sbdsp.c revision 1.139.2.1 1 /* $NetBSD: sbdsp.c,v 1.139.2.1 2019/04/21 06:17:02 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 */
65
66 /*
67 * SoundBlaster Pro code provided by John Kohl, based on lots of
68 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
69 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
70 * <sachs (at) meibm15.cen.uiuc.edu>.
71 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
72 * with information from SB "Hardware Programming Guide" and the
73 * Linux drivers.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.139.2.1 2019/04/21 06:17:02 isaki Exp $");
78
79 #include "midi.h"
80 #include "mpu.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/errno.h>
86 #include <sys/ioctl.h>
87 #include <sys/syslog.h>
88 #include <sys/device.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/malloc.h>
92 #include <sys/cpu.h>
93 #include <sys/intr.h>
94 #include <sys/bus.h>
95
96 #include <sys/audioio.h>
97 #include <dev/audio_if.h>
98 #include <dev/midi_if.h>
99
100 #include <dev/isa/isavar.h>
101 #include <dev/isa/isadmavar.h>
102
103 #include <dev/isa/sbreg.h>
104 #include <dev/isa/sbdspvar.h>
105
106
107 #ifdef AUDIO_DEBUG
108 #define DPRINTF(x) if (sbdspdebug) printf x
109 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
110 int sbdspdebug = 0;
111 #else
112 #define DPRINTF(x)
113 #define DPRINTFN(n,x)
114 #endif
115
116 #ifndef SBDSP_NPOLL
117 #define SBDSP_NPOLL 3000
118 #endif
119
120 struct {
121 int wdsp;
122 int rdsp;
123 int wmidi;
124 } sberr;
125
126 /*
127 * Time constant routines follow. See SBK, section 12.
128 * Although they don't come out and say it (in the docs),
129 * the card clearly uses a 1MHz countdown timer, as the
130 * low-speed formula (p. 12-4) is:
131 * tc = 256 - 10^6 / sr
132 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
133 * and a 256MHz clock is used:
134 * tc = 65536 - 256 * 10^ 6 / sr
135 * Since we can only use the upper byte of the HS TC, the two formulae
136 * are equivalent. (Why didn't they say so?) E.g.,
137 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
138 *
139 * The crossover point (from low- to high-speed modes) is different
140 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
141 *
142 * SBPRO SB20
143 * ----- --------
144 * input ls min 4 kHz 4 kHz
145 * input ls max 23 kHz 13 kHz
146 * input hs max 44.1 kHz 15 kHz
147 * output ls min 4 kHz 4 kHz
148 * output ls max 23 kHz 23 kHz
149 * output hs max 44.1 kHz 44.1 kHz
150 */
151 /* XXX Should we round the tc?
152 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
153 */
154 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
155 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
156
157 struct sbmode {
158 short model;
159 u_char channels;
160 u_char precision;
161 u_short lowrate, highrate;
162 u_char cmd;
163 u_char halt, cont;
164 u_char cmdchan;
165 };
166 static struct sbmode sbpmodes[] = {
167 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
168 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
169 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
170 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
171 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
172 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
173 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT, 0, },
174 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
175 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
176 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
177 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
178 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
179 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
180 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
181 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
182 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
183 #define PLAY16 15 /* must be the index of the next entry in the table */
184 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
185 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
186 { .model = -1 }
187 };
188 static struct sbmode sbrmodes[] = {
189 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
190 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
191 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
192 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT, 0, },
193 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
194 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
195 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
196 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
197 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
198 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
199 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
200 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
201 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
202 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
203 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT, 0, },
204 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
205 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
206 { .model = -1 }
207 };
208
209 void sbversion(struct sbdsp_softc *);
210 void sbdsp_jazz16_probe(struct sbdsp_softc *);
211 void sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
212 void sbdsp_pause(struct sbdsp_softc *);
213 int sbdsp_set_timeconst(struct sbdsp_softc *, int);
214 int sbdsp16_set_rate(struct sbdsp_softc *, int, int);
215 int sbdsp_set_in_ports(struct sbdsp_softc *, int);
216 void sbdsp_set_ifilter(void *, int);
217 int sbdsp_get_ifilter(void *);
218
219 int sbdsp_block_output(void *);
220 int sbdsp_block_input(void *);
221 static int sbdsp_adjust(int, int);
222
223 int sbdsp_midi_intr(void *);
224
225 static bool sbdsp_resume(device_t, const pmf_qual_t *);
226
227 #ifdef AUDIO_DEBUG
228 void sb_printsc(struct sbdsp_softc *);
229
230 void
231 sb_printsc(struct sbdsp_softc *sc)
232 {
233 int i;
234
235 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
236 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
237 sc->sc_drq8, sc->sc_drq16,
238 sc->sc_iobase, sc->sc_irq);
239 printf("irate %d itc %x orate %d otc %x\n",
240 sc->sc_i.rate, sc->sc_i.tc,
241 sc->sc_o.rate, sc->sc_o.tc);
242 printf("spkron %u nintr %lu\n",
243 sc->spkr_state, sc->sc_interrupts);
244 printf("intr8 %p intr16 %p\n",
245 sc->sc_intr8, sc->sc_intr16);
246 printf("gain:");
247 for (i = 0; i < SB_NDEVS; i++)
248 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
249 printf("\n");
250 }
251 #endif /* AUDIO_DEBUG */
252
253 /*
254 * Probe / attach routines.
255 */
256
257 /*
258 * Probe for the soundblaster hardware.
259 */
260 int
261 sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
262 {
263
264 if (sbdsp_reset(sc) < 0) {
265 DPRINTF(("sbdsp: couldn't reset card\n"));
266 return 0;
267 }
268 /* if flags set, go and probe the jazz16 stuff */
269 if (match->cf_flags & 1)
270 sbdsp_jazz16_probe(sc);
271 else
272 sbversion(sc);
273 if (sc->sc_model == SB_UNK) {
274 /* Unknown SB model found. */
275 DPRINTF(("sbdsp: unknown SB model found\n"));
276 return 0;
277 }
278 return 1;
279 }
280
281 /*
282 * Try add-on stuff for Jazz16.
283 */
284 void
285 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
286 {
287 static u_char jazz16_irq_conf[16] = {
288 -1, -1, 0x02, 0x03,
289 -1, 0x01, -1, 0x04,
290 -1, 0x02, 0x05, -1,
291 -1, -1, -1, 0x06};
292 static u_char jazz16_drq_conf[8] = {
293 -1, 0x01, -1, 0x02,
294 -1, 0x03, -1, 0x04};
295
296 bus_space_tag_t iot;
297 bus_space_handle_t ioh;
298
299 iot = sc->sc_iot;
300 sbversion(sc);
301
302 DPRINTF(("jazz16 probe\n"));
303
304 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
305 DPRINTF(("bus map failed\n"));
306 return;
307 }
308
309 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
310 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
311 DPRINTF(("drq/irq check failed\n"));
312 goto done; /* give up, we can't do it. */
313 }
314
315 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
316 delay(10000); /* delay 10 ms */
317 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
318 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
319
320 if (sbdsp_reset(sc) < 0) {
321 DPRINTF(("sbdsp_reset check failed\n"));
322 goto done; /* XXX? what else could we do? */
323 }
324
325 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
326 DPRINTF(("read16 setup failed\n"));
327 goto done;
328 }
329
330 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
331 DPRINTF(("read16 failed\n"));
332 goto done;
333 }
334
335 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
336 sc->sc_drq16 = sc->sc_drq8;
337 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
338 (sc->sc_drq16 >= 0 &&
339 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
340 jazz16_drq_conf[sc->sc_drq8])) ||
341 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
342 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
343 } else {
344 DPRINTF(("jazz16 detected!\n"));
345 sc->sc_model = SB_JAZZ;
346 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
347 }
348
349 done:
350 bus_space_unmap(iot, ioh, 1);
351 }
352
353 /*
354 * Attach hardware to driver, attach hardware driver to audio
355 * pseudo-device driver .
356 */
357 void
358 sbdsp_attach(struct sbdsp_softc *sc)
359 {
360 int i, error;
361 u_int v;
362
363 mutex_enter(&sc->sc_lock);
364 mutex_spin_enter(&sc->sc_intr_lock);
365
366 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
367
368 if (sc->sc_mixer_model != SBM_NONE) {
369 /* Reset the mixer.*/
370 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
371 /* And set our own default values */
372 for (i = 0; i < SB_NDEVS; i++) {
373 switch(i) {
374 case SB_MIC_VOL:
375 case SB_LINE_IN_VOL:
376 v = 0;
377 break;
378 case SB_BASS:
379 case SB_TREBLE:
380 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
381 break;
382 case SB_CD_IN_MUTE:
383 case SB_MIC_IN_MUTE:
384 case SB_LINE_IN_MUTE:
385 case SB_MIDI_IN_MUTE:
386 case SB_CD_SWAP:
387 case SB_MIC_SWAP:
388 case SB_LINE_SWAP:
389 case SB_MIDI_SWAP:
390 case SB_CD_OUT_MUTE:
391 case SB_MIC_OUT_MUTE:
392 case SB_LINE_OUT_MUTE:
393 v = 0;
394 break;
395 default:
396 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
397 break;
398 }
399 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
400 sbdsp_set_mixer_gain(sc, i);
401 }
402 sc->in_filter = 0; /* no filters turned on, please */
403 }
404
405 mutex_spin_exit(&sc->sc_intr_lock);
406 mutex_exit(&sc->sc_lock);
407
408 aprint_naive("\n");
409 aprint_normal(": dsp v%d.%02d%s\n",
410 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
411 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
412
413 /* XXX It's not true full duplex. */
414 sc->sc_fullduplex = 0;
415
416 if (sc->sc_drq8 != -1) {
417 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
418 sc->sc_drq8);
419 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
420 sc->sc_drq8_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
421 if (error) {
422 aprint_error_dev(sc->sc_dev,
423 "can't create map for drq %d\n", sc->sc_drq8);
424 return;
425 }
426 }
427
428 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
429 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
430 sc->sc_drq16);
431 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
432 sc->sc_drq16_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
433 if (error) {
434 aprint_error_dev(sc->sc_dev,
435 "can't create map for drq %d\n", sc->sc_drq16);
436 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
437 return;
438 }
439 }
440
441 if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
442 aprint_error_dev(sc->sc_dev,
443 "couldn't establish power handler\n");
444 }
445
446 static bool
447 sbdsp_resume(device_t dv, const pmf_qual_t *qual)
448 {
449 struct sbdsp_softc *sc = device_private(dv);
450
451 /* Reset the mixer. */
452 mutex_enter(&sc->sc_lock);
453 mutex_spin_enter(&sc->sc_intr_lock);
454 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
455 mutex_spin_exit(&sc->sc_intr_lock);
456 mutex_exit(&sc->sc_lock);
457
458 return true;
459 }
460
461 void
462 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
463 {
464 bus_space_tag_t iot;
465 bus_space_handle_t ioh;
466
467 iot = sc->sc_iot;
468 ioh = sc->sc_ioh;
469 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
470 delay(20);
471 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
472 delay(30);
473 }
474
475 int
476 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
477 {
478 bus_space_tag_t iot;
479 bus_space_handle_t ioh;
480 int val;
481
482 iot = sc->sc_iot;
483 ioh = sc->sc_ioh;
484 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
485 delay(20);
486 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
487 delay(30);
488 return val;
489 }
490
491 /*
492 * Various routines to interface to higher level audio driver
493 */
494
495 int
496 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
497 {
498 struct sbdsp_softc *sc;
499 int emul;
500
501 sc = addr;
502 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
503
504 switch (fp->index) {
505 case 0:
506 strcpy(fp->name, AudioEulinear);
507 fp->encoding = AUDIO_ENCODING_ULINEAR;
508 fp->precision = 8;
509 fp->flags = 0;
510 return 0;
511 case 1:
512 strcpy(fp->name, AudioEmulaw);
513 fp->encoding = AUDIO_ENCODING_ULAW;
514 fp->precision = 8;
515 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
516 return 0;
517 case 2:
518 strcpy(fp->name, AudioEalaw);
519 fp->encoding = AUDIO_ENCODING_ALAW;
520 fp->precision = 8;
521 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
522 return 0;
523 case 3:
524 strcpy(fp->name, AudioEslinear);
525 fp->encoding = AUDIO_ENCODING_SLINEAR;
526 fp->precision = 8;
527 fp->flags = emul;
528 return 0;
529 }
530 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
531 return EINVAL;
532
533 switch(fp->index) {
534 case 4:
535 strcpy(fp->name, AudioEslinear_le);
536 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
537 fp->precision = 16;
538 fp->flags = 0;
539 return 0;
540 case 5:
541 strcpy(fp->name, AudioEulinear_le);
542 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
543 fp->precision = 16;
544 fp->flags = emul;
545 return 0;
546 case 6:
547 strcpy(fp->name, AudioEslinear_be);
548 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
549 fp->precision = 16;
550 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
551 return 0;
552 case 7:
553 strcpy(fp->name, AudioEulinear_be);
554 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
555 fp->precision = 16;
556 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
557 return 0;
558 default:
559 return EINVAL;
560 }
561 return 0;
562 }
563
564 int
565 sbdsp_set_params(
566 void *addr,
567 int setmode, int usemode,
568 audio_params_t *play, audio_params_t *rec,
569 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
570 {
571 struct sbdsp_softc *sc;
572 struct sbmode *m;
573 u_int rate, tc, bmode;
574 int model;
575 int chan;
576 struct audio_params *p;
577 audio_params_t hw __unused;
578 int mode;
579
580 sc = addr;
581
582 if (sc->sc_open == SB_OPEN_MIDI)
583 return EBUSY;
584
585 /* Later models work like SB16. */
586 model = uimin(sc->sc_model, SB_16);
587
588 /*
589 * Prior to the SB16, we have only one clock, so make the sample
590 * rates match.
591 */
592 if (!ISSB16CLASS(sc) &&
593 play->sample_rate != rec->sample_rate &&
594 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
595 if (setmode == AUMODE_PLAY) {
596 rec->sample_rate = play->sample_rate;
597 setmode |= AUMODE_RECORD;
598 } else if (setmode == AUMODE_RECORD) {
599 play->sample_rate = rec->sample_rate;
600 setmode |= AUMODE_PLAY;
601 } else
602 return EINVAL;
603 }
604
605 /* Set first record info, then play info */
606 for (mode = AUMODE_RECORD; mode != -1;
607 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
608 if ((setmode & mode) == 0)
609 continue;
610
611 p = mode == AUMODE_PLAY ? play : rec;
612 /* Locate proper commands */
613 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
614 m->model != -1; m++) {
615 if (model == m->model &&
616 p->channels == m->channels &&
617 p->precision == m->precision &&
618 p->sample_rate >= m->lowrate &&
619 p->sample_rate <= m->highrate)
620 break;
621 }
622 if (m->model == -1)
623 return EINVAL;
624 rate = p->sample_rate;
625 hw = *p;
626 tc = 1;
627 bmode = -1;
628 if (model == SB_16) {
629 switch (p->encoding) {
630 /* FALLTHROUGH */
631 case AUDIO_ENCODING_SLINEAR:
632 case AUDIO_ENCODING_SLINEAR_LE:
633 bmode = SB_BMODE_SIGNED;
634 break;
635
636 default:
637 return EINVAL;
638 }
639 if (p->channels == 2)
640 bmode |= SB_BMODE_STEREO;
641 } else if (m->model == SB_JAZZ && m->precision == 16) {
642 switch (p->encoding) {
643 case AUDIO_ENCODING_SLINEAR:
644 case AUDIO_ENCODING_SLINEAR_LE:
645 break;
646 default:
647 return EINVAL;
648 }
649 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
650 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
651 hw.sample_rate = p->sample_rate;
652 } else {
653 panic("ulinear8 not supported; use set_format.");
654 }
655
656 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
657 if (mode == AUMODE_PLAY) {
658 sc->sc_o.rate = rate;
659 sc->sc_o.tc = tc;
660 sc->sc_o.modep = m;
661 sc->sc_o.bmode = bmode;
662 sc->sc_o.dmachan = chan;
663 } else {
664 sc->sc_i.rate = rate;
665 sc->sc_i.tc = tc;
666 sc->sc_i.modep = m;
667 sc->sc_i.bmode = bmode;
668 sc->sc_i.dmachan = chan;
669 }
670
671 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
672 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
673 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
674 p->sample_rate, p->precision, p->channels,
675 p->encoding, tc, m->cmd, bmode, m->cmdchan));
676
677 }
678
679 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
680 sc->sc_i.dmachan, sc->sc_o.dmachan));
681
682 return 0;
683 }
684
685 void
686 sbdsp_set_ifilter(void *addr, int which)
687 {
688 struct sbdsp_softc *sc;
689 int mixval;
690
691 sc = addr;
692
693 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
694 switch (which) {
695 case 0:
696 mixval |= SBP_FILTER_OFF;
697 break;
698 case SB_TREBLE:
699 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
700 break;
701 case SB_BASS:
702 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
703 break;
704 default:
705 return;
706 }
707 sc->in_filter = mixval & SBP_IFILTER_MASK;
708 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
709 }
710
711 int
712 sbdsp_get_ifilter(void *addr)
713 {
714 struct sbdsp_softc *sc;
715
716 sc = addr;
717 sc->in_filter =
718 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
719 switch (sc->in_filter) {
720 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
721 return SB_TREBLE;
722 case SBP_FILTER_ON|SBP_IFILTER_LOW:
723 return SB_BASS;
724 default:
725 return 0;
726 }
727 }
728
729 int
730 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
731 {
732 int bitsl, bitsr;
733 int sbport;
734
735 KASSERT(mutex_owned(&sc->sc_lock));
736 KASSERT(mutex_owned(&sc->sc_intr_lock));
737
738 if (sc->sc_open == SB_OPEN_MIDI)
739 return EBUSY;
740
741 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
742 sc->sc_mixer_model, mask));
743
744 switch(sc->sc_mixer_model) {
745 case SBM_NONE:
746 return EINVAL;
747 case SBM_CT1335:
748 if (mask != (1 << SB_MIC_VOL))
749 return EINVAL;
750 break;
751 case SBM_CT1345:
752 switch (mask) {
753 case 1 << SB_MIC_VOL:
754 sbport = SBP_FROM_MIC;
755 break;
756 case 1 << SB_LINE_IN_VOL:
757 sbport = SBP_FROM_LINE;
758 break;
759 case 1 << SB_CD_VOL:
760 sbport = SBP_FROM_CD;
761 break;
762 default:
763 return EINVAL;
764 }
765 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
766 break;
767 case SBM_CT1XX5:
768 case SBM_CT1745:
769 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
770 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
771 return EINVAL;
772 bitsr = 0;
773 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
774 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
775 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
776 bitsl = SB_SRC_R_TO_L(bitsr);
777 if (mask & (1<<SB_MIC_VOL)) {
778 bitsl |= SBP_MIC_SRC;
779 bitsr |= SBP_MIC_SRC;
780 }
781 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
782 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
783 break;
784 }
785 sc->in_mask = mask;
786
787 return 0;
788 }
789
790 int
791 sbdsp_speaker_ctl(void *addr, int newstate)
792 {
793 struct sbdsp_softc *sc;
794
795 sc = addr;
796 if (sc->sc_open == SB_OPEN_MIDI)
797 return EBUSY;
798
799 if ((newstate == SPKR_ON) &&
800 (sc->spkr_state == SPKR_OFF)) {
801 sbdsp_spkron(sc);
802 sc->spkr_state = SPKR_ON;
803 }
804 if ((newstate == SPKR_OFF) &&
805 (sc->spkr_state == SPKR_ON)) {
806 sbdsp_spkroff(sc);
807 sc->spkr_state = SPKR_OFF;
808 }
809 return 0;
810 }
811
812 int
813 sbdsp_round_blocksize(void *addr, int blk, int mode,
814 const audio_params_t *param)
815 {
816 return blk & -4; /* round to biggest sample size */
817 }
818
819 int
820 sbdsp_open(void *addr, int flags)
821 {
822 struct sbdsp_softc *sc;
823 int error, state;
824
825 sc = addr;
826 DPRINTF(("sbdsp_open: sc=%p\n", sc));
827
828 if (sc->sc_open != SB_CLOSED)
829 return EBUSY;
830 sc->sc_open = SB_OPEN_AUDIO;
831 state = 0;
832
833 if (sc->sc_drq8 != -1) {
834 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
835 if (error != 0)
836 goto bad;
837 state |= 1;
838 }
839
840 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
841 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
842 if (error != 0)
843 goto bad;
844 state |= 2;
845 }
846
847
848 if (sbdsp_reset(sc) != 0) {
849 error = EIO;
850 goto bad;
851 }
852
853 if (ISSBPRO(sc) &&
854 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
855 DPRINTF(("sbdsp_open: can't set mono mode\n"));
856 /* we'll readjust when it's time for DMA. */
857 }
858
859 /*
860 * Leave most things as they were; users must change things if
861 * the previous process didn't leave it they way they wanted.
862 * Looked at another way, it's easy to set up a configuration
863 * in one program and leave it for another to inherit.
864 */
865 DPRINTF(("sbdsp_open: opened\n"));
866
867 return 0;
868
869 bad:
870 if (state & 1)
871 isa_drq_free(sc->sc_ic, sc->sc_drq8);
872 if (state & 2)
873 isa_drq_free(sc->sc_ic, sc->sc_drq16);
874
875 sc->sc_open = SB_CLOSED;
876 return error;
877 }
878
879 void
880 sbdsp_close(void *addr)
881 {
882 struct sbdsp_softc *sc;
883
884 sc = addr;
885 DPRINTF(("sbdsp_close: sc=%p\n", sc));
886
887 sbdsp_spkroff(sc);
888 sc->spkr_state = SPKR_OFF;
889
890 sc->sc_intr8 = 0;
891 sc->sc_intr16 = 0;
892
893 if (sc->sc_drq8 != -1)
894 isa_drq_free(sc->sc_ic, sc->sc_drq8);
895 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
896 isa_drq_free(sc->sc_ic, sc->sc_drq16);
897
898 sc->sc_open = SB_CLOSED;
899 DPRINTF(("sbdsp_close: closed\n"));
900 }
901
902 /*
903 * Lower-level routines
904 */
905
906 /*
907 * Reset the card.
908 * Return non-zero if the card isn't detected.
909 */
910 int
911 sbdsp_reset(struct sbdsp_softc *sc)
912 {
913 bus_space_tag_t iot;
914 bus_space_handle_t ioh;
915
916 iot = sc->sc_iot;
917 ioh = sc->sc_ioh;
918 sc->sc_intr8 = 0;
919 sc->sc_intr16 = 0;
920 sc->sc_intrm = 0;
921
922 /*
923 * See SBK, section 11.3.
924 * We pulse a reset signal into the card.
925 * Gee, what a brilliant hardware design.
926 */
927 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
928 delay(10);
929 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
930 delay(30);
931 if (sbdsp_rdsp(sc) != SB_MAGIC)
932 return -1;
933
934 return 0;
935 }
936
937 /*
938 * Write a byte to the dsp.
939 * We are at the mercy of the card as we use a
940 * polling loop and wait until it can take the byte.
941 */
942 int
943 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
944 {
945 bus_space_tag_t iot;
946 bus_space_handle_t ioh;
947 int i;
948 u_char x;
949
950 iot = sc->sc_iot;
951 ioh = sc->sc_ioh;
952 for (i = SBDSP_NPOLL; --i >= 0; ) {
953 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
954 delay(10);
955 if ((x & SB_DSP_BUSY) == 0) {
956 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
957 delay(10);
958 return 0;
959 }
960 }
961 ++sberr.wdsp;
962 return -1;
963 }
964
965 /*
966 * Read a byte from the DSP, using polling.
967 */
968 int
969 sbdsp_rdsp(struct sbdsp_softc *sc)
970 {
971 bus_space_tag_t iot;
972 bus_space_handle_t ioh;
973 int i;
974 u_char x;
975
976 iot = sc->sc_iot;
977 ioh = sc->sc_ioh;
978 for (i = SBDSP_NPOLL; --i >= 0; ) {
979 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
980 delay(10);
981 if (x & SB_DSP_READY) {
982 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
983 delay(10);
984 return x;
985 }
986 }
987 ++sberr.rdsp;
988 return -1;
989 }
990
991 void
992 sbdsp_pause(struct sbdsp_softc *sc)
993 {
994
995 KASSERT(mutex_owned(&sc->sc_intr_lock));
996 mutex_spin_exit(&sc->sc_intr_lock);
997 (void)kpause("sbpause", false, hz/8, &sc->sc_lock);
998 mutex_spin_enter(&sc->sc_intr_lock);
999 }
1000
1001 /*
1002 * Turn on the speaker. The SBK documention says this operation
1003 * can take up to 1/10 of a second. Higher level layers should
1004 * probably let the task sleep for this amount of time after
1005 * calling here. Otherwise, things might not work (because
1006 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1007 *
1008 * These engineers had their heads up their ass when
1009 * they designed this card.
1010 */
1011 void
1012 sbdsp_spkron(struct sbdsp_softc *sc)
1013 {
1014
1015 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1016 sbdsp_pause(sc);
1017 }
1018
1019 /*
1020 * Turn off the speaker; see comment above.
1021 */
1022 void
1023 sbdsp_spkroff(struct sbdsp_softc *sc)
1024 {
1025
1026 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1027 sbdsp_pause(sc);
1028 }
1029
1030 /*
1031 * Read the version number out of the card.
1032 * Store version information in the softc.
1033 */
1034 void
1035 sbversion(struct sbdsp_softc *sc)
1036 {
1037 int v;
1038
1039 sc->sc_model = SB_UNK;
1040 sc->sc_version = 0;
1041 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1042 return;
1043 v = sbdsp_rdsp(sc) << 8;
1044 v |= sbdsp_rdsp(sc);
1045 if (v < 0)
1046 return;
1047 sc->sc_version = v;
1048 switch(SBVER_MAJOR(v)) {
1049 case 1:
1050 sc->sc_mixer_model = SBM_NONE;
1051 sc->sc_model = SB_1;
1052 break;
1053 case 2:
1054 /* Some SB2 have a mixer, some don't. */
1055 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1056 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1057 /* Check if we can read back the mixer values. */
1058 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1059 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1060 sc->sc_mixer_model = SBM_CT1335;
1061 else
1062 sc->sc_mixer_model = SBM_NONE;
1063 if (SBVER_MINOR(v) == 0)
1064 sc->sc_model = SB_20;
1065 else
1066 sc->sc_model = SB_2x;
1067 break;
1068 case 3:
1069 sc->sc_mixer_model = SBM_CT1345;
1070 sc->sc_model = SB_PRO;
1071 break;
1072 case 4:
1073 #if 0
1074 /* XXX This does not work */
1075 /* Most SB16 have a tone controls, but some don't. */
1076 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1077 /* Check if we can read back the mixer value. */
1078 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1079 sc->sc_mixer_model = SBM_CT1745;
1080 else
1081 sc->sc_mixer_model = SBM_CT1XX5;
1082 #else
1083 sc->sc_mixer_model = SBM_CT1745;
1084 #endif
1085 #if 0
1086 /* XXX figure out a good way of determining the model */
1087 /* XXX what about SB_32 */
1088 if (SBVER_MINOR(v) == 16)
1089 sc->sc_model = SB_64;
1090 else
1091 #endif
1092 sc->sc_model = SB_16;
1093 break;
1094 }
1095 }
1096
1097 int
1098 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1099 {
1100
1101 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1102 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1103 sbdsp_wdsp(sc, tc) < 0)
1104 return EIO;
1105 return 0;
1106 }
1107
1108 int
1109 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1110 {
1111
1112 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd,
1113 rate));
1114 if (sbdsp_wdsp(sc, cmd) < 0 ||
1115 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1116 sbdsp_wdsp(sc, rate) < 0)
1117 return EIO;
1118 return 0;
1119 }
1120
1121 int
1122 sbdsp_trigger_input(
1123 void *addr,
1124 void *start, void *end,
1125 int blksize,
1126 void (*intr)(void *),
1127 void *arg,
1128 const audio_params_t *param)
1129 {
1130 struct sbdsp_softc *sc;
1131 int stereo;
1132 int width;
1133 int filter;
1134
1135 sc = addr;
1136 stereo = param->channels == 2;
1137 width = param->precision;
1138 #ifdef DIAGNOSTIC
1139 if (stereo && (blksize & 1)) {
1140 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1141 return EIO;
1142 }
1143 if (sc->sc_i.run != SB_NOTRUNNING)
1144 printf("sbdsp_trigger_input: already running\n");
1145 #endif
1146
1147 sc->sc_intrr = intr;
1148 sc->sc_argr = arg;
1149
1150 if (width == 8) {
1151 #ifdef DIAGNOSTIC
1152 if (sc->sc_i.dmachan != sc->sc_drq8) {
1153 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1154 width, sc->sc_i.dmachan);
1155 return EIO;
1156 }
1157 #endif
1158 sc->sc_intr8 = sbdsp_block_input;
1159 } else {
1160 #ifdef DIAGNOSTIC
1161 if (sc->sc_i.dmachan != sc->sc_drq16) {
1162 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1163 width, sc->sc_i.dmachan);
1164 return EIO;
1165 }
1166 #endif
1167 sc->sc_intr16 = sbdsp_block_input;
1168 }
1169
1170 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1171 blksize >>= 1;
1172 --blksize;
1173 sc->sc_i.blksize = blksize;
1174
1175 if (ISSBPRO(sc)) {
1176 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1177 return EIO;
1178 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1179 sbdsp_mix_write(sc, SBP_INFILTER,
1180 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1181 filter);
1182 }
1183
1184 if (ISSB16CLASS(sc)) {
1185 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1186 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1187 sc->sc_i.rate));
1188 return EIO;
1189 }
1190 } else {
1191 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1192 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1193 sc->sc_i.rate));
1194 return EIO;
1195 }
1196 }
1197
1198 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1199 start, end, sc->sc_i.dmachan));
1200 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1201 (char *)end - (char *)start, NULL,
1202 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1203
1204 return sbdsp_block_input(addr);
1205 }
1206
1207 int
1208 sbdsp_block_input(void *addr)
1209 {
1210 struct sbdsp_softc *sc;
1211 int cc;
1212
1213 sc = addr;
1214 cc = sc->sc_i.blksize;
1215 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1216
1217 if (sc->sc_i.run != SB_NOTRUNNING)
1218 sc->sc_intrr(sc->sc_argr);
1219
1220 if (sc->sc_model == SB_1) {
1221 /* Non-looping mode, start DMA */
1222 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1223 sbdsp_wdsp(sc, cc) < 0 ||
1224 sbdsp_wdsp(sc, cc >> 8) < 0) {
1225 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1226 return EIO;
1227 }
1228 sc->sc_i.run = SB_RUNNING;
1229 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1230 /* Initialize looping PCM */
1231 if (ISSB16CLASS(sc)) {
1232 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1233 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1234 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1235 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1236 sbdsp_wdsp(sc, cc) < 0 ||
1237 sbdsp_wdsp(sc, cc >> 8) < 0) {
1238 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1239 return EIO;
1240 }
1241 } else {
1242 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1243 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1244 sbdsp_wdsp(sc, cc) < 0 ||
1245 sbdsp_wdsp(sc, cc >> 8) < 0) {
1246 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1247 return EIO;
1248 }
1249 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1250 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1251 return EIO;
1252 }
1253 }
1254 sc->sc_i.run = SB_LOOPING;
1255 }
1256
1257 return 0;
1258 }
1259
1260 int
1261 sbdsp_trigger_output(
1262 void *addr,
1263 void *start, void *end,
1264 int blksize,
1265 void (*intr)(void *),
1266 void *arg,
1267 const audio_params_t *param)
1268 {
1269 struct sbdsp_softc *sc;
1270 int stereo;
1271 int width;
1272 int cmd;
1273
1274 sc = addr;
1275 stereo = param->channels == 2;
1276 width = param->precision;
1277 #ifdef DIAGNOSTIC
1278 if (stereo && (blksize & 1)) {
1279 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1280 return EIO;
1281 }
1282 if (sc->sc_o.run != SB_NOTRUNNING)
1283 printf("sbdsp_trigger_output: already running\n");
1284 #endif
1285
1286 sc->sc_intrp = intr;
1287 sc->sc_argp = arg;
1288
1289 if (width == 8) {
1290 #ifdef DIAGNOSTIC
1291 if (sc->sc_o.dmachan != sc->sc_drq8) {
1292 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1293 width, sc->sc_o.dmachan);
1294 return EIO;
1295 }
1296 #endif
1297 sc->sc_intr8 = sbdsp_block_output;
1298 } else {
1299 #ifdef DIAGNOSTIC
1300 if (sc->sc_o.dmachan != sc->sc_drq16) {
1301 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1302 width, sc->sc_o.dmachan);
1303 return EIO;
1304 }
1305 #endif
1306 sc->sc_intr16 = sbdsp_block_output;
1307 }
1308
1309 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1310 blksize >>= 1;
1311 --blksize;
1312 sc->sc_o.blksize = blksize;
1313
1314 if (ISSBPRO(sc)) {
1315 /* make sure we re-set stereo mixer bit when we start output. */
1316 sbdsp_mix_write(sc, SBP_STEREO,
1317 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1318 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1319 cmd = sc->sc_o.modep->cmdchan;
1320 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1321 return EIO;
1322 }
1323
1324 if (ISSB16CLASS(sc)) {
1325 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1326 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1327 sc->sc_o.rate));
1328 return EIO;
1329 }
1330 } else {
1331 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1332 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1333 sc->sc_o.rate));
1334 return EIO;
1335 }
1336 }
1337
1338 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1339 start, end, sc->sc_o.dmachan));
1340 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1341 (char *)end - (char *)start, NULL,
1342 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1343
1344 return sbdsp_block_output(addr);
1345 }
1346
1347 int
1348 sbdsp_block_output(void *addr)
1349 {
1350 struct sbdsp_softc *sc;
1351 int cc;
1352
1353 sc = addr;
1354 cc = sc->sc_o.blksize;
1355 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1356
1357 if (sc->sc_o.run != SB_NOTRUNNING)
1358 sc->sc_intrp(sc->sc_argp);
1359
1360 if (sc->sc_model == SB_1) {
1361 /* Non-looping mode, initialized. Start DMA and PCM */
1362 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1363 sbdsp_wdsp(sc, cc) < 0 ||
1364 sbdsp_wdsp(sc, cc >> 8) < 0) {
1365 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1366 return EIO;
1367 }
1368 sc->sc_o.run = SB_RUNNING;
1369 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1370 /* Initialize looping PCM */
1371 if (ISSB16CLASS(sc)) {
1372 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1373 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1374 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1375 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1376 sbdsp_wdsp(sc, cc) < 0 ||
1377 sbdsp_wdsp(sc, cc >> 8) < 0) {
1378 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1379 return EIO;
1380 }
1381 } else {
1382 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1383 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1384 sbdsp_wdsp(sc, cc) < 0 ||
1385 sbdsp_wdsp(sc, cc >> 8) < 0) {
1386 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1387 return EIO;
1388 }
1389 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1390 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1391 return EIO;
1392 }
1393 }
1394 sc->sc_o.run = SB_LOOPING;
1395 }
1396
1397 return 0;
1398 }
1399
1400 int
1401 sbdsp_halt_output(void *addr)
1402 {
1403 struct sbdsp_softc *sc;
1404
1405 sc = addr;
1406 if (sc->sc_o.run != SB_NOTRUNNING) {
1407 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1408 printf("sbdsp_halt_output: failed to halt\n");
1409 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1410 sc->sc_o.run = SB_NOTRUNNING;
1411 }
1412 return 0;
1413 }
1414
1415 int
1416 sbdsp_halt_input(void *addr)
1417 {
1418 struct sbdsp_softc *sc;
1419
1420 sc = addr;
1421 if (sc->sc_i.run != SB_NOTRUNNING) {
1422 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1423 printf("sbdsp_halt_input: failed to halt\n");
1424 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1425 sc->sc_i.run = SB_NOTRUNNING;
1426 }
1427 return 0;
1428 }
1429
1430 /*
1431 * Only the DSP unit on the sound blaster generates interrupts.
1432 * There are three cases of interrupt: reception of a midi byte
1433 * (when mode is enabled), completion of DMA transmission, or
1434 * completion of a DMA reception.
1435 *
1436 * If there is interrupt sharing or a spurious interrupt occurs
1437 * there is no way to distinguish this on an SB2. So if you have
1438 * an SB2 and experience problems, buy an SB16 (it's only $40).
1439 */
1440 int
1441 sbdsp_intr(void *arg)
1442 {
1443 struct sbdsp_softc *sc = arg;
1444 #if NMPU > 0
1445 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
1446 #endif
1447 u_char irq;
1448
1449 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1450 sc->sc_intr8, sc->sc_intr16));
1451
1452 mutex_spin_enter(&sc->sc_intr_lock);
1453 if (ISSB16CLASS(sc)) {
1454 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1455 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401))
1456 == 0) {
1457 mutex_spin_exit(&sc->sc_intr_lock);
1458 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1459 return 0;
1460 }
1461 } else {
1462 /* XXXX CHECK FOR INTERRUPT */
1463 irq = SBP_IRQ_DMA8;
1464 }
1465
1466 sc->sc_interrupts++;
1467 delay(10); /* XXX why? */
1468
1469 /* clear interrupt */
1470 if (irq & SBP_IRQ_DMA8) {
1471 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1472 if (sc->sc_intr8)
1473 sc->sc_intr8(arg);
1474 }
1475 if (irq & SBP_IRQ_DMA16) {
1476 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1477 if (sc->sc_intr16)
1478 sc->sc_intr16(arg);
1479 }
1480 #if NMPU > 0
1481 if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
1482 mpu_intr(sc_mpu);
1483 }
1484 #endif
1485
1486 mutex_spin_exit(&sc->sc_intr_lock);
1487 return 1;
1488 }
1489
1490 /* Like val & mask, but make sure the result is correctly rounded. */
1491 #define MAXVAL 256
1492 static int
1493 sbdsp_adjust(int val, int mask)
1494 {
1495
1496 val += (MAXVAL - mask) >> 1;
1497 if (val >= MAXVAL)
1498 val = MAXVAL-1;
1499 return val & mask;
1500 }
1501
1502 void
1503 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1504 {
1505 int src, gain;
1506
1507 KASSERT(mutex_owned(&sc->sc_lock));
1508 KASSERT(mutex_owned(&sc->sc_intr_lock));
1509
1510 switch(sc->sc_mixer_model) {
1511 case SBM_NONE:
1512 return;
1513 case SBM_CT1335:
1514 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1515 switch(port) {
1516 case SB_MASTER_VOL:
1517 src = SBP_1335_MASTER_VOL;
1518 break;
1519 case SB_MIDI_VOL:
1520 src = SBP_1335_MIDI_VOL;
1521 break;
1522 case SB_CD_VOL:
1523 src = SBP_1335_CD_VOL;
1524 break;
1525 case SB_VOICE_VOL:
1526 src = SBP_1335_VOICE_VOL;
1527 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1528 break;
1529 default:
1530 return;
1531 }
1532 sbdsp_mix_write(sc, src, gain);
1533 break;
1534 case SBM_CT1345:
1535 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1536 sc->gain[port][SB_RIGHT]);
1537 switch (port) {
1538 case SB_MIC_VOL:
1539 src = SBP_MIC_VOL;
1540 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1541 break;
1542 case SB_MASTER_VOL:
1543 src = SBP_MASTER_VOL;
1544 break;
1545 case SB_LINE_IN_VOL:
1546 src = SBP_LINE_VOL;
1547 break;
1548 case SB_VOICE_VOL:
1549 src = SBP_VOICE_VOL;
1550 break;
1551 case SB_MIDI_VOL:
1552 src = SBP_MIDI_VOL;
1553 break;
1554 case SB_CD_VOL:
1555 src = SBP_CD_VOL;
1556 break;
1557 default:
1558 return;
1559 }
1560 sbdsp_mix_write(sc, src, gain);
1561 break;
1562 case SBM_CT1XX5:
1563 case SBM_CT1745:
1564 switch (port) {
1565 case SB_MIC_VOL:
1566 src = SB16P_MIC_L;
1567 break;
1568 case SB_MASTER_VOL:
1569 src = SB16P_MASTER_L;
1570 break;
1571 case SB_LINE_IN_VOL:
1572 src = SB16P_LINE_L;
1573 break;
1574 case SB_VOICE_VOL:
1575 src = SB16P_VOICE_L;
1576 break;
1577 case SB_MIDI_VOL:
1578 src = SB16P_MIDI_L;
1579 break;
1580 case SB_CD_VOL:
1581 src = SB16P_CD_L;
1582 break;
1583 case SB_INPUT_GAIN:
1584 src = SB16P_INPUT_GAIN_L;
1585 break;
1586 case SB_OUTPUT_GAIN:
1587 src = SB16P_OUTPUT_GAIN_L;
1588 break;
1589 case SB_TREBLE:
1590 src = SB16P_TREBLE_L;
1591 break;
1592 case SB_BASS:
1593 src = SB16P_BASS_L;
1594 break;
1595 case SB_PCSPEAKER:
1596 sbdsp_mix_write(sc, SB16P_PCSPEAKER,
1597 sc->gain[port][SB_LEFT]);
1598 return;
1599 default:
1600 return;
1601 }
1602 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1603 sbdsp_mix_write(sc, SB16P_L_TO_R(src),
1604 sc->gain[port][SB_RIGHT]);
1605 break;
1606 }
1607 }
1608
1609 int
1610 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1611 {
1612 struct sbdsp_softc *sc;
1613 int lgain, rgain;
1614 int mask, bits;
1615 int lmask, rmask, lbits, rbits;
1616 int mute, swap;
1617 int error;
1618
1619 sc = addr;
1620
1621 KASSERT(mutex_owned(&sc->sc_lock));
1622
1623 if (sc->sc_open == SB_OPEN_MIDI)
1624 return EBUSY;
1625
1626 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1627 cp->un.value.num_channels));
1628
1629 if (sc->sc_mixer_model == SBM_NONE)
1630 return EINVAL;
1631
1632 mutex_spin_enter(&sc->sc_intr_lock);
1633 error = 0;
1634
1635 switch (cp->dev) {
1636 case SB_TREBLE:
1637 case SB_BASS:
1638 if (sc->sc_mixer_model == SBM_CT1345 ||
1639 sc->sc_mixer_model == SBM_CT1XX5) {
1640 if (cp->type != AUDIO_MIXER_ENUM) {
1641 mutex_spin_exit(&sc->sc_intr_lock);
1642 return EINVAL;
1643 }
1644 switch (cp->dev) {
1645 case SB_TREBLE:
1646 sbdsp_set_ifilter(addr,
1647 cp->un.ord ? SB_TREBLE : 0);
1648 mutex_spin_exit(&sc->sc_intr_lock);
1649 return 0;
1650 case SB_BASS:
1651 sbdsp_set_ifilter(addr,
1652 cp->un.ord ? SB_BASS : 0);
1653 mutex_spin_exit(&sc->sc_intr_lock);
1654 return 0;
1655 }
1656 }
1657 /* FALLTHROUGH */
1658 case SB_PCSPEAKER:
1659 case SB_INPUT_GAIN:
1660 case SB_OUTPUT_GAIN:
1661 if (!ISSBM1745(sc)) {
1662 error = EINVAL;
1663 break;
1664 }
1665 /* FALLTHROUGH */
1666 case SB_MIC_VOL:
1667 case SB_LINE_IN_VOL:
1668 if (sc->sc_mixer_model == SBM_CT1335) {
1669 error = EINVAL;
1670 break;
1671 }
1672 /* FALLTHROUGH */
1673 case SB_VOICE_VOL:
1674 case SB_MIDI_VOL:
1675 case SB_CD_VOL:
1676 case SB_MASTER_VOL:
1677 if (cp->type != AUDIO_MIXER_VALUE) {
1678 error = EINVAL;
1679 break;
1680 }
1681
1682 /*
1683 * All the mixer ports are stereo except for the microphone.
1684 * If we get a single-channel gain value passed in, then we
1685 * duplicate it to both left and right channels.
1686 */
1687
1688 switch (cp->dev) {
1689 case SB_MIC_VOL:
1690 if (cp->un.value.num_channels != 1) {
1691 error = EINVAL;
1692 break;
1693 }
1694
1695 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1696 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1697 break;
1698 case SB_PCSPEAKER:
1699 if (cp->un.value.num_channels != 1) {
1700 error = EINVAL;
1701 break;
1702 }
1703 /* FALLTHROUGH */
1704 case SB_INPUT_GAIN:
1705 case SB_OUTPUT_GAIN:
1706 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1707 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1708 break;
1709 default:
1710 switch (cp->un.value.num_channels) {
1711 case 1:
1712 lgain = rgain = SB_ADJUST_GAIN(sc,
1713 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1714 break;
1715 case 2:
1716 if (sc->sc_mixer_model == SBM_CT1335) {
1717 error = EINVAL;
1718 break;
1719 }
1720 lgain = SB_ADJUST_GAIN(sc,
1721 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1722 rgain = SB_ADJUST_GAIN(sc,
1723 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1724 break;
1725 default:
1726 error = EINVAL;
1727 break;
1728 }
1729 break;
1730 }
1731 if (error == 0) {
1732 sc->gain[cp->dev][SB_LEFT] = lgain;
1733 sc->gain[cp->dev][SB_RIGHT] = rgain;
1734 sbdsp_set_mixer_gain(sc, cp->dev);
1735 }
1736 break;
1737
1738 case SB_RECORD_SOURCE:
1739 if (ISSBM1745(sc)) {
1740 if (cp->type != AUDIO_MIXER_SET)
1741 error = EINVAL;
1742 else
1743 error = sbdsp_set_in_ports(sc, cp->un.mask);
1744 } else {
1745 if (cp->type != AUDIO_MIXER_ENUM)
1746 error = EINVAL;
1747 else {
1748 sc->in_port = cp->un.ord;
1749 error = sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1750 }
1751 }
1752 break;
1753
1754 case SB_AGC:
1755 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1756 error = EINVAL;
1757 else
1758 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1759 break;
1760
1761 case SB_CD_OUT_MUTE:
1762 mask = SB16P_SW_CD;
1763 goto omute;
1764 case SB_MIC_OUT_MUTE:
1765 mask = SB16P_SW_MIC;
1766 goto omute;
1767 case SB_LINE_OUT_MUTE:
1768 mask = SB16P_SW_LINE;
1769 omute:
1770 if (cp->type != AUDIO_MIXER_ENUM) {
1771 error = EINVAL;
1772 break;
1773 }
1774 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1775 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1776 if (cp->un.ord)
1777 bits = bits & ~mask;
1778 else
1779 bits = bits | mask;
1780 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1781 break;
1782
1783 case SB_MIC_IN_MUTE:
1784 case SB_MIC_SWAP:
1785 lmask = rmask = SB16P_SW_MIC;
1786 goto imute;
1787 case SB_CD_IN_MUTE:
1788 case SB_CD_SWAP:
1789 lmask = SB16P_SW_CD_L;
1790 rmask = SB16P_SW_CD_R;
1791 goto imute;
1792 case SB_LINE_IN_MUTE:
1793 case SB_LINE_SWAP:
1794 lmask = SB16P_SW_LINE_L;
1795 rmask = SB16P_SW_LINE_R;
1796 goto imute;
1797 case SB_MIDI_IN_MUTE:
1798 case SB_MIDI_SWAP:
1799 lmask = SB16P_SW_MIDI_L;
1800 rmask = SB16P_SW_MIDI_R;
1801 imute:
1802 if (cp->type != AUDIO_MIXER_ENUM) {
1803 error = EINVAL;
1804 break;
1805 }
1806 mask = lmask | rmask;
1807 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1808 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1809 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1810 if (SB_IS_IN_MUTE(cp->dev)) {
1811 mute = cp->dev;
1812 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1813 } else {
1814 swap = cp->dev;
1815 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1816 }
1817 if (sc->gain[swap][SB_LR]) {
1818 mask = lmask;
1819 lmask = rmask;
1820 rmask = mask;
1821 }
1822 if (!sc->gain[mute][SB_LR]) {
1823 lbits = lbits | lmask;
1824 rbits = rbits | rmask;
1825 }
1826 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1827 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1828 break;
1829
1830 default:
1831 error = EINVAL;
1832 break;
1833 }
1834
1835 mutex_spin_exit(&sc->sc_intr_lock);
1836 return error;
1837 }
1838
1839 int
1840 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1841 {
1842 struct sbdsp_softc *sc;
1843
1844 sc = addr;
1845
1846 KASSERT(mutex_owned(&sc->sc_lock));
1847
1848 if (sc->sc_open == SB_OPEN_MIDI)
1849 return EBUSY;
1850
1851 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1852
1853 if (sc->sc_mixer_model == SBM_NONE)
1854 return EINVAL;
1855
1856 mutex_spin_enter(&sc->sc_intr_lock);
1857
1858 switch (cp->dev) {
1859 case SB_TREBLE:
1860 case SB_BASS:
1861 if (sc->sc_mixer_model == SBM_CT1345 ||
1862 sc->sc_mixer_model == SBM_CT1XX5) {
1863 switch (cp->dev) {
1864 case SB_TREBLE:
1865 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1866 mutex_spin_exit(&sc->sc_intr_lock);
1867 return 0;
1868 case SB_BASS:
1869 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1870 mutex_spin_exit(&sc->sc_intr_lock);
1871 return 0;
1872 }
1873 }
1874 /* FALLTHROUGH */
1875 case SB_PCSPEAKER:
1876 case SB_INPUT_GAIN:
1877 case SB_OUTPUT_GAIN:
1878 if (!ISSBM1745(sc)) {
1879 mutex_spin_exit(&sc->sc_intr_lock);
1880 return EINVAL;
1881 }
1882 /* FALLTHROUGH */
1883 case SB_MIC_VOL:
1884 case SB_LINE_IN_VOL:
1885 if (sc->sc_mixer_model == SBM_CT1335) {
1886 mutex_spin_exit(&sc->sc_intr_lock);
1887 return EINVAL;
1888 }
1889 /* FALLTHROUGH */
1890 case SB_VOICE_VOL:
1891 case SB_MIDI_VOL:
1892 case SB_CD_VOL:
1893 case SB_MASTER_VOL:
1894 switch (cp->dev) {
1895 case SB_MIC_VOL:
1896 case SB_PCSPEAKER:
1897 if (cp->un.value.num_channels != 1) {
1898 mutex_spin_exit(&sc->sc_intr_lock);
1899 return EINVAL;
1900 }
1901 /* FALLTHROUGH */
1902 default:
1903 switch (cp->un.value.num_channels) {
1904 case 1:
1905 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1906 sc->gain[cp->dev][SB_LEFT];
1907 break;
1908 case 2:
1909 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1910 sc->gain[cp->dev][SB_LEFT];
1911 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1912 sc->gain[cp->dev][SB_RIGHT];
1913 break;
1914 default:
1915 mutex_spin_exit(&sc->sc_intr_lock);
1916 return EINVAL;
1917 }
1918 break;
1919 }
1920 break;
1921
1922 case SB_RECORD_SOURCE:
1923 if (ISSBM1745(sc))
1924 cp->un.mask = sc->in_mask;
1925 else
1926 cp->un.ord = sc->in_port;
1927 break;
1928
1929 case SB_AGC:
1930 if (!ISSBM1745(sc)) {
1931 mutex_spin_exit(&sc->sc_intr_lock);
1932 return EINVAL;
1933 }
1934 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1935 break;
1936
1937 case SB_CD_IN_MUTE:
1938 case SB_MIC_IN_MUTE:
1939 case SB_LINE_IN_MUTE:
1940 case SB_MIDI_IN_MUTE:
1941 case SB_CD_SWAP:
1942 case SB_MIC_SWAP:
1943 case SB_LINE_SWAP:
1944 case SB_MIDI_SWAP:
1945 case SB_CD_OUT_MUTE:
1946 case SB_MIC_OUT_MUTE:
1947 case SB_LINE_OUT_MUTE:
1948 cp->un.ord = sc->gain[cp->dev][SB_LR];
1949 break;
1950
1951 default:
1952 mutex_spin_exit(&sc->sc_intr_lock);
1953 return EINVAL;
1954 }
1955
1956 mutex_spin_exit(&sc->sc_intr_lock);
1957
1958 return 0;
1959 }
1960
1961 int
1962 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1963 {
1964 struct sbdsp_softc *sc = addr;
1965 int chan, class, is1745;
1966
1967 sc = addr;
1968 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1969 sc->sc_mixer_model, dip->index));
1970
1971 KASSERT(mutex_owned(&sc->sc_lock));
1972
1973 if (sc->sc_mixer_model == SBM_NONE)
1974 return ENXIO;
1975
1976 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1977 is1745 = ISSBM1745(sc);
1978 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1979
1980 switch (dip->index) {
1981 case SB_MASTER_VOL:
1982 dip->type = AUDIO_MIXER_VALUE;
1983 dip->mixer_class = SB_OUTPUT_CLASS;
1984 dip->prev = dip->next = AUDIO_MIXER_LAST;
1985 strcpy(dip->label.name, AudioNmaster);
1986 dip->un.v.num_channels = chan;
1987 strcpy(dip->un.v.units.name, AudioNvolume);
1988 return 0;
1989 case SB_MIDI_VOL:
1990 dip->type = AUDIO_MIXER_VALUE;
1991 dip->mixer_class = class;
1992 dip->prev = AUDIO_MIXER_LAST;
1993 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1994 strcpy(dip->label.name, AudioNfmsynth);
1995 dip->un.v.num_channels = chan;
1996 strcpy(dip->un.v.units.name, AudioNvolume);
1997 return 0;
1998 case SB_CD_VOL:
1999 dip->type = AUDIO_MIXER_VALUE;
2000 dip->mixer_class = class;
2001 dip->prev = AUDIO_MIXER_LAST;
2002 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2003 strcpy(dip->label.name, AudioNcd);
2004 dip->un.v.num_channels = chan;
2005 strcpy(dip->un.v.units.name, AudioNvolume);
2006 return 0;
2007 case SB_VOICE_VOL:
2008 dip->type = AUDIO_MIXER_VALUE;
2009 dip->mixer_class = class;
2010 dip->prev = AUDIO_MIXER_LAST;
2011 dip->next = AUDIO_MIXER_LAST;
2012 strcpy(dip->label.name, AudioNdac);
2013 dip->un.v.num_channels = chan;
2014 strcpy(dip->un.v.units.name, AudioNvolume);
2015 return 0;
2016 case SB_OUTPUT_CLASS:
2017 dip->type = AUDIO_MIXER_CLASS;
2018 dip->mixer_class = SB_OUTPUT_CLASS;
2019 dip->next = dip->prev = AUDIO_MIXER_LAST;
2020 strcpy(dip->label.name, AudioCoutputs);
2021 return 0;
2022 }
2023
2024 if (sc->sc_mixer_model == SBM_CT1335)
2025 return ENXIO;
2026
2027 switch (dip->index) {
2028 case SB_MIC_VOL:
2029 dip->type = AUDIO_MIXER_VALUE;
2030 dip->mixer_class = class;
2031 dip->prev = AUDIO_MIXER_LAST;
2032 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2033 strcpy(dip->label.name, AudioNmicrophone);
2034 dip->un.v.num_channels = 1;
2035 strcpy(dip->un.v.units.name, AudioNvolume);
2036 return 0;
2037
2038 case SB_LINE_IN_VOL:
2039 dip->type = AUDIO_MIXER_VALUE;
2040 dip->mixer_class = class;
2041 dip->prev = AUDIO_MIXER_LAST;
2042 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2043 strcpy(dip->label.name, AudioNline);
2044 dip->un.v.num_channels = 2;
2045 strcpy(dip->un.v.units.name, AudioNvolume);
2046 return 0;
2047
2048 case SB_RECORD_SOURCE:
2049 dip->mixer_class = SB_RECORD_CLASS;
2050 dip->prev = dip->next = AUDIO_MIXER_LAST;
2051 strcpy(dip->label.name, AudioNsource);
2052 if (ISSBM1745(sc)) {
2053 dip->type = AUDIO_MIXER_SET;
2054 dip->un.s.num_mem = 4;
2055 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2056 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2057 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2058 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2059 strcpy(dip->un.s.member[2].label.name, AudioNline);
2060 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2061 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2062 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2063 } else {
2064 dip->type = AUDIO_MIXER_ENUM;
2065 dip->un.e.num_mem = 3;
2066 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2067 dip->un.e.member[0].ord = SB_MIC_VOL;
2068 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2069 dip->un.e.member[1].ord = SB_CD_VOL;
2070 strcpy(dip->un.e.member[2].label.name, AudioNline);
2071 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2072 }
2073 return 0;
2074
2075 case SB_BASS:
2076 dip->prev = dip->next = AUDIO_MIXER_LAST;
2077 strcpy(dip->label.name, AudioNbass);
2078 if (sc->sc_mixer_model == SBM_CT1745) {
2079 dip->type = AUDIO_MIXER_VALUE;
2080 dip->mixer_class = SB_EQUALIZATION_CLASS;
2081 dip->un.v.num_channels = 2;
2082 strcpy(dip->un.v.units.name, AudioNbass);
2083 } else {
2084 dip->type = AUDIO_MIXER_ENUM;
2085 dip->mixer_class = SB_INPUT_CLASS;
2086 dip->un.e.num_mem = 2;
2087 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2088 dip->un.e.member[0].ord = 0;
2089 strcpy(dip->un.e.member[1].label.name, AudioNon);
2090 dip->un.e.member[1].ord = 1;
2091 }
2092 return 0;
2093
2094 case SB_TREBLE:
2095 dip->prev = dip->next = AUDIO_MIXER_LAST;
2096 strcpy(dip->label.name, AudioNtreble);
2097 if (sc->sc_mixer_model == SBM_CT1745) {
2098 dip->type = AUDIO_MIXER_VALUE;
2099 dip->mixer_class = SB_EQUALIZATION_CLASS;
2100 dip->un.v.num_channels = 2;
2101 strcpy(dip->un.v.units.name, AudioNtreble);
2102 } else {
2103 dip->type = AUDIO_MIXER_ENUM;
2104 dip->mixer_class = SB_INPUT_CLASS;
2105 dip->un.e.num_mem = 2;
2106 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2107 dip->un.e.member[0].ord = 0;
2108 strcpy(dip->un.e.member[1].label.name, AudioNon);
2109 dip->un.e.member[1].ord = 1;
2110 }
2111 return 0;
2112
2113 case SB_RECORD_CLASS: /* record source class */
2114 dip->type = AUDIO_MIXER_CLASS;
2115 dip->mixer_class = SB_RECORD_CLASS;
2116 dip->next = dip->prev = AUDIO_MIXER_LAST;
2117 strcpy(dip->label.name, AudioCrecord);
2118 return 0;
2119
2120 case SB_INPUT_CLASS:
2121 dip->type = AUDIO_MIXER_CLASS;
2122 dip->mixer_class = SB_INPUT_CLASS;
2123 dip->next = dip->prev = AUDIO_MIXER_LAST;
2124 strcpy(dip->label.name, AudioCinputs);
2125 return 0;
2126
2127 }
2128
2129 if (sc->sc_mixer_model == SBM_CT1345)
2130 return ENXIO;
2131
2132 switch(dip->index) {
2133 case SB_PCSPEAKER:
2134 dip->type = AUDIO_MIXER_VALUE;
2135 dip->mixer_class = SB_INPUT_CLASS;
2136 dip->prev = dip->next = AUDIO_MIXER_LAST;
2137 strcpy(dip->label.name, "pc_speaker");
2138 dip->un.v.num_channels = 1;
2139 strcpy(dip->un.v.units.name, AudioNvolume);
2140 return 0;
2141
2142 case SB_INPUT_GAIN:
2143 dip->type = AUDIO_MIXER_VALUE;
2144 dip->mixer_class = SB_INPUT_CLASS;
2145 dip->prev = dip->next = AUDIO_MIXER_LAST;
2146 strcpy(dip->label.name, AudioNinput);
2147 dip->un.v.num_channels = 2;
2148 strcpy(dip->un.v.units.name, AudioNvolume);
2149 return 0;
2150
2151 case SB_OUTPUT_GAIN:
2152 dip->type = AUDIO_MIXER_VALUE;
2153 dip->mixer_class = SB_OUTPUT_CLASS;
2154 dip->prev = dip->next = AUDIO_MIXER_LAST;
2155 strcpy(dip->label.name, AudioNoutput);
2156 dip->un.v.num_channels = 2;
2157 strcpy(dip->un.v.units.name, AudioNvolume);
2158 return 0;
2159
2160 case SB_AGC:
2161 dip->type = AUDIO_MIXER_ENUM;
2162 dip->mixer_class = SB_INPUT_CLASS;
2163 dip->prev = dip->next = AUDIO_MIXER_LAST;
2164 strcpy(dip->label.name, "agc");
2165 dip->un.e.num_mem = 2;
2166 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2167 dip->un.e.member[0].ord = 0;
2168 strcpy(dip->un.e.member[1].label.name, AudioNon);
2169 dip->un.e.member[1].ord = 1;
2170 return 0;
2171
2172 case SB_EQUALIZATION_CLASS:
2173 dip->type = AUDIO_MIXER_CLASS;
2174 dip->mixer_class = SB_EQUALIZATION_CLASS;
2175 dip->next = dip->prev = AUDIO_MIXER_LAST;
2176 strcpy(dip->label.name, AudioCequalization);
2177 return 0;
2178
2179 case SB_CD_IN_MUTE:
2180 dip->prev = SB_CD_VOL;
2181 dip->next = SB_CD_SWAP;
2182 dip->mixer_class = SB_INPUT_CLASS;
2183 goto mute;
2184
2185 case SB_MIC_IN_MUTE:
2186 dip->prev = SB_MIC_VOL;
2187 dip->next = SB_MIC_SWAP;
2188 dip->mixer_class = SB_INPUT_CLASS;
2189 goto mute;
2190
2191 case SB_LINE_IN_MUTE:
2192 dip->prev = SB_LINE_IN_VOL;
2193 dip->next = SB_LINE_SWAP;
2194 dip->mixer_class = SB_INPUT_CLASS;
2195 goto mute;
2196
2197 case SB_MIDI_IN_MUTE:
2198 dip->prev = SB_MIDI_VOL;
2199 dip->next = SB_MIDI_SWAP;
2200 dip->mixer_class = SB_INPUT_CLASS;
2201 goto mute;
2202
2203 case SB_CD_SWAP:
2204 dip->prev = SB_CD_IN_MUTE;
2205 dip->next = SB_CD_OUT_MUTE;
2206 goto swap;
2207
2208 case SB_MIC_SWAP:
2209 dip->prev = SB_MIC_IN_MUTE;
2210 dip->next = SB_MIC_OUT_MUTE;
2211 goto swap;
2212
2213 case SB_LINE_SWAP:
2214 dip->prev = SB_LINE_IN_MUTE;
2215 dip->next = SB_LINE_OUT_MUTE;
2216 goto swap;
2217
2218 case SB_MIDI_SWAP:
2219 dip->prev = SB_MIDI_IN_MUTE;
2220 dip->next = AUDIO_MIXER_LAST;
2221 swap:
2222 dip->mixer_class = SB_INPUT_CLASS;
2223 strcpy(dip->label.name, AudioNswap);
2224 goto mute1;
2225
2226 case SB_CD_OUT_MUTE:
2227 dip->prev = SB_CD_SWAP;
2228 dip->next = AUDIO_MIXER_LAST;
2229 dip->mixer_class = SB_OUTPUT_CLASS;
2230 goto mute;
2231
2232 case SB_MIC_OUT_MUTE:
2233 dip->prev = SB_MIC_SWAP;
2234 dip->next = AUDIO_MIXER_LAST;
2235 dip->mixer_class = SB_OUTPUT_CLASS;
2236 goto mute;
2237
2238 case SB_LINE_OUT_MUTE:
2239 dip->prev = SB_LINE_SWAP;
2240 dip->next = AUDIO_MIXER_LAST;
2241 dip->mixer_class = SB_OUTPUT_CLASS;
2242 mute:
2243 strcpy(dip->label.name, AudioNmute);
2244 mute1:
2245 dip->type = AUDIO_MIXER_ENUM;
2246 dip->un.e.num_mem = 2;
2247 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2248 dip->un.e.member[0].ord = 0;
2249 strcpy(dip->un.e.member[1].label.name, AudioNon);
2250 dip->un.e.member[1].ord = 1;
2251 return 0;
2252
2253 }
2254
2255 return ENXIO;
2256 }
2257
2258 void *
2259 sb_malloc(void *addr, int direction, size_t size)
2260 {
2261 struct sbdsp_softc *sc;
2262 int drq;
2263
2264 sc = addr;
2265 if (sc->sc_drq8 != -1)
2266 drq = sc->sc_drq8;
2267 else
2268 drq = sc->sc_drq16;
2269 return isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK);
2270 }
2271
2272 void
2273 sb_free(void *addr, void *ptr, size_t size)
2274 {
2275
2276 isa_free(ptr, M_DEVBUF);
2277 }
2278
2279 size_t
2280 sb_round_buffersize(void *addr, int direction, size_t size)
2281 {
2282 struct sbdsp_softc *sc;
2283 bus_size_t maxsize;
2284
2285 sc = addr;
2286 if (sc->sc_drq8 != -1)
2287 maxsize = sc->sc_drq8_maxsize;
2288 else
2289 maxsize = sc->sc_drq16_maxsize;
2290
2291 if (size > maxsize)
2292 size = maxsize;
2293 return size;
2294 }
2295
2296 paddr_t
2297 sb_mappage(void *addr, void *mem, off_t off, int prot)
2298 {
2299
2300 return isa_mappage(mem, off, prot);
2301 }
2302
2303 int
2304 sbdsp_get_props(void *addr)
2305 {
2306 struct sbdsp_softc *sc;
2307
2308 sc = addr;
2309 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2310 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2311 }
2312
2313 void
2314 sbdsp_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
2315 {
2316 struct sbdsp_softc *sc;
2317
2318 sc = addr;
2319 *intr = &sc->sc_intr_lock;
2320 *proc = &sc->sc_lock;
2321 }
2322
2323 #if NMPU > 0
2324 /*
2325 * MIDI related routines.
2326 */
2327
2328 int
2329 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2330 void (*ointr)(void *), void *arg)
2331 {
2332 struct sbdsp_softc *sc;
2333
2334 sc = addr;
2335 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2336
2337 if (sc->sc_open != SB_CLOSED)
2338 return EBUSY;
2339 if (sbdsp_reset(sc) != 0)
2340 return EIO;
2341
2342 sc->sc_open = SB_OPEN_MIDI;
2343
2344 if (sc->sc_model >= SB_20)
2345 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2346 return EIO;
2347
2348 sc->sc_intr8 = sbdsp_midi_intr;
2349 sc->sc_intrm = iintr;
2350 sc->sc_argm = arg;
2351
2352 return 0;
2353 }
2354
2355 void
2356 sbdsp_midi_close(void *addr)
2357 {
2358 struct sbdsp_softc *sc;
2359
2360 sc = addr;
2361 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2362
2363 if (sc->sc_model >= SB_20)
2364 sbdsp_reset(sc); /* exit UART mode */
2365
2366 sc->sc_intrm = 0;
2367 sc->sc_open = SB_CLOSED;
2368 }
2369
2370 int
2371 sbdsp_midi_output(void *addr, int d)
2372 {
2373 struct sbdsp_softc *sc;
2374
2375 sc = addr;
2376 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2377 return EIO;
2378 if (sbdsp_wdsp(sc, d))
2379 return EIO;
2380 return 0;
2381 }
2382
2383 void
2384 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2385 {
2386 struct sbdsp_softc *sc;
2387
2388 sc = addr;
2389 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2390 mi->props = MIDI_PROP_CAN_INPUT;
2391 }
2392
2393 int
2394 sbdsp_midi_intr(void *addr)
2395 {
2396 struct sbdsp_softc *sc;
2397
2398 sc = addr;
2399
2400 KASSERT(mutex_owned(&sc->sc_intr_lock));
2401
2402 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2403 return (0);
2404 }
2405 #endif
2406