixer_model) {
1613 case SBM_NONE:
1614 return;
1615 case SBM_CT1335:
1616 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1617 switch(port) {
1618 case SB_MASTER_VOL:
1619 src = SBP_1335_MASTER_VOL;
1620 break;
1621 case SB_MIDI_VOL:
1622 src = SBP_1335_MIDI_VOL;
1623 break;
1624 case SB_CD_VOL:
1625 src = SBP_1335_CD_VOL;
1626 break;
1627 case SB_VOICE_VOL:
1628 src = SBP_1335_VOICE_VOL;
1629 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1630 break;
1631 default:
1632 return;
1633 }
1634 sbdsp_mix_write(sc, src, gain);
1635 break;
1636 case SBM_CT1345:
1637 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1638 sc->gain[port][SB_RIGHT]);
1639 switch (port) {
1640 case SB_MIC_VOL:
1641 src = SBP_MIC_VOL;
1642 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1643 break;
1644 case SB_MASTER_VOL:
1645 src = SBP_MASTER_VOL;
1646 break;
1647 case SB_LINE_IN_VOL:
1648 src = SBP_LINE_VOL;
1649 break;
1650 case SB_VOICE_VOL:
1651 src = SBP_VOICE_VOL;
1652 break;
1653 case SB_MIDI_VOL:
1654 src = SBP_MIDI_VOL;
1655 break;
1656 case SB_CD_VOL:
1657 src = SBP_CD_VOL;
1658 break;
1659 default:
1660 return;
1661 }
1662 sbdsp_mix_write(sc, src, gain);
1663 break;
1664 case SBM_CT1XX5:
1665 case SBM_CT1745:
1666 switch (port) {
1667 case SB_MIC_VOL:
1668 src = SB16P_MIC_L;
1669 break;
1670 case SB_MASTER_VOL:
1671 src = SB16P_MASTER_L;
1672 break;
1673 case SB_LINE_IN_VOL:
1674 src = SB16P_LINE_L;
1675 break;
1676 case SB_VOICE_VOL:
1677 src = SB16P_VOICE_L;
1678 break;
1679 case SB_MIDI_VOL:
1680 src = SB16P_MIDI_L;
1681 break;
1682 case SB_CD_VOL:
1683 src = SB16P_CD_L;
1684 break;
1685 case SB_INPUT_GAIN:
1686 src = SB16P_INPUT_GAIN_L;
1687 break;
1688 case SB_OUTPUT_GAIN:
1689 src = SB16P_OUTPUT_GAIN_L;
1690 break;
1691 case SB_TREBLE:
1692 src = SB16P_TREBLE_L;
1693 break;
1694 case SB_BASS:
1695 src = SB16P_BASS_L;
1696 break;
1697 case SB_PCSPEAKER:
1698 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1699 return;
1700 default:
1701 return;
1702 }
1703 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1704 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1705 break;
1706 }
1707 }
1708
1709 int
1710 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1711 {
1712 struct sbdsp_softc *sc;
1713 int lgain, rgain;
1714 int mask, bits;
1715 int lmask, rmask, lbits, rbits;
1716 int mute, swap;
1717 int error;
1718
1719 sc = addr;
1720
1721 KASSERT(mutex_owned(&sc->sc_lock));
1722
1723 if (sc->sc_open == SB_OPEN_MIDI)
1724 return EBUSY;
1725
1726 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1727 cp->un.value.num_channels));
1728
1729 if (sc->sc_mixer_model == SBM_NONE)
1730 return EINVAL;
1731
1732 mutex_spin_enter(&sc->sc_intr_lock);
1733 error = 0;
1734
1735 switch (cp->dev) {
1736 case SB_TREBLE:
1737 case SB_BASS:
1738 if (sc->sc_mixer_model == SBM_CT1345 ||
1739 sc->sc_mixer_model == SBM_CT1XX5) {
1740 if (cp->type != AUDIO_MIXER_ENUM) {
1741 mutex_spin_exit(&sc->sc_intr_lock);
1742 return EINVAL;
1743 }
1744 switch (cp->dev) {
1745 case SB_TREBLE:
1746 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1747 mutex_spin_exit(&sc->sc_intr_lock);
1748 return 0;
1749 case SB_BASS:
1750 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1751 mutex_spin_exit(&sc->sc_intr_lock);
1752 return 0;
1753 }
1754 }
1755 case SB_PCSPEAKER:
1756 case SB_INPUT_GAIN:
1757 case SB_OUTPUT_GAIN:
1758 if (!ISSBM1745(sc)) {
1759 error = EINVAL;
1760 break;
1761 }
1762 case SB_MIC_VOL:
1763 case SB_LINE_IN_VOL:
1764 if (sc->sc_mixer_model == SBM_CT1335) {
1765 error = EINVAL;
1766 break;
1767 }
1768 case SB_VOICE_VOL:
1769 case SB_MIDI_VOL:
1770 case SB_CD_VOL:
1771 case SB_MASTER_VOL:
1772 if (cp->type != AUDIO_MIXER_VALUE) {
1773 error = EINVAL;
1774 break;
1775 }
1776
1777 /*
1778 * All the mixer ports are stereo except for the microphone.
1779 * If we get a single-channel gain value passed in, then we
1780 * duplicate it to both left and right channels.
1781 */
1782
1783 switch (cp->dev) {
1784 case SB_MIC_VOL:
1785 if (cp->un.value.num_channels != 1) {
1786 error = EINVAL;
1787 break;
1788 }
1789
1790 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1791 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1792 break;
1793 case SB_PCSPEAKER:
1794 if (cp->un.value.num_channels != 1) {
1795 error = EINVAL;
1796 break;
1797 }
1798 /* fall into */
1799 case SB_INPUT_GAIN:
1800 case SB_OUTPUT_GAIN:
1801 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1802 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1803 break;
1804 default:
1805 switch (cp->un.value.num_channels) {
1806 case 1:
1807 lgain = rgain = SB_ADJUST_GAIN(sc,
1808 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1809 break;
1810 case 2:
1811 if (sc->sc_mixer_model == SBM_CT1335) {
1812 error = EINVAL;
1813 break;
1814 }
1815 lgain = SB_ADJUST_GAIN(sc,
1816 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1817 rgain = SB_ADJUST_GAIN(sc,
1818 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1819 break;
1820 default:
1821 error = EINVAL;
1822 break;
1823 }
1824 break;
1825 }
1826 if (error == 0) {
1827 sc->gain[cp->dev][SB_LEFT] = lgain;
1828 sc->gain[cp->dev][SB_RIGHT] = rgain;
1829 sbdsp_set_mixer_gain(sc, cp->dev);
1830 }
1831 break;
1832
1833 case SB_RECORD_SOURCE:
1834 if (ISSBM1745(sc)) {
1835 if (cp->type != AUDIO_MIXER_SET)
1836 error = EINVAL;
1837 else
1838 error = sbdsp_set_in_ports(sc, cp->un.mask);
1839 } else {
1840 if (cp->type != AUDIO_MIXER_ENUM)
1841 error = EINVAL;
1842 else {
1843 sc->in_port = cp->un.ord;
1844 error = sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1845 }
1846 }
1847 break;
1848
1849 case SB_AGC:
1850 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1851 error = EINVAL;
1852 else
1853 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1854 break;
1855
1856 case SB_CD_OUT_MUTE:
1857 mask = SB16P_SW_CD;
1858 goto omute;
1859 case SB_MIC_OUT_MUTE:
1860 mask = SB16P_SW_MIC;
1861 goto omute;
1862 case SB_LINE_OUT_MUTE:
1863 mask = SB16P_SW_LINE;
1864 omute:
1865 if (cp->type != AUDIO_MIXER_ENUM) {
1866 error = EINVAL;
1867 break;
1868 }
1869 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1870 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1871 if (cp->un.ord)
1872 bits = bits & ~mask;
1873 else
1874 bits = bits | mask;
1875 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1876 break;
1877
1878 case SB_MIC_IN_MUTE:
1879 case SB_MIC_SWAP:
1880 lmask = rmask = SB16P_SW_MIC;
1881 goto imute;
1882 case SB_CD_IN_MUTE:
1883 case SB_CD_SWAP:
1884 lmask = SB16P_SW_CD_L;
1885 rmask = SB16P_SW_CD_R;
1886 goto imute;
1887 case SB_LINE_IN_MUTE:
1888 case SB_LINE_SWAP:
1889 lmask = SB16P_SW_LINE_L;
1890 rmask = SB16P_SW_LINE_R;
1891 goto imute;
1892 case SB_MIDI_IN_MUTE:
1893 case SB_MIDI_SWAP:
1894 lmask = SB16P_SW_MIDI_L;
1895 rmask = SB16P_SW_MIDI_R;
1896 imute:
1897 if (cp->type != AUDIO_MIXER_ENUM) {
1898 error = EINVAL;
1899 break;
1900 }
1901 mask = lmask | rmask;
1902 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1903 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1904 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1905 if (SB_IS_IN_MUTE(cp->dev)) {
1906 mute = cp->dev;
1907 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1908 } else {
1909 swap = cp->dev;
1910 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1911 }
1912 if (sc->gain[swap][SB_LR]) {
1913 mask = lmask;
1914 lmask = rmask;
1915 rmask = mask;
1916 }
1917 if (!sc->gain[mute][SB_LR]) {
1918 lbits = lbits | lmask;
1919 rbits = rbits | rmask;
1920 }
1921 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1922 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1923 break;
1924
1925 default:
1926 error = EINVAL;
1927 break;
1928 }
1929
1930 mutex_spin_exit(&sc->sc_intr_lock);
1931 return error;
1932 }
1933
1934 int
1935 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1936 {
1937 struct sbdsp_softc *sc;
1938
1939 sc = addr;
1940
1941 KASSERT(mutex_owned(&sc->sc_lock));
1942
1943 if (sc->sc_open == SB_OPEN_MIDI)
1944 return EBUSY;
1945
1946 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1947
1948 if (sc->sc_mixer_model == SBM_NONE)
1949 return EINVAL;
1950
1951 mutex_spin_enter(&sc->sc_intr_lock);
1952
1953 switch (cp->dev) {
1954 case SB_TREBLE:
1955 case SB_BASS:
1956 if (sc->sc_mixer_model == SBM_CT1345 ||
1957 sc->sc_mixer_model == SBM_CT1XX5) {
1958 switch (cp->dev) {
1959 case SB_TREBLE:
1960 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1961 mutex_spin_exit(&sc->sc_intr_lock);
1962 return 0;
1963 case SB_BASS:
1964 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1965 mutex_spin_exit(&sc->sc_intr_lock);
1966 return 0;
1967 }
1968 }
1969 case SB_PCSPEAKER:
1970 case SB_INPUT_GAIN:
1971 case SB_OUTPUT_GAIN:
1972 if (!ISSBM1745(sc)) {
1973 mutex_spin_exit(&sc->sc_intr_lock);
1974 return EINVAL;
1975 }
1976 case SB_MIC_VOL:
1977 case SB_LINE_IN_VOL:
1978 if (sc->sc_mixer_model == SBM_CT1335) {
1979 mutex_spin_exit(&sc->sc_intr_lock);
1980 return EINVAL;
1981 }
1982 case SB_VOICE_VOL:
1983 case SB_MIDI_VOL:
1984 case SB_CD_VOL:
1985 case SB_MASTER_VOL:
1986 switch (cp->dev) {
1987 case SB_MIC_VOL:
1988 case SB_PCSPEAKER:
1989 if (cp->un.value.num_channels != 1) {
1990 mutex_spin_exit(&sc->sc_intr_lock);
1991 return EINVAL;
1992 }
1993 /* fall into */
1994 default:
1995 switch (cp->un.value.num_channels) {
1996 case 1:
1997 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1998 sc->gain[cp->dev][SB_LEFT];
1999 break;
2000 case 2:
2001 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
2002 sc->gain[cp->dev][SB_LEFT];
2003 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
2004 sc->gain[cp->dev][SB_RIGHT];
2005 break;
2006 default:
2007 mutex_spin_exit(&sc->sc_intr_lock);
2008 return EINVAL;
2009 }
2010 break;
2011 }
2012 break;
2013
2014 case SB_RECORD_SOURCE:
2015 if (ISSBM1745(sc))
2016 cp->un.mask = sc->in_mask;
2017 else
2018 cp->un.ord = sc->in_port;
2019 break;
2020
2021 case SB_AGC:
2022 if (!ISSBM1745(sc)) {
2023 mutex_spin_exit(&sc->sc_intr_lock);
2024 return EINVAL;
2025 }
2026 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2027 break;
2028
2029 case SB_CD_IN_MUTE:
2030 case SB_MIC_IN_MUTE:
2031 case SB_LINE_IN_MUTE:
2032 case SB_MIDI_IN_MUTE:
2033 case SB_CD_SWAP:
2034 case SB_MIC_SWAP:
2035 case SB_LINE_SWAP:
2036 case SB_MIDI_SWAP:
2037 case SB_CD_OUT_MUTE:
2038 case SB_MIC_OUT_MUTE:
2039 case SB_LINE_OUT_MUTE:
2040 cp->un.ord = sc->gain[cp->dev][SB_LR];
2041 break;
2042
2043 default:
2044 mutex_spin_exit(&sc->sc_intr_lock);
2045 return EINVAL;
2046 }
2047
2048 mutex_spin_exit(&sc->sc_intr_lock);
2049
2050 return 0;
2051 }
2052
2053 int
2054 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
2055 {
2056 struct sbdsp_softc *sc = addr;
2057 int chan, class, is1745;
2058
2059 sc = addr;
2060 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2061 sc->sc_mixer_model, dip->index));
2062
2063 KASSERT(mutex_owned(&sc->sc_lock));
2064
2065 if (sc->sc_mixer_model == SBM_NONE)
2066 return ENXIO;
2067
2068 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2069 is1745 = ISSBM1745(sc);
2070 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2071
2072 switch (dip->index) {
2073 case SB_MASTER_VOL:
2074 dip->type = AUDIO_MIXER_VALUE;
2075 dip->mixer_class = SB_OUTPUT_CLASS;
2076 dip->prev = dip->next = AUDIO_MIXER_LAST;
2077 strcpy(dip->label.name, AudioNmaster);
2078 dip->un.v.num_channels = chan;
2079 strcpy(dip->un.v.units.name, AudioNvolume);
2080 return 0;
2081 case SB_MIDI_VOL:
2082 dip->type = AUDIO_MIXER_VALUE;
2083 dip->mixer_class = class;
2084 dip->prev = AUDIO_MIXER_LAST;
2085 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2086 strcpy(dip->label.name, AudioNfmsynth);
2087 dip->un.v.num_channels = chan;
2088 strcpy(dip->un.v.units.name, AudioNvolume);
2089 return 0;
2090 case SB_CD_VOL:
2091 dip->type = AUDIO_MIXER_VALUE;
2092 dip->mixer_class = class;
2093 dip->prev = AUDIO_MIXER_LAST;
2094 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2095 strcpy(dip->label.name, AudioNcd);
2096 dip->un.v.num_channels = chan;
2097 strcpy(dip->un.v.units.name, AudioNvolume);
2098 return 0;
2099 case SB_VOICE_VOL:
2100 dip->type = AUDIO_MIXER_VALUE;
2101 dip->mixer_class = class;
2102 dip->prev = AUDIO_MIXER_LAST;
2103 dip->next = AUDIO_MIXER_LAST;
2104 strcpy(dip->label.name, AudioNdac);
2105 dip->un.v.num_channels = chan;
2106 strcpy(dip->un.v.units.name, AudioNvolume);
2107 return 0;
2108 case SB_OUTPUT_CLASS:
2109 dip->type = AUDIO_MIXER_CLASS;
2110 dip->mixer_class = SB_OUTPUT_CLASS;
2111 dip->next = dip->prev = AUDIO_MIXER_LAST;
2112 strcpy(dip->label.name, AudioCoutputs);
2113 return 0;
2114 }
2115
2116 if (sc->sc_mixer_model == SBM_CT1335)
2117 return ENXIO;
2118
2119 switch (dip->index) {
2120 case SB_MIC_VOL:
2121 dip->type = AUDIO_MIXER_VALUE;
2122 dip->mixer_class = class;
2123 dip->prev = AUDIO_MIXER_LAST;
2124 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2125 strcpy(dip->label.name, AudioNmicrophone);
2126 dip->un.v.num_channels = 1;
2127 strcpy(dip->un.v.units.name, AudioNvolume);
2128 return 0;
2129
2130 case SB_LINE_IN_VOL:
2131 dip->type = AUDIO_MIXER_VALUE;
2132 dip->mixer_class = class;
2133 dip->prev = AUDIO_MIXER_LAST;
2134 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2135 strcpy(dip->label.name, AudioNline);
2136 dip->un.v.num_channels = 2;
2137 strcpy(dip->un.v.units.name, AudioNvolume);
2138 return 0;
2139
2140 case SB_RECORD_SOURCE:
2141 dip->mixer_class = SB_RECORD_CLASS;
2142 dip->prev = dip->next = AUDIO_MIXER_LAST;
2143 strcpy(dip->label.name, AudioNsource);
2144 if (ISSBM1745(sc)) {
2145 dip->type = AUDIO_MIXER_SET;
2146 dip->un.s.num_mem = 4;
2147 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2148 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2149 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2150 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2151 strcpy(dip->un.s.member[2].label.name, AudioNline);
2152 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2153 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2154 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2155 } else {
2156 dip->type = AUDIO_MIXER_ENUM;
2157 dip->un.e.num_mem = 3;
2158 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2159 dip->un.e.member[0].ord = SB_MIC_VOL;
2160 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2161 dip->un.e.member[1].ord = SB_CD_VOL;
2162 strcpy(dip->un.e.member[2].label.name, AudioNline);
2163 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2164 }
2165 return 0;
2166
2167 case SB_BASS:
2168 dip->prev = dip->next = AUDIO_MIXER_LAST;
2169 strcpy(dip->label.name, AudioNbass);
2170 if (sc->sc_mixer_model == SBM_CT1745) {
2171 dip->type = AUDIO_MIXER_VALUE;
2172 dip->mixer_class = SB_EQUALIZATION_CLASS;
2173 dip->un.v.num_channels = 2;
2174 strcpy(dip->un.v.units.name, AudioNbass);
2175 } else {
2176 dip->type = AUDIO_MIXER_ENUM;
2177 dip->mixer_class = SB_INPUT_CLASS;
2178 dip->un.e.num_mem = 2;
2179 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2180 dip->un.e.member[0].ord = 0;
2181 strcpy(dip->un.e.member[1].label.name, AudioNon);
2182 dip->un.e.member[1].ord = 1;
2183 }
2184 return 0;
2185
2186 case SB_TREBLE:
2187 dip->prev = dip->next = AUDIO_MIXER_LAST;
2188 strcpy(dip->label.name, AudioNtreble);
2189 if (sc->sc_mixer_model == SBM_CT1745) {
2190 dip->type = AUDIO_MIXER_VALUE;
2191 dip->mixer_class = SB_EQUALIZATION_CLASS;
2192 dip->un.v.num_channels = 2;
2193 strcpy(dip->un.v.units.name, AudioNtreble);
2194 } else {
2195 dip->type = AUDIO_MIXER_ENUM;
2196 dip->mixer_class = SB_INPUT_CLASS;
2197 dip->un.e.num_mem = 2;
2198 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2199 dip->un.e.member[0].ord = 0;
2200 strcpy(dip->un.e.member[1].label.name, AudioNon);
2201 dip->un.e.member[1].ord = 1;
2202 }
2203 return 0;
2204
2205 case SB_RECORD_CLASS: /* record source class */
2206 dip->type = AUDIO_MIXER_CLASS;
2207 dip->mixer_class = SB_RECORD_CLASS;
2208 dip->next = dip->prev = AUDIO_MIXER_LAST;
2209 strcpy(dip->label.name, AudioCrecord);
2210 return 0;
2211
2212 case SB_INPUT_CLASS:
2213 dip->type = AUDIO_MIXER_CLASS;
2214 dip->mixer_class = SB_INPUT_CLASS;
2215 dip->next = dip->prev = AUDIO_MIXER_LAST;
2216 strcpy(dip->label.name, AudioCinputs);
2217 return 0;
2218
2219 }
2220
2221 if (sc->sc_mixer_model == SBM_CT1345)
2222 return ENXIO;
2223
2224 switch(dip->index) {
2225 case SB_PCSPEAKER:
2226 dip->type = AUDIO_MIXER_VALUE;
2227 dip->mixer_class = SB_INPUT_CLASS;
2228 dip->prev = dip->next = AUDIO_MIXER_LAST;
2229 strcpy(dip->label.name, "pc_speaker");
2230 dip->un.v.num_channels = 1;
2231 strcpy(dip->un.v.units.name, AudioNvolume);
2232 return 0;
2233
2234 case SB_INPUT_GAIN:
2235 dip->type = AUDIO_MIXER_VALUE;
2236 dip->mixer_class = SB_INPUT_CLASS;
2237 dip->prev = dip->next = AUDIO_MIXER_LAST;
2238 strcpy(dip->label.name, AudioNinput);
2239 dip->un.v.num_channels = 2;
2240 strcpy(dip->un.v.units.name, AudioNvolume);
2241 return 0;
2242
2243 case SB_OUTPUT_GAIN:
2244 dip->type = AUDIO_MIXER_VALUE;
2245 dip->mixer_class = SB_OUTPUT_CLASS;
2246 dip->prev = dip->next = AUDIO_MIXER_LAST;
2247 strcpy(dip->label.name, AudioNoutput);
2248 dip->un.v.num_channels = 2;
2249 strcpy(dip->un.v.units.name, AudioNvolume);
2250 return 0;
2251
2252 case SB_AGC:
2253 dip->type = AUDIO_MIXER_ENUM;
2254 dip->mixer_class = SB_INPUT_CLASS;
2255 dip->prev = dip->next = AUDIO_MIXER_LAST;
2256 strcpy(dip->label.name, "agc");
2257 dip->un.e.num_mem = 2;
2258 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2259 dip->un.e.member[0].ord = 0;
2260 strcpy(dip->un.e.member[1].label.name, AudioNon);
2261 dip->un.e.member[1].ord = 1;
2262 return 0;
2263
2264 case SB_EQUALIZATION_CLASS:
2265 dip->type = AUDIO_MIXER_CLASS;
2266 dip->mixer_class = SB_EQUALIZATION_CLASS;
2267 dip->next = dip->prev = AUDIO_MIXER_LAST;
2268 strcpy(dip->label.name, AudioCequalization);
2269 return 0;
2270
2271 case SB_CD_IN_MUTE:
2272 dip->prev = SB_CD_VOL;
2273 dip->next = SB_CD_SWAP;
2274 dip->mixer_class = SB_INPUT_CLASS;
2275 goto mute;
2276
2277 case SB_MIC_IN_MUTE:
2278 dip->prev = SB_MIC_VOL;
2279 dip->next = SB_MIC_SWAP;
2280 dip->mixer_class = SB_INPUT_CLASS;
2281 goto mute;
2282
2283 case SB_LINE_IN_MUTE:
2284 dip->prev = SB_LINE_IN_VOL;
2285 dip->next = SB_LINE_SWAP;
2286 dip->mixer_class = SB_INPUT_CLASS;
2287 goto mute;
2288
2289 case SB_MIDI_IN_MUTE:
2290 dip->prev = SB_MIDI_VOL;
2291 dip->next = SB_MIDI_SWAP;
2292 dip->mixer_class = SB_INPUT_CLASS;
2293 goto mute;
2294
2295 case SB_CD_SWAP:
2296 dip->prev = SB_CD_IN_MUTE;
2297 dip->next = SB_CD_OUT_MUTE;
2298 goto swap;
2299
2300 case SB_MIC_SWAP:
2301 dip->prev = SB_MIC_IN_MUTE;
2302 dip->next = SB_MIC_OUT_MUTE;
2303 goto swap;
2304
2305 case SB_LINE_SWAP:
2306 dip->prev = SB_LINE_IN_MUTE;
2307 dip->next = SB_LINE_OUT_MUTE;
2308 goto swap;
2309
2310 case SB_MIDI_SWAP:
2311 dip->prev = SB_MIDI_IN_MUTE;
2312 dip->next = AUDIO_MIXER_LAST;
2313 swap:
2314 dip->mixer_class = SB_INPUT_CLASS;
2315 strcpy(dip->label.name, AudioNswap);
2316 goto mute1;
2317
2318 case SB_CD_OUT_MUTE:
2319 dip->prev = SB_CD_SWAP;
2320 dip->next = AUDIO_MIXER_LAST;
2321 dip->mixer_class = SB_OUTPUT_CLASS;
2322 goto mute;
2323
2324 case SB_MIC_OUT_MUTE:
2325 dip->prev = SB_MIC_SWAP;
2326 dip->next = AUDIO_MIXER_LAST;
2327 dip->mixer_class = SB_OUTPUT_CLASS;
2328 goto mute;
2329
2330 case SB_LINE_OUT_MUTE:
2331 dip->prev = SB_LINE_SWAP;
2332 dip->next = AUDIO_MIXER_LAST;
2333 dip->mixer_class = SB_OUTPUT_CLASS;
2334 mute:
2335 strcpy(dip->label.name, AudioNmute);
2336 mute1:
2337 dip->type = AUDIO_MIXER_ENUM;
2338 dip->un.e.num_mem = 2;
2339 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2340 dip->un.e.member[0].ord = 0;
2341 strcpy(dip->un.e.member[1].label.name, AudioNon);
2342 dip->un.e.member[1].ord = 1;
2343 return 0;
2344
2345 }
2346
2347 return ENXIO;
2348 }
2349
2350 void *
2351 sb_malloc(void *addr, int direction, size_t size)
2352 {
2353 struct sbdsp_softc *sc;
2354 int drq;
2355
2356 sc = addr;
2357 if (sc->sc_drq8 != -1)
2358 drq = sc->sc_drq8;
2359 else
2360 drq = sc->sc_drq16;
2361 return isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK);
2362 }
2363
2364 void
2365 sb_free(void *addr, void *ptr, size_t size)
2366 {
2367
2368 isa_free(ptr, M_DEVBUF);
2369 }
2370
2371 size_t
2372 sb_round_buffersize(void *addr, int direction, size_t size)
2373 {
2374 struct sbdsp_softc *sc;
2375 bus_size_t maxsize;
2376
2377 sc = addr;
2378 if (sc->sc_drq8 != -1)
2379 maxsize = sc->sc_drq8_maxsize;
2380 else
2381 maxsize = sc->sc_drq16_maxsize;
2382
2383 if (size > maxsize)
2384 size = maxsize;
2385 return size;
2386 }
2387
2388 paddr_t
2389 sb_mappage(void *addr, void *mem, off_t off, int prot)
2390 {
2391
2392 return isa_mappage(mem, off, prot);
2393 }
2394
2395 int
2396 sbdsp_get_props(void *addr)
2397 {
2398 struct sbdsp_softc *sc;
2399
2400 sc = addr;
2401 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2402 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2403 }
2404
2405 void
2406 sbdsp_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
2407 {
2408 struct sbdsp_softc *sc;
2409
2410 sc = addr;
2411 *intr = &sc->sc_intr_lock;
2412 *proc = &sc->sc_lock;
2413 }
2414
2415 #if NMPU > 0
2416 /*
2417 * MIDI related routines.
2418 */
2419
2420 int
2421 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2422 void (*ointr)(void *), void *arg)
2423 {
2424 struct sbdsp_softc *sc;
2425
2426 sc = addr;
2427 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2428
2429 if (sc->sc_open != SB_CLOSED)
2430 return EBUSY;
2431 if (sbdsp_reset(sc) != 0)
2432 return EIO;
2433
2434 sc->sc_open = SB_OPEN_MIDI;
2435
2436 if (sc->sc_model >= SB_20)
2437 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2438 return EIO;
2439
2440 sc->sc_intr8 = sbdsp_midi_intr;
2441 sc->sc_intrm = iintr;
2442 sc->sc_argm = arg;
2443
2444 return 0;
2445 }
2446
2447 void
2448 sbdsp_midi_close(void *addr)
2449 {
2450 struct sbdsp_softc *sc;
2451
2452 sc = addr;
2453 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2454
2455 if (sc->sc_model >= SB_20)
2456 sbdsp_reset(sc); /* exit UART mode */
2457
2458 sc->sc_intrm = 0;
2459 sc->sc_open = SB_CLOSED;
2460 }
2461
2462 int
2463 sbdsp_midi_output(void *addr, int d)
2464 {
2465 struct sbdsp_softc *sc;
2466
2467 sc = addr;
2468 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2469 return EIO;
2470 if (sbdsp_wdsp(sc, d))
2471 return EIO;
2472 return 0;
2473 }
2474
2475 void
2476 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2477 {
2478 struct sbdsp_softc *sc;
2479
2480 sc = addr;
2481 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2482 mi->props = MIDI_PROP_CAN_INPUT;
2483 }
2484
2485 int
2486 sbdsp_midi_intr(void *addr)
2487 {
2488 struct sbdsp_softc *sc;
2489
2490 sc = addr;
2491
2492 KASSERT(mutex_owned(&sc->sc_intr_lock));
2493
2494 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2495 return (0);
2496 }
2497 #endif
2498