sbdsp.c revision 1.136 1 /* $NetBSD: sbdsp.c,v 1.136 2016/07/11 11:31:50 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 */
65
66 /*
67 * SoundBlaster Pro code provided by John Kohl, based on lots of
68 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
69 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
70 * <sachs (at) meibm15.cen.uiuc.edu>.
71 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
72 * with information from SB "Hardware Programming Guide" and the
73 * Linux drivers.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.136 2016/07/11 11:31:50 msaitoh Exp $");
78
79 #include "midi.h"
80 #include "mpu.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/errno.h>
86 #include <sys/ioctl.h>
87 #include <sys/syslog.h>
88 #include <sys/device.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/malloc.h>
92 #include <sys/cpu.h>
93 #include <sys/intr.h>
94 #include <sys/bus.h>
95
96 #include <sys/audioio.h>
97 #include <dev/audio_if.h>
98 #include <dev/midi_if.h>
99 #include <dev/mulaw.h>
100 #include <dev/auconv.h>
101
102 #include <dev/isa/isavar.h>
103 #include <dev/isa/isadmavar.h>
104
105 #include <dev/isa/sbreg.h>
106 #include <dev/isa/sbdspvar.h>
107
108
109 #ifdef AUDIO_DEBUG
110 #define DPRINTF(x) if (sbdspdebug) printf x
111 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
112 int sbdspdebug = 0;
113 #else
114 #define DPRINTF(x)
115 #define DPRINTFN(n,x)
116 #endif
117
118 #ifndef SBDSP_NPOLL
119 #define SBDSP_NPOLL 3000
120 #endif
121
122 struct {
123 int wdsp;
124 int rdsp;
125 int wmidi;
126 } sberr;
127
128 /*
129 * Time constant routines follow. See SBK, section 12.
130 * Although they don't come out and say it (in the docs),
131 * the card clearly uses a 1MHz countdown timer, as the
132 * low-speed formula (p. 12-4) is:
133 * tc = 256 - 10^6 / sr
134 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
135 * and a 256MHz clock is used:
136 * tc = 65536 - 256 * 10^ 6 / sr
137 * Since we can only use the upper byte of the HS TC, the two formulae
138 * are equivalent. (Why didn't they say so?) E.g.,
139 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
140 *
141 * The crossover point (from low- to high-speed modes) is different
142 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
143 *
144 * SBPRO SB20
145 * ----- --------
146 * input ls min 4 kHz 4 kHz
147 * input ls max 23 kHz 13 kHz
148 * input hs max 44.1 kHz 15 kHz
149 * output ls min 4 kHz 4 kHz
150 * output ls max 23 kHz 23 kHz
151 * output hs max 44.1 kHz 44.1 kHz
152 */
153 /* XXX Should we round the tc?
154 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
155 */
156 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
157 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
158
159 struct sbmode {
160 short model;
161 u_char channels;
162 u_char precision;
163 u_short lowrate, highrate;
164 u_char cmd;
165 u_char halt, cont;
166 u_char cmdchan;
167 };
168 static struct sbmode sbpmodes[] = {
169 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
170 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
171 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
172 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
173 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
174 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
175 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
176 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
177 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
178 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
179 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
180 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
181 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
182 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
183 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
184 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
185 #define PLAY16 15 /* must be the index of the next entry in the table */
186 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
187 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
188 { .model = -1 }
189 };
190 static struct sbmode sbrmodes[] = {
191 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
193 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
194 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
195 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
196 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
197 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
198 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
199 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
201 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
202 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
203 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
204 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
205 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
206 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
207 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
208 { .model = -1 }
209 };
210
211 void sbversion(struct sbdsp_softc *);
212 void sbdsp_jazz16_probe(struct sbdsp_softc *);
213 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
214 void sbdsp_pause(struct sbdsp_softc *);
215 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
216 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
217 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
218 void sbdsp_set_ifilter(void *, int);
219 int sbdsp_get_ifilter(void *);
220
221 int sbdsp_block_output(void *);
222 int sbdsp_block_input(void *);
223 static int sbdsp_adjust(int, int);
224
225 int sbdsp_midi_intr(void *);
226
227 static bool sbdsp_resume(device_t, const pmf_qual_t *);
228
229 #ifdef AUDIO_DEBUG
230 void sb_printsc(struct sbdsp_softc *);
231
232 void
233 sb_printsc(struct sbdsp_softc *sc)
234 {
235 int i;
236
237 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
238 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
239 sc->sc_drq8, sc->sc_drq16,
240 sc->sc_iobase, sc->sc_irq);
241 printf("irate %d itc %x orate %d otc %x\n",
242 sc->sc_i.rate, sc->sc_i.tc,
243 sc->sc_o.rate, sc->sc_o.tc);
244 printf("spkron %u nintr %lu\n",
245 sc->spkr_state, sc->sc_interrupts);
246 printf("intr8 %p intr16 %p\n",
247 sc->sc_intr8, sc->sc_intr16);
248 printf("gain:");
249 for (i = 0; i < SB_NDEVS; i++)
250 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
251 printf("\n");
252 }
253 #endif /* AUDIO_DEBUG */
254
255 /*
256 * Probe / attach routines.
257 */
258
259 /*
260 * Probe for the soundblaster hardware.
261 */
262 int
263 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
264 {
265
266 if (sbdsp_reset(sc) < 0) {
267 DPRINTF(("sbdsp: couldn't reset card\n"));
268 return 0;
269 }
270 /* if flags set, go and probe the jazz16 stuff */
271 if (match->cf_flags & 1)
272 sbdsp_jazz16_probe(sc);
273 else
274 sbversion(sc);
275 if (sc->sc_model == SB_UNK) {
276 /* Unknown SB model found. */
277 DPRINTF(("sbdsp: unknown SB model found\n"));
278 return 0;
279 }
280 return 1;
281 }
282
283 /*
284 * Try add-on stuff for Jazz16.
285 */
286 void
287 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
288 {
289 static u_char jazz16_irq_conf[16] = {
290 -1, -1, 0x02, 0x03,
291 -1, 0x01, -1, 0x04,
292 -1, 0x02, 0x05, -1,
293 -1, -1, -1, 0x06};
294 static u_char jazz16_drq_conf[8] = {
295 -1, 0x01, -1, 0x02,
296 -1, 0x03, -1, 0x04};
297
298 bus_space_tag_t iot;
299 bus_space_handle_t ioh;
300
301 iot = sc->sc_iot;
302 sbversion(sc);
303
304 DPRINTF(("jazz16 probe\n"));
305
306 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
307 DPRINTF(("bus map failed\n"));
308 return;
309 }
310
311 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
312 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
313 DPRINTF(("drq/irq check failed\n"));
314 goto done; /* give up, we can't do it. */
315 }
316
317 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
318 delay(10000); /* delay 10 ms */
319 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
320 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
321
322 if (sbdsp_reset(sc) < 0) {
323 DPRINTF(("sbdsp_reset check failed\n"));
324 goto done; /* XXX? what else could we do? */
325 }
326
327 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
328 DPRINTF(("read16 setup failed\n"));
329 goto done;
330 }
331
332 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
333 DPRINTF(("read16 failed\n"));
334 goto done;
335 }
336
337 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
338 sc->sc_drq16 = sc->sc_drq8;
339 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
340 (sc->sc_drq16 >= 0 &&
341 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
342 jazz16_drq_conf[sc->sc_drq8])) ||
343 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
344 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
345 } else {
346 DPRINTF(("jazz16 detected!\n"));
347 sc->sc_model = SB_JAZZ;
348 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
349 }
350
351 done:
352 bus_space_unmap(iot, ioh, 1);
353 }
354
355 /*
356 * Attach hardware to driver, attach hardware driver to audio
357 * pseudo-device driver .
358 */
359 void
360 sbdsp_attach(struct sbdsp_softc *sc)
361 {
362 int i, error;
363 u_int v;
364
365 mutex_enter(&sc->sc_lock);
366 mutex_spin_enter(&sc->sc_intr_lock);
367
368 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
369
370 if (sc->sc_mixer_model != SBM_NONE) {
371 /* Reset the mixer.*/
372 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
373 /* And set our own default values */
374 for (i = 0; i < SB_NDEVS; i++) {
375 switch(i) {
376 case SB_MIC_VOL:
377 case SB_LINE_IN_VOL:
378 v = 0;
379 break;
380 case SB_BASS:
381 case SB_TREBLE:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
383 break;
384 case SB_CD_IN_MUTE:
385 case SB_MIC_IN_MUTE:
386 case SB_LINE_IN_MUTE:
387 case SB_MIDI_IN_MUTE:
388 case SB_CD_SWAP:
389 case SB_MIC_SWAP:
390 case SB_LINE_SWAP:
391 case SB_MIDI_SWAP:
392 case SB_CD_OUT_MUTE:
393 case SB_MIC_OUT_MUTE:
394 case SB_LINE_OUT_MUTE:
395 v = 0;
396 break;
397 default:
398 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
399 break;
400 }
401 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
402 sbdsp_set_mixer_gain(sc, i);
403 }
404 sc->in_filter = 0; /* no filters turned on, please */
405 }
406
407 mutex_spin_exit(&sc->sc_intr_lock);
408 mutex_exit(&sc->sc_lock);
409
410 aprint_naive("\n");
411 aprint_normal(": dsp v%d.%02d%s\n",
412 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414
415 sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 sc->sc_drq8 != sc->sc_drq16;
418
419 if (sc->sc_drq8 != -1) {
420 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 sc->sc_drq8);
422 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 sc->sc_drq8_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
424 if (error) {
425 aprint_error_dev(sc->sc_dev,
426 "can't create map for drq %d\n", sc->sc_drq8);
427 return;
428 }
429 }
430
431 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 sc->sc_drq16);
434 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 sc->sc_drq16_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
436 if (error) {
437 aprint_error_dev(sc->sc_dev,
438 "can't create map for drq %d\n", sc->sc_drq16);
439 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 return;
441 }
442 }
443
444 if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
445 aprint_error_dev(sc->sc_dev,
446 "couldn't establish power handler\n");
447 }
448
449 static bool
450 sbdsp_resume(device_t dv, const pmf_qual_t *qual)
451 {
452 struct sbdsp_softc *sc = device_private(dv);
453
454 /* Reset the mixer. */
455 mutex_enter(&sc->sc_lock);
456 mutex_spin_enter(&sc->sc_intr_lock);
457 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
458 mutex_spin_exit(&sc->sc_intr_lock);
459 mutex_exit(&sc->sc_lock);
460
461 return true;
462 }
463
464 void
465 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
466 {
467 bus_space_tag_t iot;
468 bus_space_handle_t ioh;
469
470 iot = sc->sc_iot;
471 ioh = sc->sc_ioh;
472 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
473 delay(20);
474 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
475 delay(30);
476 }
477
478 int
479 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
480 {
481 bus_space_tag_t iot;
482 bus_space_handle_t ioh;
483 int val;
484
485 iot = sc->sc_iot;
486 ioh = sc->sc_ioh;
487 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
488 delay(20);
489 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
490 delay(30);
491 return val;
492 }
493
494 /*
495 * Various routines to interface to higher level audio driver
496 */
497
498 int
499 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
500 {
501 struct sbdsp_softc *sc;
502 int emul;
503
504 sc = addr;
505 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
506
507 switch (fp->index) {
508 case 0:
509 strcpy(fp->name, AudioEulinear);
510 fp->encoding = AUDIO_ENCODING_ULINEAR;
511 fp->precision = 8;
512 fp->flags = 0;
513 return 0;
514 case 1:
515 strcpy(fp->name, AudioEmulaw);
516 fp->encoding = AUDIO_ENCODING_ULAW;
517 fp->precision = 8;
518 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
519 return 0;
520 case 2:
521 strcpy(fp->name, AudioEalaw);
522 fp->encoding = AUDIO_ENCODING_ALAW;
523 fp->precision = 8;
524 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
525 return 0;
526 case 3:
527 strcpy(fp->name, AudioEslinear);
528 fp->encoding = AUDIO_ENCODING_SLINEAR;
529 fp->precision = 8;
530 fp->flags = emul;
531 return 0;
532 }
533 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
534 return EINVAL;
535
536 switch(fp->index) {
537 case 4:
538 strcpy(fp->name, AudioEslinear_le);
539 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
540 fp->precision = 16;
541 fp->flags = 0;
542 return 0;
543 case 5:
544 strcpy(fp->name, AudioEulinear_le);
545 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
546 fp->precision = 16;
547 fp->flags = emul;
548 return 0;
549 case 6:
550 strcpy(fp->name, AudioEslinear_be);
551 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
552 fp->precision = 16;
553 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
554 return 0;
555 case 7:
556 strcpy(fp->name, AudioEulinear_be);
557 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
558 fp->precision = 16;
559 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
560 return 0;
561 default:
562 return EINVAL;
563 }
564 return 0;
565 }
566
567 int
568 sbdsp_set_params(
569 void *addr,
570 int setmode, int usemode,
571 audio_params_t *play, audio_params_t *rec,
572 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
573 {
574 struct sbdsp_softc *sc;
575 struct sbmode *m;
576 u_int rate, tc, bmode;
577 stream_filter_factory_t *swcode;
578 int model;
579 int chan;
580 struct audio_params *p;
581 audio_params_t hw;
582 stream_filter_list_t *fil;
583 int mode;
584
585 sc = addr;
586
587 if (sc->sc_open == SB_OPEN_MIDI)
588 return EBUSY;
589
590 /* Later models work like SB16. */
591 model = min(sc->sc_model, SB_16);
592
593 /*
594 * Prior to the SB16, we have only one clock, so make the sample
595 * rates match.
596 */
597 if (!ISSB16CLASS(sc) &&
598 play->sample_rate != rec->sample_rate &&
599 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
600 if (setmode == AUMODE_PLAY) {
601 rec->sample_rate = play->sample_rate;
602 setmode |= AUMODE_RECORD;
603 } else if (setmode == AUMODE_RECORD) {
604 play->sample_rate = rec->sample_rate;
605 setmode |= AUMODE_PLAY;
606 } else
607 return EINVAL;
608 }
609
610 /* Set first record info, then play info */
611 for (mode = AUMODE_RECORD; mode != -1;
612 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
613 if ((setmode & mode) == 0)
614 continue;
615
616 p = mode == AUMODE_PLAY ? play : rec;
617 /* Locate proper commands */
618 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
619 m->model != -1; m++) {
620 if (model == m->model &&
621 p->channels == m->channels &&
622 p->precision == m->precision &&
623 p->sample_rate >= m->lowrate &&
624 p->sample_rate <= m->highrate)
625 break;
626 }
627 if (m->model == -1)
628 return EINVAL;
629 rate = p->sample_rate;
630 swcode = NULL;
631 fil = mode == AUMODE_PLAY ? pfil : rfil;
632 hw = *p;
633 tc = 1;
634 bmode = -1;
635 if (model == SB_16) {
636 switch (p->encoding) {
637 case AUDIO_ENCODING_SLINEAR_BE:
638 if (p->precision == 16) {
639 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
640 swcode = swap_bytes;
641 }
642 /* fall into */
643 case AUDIO_ENCODING_SLINEAR_LE:
644 bmode = SB_BMODE_SIGNED;
645 break;
646
647 case AUDIO_ENCODING_ULINEAR_BE:
648 if (p->precision == 16) {
649 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
650 swcode = swap_bytes;
651 }
652 /* fall into */
653 case AUDIO_ENCODING_ULINEAR_LE:
654 bmode = SB_BMODE_UNSIGNED;
655 break;
656
657 case AUDIO_ENCODING_ULAW:
658 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
659 if (mode == AUMODE_PLAY) {
660 hw.precision = hw.validbits = 16;
661 swcode = mulaw_to_linear16;
662 m = &sbpmodes[PLAY16];
663 } else
664 swcode = linear8_to_mulaw;
665 bmode = SB_BMODE_UNSIGNED;
666 break;
667
668 case AUDIO_ENCODING_ALAW:
669 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
670 if (mode == AUMODE_PLAY) {
671 hw.precision = hw.validbits = 16;
672 swcode = alaw_to_linear16;
673 m = &sbpmodes[PLAY16];
674 } else
675 swcode = linear8_to_alaw;
676 bmode = SB_BMODE_UNSIGNED;
677 break;
678 default:
679 return EINVAL;
680 }
681 if (p->channels == 2)
682 bmode |= SB_BMODE_STEREO;
683 } else if (m->model == SB_JAZZ && m->precision == 16) {
684 switch (p->encoding) {
685 case AUDIO_ENCODING_SLINEAR_LE:
686 break;
687 case AUDIO_ENCODING_ULINEAR_LE:
688 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
689 swcode = change_sign16;
690 break;
691 case AUDIO_ENCODING_SLINEAR_BE:
692 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
693 swcode = swap_bytes;
694 break;
695 case AUDIO_ENCODING_ULINEAR_BE:
696 hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
697 swcode = swap_bytes_change_sign16;
698 break;
699 case AUDIO_ENCODING_ULAW:
700 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
701 swcode = mode == AUMODE_PLAY ?
702 mulaw_to_linear8 : linear8_to_mulaw;
703 break;
704 case AUDIO_ENCODING_ALAW:
705 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
706 swcode = mode == AUMODE_PLAY ?
707 alaw_to_linear8 : linear8_to_alaw;
708 break;
709 default:
710 return EINVAL;
711 }
712 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
713 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
714 hw.sample_rate = p->sample_rate;
715 } else {
716 switch (p->encoding) {
717 case AUDIO_ENCODING_SLINEAR_BE:
718 case AUDIO_ENCODING_SLINEAR_LE:
719 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
720 swcode = change_sign8;
721 break;
722 case AUDIO_ENCODING_ULINEAR_BE:
723 case AUDIO_ENCODING_ULINEAR_LE:
724 break;
725 case AUDIO_ENCODING_ULAW:
726 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
727 swcode = mode == AUMODE_PLAY ?
728 mulaw_to_linear8 : linear8_to_mulaw;
729 break;
730 case AUDIO_ENCODING_ALAW:
731 hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
732 swcode = mode == AUMODE_PLAY ?
733 alaw_to_linear8 : linear8_to_alaw;
734 break;
735 default:
736 return EINVAL;
737 }
738 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
739 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
740 hw.sample_rate = p->sample_rate;
741 }
742
743 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
744 if (mode == AUMODE_PLAY) {
745 sc->sc_o.rate = rate;
746 sc->sc_o.tc = tc;
747 sc->sc_o.modep = m;
748 sc->sc_o.bmode = bmode;
749 sc->sc_o.dmachan = chan;
750 } else {
751 sc->sc_i.rate = rate;
752 sc->sc_i.tc = tc;
753 sc->sc_i.modep = m;
754 sc->sc_i.bmode = bmode;
755 sc->sc_i.dmachan = chan;
756 }
757
758 if (swcode != NULL)
759 fil->append(fil, swcode, &hw);
760 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
761 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
762 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
763 p->sample_rate, p->precision, p->channels,
764 p->encoding, tc, m->cmd, bmode, m->cmdchan));
765
766 }
767
768 if (sc->sc_fullduplex &&
769 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
770 sc->sc_i.dmachan == sc->sc_o.dmachan) {
771 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
772 "odma=%d\n", sc->sc_fullduplex, usemode,
773 sc->sc_i.dmachan, sc->sc_o.dmachan));
774 if (sc->sc_o.dmachan == sc->sc_drq8) {
775 /* Use 16 bit DMA for playing by expanding the samples. */
776 hw.precision = hw.validbits = 16;
777 pfil->append(pfil, linear8_to_linear16, &hw);
778 sc->sc_o.modep = &sbpmodes[PLAY16];
779 sc->sc_o.dmachan = sc->sc_drq16;
780 } else {
781 return EINVAL;
782 }
783 }
784 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
785 sc->sc_i.dmachan, sc->sc_o.dmachan));
786
787 return 0;
788 }
789
790 void
791 sbdsp_set_ifilter(void *addr, int which)
792 {
793 struct sbdsp_softc *sc;
794 int mixval;
795
796 sc = addr;
797
798 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
799 switch (which) {
800 case 0:
801 mixval |= SBP_FILTER_OFF;
802 break;
803 case SB_TREBLE:
804 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
805 break;
806 case SB_BASS:
807 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
808 break;
809 default:
810 return;
811 }
812 sc->in_filter = mixval & SBP_IFILTER_MASK;
813 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
814 }
815
816 int
817 sbdsp_get_ifilter(void *addr)
818 {
819 struct sbdsp_softc *sc;
820
821 sc = addr;
822 sc->in_filter =
823 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
824 switch (sc->in_filter) {
825 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
826 return SB_TREBLE;
827 case SBP_FILTER_ON|SBP_IFILTER_LOW:
828 return SB_BASS;
829 default:
830 return 0;
831 }
832 }
833
834 int
835 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
836 {
837 int bitsl, bitsr;
838 int sbport;
839
840 KASSERT(mutex_owned(&sc->sc_lock));
841 KASSERT(mutex_owned(&sc->sc_intr_lock));
842
843 if (sc->sc_open == SB_OPEN_MIDI)
844 return EBUSY;
845
846 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
847 sc->sc_mixer_model, mask));
848
849 switch(sc->sc_mixer_model) {
850 case SBM_NONE:
851 return EINVAL;
852 case SBM_CT1335:
853 if (mask != (1 << SB_MIC_VOL))
854 return EINVAL;
855 break;
856 case SBM_CT1345:
857 switch (mask) {
858 case 1 << SB_MIC_VOL:
859 sbport = SBP_FROM_MIC;
860 break;
861 case 1 << SB_LINE_IN_VOL:
862 sbport = SBP_FROM_LINE;
863 break;
864 case 1 << SB_CD_VOL:
865 sbport = SBP_FROM_CD;
866 break;
867 default:
868 return EINVAL;
869 }
870 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
871 break;
872 case SBM_CT1XX5:
873 case SBM_CT1745:
874 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
875 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
876 return EINVAL;
877 bitsr = 0;
878 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
879 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
880 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
881 bitsl = SB_SRC_R_TO_L(bitsr);
882 if (mask & (1<<SB_MIC_VOL)) {
883 bitsl |= SBP_MIC_SRC;
884 bitsr |= SBP_MIC_SRC;
885 }
886 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
887 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
888 break;
889 }
890 sc->in_mask = mask;
891
892 return 0;
893 }
894
895 int
896 sbdsp_speaker_ctl(void *addr, int newstate)
897 {
898 struct sbdsp_softc *sc;
899
900 sc = addr;
901 if (sc->sc_open == SB_OPEN_MIDI)
902 return EBUSY;
903
904 if ((newstate == SPKR_ON) &&
905 (sc->spkr_state == SPKR_OFF)) {
906 sbdsp_spkron(sc);
907 sc->spkr_state = SPKR_ON;
908 }
909 if ((newstate == SPKR_OFF) &&
910 (sc->spkr_state == SPKR_ON)) {
911 sbdsp_spkroff(sc);
912 sc->spkr_state = SPKR_OFF;
913 }
914 return 0;
915 }
916
917 int
918 sbdsp_round_blocksize(void *addr, int blk, int mode,
919 const audio_params_t *param)
920 {
921 return blk & -4; /* round to biggest sample size */
922 }
923
924 int
925 sbdsp_open(void *addr, int flags)
926 {
927 struct sbdsp_softc *sc;
928 int error, state;
929
930 sc = addr;
931 DPRINTF(("sbdsp_open: sc=%p\n", sc));
932
933 if (sc->sc_open != SB_CLOSED)
934 return EBUSY;
935 sc->sc_open = SB_OPEN_AUDIO;
936 state = 0;
937
938 if (sc->sc_drq8 != -1) {
939 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
940 if (error != 0)
941 goto bad;
942 state |= 1;
943 }
944
945 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
946 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
947 if (error != 0)
948 goto bad;
949 state |= 2;
950 }
951
952
953 if (sbdsp_reset(sc) != 0) {
954 error = EIO;
955 goto bad;
956 }
957
958 if (ISSBPRO(sc) &&
959 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
960 DPRINTF(("sbdsp_open: can't set mono mode\n"));
961 /* we'll readjust when it's time for DMA. */
962 }
963
964 /*
965 * Leave most things as they were; users must change things if
966 * the previous process didn't leave it they way they wanted.
967 * Looked at another way, it's easy to set up a configuration
968 * in one program and leave it for another to inherit.
969 */
970 DPRINTF(("sbdsp_open: opened\n"));
971
972 return 0;
973
974 bad:
975 if (state & 1)
976 isa_drq_free(sc->sc_ic, sc->sc_drq8);
977 if (state & 2)
978 isa_drq_free(sc->sc_ic, sc->sc_drq16);
979
980 sc->sc_open = SB_CLOSED;
981 return error;
982 }
983
984 void
985 sbdsp_close(void *addr)
986 {
987 struct sbdsp_softc *sc;
988
989 sc = addr;
990 DPRINTF(("sbdsp_close: sc=%p\n", sc));
991
992 sbdsp_spkroff(sc);
993 sc->spkr_state = SPKR_OFF;
994
995 sc->sc_intr8 = 0;
996 sc->sc_intr16 = 0;
997
998 if (sc->sc_drq8 != -1)
999 isa_drq_free(sc->sc_ic, sc->sc_drq8);
1000 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1001 isa_drq_free(sc->sc_ic, sc->sc_drq16);
1002
1003 sc->sc_open = SB_CLOSED;
1004 DPRINTF(("sbdsp_close: closed\n"));
1005 }
1006
1007 /*
1008 * Lower-level routines
1009 */
1010
1011 /*
1012 * Reset the card.
1013 * Return non-zero if the card isn't detected.
1014 */
1015 int
1016 sbdsp_reset(struct sbdsp_softc *sc)
1017 {
1018 bus_space_tag_t iot;
1019 bus_space_handle_t ioh;
1020
1021 iot = sc->sc_iot;
1022 ioh = sc->sc_ioh;
1023 sc->sc_intr8 = 0;
1024 sc->sc_intr16 = 0;
1025 sc->sc_intrm = 0;
1026
1027 /*
1028 * See SBK, section 11.3.
1029 * We pulse a reset signal into the card.
1030 * Gee, what a brilliant hardware design.
1031 */
1032 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1033 delay(10);
1034 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1035 delay(30);
1036 if (sbdsp_rdsp(sc) != SB_MAGIC)
1037 return -1;
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Write a byte to the dsp.
1044 * We are at the mercy of the card as we use a
1045 * polling loop and wait until it can take the byte.
1046 */
1047 int
1048 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1049 {
1050 bus_space_tag_t iot;
1051 bus_space_handle_t ioh;
1052 int i;
1053 u_char x;
1054
1055 iot = sc->sc_iot;
1056 ioh = sc->sc_ioh;
1057 for (i = SBDSP_NPOLL; --i >= 0; ) {
1058 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1059 delay(10);
1060 if ((x & SB_DSP_BUSY) == 0) {
1061 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1062 delay(10);
1063 return 0;
1064 }
1065 }
1066 ++sberr.wdsp;
1067 return -1;
1068 }
1069
1070 /*
1071 * Read a byte from the DSP, using polling.
1072 */
1073 int
1074 sbdsp_rdsp(struct sbdsp_softc *sc)
1075 {
1076 bus_space_tag_t iot;
1077 bus_space_handle_t ioh;
1078 int i;
1079 u_char x;
1080
1081 iot = sc->sc_iot;
1082 ioh = sc->sc_ioh;
1083 for (i = SBDSP_NPOLL; --i >= 0; ) {
1084 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1085 delay(10);
1086 if (x & SB_DSP_READY) {
1087 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1088 delay(10);
1089 return x;
1090 }
1091 }
1092 ++sberr.rdsp;
1093 return -1;
1094 }
1095
1096 void
1097 sbdsp_pause(struct sbdsp_softc *sc)
1098 {
1099
1100 KASSERT(mutex_owned(&sc->sc_intr_lock));
1101 mutex_spin_exit(&sc->sc_intr_lock);
1102 (void)kpause("sbpause", false, hz/8, &sc->sc_lock);
1103 mutex_spin_enter(&sc->sc_intr_lock);
1104 }
1105
1106 /*
1107 * Turn on the speaker. The SBK documention says this operation
1108 * can take up to 1/10 of a second. Higher level layers should
1109 * probably let the task sleep for this amount of time after
1110 * calling here. Otherwise, things might not work (because
1111 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1112 *
1113 * These engineers had their heads up their ass when
1114 * they designed this card.
1115 */
1116 void
1117 sbdsp_spkron(struct sbdsp_softc *sc)
1118 {
1119
1120 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1121 sbdsp_pause(sc);
1122 }
1123
1124 /*
1125 * Turn off the speaker; see comment above.
1126 */
1127 void
1128 sbdsp_spkroff(struct sbdsp_softc *sc)
1129 {
1130
1131 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1132 sbdsp_pause(sc);
1133 }
1134
1135 /*
1136 * Read the version number out of the card.
1137 * Store version information in the softc.
1138 */
1139 void
1140 sbversion(struct sbdsp_softc *sc)
1141 {
1142 int v;
1143
1144 sc->sc_model = SB_UNK;
1145 sc->sc_version = 0;
1146 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1147 return;
1148 v = sbdsp_rdsp(sc) << 8;
1149 v |= sbdsp_rdsp(sc);
1150 if (v < 0)
1151 return;
1152 sc->sc_version = v;
1153 switch(SBVER_MAJOR(v)) {
1154 case 1:
1155 sc->sc_mixer_model = SBM_NONE;
1156 sc->sc_model = SB_1;
1157 break;
1158 case 2:
1159 /* Some SB2 have a mixer, some don't. */
1160 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1161 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1162 /* Check if we can read back the mixer values. */
1163 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1164 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1165 sc->sc_mixer_model = SBM_CT1335;
1166 else
1167 sc->sc_mixer_model = SBM_NONE;
1168 if (SBVER_MINOR(v) == 0)
1169 sc->sc_model = SB_20;
1170 else
1171 sc->sc_model = SB_2x;
1172 break;
1173 case 3:
1174 sc->sc_mixer_model = SBM_CT1345;
1175 sc->sc_model = SB_PRO;
1176 break;
1177 case 4:
1178 #if 0
1179 /* XXX This does not work */
1180 /* Most SB16 have a tone controls, but some don't. */
1181 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1182 /* Check if we can read back the mixer value. */
1183 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1184 sc->sc_mixer_model = SBM_CT1745;
1185 else
1186 sc->sc_mixer_model = SBM_CT1XX5;
1187 #else
1188 sc->sc_mixer_model = SBM_CT1745;
1189 #endif
1190 #if 0
1191 /* XXX figure out a good way of determining the model */
1192 /* XXX what about SB_32 */
1193 if (SBVER_MINOR(v) == 16)
1194 sc->sc_model = SB_64;
1195 else
1196 #endif
1197 sc->sc_model = SB_16;
1198 break;
1199 }
1200 }
1201
1202 int
1203 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1204 {
1205
1206 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1207 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1208 sbdsp_wdsp(sc, tc) < 0)
1209 return EIO;
1210 return 0;
1211 }
1212
1213 int
1214 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1215 {
1216
1217 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd,
1218 rate));
1219 if (sbdsp_wdsp(sc, cmd) < 0 ||
1220 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1221 sbdsp_wdsp(sc, rate) < 0)
1222 return EIO;
1223 return 0;
1224 }
1225
1226 int
1227 sbdsp_trigger_input(
1228 void *addr,
1229 void *start, void *end,
1230 int blksize,
1231 void (*intr)(void *),
1232 void *arg,
1233 const audio_params_t *param)
1234 {
1235 struct sbdsp_softc *sc;
1236 int stereo;
1237 int width;
1238 int filter;
1239
1240 sc = addr;
1241 stereo = param->channels == 2;
1242 width = param->precision;
1243 #ifdef DIAGNOSTIC
1244 if (stereo && (blksize & 1)) {
1245 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1246 return EIO;
1247 }
1248 if (sc->sc_i.run != SB_NOTRUNNING)
1249 printf("sbdsp_trigger_input: already running\n");
1250 #endif
1251
1252 sc->sc_intrr = intr;
1253 sc->sc_argr = arg;
1254
1255 if (width == 8) {
1256 #ifdef DIAGNOSTIC
1257 if (sc->sc_i.dmachan != sc->sc_drq8) {
1258 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1259 width, sc->sc_i.dmachan);
1260 return EIO;
1261 }
1262 #endif
1263 sc->sc_intr8 = sbdsp_block_input;
1264 } else {
1265 #ifdef DIAGNOSTIC
1266 if (sc->sc_i.dmachan != sc->sc_drq16) {
1267 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1268 width, sc->sc_i.dmachan);
1269 return EIO;
1270 }
1271 #endif
1272 sc->sc_intr16 = sbdsp_block_input;
1273 }
1274
1275 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1276 blksize >>= 1;
1277 --blksize;
1278 sc->sc_i.blksize = blksize;
1279
1280 if (ISSBPRO(sc)) {
1281 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1282 return EIO;
1283 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1284 sbdsp_mix_write(sc, SBP_INFILTER,
1285 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1286 filter);
1287 }
1288
1289 if (ISSB16CLASS(sc)) {
1290 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1291 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1292 sc->sc_i.rate));
1293 return EIO;
1294 }
1295 } else {
1296 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1297 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1298 sc->sc_i.rate));
1299 return EIO;
1300 }
1301 }
1302
1303 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1304 start, end, sc->sc_i.dmachan));
1305 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1306 (char *)end - (char *)start, NULL,
1307 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1308
1309 return sbdsp_block_input(addr);
1310 }
1311
1312 int
1313 sbdsp_block_input(void *addr)
1314 {
1315 struct sbdsp_softc *sc;
1316 int cc;
1317
1318 sc = addr;
1319 cc = sc->sc_i.blksize;
1320 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1321
1322 if (sc->sc_i.run != SB_NOTRUNNING)
1323 sc->sc_intrr(sc->sc_argr);
1324
1325 if (sc->sc_model == SB_1) {
1326 /* Non-looping mode, start DMA */
1327 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1328 sbdsp_wdsp(sc, cc) < 0 ||
1329 sbdsp_wdsp(sc, cc >> 8) < 0) {
1330 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1331 return EIO;
1332 }
1333 sc->sc_i.run = SB_RUNNING;
1334 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1335 /* Initialize looping PCM */
1336 if (ISSB16CLASS(sc)) {
1337 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1338 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1339 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1340 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1341 sbdsp_wdsp(sc, cc) < 0 ||
1342 sbdsp_wdsp(sc, cc >> 8) < 0) {
1343 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1344 return EIO;
1345 }
1346 } else {
1347 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1348 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1349 sbdsp_wdsp(sc, cc) < 0 ||
1350 sbdsp_wdsp(sc, cc >> 8) < 0) {
1351 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1352 return EIO;
1353 }
1354 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1355 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1356 return EIO;
1357 }
1358 }
1359 sc->sc_i.run = SB_LOOPING;
1360 }
1361
1362 return 0;
1363 }
1364
1365 int
1366 sbdsp_trigger_output(
1367 void *addr,
1368 void *start, void *end,
1369 int blksize,
1370 void (*intr)(void *),
1371 void *arg,
1372 const audio_params_t *param)
1373 {
1374 struct sbdsp_softc *sc;
1375 int stereo;
1376 int width;
1377 int cmd;
1378
1379 sc = addr;
1380 stereo = param->channels == 2;
1381 width = param->precision;
1382 #ifdef DIAGNOSTIC
1383 if (stereo && (blksize & 1)) {
1384 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1385 return EIO;
1386 }
1387 if (sc->sc_o.run != SB_NOTRUNNING)
1388 printf("sbdsp_trigger_output: already running\n");
1389 #endif
1390
1391 sc->sc_intrp = intr;
1392 sc->sc_argp = arg;
1393
1394 if (width == 8) {
1395 #ifdef DIAGNOSTIC
1396 if (sc->sc_o.dmachan != sc->sc_drq8) {
1397 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1398 width, sc->sc_o.dmachan);
1399 return EIO;
1400 }
1401 #endif
1402 sc->sc_intr8 = sbdsp_block_output;
1403 } else {
1404 #ifdef DIAGNOSTIC
1405 if (sc->sc_o.dmachan != sc->sc_drq16) {
1406 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1407 width, sc->sc_o.dmachan);
1408 return EIO;
1409 }
1410 #endif
1411 sc->sc_intr16 = sbdsp_block_output;
1412 }
1413
1414 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1415 blksize >>= 1;
1416 --blksize;
1417 sc->sc_o.blksize = blksize;
1418
1419 if (ISSBPRO(sc)) {
1420 /* make sure we re-set stereo mixer bit when we start output. */
1421 sbdsp_mix_write(sc, SBP_STEREO,
1422 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1423 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1424 cmd = sc->sc_o.modep->cmdchan;
1425 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1426 return EIO;
1427 }
1428
1429 if (ISSB16CLASS(sc)) {
1430 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1431 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1432 sc->sc_o.rate));
1433 return EIO;
1434 }
1435 } else {
1436 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1437 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1438 sc->sc_o.rate));
1439 return EIO;
1440 }
1441 }
1442
1443 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1444 start, end, sc->sc_o.dmachan));
1445 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1446 (char *)end - (char *)start, NULL,
1447 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1448
1449 return sbdsp_block_output(addr);
1450 }
1451
1452 int
1453 sbdsp_block_output(void *addr)
1454 {
1455 struct sbdsp_softc *sc;
1456 int cc;
1457
1458 sc = addr;
1459 cc = sc->sc_o.blksize;
1460 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1461
1462 if (sc->sc_o.run != SB_NOTRUNNING)
1463 sc->sc_intrp(sc->sc_argp);
1464
1465 if (sc->sc_model == SB_1) {
1466 /* Non-looping mode, initialized. Start DMA and PCM */
1467 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1468 sbdsp_wdsp(sc, cc) < 0 ||
1469 sbdsp_wdsp(sc, cc >> 8) < 0) {
1470 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1471 return EIO;
1472 }
1473 sc->sc_o.run = SB_RUNNING;
1474 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1475 /* Initialize looping PCM */
1476 if (ISSB16CLASS(sc)) {
1477 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1478 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1479 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1480 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1481 sbdsp_wdsp(sc, cc) < 0 ||
1482 sbdsp_wdsp(sc, cc >> 8) < 0) {
1483 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1484 return EIO;
1485 }
1486 } else {
1487 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1488 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1489 sbdsp_wdsp(sc, cc) < 0 ||
1490 sbdsp_wdsp(sc, cc >> 8) < 0) {
1491 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1492 return EIO;
1493 }
1494 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1495 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1496 return EIO;
1497 }
1498 }
1499 sc->sc_o.run = SB_LOOPING;
1500 }
1501
1502 return 0;
1503 }
1504
1505 int
1506 sbdsp_halt_output(void *addr)
1507 {
1508 struct sbdsp_softc *sc;
1509
1510 sc = addr;
1511 if (sc->sc_o.run != SB_NOTRUNNING) {
1512 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1513 printf("sbdsp_halt_output: failed to halt\n");
1514 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1515 sc->sc_o.run = SB_NOTRUNNING;
1516 }
1517 return 0;
1518 }
1519
1520 int
1521 sbdsp_halt_input(void *addr)
1522 {
1523 struct sbdsp_softc *sc;
1524
1525 sc = addr;
1526 if (sc->sc_i.run != SB_NOTRUNNING) {
1527 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1528 printf("sbdsp_halt_input: failed to halt\n");
1529 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1530 sc->sc_i.run = SB_NOTRUNNING;
1531 }
1532 return 0;
1533 }
1534
1535 /*
1536 * Only the DSP unit on the sound blaster generates interrupts.
1537 * There are three cases of interrupt: reception of a midi byte
1538 * (when mode is enabled), completion of DMA transmission, or
1539 * completion of a DMA reception.
1540 *
1541 * If there is interrupt sharing or a spurious interrupt occurs
1542 * there is no way to distinguish this on an SB2. So if you have
1543 * an SB2 and experience problems, buy an SB16 (it's only $40).
1544 */
1545 int
1546 sbdsp_intr(void *arg)
1547 {
1548 struct sbdsp_softc *sc = arg;
1549 #if NMPU > 0
1550 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
1551 #endif
1552 u_char irq;
1553
1554 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1555 sc->sc_intr8, sc->sc_intr16));
1556
1557 mutex_spin_enter(&sc->sc_intr_lock);
1558 if (ISSB16CLASS(sc)) {
1559 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1560 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401))
1561 == 0) {
1562 mutex_spin_exit(&sc->sc_intr_lock);
1563 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1564 return 0;
1565 }
1566 } else {
1567 /* XXXX CHECK FOR INTERRUPT */
1568 irq = SBP_IRQ_DMA8;
1569 }
1570
1571 sc->sc_interrupts++;
1572 delay(10); /* XXX why? */
1573
1574 /* clear interrupt */
1575 if (irq & SBP_IRQ_DMA8) {
1576 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1577 if (sc->sc_intr8)
1578 sc->sc_intr8(arg);
1579 }
1580 if (irq & SBP_IRQ_DMA16) {
1581 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1582 if (sc->sc_intr16)
1583 sc->sc_intr16(arg);
1584 }
1585 #if NMPU > 0
1586 if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
1587 mpu_intr(sc_mpu);
1588 }
1589 #endif
1590
1591 mutex_spin_exit(&sc->sc_intr_lock);
1592 return 1;
1593 }
1594
1595 /* Like val & mask, but make sure the result is correctly rounded. */
1596 #define MAXVAL 256
1597 static int
1598 sbdsp_adjust(int val, int mask)
1599 {
1600
1601 val += (MAXVAL - mask) >> 1;
1602 if (val >= MAXVAL)
1603 val = MAXVAL-1;
1604 return val & mask;
1605 }
1606
1607 void
1608 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1609 {
1610 int src, gain;
1611
1612 KASSERT(mutex_owned(&sc->sc_lock));
1613 KASSERT(mutex_owned(&sc->sc_intr_lock));
1614
1615 switch(sc->sc_mixer_model) {
1616 case SBM_NONE:
1617 return;
1618 case SBM_CT1335:
1619 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1620 switch(port) {
1621 case SB_MASTER_VOL:
1622 src = SBP_1335_MASTER_VOL;
1623 break;
1624 case SB_MIDI_VOL:
1625 src = SBP_1335_MIDI_VOL;
1626 break;
1627 case SB_CD_VOL:
1628 src = SBP_1335_CD_VOL;
1629 break;
1630 case SB_VOICE_VOL:
1631 src = SBP_1335_VOICE_VOL;
1632 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1633 break;
1634 default:
1635 return;
1636 }
1637 sbdsp_mix_write(sc, src, gain);
1638 break;
1639 case SBM_CT1345:
1640 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1641 sc->gain[port][SB_RIGHT]);
1642 switch (port) {
1643 case SB_MIC_VOL:
1644 src = SBP_MIC_VOL;
1645 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1646 break;
1647 case SB_MASTER_VOL:
1648 src = SBP_MASTER_VOL;
1649 break;
1650 case SB_LINE_IN_VOL:
1651 src = SBP_LINE_VOL;
1652 break;
1653 case SB_VOICE_VOL:
1654 src = SBP_VOICE_VOL;
1655 break;
1656 case SB_MIDI_VOL:
1657 src = SBP_MIDI_VOL;
1658 break;
1659 case SB_CD_VOL:
1660 src = SBP_CD_VOL;
1661 break;
1662 default:
1663 return;
1664 }
1665 sbdsp_mix_write(sc, src, gain);
1666 break;
1667 case SBM_CT1XX5:
1668 case SBM_CT1745:
1669 switch (port) {
1670 case SB_MIC_VOL:
1671 src = SB16P_MIC_L;
1672 break;
1673 case SB_MASTER_VOL:
1674 src = SB16P_MASTER_L;
1675 break;
1676 case SB_LINE_IN_VOL:
1677 src = SB16P_LINE_L;
1678 break;
1679 case SB_VOICE_VOL:
1680 src = SB16P_VOICE_L;
1681 break;
1682 case SB_MIDI_VOL:
1683 src = SB16P_MIDI_L;
1684 break;
1685 case SB_CD_VOL:
1686 src = SB16P_CD_L;
1687 break;
1688 case SB_INPUT_GAIN:
1689 src = SB16P_INPUT_GAIN_L;
1690 break;
1691 case SB_OUTPUT_GAIN:
1692 src = SB16P_OUTPUT_GAIN_L;
1693 break;
1694 case SB_TREBLE:
1695 src = SB16P_TREBLE_L;
1696 break;
1697 case SB_BASS:
1698 src = SB16P_BASS_L;
1699 break;
1700 case SB_PCSPEAKER:
1701 sbdsp_mix_write(sc, SB16P_PCSPEAKER,
1702 sc->gain[port][SB_LEFT]);
1703 return;
1704 default:
1705 return;
1706 }
1707 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1708 sbdsp_mix_write(sc, SB16P_L_TO_R(src),
1709 sc->gain[port][SB_RIGHT]);
1710 break;
1711 }
1712 }
1713
1714 int
1715 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1716 {
1717 struct sbdsp_softc *sc;
1718 int lgain, rgain;
1719 int mask, bits;
1720 int lmask, rmask, lbits, rbits;
1721 int mute, swap;
1722 int error;
1723
1724 sc = addr;
1725
1726 KASSERT(mutex_owned(&sc->sc_lock));
1727
1728 if (sc->sc_open == SB_OPEN_MIDI)
1729 return EBUSY;
1730
1731 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1732 cp->un.value.num_channels));
1733
1734 if (sc->sc_mixer_model == SBM_NONE)
1735 return EINVAL;
1736
1737 mutex_spin_enter(&sc->sc_intr_lock);
1738 error = 0;
1739
1740 switch (cp->dev) {
1741 case SB_TREBLE:
1742 case SB_BASS:
1743 if (sc->sc_mixer_model == SBM_CT1345 ||
1744 sc->sc_mixer_model == SBM_CT1XX5) {
1745 if (cp->type != AUDIO_MIXER_ENUM) {
1746 mutex_spin_exit(&sc->sc_intr_lock);
1747 return EINVAL;
1748 }
1749 switch (cp->dev) {
1750 case SB_TREBLE:
1751 sbdsp_set_ifilter(addr,
1752 cp->un.ord ? SB_TREBLE : 0);
1753 mutex_spin_exit(&sc->sc_intr_lock);
1754 return 0;
1755 case SB_BASS:
1756 sbdsp_set_ifilter(addr,
1757 cp->un.ord ? SB_BASS : 0);
1758 mutex_spin_exit(&sc->sc_intr_lock);
1759 return 0;
1760 }
1761 }
1762 case SB_PCSPEAKER:
1763 case SB_INPUT_GAIN:
1764 case SB_OUTPUT_GAIN:
1765 if (!ISSBM1745(sc)) {
1766 error = EINVAL;
1767 break;
1768 }
1769 case SB_MIC_VOL:
1770 case SB_LINE_IN_VOL:
1771 if (sc->sc_mixer_model == SBM_CT1335) {
1772 error = EINVAL;
1773 break;
1774 }
1775 case SB_VOICE_VOL:
1776 case SB_MIDI_VOL:
1777 case SB_CD_VOL:
1778 case SB_MASTER_VOL:
1779 if (cp->type != AUDIO_MIXER_VALUE) {
1780 error = EINVAL;
1781 break;
1782 }
1783
1784 /*
1785 * All the mixer ports are stereo except for the microphone.
1786 * If we get a single-channel gain value passed in, then we
1787 * duplicate it to both left and right channels.
1788 */
1789
1790 switch (cp->dev) {
1791 case SB_MIC_VOL:
1792 if (cp->un.value.num_channels != 1) {
1793 error = EINVAL;
1794 break;
1795 }
1796
1797 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1798 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1799 break;
1800 case SB_PCSPEAKER:
1801 if (cp->un.value.num_channels != 1) {
1802 error = EINVAL;
1803 break;
1804 }
1805 /* fall into */
1806 case SB_INPUT_GAIN:
1807 case SB_OUTPUT_GAIN:
1808 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1809 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1810 break;
1811 default:
1812 switch (cp->un.value.num_channels) {
1813 case 1:
1814 lgain = rgain = SB_ADJUST_GAIN(sc,
1815 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1816 break;
1817 case 2:
1818 if (sc->sc_mixer_model == SBM_CT1335) {
1819 error = EINVAL;
1820 break;
1821 }
1822 lgain = SB_ADJUST_GAIN(sc,
1823 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1824 rgain = SB_ADJUST_GAIN(sc,
1825 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1826 break;
1827 default:
1828 error = EINVAL;
1829 break;
1830 }
1831 break;
1832 }
1833 if (error == 0) {
1834 sc->gain[cp->dev][SB_LEFT] = lgain;
1835 sc->gain[cp->dev][SB_RIGHT] = rgain;
1836 sbdsp_set_mixer_gain(sc, cp->dev);
1837 }
1838 break;
1839
1840 case SB_RECORD_SOURCE:
1841 if (ISSBM1745(sc)) {
1842 if (cp->type != AUDIO_MIXER_SET)
1843 error = EINVAL;
1844 else
1845 error = sbdsp_set_in_ports(sc, cp->un.mask);
1846 } else {
1847 if (cp->type != AUDIO_MIXER_ENUM)
1848 error = EINVAL;
1849 else {
1850 sc->in_port = cp->un.ord;
1851 error = sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1852 }
1853 }
1854 break;
1855
1856 case SB_AGC:
1857 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1858 error = EINVAL;
1859 else
1860 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1861 break;
1862
1863 case SB_CD_OUT_MUTE:
1864 mask = SB16P_SW_CD;
1865 goto omute;
1866 case SB_MIC_OUT_MUTE:
1867 mask = SB16P_SW_MIC;
1868 goto omute;
1869 case SB_LINE_OUT_MUTE:
1870 mask = SB16P_SW_LINE;
1871 omute:
1872 if (cp->type != AUDIO_MIXER_ENUM) {
1873 error = EINVAL;
1874 break;
1875 }
1876 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1877 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1878 if (cp->un.ord)
1879 bits = bits & ~mask;
1880 else
1881 bits = bits | mask;
1882 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1883 break;
1884
1885 case SB_MIC_IN_MUTE:
1886 case SB_MIC_SWAP:
1887 lmask = rmask = SB16P_SW_MIC;
1888 goto imute;
1889 case SB_CD_IN_MUTE:
1890 case SB_CD_SWAP:
1891 lmask = SB16P_SW_CD_L;
1892 rmask = SB16P_SW_CD_R;
1893 goto imute;
1894 case SB_LINE_IN_MUTE:
1895 case SB_LINE_SWAP:
1896 lmask = SB16P_SW_LINE_L;
1897 rmask = SB16P_SW_LINE_R;
1898 goto imute;
1899 case SB_MIDI_IN_MUTE:
1900 case SB_MIDI_SWAP:
1901 lmask = SB16P_SW_MIDI_L;
1902 rmask = SB16P_SW_MIDI_R;
1903 imute:
1904 if (cp->type != AUDIO_MIXER_ENUM) {
1905 error = EINVAL;
1906 break;
1907 }
1908 mask = lmask | rmask;
1909 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1910 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1911 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1912 if (SB_IS_IN_MUTE(cp->dev)) {
1913 mute = cp->dev;
1914 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1915 } else {
1916 swap = cp->dev;
1917 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1918 }
1919 if (sc->gain[swap][SB_LR]) {
1920 mask = lmask;
1921 lmask = rmask;
1922 rmask = mask;
1923 }
1924 if (!sc->gain[mute][SB_LR]) {
1925 lbits = lbits | lmask;
1926 rbits = rbits | rmask;
1927 }
1928 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1929 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1930 break;
1931
1932 default:
1933 error = EINVAL;
1934 break;
1935 }
1936
1937 mutex_spin_exit(&sc->sc_intr_lock);
1938 return error;
1939 }
1940
1941 int
1942 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1943 {
1944 struct sbdsp_softc *sc;
1945
1946 sc = addr;
1947
1948 KASSERT(mutex_owned(&sc->sc_lock));
1949
1950 if (sc->sc_open == SB_OPEN_MIDI)
1951 return EBUSY;
1952
1953 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1954
1955 if (sc->sc_mixer_model == SBM_NONE)
1956 return EINVAL;
1957
1958 mutex_spin_enter(&sc->sc_intr_lock);
1959
1960 switch (cp->dev) {
1961 case SB_TREBLE:
1962 case SB_BASS:
1963 if (sc->sc_mixer_model == SBM_CT1345 ||
1964 sc->sc_mixer_model == SBM_CT1XX5) {
1965 switch (cp->dev) {
1966 case SB_TREBLE:
1967 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1968 mutex_spin_exit(&sc->sc_intr_lock);
1969 return 0;
1970 case SB_BASS:
1971 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1972 mutex_spin_exit(&sc->sc_intr_lock);
1973 return 0;
1974 }
1975 }
1976 case SB_PCSPEAKER:
1977 case SB_INPUT_GAIN:
1978 case SB_OUTPUT_GAIN:
1979 if (!ISSBM1745(sc)) {
1980 mutex_spin_exit(&sc->sc_intr_lock);
1981 return EINVAL;
1982 }
1983 case SB_MIC_VOL:
1984 case SB_LINE_IN_VOL:
1985 if (sc->sc_mixer_model == SBM_CT1335) {
1986 mutex_spin_exit(&sc->sc_intr_lock);
1987 return EINVAL;
1988 }
1989 case SB_VOICE_VOL:
1990 case SB_MIDI_VOL:
1991 case SB_CD_VOL:
1992 case SB_MASTER_VOL:
1993 switch (cp->dev) {
1994 case SB_MIC_VOL:
1995 case SB_PCSPEAKER:
1996 if (cp->un.value.num_channels != 1) {
1997 mutex_spin_exit(&sc->sc_intr_lock);
1998 return EINVAL;
1999 }
2000 /* fall into */
2001 default:
2002 switch (cp->un.value.num_channels) {
2003 case 1:
2004 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
2005 sc->gain[cp->dev][SB_LEFT];
2006 break;
2007 case 2:
2008 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
2009 sc->gain[cp->dev][SB_LEFT];
2010 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
2011 sc->gain[cp->dev][SB_RIGHT];
2012 break;
2013 default:
2014 mutex_spin_exit(&sc->sc_intr_lock);
2015 return EINVAL;
2016 }
2017 break;
2018 }
2019 break;
2020
2021 case SB_RECORD_SOURCE:
2022 if (ISSBM1745(sc))
2023 cp->un.mask = sc->in_mask;
2024 else
2025 cp->un.ord = sc->in_port;
2026 break;
2027
2028 case SB_AGC:
2029 if (!ISSBM1745(sc)) {
2030 mutex_spin_exit(&sc->sc_intr_lock);
2031 return EINVAL;
2032 }
2033 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2034 break;
2035
2036 case SB_CD_IN_MUTE:
2037 case SB_MIC_IN_MUTE:
2038 case SB_LINE_IN_MUTE:
2039 case SB_MIDI_IN_MUTE:
2040 case SB_CD_SWAP:
2041 case SB_MIC_SWAP:
2042 case SB_LINE_SWAP:
2043 case SB_MIDI_SWAP:
2044 case SB_CD_OUT_MUTE:
2045 case SB_MIC_OUT_MUTE:
2046 case SB_LINE_OUT_MUTE:
2047 cp->un.ord = sc->gain[cp->dev][SB_LR];
2048 break;
2049
2050 default:
2051 mutex_spin_exit(&sc->sc_intr_lock);
2052 return EINVAL;
2053 }
2054
2055 mutex_spin_exit(&sc->sc_intr_lock);
2056
2057 return 0;
2058 }
2059
2060 int
2061 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
2062 {
2063 struct sbdsp_softc *sc = addr;
2064 int chan, class, is1745;
2065
2066 sc = addr;
2067 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2068 sc->sc_mixer_model, dip->index));
2069
2070 KASSERT(mutex_owned(&sc->sc_lock));
2071
2072 if (sc->sc_mixer_model == SBM_NONE)
2073 return ENXIO;
2074
2075 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2076 is1745 = ISSBM1745(sc);
2077 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2078
2079 switch (dip->index) {
2080 case SB_MASTER_VOL:
2081 dip->type = AUDIO_MIXER_VALUE;
2082 dip->mixer_class = SB_OUTPUT_CLASS;
2083 dip->prev = dip->next = AUDIO_MIXER_LAST;
2084 strcpy(dip->label.name, AudioNmaster);
2085 dip->un.v.num_channels = chan;
2086 strcpy(dip->un.v.units.name, AudioNvolume);
2087 return 0;
2088 case SB_MIDI_VOL:
2089 dip->type = AUDIO_MIXER_VALUE;
2090 dip->mixer_class = class;
2091 dip->prev = AUDIO_MIXER_LAST;
2092 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2093 strcpy(dip->label.name, AudioNfmsynth);
2094 dip->un.v.num_channels = chan;
2095 strcpy(dip->un.v.units.name, AudioNvolume);
2096 return 0;
2097 case SB_CD_VOL:
2098 dip->type = AUDIO_MIXER_VALUE;
2099 dip->mixer_class = class;
2100 dip->prev = AUDIO_MIXER_LAST;
2101 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2102 strcpy(dip->label.name, AudioNcd);
2103 dip->un.v.num_channels = chan;
2104 strcpy(dip->un.v.units.name, AudioNvolume);
2105 return 0;
2106 case SB_VOICE_VOL:
2107 dip->type = AUDIO_MIXER_VALUE;
2108 dip->mixer_class = class;
2109 dip->prev = AUDIO_MIXER_LAST;
2110 dip->next = AUDIO_MIXER_LAST;
2111 strcpy(dip->label.name, AudioNdac);
2112 dip->un.v.num_channels = chan;
2113 strcpy(dip->un.v.units.name, AudioNvolume);
2114 return 0;
2115 case SB_OUTPUT_CLASS:
2116 dip->type = AUDIO_MIXER_CLASS;
2117 dip->mixer_class = SB_OUTPUT_CLASS;
2118 dip->next = dip->prev = AUDIO_MIXER_LAST;
2119 strcpy(dip->label.name, AudioCoutputs);
2120 return 0;
2121 }
2122
2123 if (sc->sc_mixer_model == SBM_CT1335)
2124 return ENXIO;
2125
2126 switch (dip->index) {
2127 case SB_MIC_VOL:
2128 dip->type = AUDIO_MIXER_VALUE;
2129 dip->mixer_class = class;
2130 dip->prev = AUDIO_MIXER_LAST;
2131 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2132 strcpy(dip->label.name, AudioNmicrophone);
2133 dip->un.v.num_channels = 1;
2134 strcpy(dip->un.v.units.name, AudioNvolume);
2135 return 0;
2136
2137 case SB_LINE_IN_VOL:
2138 dip->type = AUDIO_MIXER_VALUE;
2139 dip->mixer_class = class;
2140 dip->prev = AUDIO_MIXER_LAST;
2141 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2142 strcpy(dip->label.name, AudioNline);
2143 dip->un.v.num_channels = 2;
2144 strcpy(dip->un.v.units.name, AudioNvolume);
2145 return 0;
2146
2147 case SB_RECORD_SOURCE:
2148 dip->mixer_class = SB_RECORD_CLASS;
2149 dip->prev = dip->next = AUDIO_MIXER_LAST;
2150 strcpy(dip->label.name, AudioNsource);
2151 if (ISSBM1745(sc)) {
2152 dip->type = AUDIO_MIXER_SET;
2153 dip->un.s.num_mem = 4;
2154 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2155 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2156 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2157 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2158 strcpy(dip->un.s.member[2].label.name, AudioNline);
2159 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2160 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2161 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2162 } else {
2163 dip->type = AUDIO_MIXER_ENUM;
2164 dip->un.e.num_mem = 3;
2165 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2166 dip->un.e.member[0].ord = SB_MIC_VOL;
2167 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2168 dip->un.e.member[1].ord = SB_CD_VOL;
2169 strcpy(dip->un.e.member[2].label.name, AudioNline);
2170 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2171 }
2172 return 0;
2173
2174 case SB_BASS:
2175 dip->prev = dip->next = AUDIO_MIXER_LAST;
2176 strcpy(dip->label.name, AudioNbass);
2177 if (sc->sc_mixer_model == SBM_CT1745) {
2178 dip->type = AUDIO_MIXER_VALUE;
2179 dip->mixer_class = SB_EQUALIZATION_CLASS;
2180 dip->un.v.num_channels = 2;
2181 strcpy(dip->un.v.units.name, AudioNbass);
2182 } else {
2183 dip->type = AUDIO_MIXER_ENUM;
2184 dip->mixer_class = SB_INPUT_CLASS;
2185 dip->un.e.num_mem = 2;
2186 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2187 dip->un.e.member[0].ord = 0;
2188 strcpy(dip->un.e.member[1].label.name, AudioNon);
2189 dip->un.e.member[1].ord = 1;
2190 }
2191 return 0;
2192
2193 case SB_TREBLE:
2194 dip->prev = dip->next = AUDIO_MIXER_LAST;
2195 strcpy(dip->label.name, AudioNtreble);
2196 if (sc->sc_mixer_model == SBM_CT1745) {
2197 dip->type = AUDIO_MIXER_VALUE;
2198 dip->mixer_class = SB_EQUALIZATION_CLASS;
2199 dip->un.v.num_channels = 2;
2200 strcpy(dip->un.v.units.name, AudioNtreble);
2201 } else {
2202 dip->type = AUDIO_MIXER_ENUM;
2203 dip->mixer_class = SB_INPUT_CLASS;
2204 dip->un.e.num_mem = 2;
2205 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2206 dip->un.e.member[0].ord = 0;
2207 strcpy(dip->un.e.member[1].label.name, AudioNon);
2208 dip->un.e.member[1].ord = 1;
2209 }
2210 return 0;
2211
2212 case SB_RECORD_CLASS: /* record source class */
2213 dip->type = AUDIO_MIXER_CLASS;
2214 dip->mixer_class = SB_RECORD_CLASS;
2215 dip->next = dip->prev = AUDIO_MIXER_LAST;
2216 strcpy(dip->label.name, AudioCrecord);
2217 return 0;
2218
2219 case SB_INPUT_CLASS:
2220 dip->type = AUDIO_MIXER_CLASS;
2221 dip->mixer_class = SB_INPUT_CLASS;
2222 dip->next = dip->prev = AUDIO_MIXER_LAST;
2223 strcpy(dip->label.name, AudioCinputs);
2224 return 0;
2225
2226 }
2227
2228 if (sc->sc_mixer_model == SBM_CT1345)
2229 return ENXIO;
2230
2231 switch(dip->index) {
2232 case SB_PCSPEAKER:
2233 dip->type = AUDIO_MIXER_VALUE;
2234 dip->mixer_class = SB_INPUT_CLASS;
2235 dip->prev = dip->next = AUDIO_MIXER_LAST;
2236 strcpy(dip->label.name, "pc_speaker");
2237 dip->un.v.num_channels = 1;
2238 strcpy(dip->un.v.units.name, AudioNvolume);
2239 return 0;
2240
2241 case SB_INPUT_GAIN:
2242 dip->type = AUDIO_MIXER_VALUE;
2243 dip->mixer_class = SB_INPUT_CLASS;
2244 dip->prev = dip->next = AUDIO_MIXER_LAST;
2245 strcpy(dip->label.name, AudioNinput);
2246 dip->un.v.num_channels = 2;
2247 strcpy(dip->un.v.units.name, AudioNvolume);
2248 return 0;
2249
2250 case SB_OUTPUT_GAIN:
2251 dip->type = AUDIO_MIXER_VALUE;
2252 dip->mixer_class = SB_OUTPUT_CLASS;
2253 dip->prev = dip->next = AUDIO_MIXER_LAST;
2254 strcpy(dip->label.name, AudioNoutput);
2255 dip->un.v.num_channels = 2;
2256 strcpy(dip->un.v.units.name, AudioNvolume);
2257 return 0;
2258
2259 case SB_AGC:
2260 dip->type = AUDIO_MIXER_ENUM;
2261 dip->mixer_class = SB_INPUT_CLASS;
2262 dip->prev = dip->next = AUDIO_MIXER_LAST;
2263 strcpy(dip->label.name, "agc");
2264 dip->un.e.num_mem = 2;
2265 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2266 dip->un.e.member[0].ord = 0;
2267 strcpy(dip->un.e.member[1].label.name, AudioNon);
2268 dip->un.e.member[1].ord = 1;
2269 return 0;
2270
2271 case SB_EQUALIZATION_CLASS:
2272 dip->type = AUDIO_MIXER_CLASS;
2273 dip->mixer_class = SB_EQUALIZATION_CLASS;
2274 dip->next = dip->prev = AUDIO_MIXER_LAST;
2275 strcpy(dip->label.name, AudioCequalization);
2276 return 0;
2277
2278 case SB_CD_IN_MUTE:
2279 dip->prev = SB_CD_VOL;
2280 dip->next = SB_CD_SWAP;
2281 dip->mixer_class = SB_INPUT_CLASS;
2282 goto mute;
2283
2284 case SB_MIC_IN_MUTE:
2285 dip->prev = SB_MIC_VOL;
2286 dip->next = SB_MIC_SWAP;
2287 dip->mixer_class = SB_INPUT_CLASS;
2288 goto mute;
2289
2290 case SB_LINE_IN_MUTE:
2291 dip->prev = SB_LINE_IN_VOL;
2292 dip->next = SB_LINE_SWAP;
2293 dip->mixer_class = SB_INPUT_CLASS;
2294 goto mute;
2295
2296 case SB_MIDI_IN_MUTE:
2297 dip->prev = SB_MIDI_VOL;
2298 dip->next = SB_MIDI_SWAP;
2299 dip->mixer_class = SB_INPUT_CLASS;
2300 goto mute;
2301
2302 case SB_CD_SWAP:
2303 dip->prev = SB_CD_IN_MUTE;
2304 dip->next = SB_CD_OUT_MUTE;
2305 goto swap;
2306
2307 case SB_MIC_SWAP:
2308 dip->prev = SB_MIC_IN_MUTE;
2309 dip->next = SB_MIC_OUT_MUTE;
2310 goto swap;
2311
2312 case SB_LINE_SWAP:
2313 dip->prev = SB_LINE_IN_MUTE;
2314 dip->next = SB_LINE_OUT_MUTE;
2315 goto swap;
2316
2317 case SB_MIDI_SWAP:
2318 dip->prev = SB_MIDI_IN_MUTE;
2319 dip->next = AUDIO_MIXER_LAST;
2320 swap:
2321 dip->mixer_class = SB_INPUT_CLASS;
2322 strcpy(dip->label.name, AudioNswap);
2323 goto mute1;
2324
2325 case SB_CD_OUT_MUTE:
2326 dip->prev = SB_CD_SWAP;
2327 dip->next = AUDIO_MIXER_LAST;
2328 dip->mixer_class = SB_OUTPUT_CLASS;
2329 goto mute;
2330
2331 case SB_MIC_OUT_MUTE:
2332 dip->prev = SB_MIC_SWAP;
2333 dip->next = AUDIO_MIXER_LAST;
2334 dip->mixer_class = SB_OUTPUT_CLASS;
2335 goto mute;
2336
2337 case SB_LINE_OUT_MUTE:
2338 dip->prev = SB_LINE_SWAP;
2339 dip->next = AUDIO_MIXER_LAST;
2340 dip->mixer_class = SB_OUTPUT_CLASS;
2341 mute:
2342 strcpy(dip->label.name, AudioNmute);
2343 mute1:
2344 dip->type = AUDIO_MIXER_ENUM;
2345 dip->un.e.num_mem = 2;
2346 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2347 dip->un.e.member[0].ord = 0;
2348 strcpy(dip->un.e.member[1].label.name, AudioNon);
2349 dip->un.e.member[1].ord = 1;
2350 return 0;
2351
2352 }
2353
2354 return ENXIO;
2355 }
2356
2357 void *
2358 sb_malloc(void *addr, int direction, size_t size)
2359 {
2360 struct sbdsp_softc *sc;
2361 int drq;
2362
2363 sc = addr;
2364 if (sc->sc_drq8 != -1)
2365 drq = sc->sc_drq8;
2366 else
2367 drq = sc->sc_drq16;
2368 return isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK);
2369 }
2370
2371 void
2372 sb_free(void *addr, void *ptr, size_t size)
2373 {
2374
2375 isa_free(ptr, M_DEVBUF);
2376 }
2377
2378 size_t
2379 sb_round_buffersize(void *addr, int direction, size_t size)
2380 {
2381 struct sbdsp_softc *sc;
2382 bus_size_t maxsize;
2383
2384 sc = addr;
2385 if (sc->sc_drq8 != -1)
2386 maxsize = sc->sc_drq8_maxsize;
2387 else
2388 maxsize = sc->sc_drq16_maxsize;
2389
2390 if (size > maxsize)
2391 size = maxsize;
2392 return size;
2393 }
2394
2395 paddr_t
2396 sb_mappage(void *addr, void *mem, off_t off, int prot)
2397 {
2398
2399 return isa_mappage(mem, off, prot);
2400 }
2401
2402 int
2403 sbdsp_get_props(void *addr)
2404 {
2405 struct sbdsp_softc *sc;
2406
2407 sc = addr;
2408 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2409 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2410 }
2411
2412 void
2413 sbdsp_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
2414 {
2415 struct sbdsp_softc *sc;
2416
2417 sc = addr;
2418 *intr = &sc->sc_intr_lock;
2419 *proc = &sc->sc_lock;
2420 }
2421
2422 #if NMPU > 0
2423 /*
2424 * MIDI related routines.
2425 */
2426
2427 int
2428 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2429 void (*ointr)(void *), void *arg)
2430 {
2431 struct sbdsp_softc *sc;
2432
2433 sc = addr;
2434 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2435
2436 if (sc->sc_open != SB_CLOSED)
2437 return EBUSY;
2438 if (sbdsp_reset(sc) != 0)
2439 return EIO;
2440
2441 sc->sc_open = SB_OPEN_MIDI;
2442
2443 if (sc->sc_model >= SB_20)
2444 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2445 return EIO;
2446
2447 sc->sc_intr8 = sbdsp_midi_intr;
2448 sc->sc_intrm = iintr;
2449 sc->sc_argm = arg;
2450
2451 return 0;
2452 }
2453
2454 void
2455 sbdsp_midi_close(void *addr)
2456 {
2457 struct sbdsp_softc *sc;
2458
2459 sc = addr;
2460 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2461
2462 if (sc->sc_model >= SB_20)
2463 sbdsp_reset(sc); /* exit UART mode */
2464
2465 sc->sc_intrm = 0;
2466 sc->sc_open = SB_CLOSED;
2467 }
2468
2469 int
2470 sbdsp_midi_output(void *addr, int d)
2471 {
2472 struct sbdsp_softc *sc;
2473
2474 sc = addr;
2475 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2476 return EIO;
2477 if (sbdsp_wdsp(sc, d))
2478 return EIO;
2479 return 0;
2480 }
2481
2482 void
2483 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2484 {
2485 struct sbdsp_softc *sc;
2486
2487 sc = addr;
2488 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2489 mi->props = MIDI_PROP_CAN_INPUT;
2490 }
2491
2492 int
2493 sbdsp_midi_intr(void *addr)
2494 {
2495 struct sbdsp_softc *sc;
2496
2497 sc = addr;
2498
2499 KASSERT(mutex_owned(&sc->sc_intr_lock));
2500
2501 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2502 return (0);
2503 }
2504 #endif
2505