sbdsp.c revision 1.22 1 /* $NetBSD: sbdsp.c,v 1.22 1996/02/20 11:48:50 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/pio.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58
59 #include <dev/isa/isavar.h>
60 #include <dev/isa/isadmavar.h>
61 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
62
63 #include <dev/isa/sbreg.h>
64 #include <dev/isa/sbdspvar.h>
65
66 #ifdef AUDIO_DEBUG
67 extern void Dprintf __P((const char *, ...));
68 #define DPRINTF(x) if (sbdspdebug) Dprintf x
69 int sbdspdebug = 0;
70 #else
71 #define DPRINTF(x)
72 #endif
73
74 #ifndef SBDSP_NPOLL
75 #define SBDSP_NPOLL 3000
76 #endif
77
78 struct {
79 int wdsp;
80 int rdsp;
81 int wmidi;
82 } sberr;
83
84 /*
85 * Time constant routines follow. See SBK, section 12.
86 * Although they don't come out and say it (in the docs),
87 * the card clearly uses a 1MHz countdown timer, as the
88 * low-speed formula (p. 12-4) is:
89 * tc = 256 - 10^6 / sr
90 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
91 * and a 256MHz clock is used:
92 * tc = 65536 - 256 * 10^ 6 / sr
93 * Since we can only use the upper byte of the HS TC, the two formulae
94 * are equivalent. (Why didn't they say so?) E.g.,
95 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
96 *
97 * The crossover point (from low- to high-speed modes) is different
98 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
99 *
100 * SBPRO SB20
101 * ----- --------
102 * input ls min 4 KHz 4 KHz
103 * input ls max 23 KHz 13 KHz
104 * input hs max 44.1 KHz 15 KHz
105 * output ls min 4 KHz 4 KHz
106 * output ls max 23 KHz 23 KHz
107 * output hs max 44.1 KHz 44.1 KHz
108 */
109 #define SB_LS_MIN 0x06 /* 4000 Hz */
110 #define SB_8K 0x83 /* 8000 Hz */
111 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
112 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
113 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
114 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
115 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
116 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
117
118 #ifdef AUDIO_DEBUG
119 void
120 sb_printsc(struct sbdsp_softc *sc)
121 {
122 int i;
123
124 printf("open %d dmachan %d iobase %x\n",
125 sc->sc_open, sc->sc_drq, sc->sc_iobase);
126 printf("itc %d imode %d otc %d omode %d encoding %x\n",
127 sc->sc_itc, sc->sc_imode, sc->sc_otc, sc->sc_omode, sc->encoding);
128 printf("outport %d inport %d spkron %d nintr %d\n",
129 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
130 printf("chans %x intr %x arg %x\n",
131 sc->sc_chans, sc->sc_intr, sc->sc_arg);
132 printf("gain: ");
133 for (i = 0; i < SB_NDEVS; i++)
134 printf("%d ", sc->gain[i]);
135 printf("\n");
136 }
137 #endif
138
139 /*
140 * Probe / attach routines.
141 */
142
143 /*
144 * Probe for the soundblaster hardware.
145 */
146 int
147 sbdsp_probe(sc)
148 struct sbdsp_softc *sc;
149 {
150 register int iobase = sc->sc_iobase;
151
152 if (sbdsp_reset(sc) < 0) {
153 DPRINTF(("sbdsp: couldn't reset card\n"));
154 return 0;
155 }
156 sc->sc_model = sbversion(sc);
157
158 return 1;
159 }
160
161 /*
162 * Attach hardware to driver, attach hardware driver to audio
163 * pseudo-device driver .
164 */
165 void
166 sbdsp_attach(sc)
167 struct sbdsp_softc *sc;
168 {
169 register int iobase = sc->sc_iobase;
170
171 /* Set defaults */
172 if (ISSBPROCLASS(sc))
173 sc->sc_itc = sc->sc_otc = SBPRO_ADC_HS_MAX;
174 else
175 sc->sc_itc = sc->sc_otc = SBCLA_ADC_HS_MAX;
176 sc->sc_chans = 1;
177 sc->encoding = AUDIO_ENCODING_LINEAR;
178
179 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
180 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
181
182 if (ISSBPROCLASS(sc)) {
183 int i;
184
185 /* set mixer to default levels, by sending a mixer
186 reset command. */
187 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
188 /* then some adjustments :) */
189 sbdsp_mix_write(sc, SBP_CD_VOL,
190 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
191 sbdsp_mix_write(sc, SBP_DAC_VOL,
192 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
193 sbdsp_mix_write(sc, SBP_MASTER_VOL,
194 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
195 sbdsp_mix_write(sc, SBP_LINE_VOL,
196 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
197 for (i = 0; i < SB_NDEVS; i++)
198 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
199 sc->in_filter = 0; /* no filters turned on, please */
200 }
201
202 printf(": dsp v%d.%02d\n",
203 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model));
204 }
205
206 /*
207 * Various routines to interface to higher level audio driver
208 */
209
210 void
211 sbdsp_mix_write(sc, mixerport, val)
212 struct sbdsp_softc *sc;
213 int mixerport;
214 int val;
215 {
216 int iobase = sc->sc_iobase;
217 outb(iobase + SBP_MIXER_ADDR, mixerport);
218 delay(10);
219 outb(iobase + SBP_MIXER_DATA, val);
220 delay(30);
221 }
222
223 int
224 sbdsp_mix_read(sc, mixerport)
225 struct sbdsp_softc *sc;
226 int mixerport;
227 {
228 int iobase = sc->sc_iobase;
229 outb(iobase + SBP_MIXER_ADDR, mixerport);
230 delay(10);
231 return inb(iobase + SBP_MIXER_DATA);
232 }
233
234 int
235 sbdsp_set_in_sr(addr, sr)
236 void *addr;
237 u_long sr;
238 {
239 register struct sbdsp_softc *sc = addr;
240
241 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
242 }
243
244 u_long
245 sbdsp_get_in_sr(addr)
246 void *addr;
247 {
248 register struct sbdsp_softc *sc = addr;
249
250 return (sbdsp_tctosr(sc, sc->sc_itc));
251 }
252
253 int
254 sbdsp_set_out_sr(addr, sr)
255 void *addr;
256 u_long sr;
257 {
258 register struct sbdsp_softc *sc = addr;
259
260 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
261 }
262
263 u_long
264 sbdsp_get_out_sr(addr)
265 void *addr;
266 {
267 register struct sbdsp_softc *sc = addr;
268
269 return (sbdsp_tctosr(sc, sc->sc_otc));
270 }
271
272 int
273 sbdsp_query_encoding(addr, fp)
274 void *addr;
275 struct audio_encoding *fp;
276 {
277 register struct sbdsp_softc *sc = addr;
278
279 switch (fp->index) {
280 case 0:
281 strcpy(fp->name, AudioEmulaw);
282 fp->format_id = AUDIO_ENCODING_ULAW;
283 break;
284 case 1:
285 strcpy(fp->name, AudioEpcm16);
286 fp->format_id = AUDIO_ENCODING_PCM16;
287 break;
288 default:
289 return (EINVAL);
290 }
291 return (0);
292 }
293
294 int
295 sbdsp_set_encoding(addr, enc)
296 void *addr;
297 u_int enc;
298 {
299 register struct sbdsp_softc *sc = addr;
300
301 switch(enc){
302 case AUDIO_ENCODING_ULAW:
303 sc->encoding = AUDIO_ENCODING_ULAW;
304 break;
305 case AUDIO_ENCODING_LINEAR:
306 sc->encoding = AUDIO_ENCODING_LINEAR;
307 break;
308 default:
309 return (EINVAL);
310 }
311 return (0);
312 }
313
314 int
315 sbdsp_get_encoding(addr)
316 void *addr;
317 {
318 register struct sbdsp_softc *sc = addr;
319
320 return (sc->encoding);
321 }
322
323 int
324 sbdsp_set_precision(addr, prec)
325 void *addr;
326 u_int prec;
327 {
328
329 if (prec != 8)
330 return (EINVAL);
331 return (0);
332 }
333
334 int
335 sbdsp_get_precision(addr)
336 void *addr;
337 {
338 return (8);
339 }
340
341 int
342 sbdsp_set_channels(addr, chans)
343 void *addr;
344 int chans;
345 {
346 register struct sbdsp_softc *sc = addr;
347
348 if (ISSBPROCLASS(sc)) {
349 if (chans != 1 && chans != 2)
350 return (EINVAL);
351 sc->sc_chans = chans;
352
353 #if 0
354 if (rval = sbdsp_set_in_sr_real(addr, sc->sc_irate))
355 return rval;
356 #endif
357
358 sbdsp_mix_write(sc, SBP_STEREO,
359 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
360 (chans == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
361 /* recording channels needs to be done right when we start
362 DMA recording. Just record number of channels for now
363 and set stereo when ready. */
364 } else {
365 if (chans != 1)
366 return (EINVAL);
367 sc->sc_chans = chans;
368 }
369
370 return (0);
371 }
372
373 int
374 sbdsp_get_channels(addr)
375 void *addr;
376 {
377 register struct sbdsp_softc *sc = addr;
378
379 #if 0
380 /* recording stereo may frob the mixer output */
381 if (ISSBPROCLASS(sc)) {
382 if ((sbdsp_mix_read(sc, SBP_STEREO) & SBP_PLAYMODE_MASK) == SBP_PLAYMODE_STEREO)
383 sc->sc_chans = 2;
384 else
385 sc->sc_chans = 1;
386 } else
387 sc->sc_chans = 1;
388 #endif
389
390 return (sc->sc_chans);
391 }
392
393 int
394 sbdsp_set_ifilter(addr, which)
395 void *addr;
396 int which;
397 {
398 register struct sbdsp_softc *sc = addr;
399 int rval, mixval;
400
401 if (ISSBPROCLASS(sc)) {
402 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
403 switch (which) {
404 case 0:
405 mixval |= SBP_FILTER_OFF;
406 break;
407 case SBP_TREBLE_EQ:
408 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
409 break;
410 case SBP_BASS_EQ:
411 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
412 break;
413 default:
414 return (EINVAL);
415 }
416 sc->in_filter = mixval & SBP_IFILTER_MASK;
417 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
418 return (0);
419 } else
420 return (EINVAL);
421 }
422
423 int
424 sbdsp_get_ifilter(addr)
425 void *addr;
426 {
427 register struct sbdsp_softc *sc = addr;
428
429 if (ISSBPROCLASS(sc)) {
430 sc->in_filter =
431 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
432 switch (sc->in_filter) {
433 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
434 return (SBP_TREBLE_EQ);
435 case SBP_FILTER_ON|SBP_IFILTER_LOW:
436 return (SBP_BASS_EQ);
437 case SBP_FILTER_OFF:
438 default:
439 return (0);
440 }
441 } else
442 return (0);
443 }
444
445 int
446 sbdsp_set_out_port(addr, port)
447 void *addr;
448 int port;
449 {
450 register struct sbdsp_softc *sc = addr;
451
452 sc->out_port = port; /* Just record it */
453
454 return (0);
455 }
456
457 int
458 sbdsp_get_out_port(addr)
459 void *addr;
460 {
461 register struct sbdsp_softc *sc = addr;
462
463 return (sc->out_port);
464 }
465
466
467 int
468 sbdsp_set_in_port(addr, port)
469 void *addr;
470 int port;
471 {
472 register struct sbdsp_softc *sc = addr;
473 int mixport, sbport;
474
475 if (ISSBPROCLASS(sc)) {
476 switch (port) {
477 case SB_MIC_PORT:
478 sbport = SBP_FROM_MIC;
479 mixport = SBP_MIC_VOL;
480 break;
481 case SB_LINE_IN_PORT:
482 sbport = SBP_FROM_LINE;
483 mixport = SBP_LINE_VOL;
484 break;
485 case SB_CD_PORT:
486 sbport = SBP_FROM_CD;
487 mixport = SBP_CD_VOL;
488 break;
489 case SB_DAC_PORT:
490 case SB_FM_PORT:
491 default:
492 return (EINVAL);
493 }
494 } else {
495 switch (port) {
496 case SB_MIC_PORT:
497 sbport = SBP_FROM_MIC;
498 mixport = SBP_MIC_VOL;
499 break;
500 default:
501 return (EINVAL);
502 }
503 }
504
505 sc->in_port = port; /* Just record it */
506
507 if (ISSBPROCLASS(sc)) {
508 /* record from that port */
509 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
510 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
511 /* fetch gain from that port */
512 sc->gain[port] = sbdsp_mix_read(sc, mixport);
513 }
514
515 return (0);
516 }
517
518 int
519 sbdsp_get_in_port(addr)
520 void *addr;
521 {
522 register struct sbdsp_softc *sc = addr;
523
524 return (sc->in_port);
525 }
526
527
528 int
529 sbdsp_speaker_ctl(addr, newstate)
530 void *addr;
531 int newstate;
532 {
533 register struct sbdsp_softc *sc = addr;
534
535 if ((newstate == SPKR_ON) &&
536 (sc->spkr_state == SPKR_OFF)) {
537 sbdsp_spkron(sc);
538 sc->spkr_state = SPKR_ON;
539 }
540 if ((newstate == SPKR_OFF) &&
541 (sc->spkr_state == SPKR_ON)) {
542 sbdsp_spkroff(sc);
543 sc->spkr_state = SPKR_OFF;
544 }
545 return(0);
546 }
547
548 int
549 sbdsp_round_blocksize(addr, blk)
550 void *addr;
551 int blk;
552 {
553 register struct sbdsp_softc *sc = addr;
554
555 sc->sc_last_hs_size = 0;
556
557 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
558 if ((sc->sc_otc > SB_8K || sc->sc_itc > SB_8K) &&
559 (blk > NBPG/2 || blk < NBPG/4))
560 blk = NBPG/2;
561 /* don't try to DMA too much at once, though. */
562 if (blk > NBPG)
563 blk = NBPG;
564 if (sc->sc_chans == 2)
565 return (blk & ~1); /* must be even to preserve stereo separation */
566 else
567 return (blk); /* Anything goes :-) */
568 }
569
570 int
571 sbdsp_commit_settings(addr)
572 void *addr;
573 {
574 register struct sbdsp_softc *sc = addr;
575
576 /* due to potentially unfortunate ordering in the above layers,
577 re-do a few sets which may be important--input gains
578 (adjust the proper channels), number of input channels (hit the
579 record rate and set mode) */
580
581 /*
582 * XXX
583 * Should wait for chip to be idle.
584 */
585 sc->sc_dmadir = SB_DMA_NONE;
586
587 return 0;
588 }
589
590
591 int
592 sbdsp_open(sc, dev, flags)
593 register struct sbdsp_softc *sc;
594 dev_t dev;
595 int flags;
596 {
597 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
598
599 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
600 return ENXIO;
601
602 sc->sc_open = 1;
603 sc->sc_mintr = 0;
604 if (ISSBPROCLASS(sc) &&
605 sbdsp_wdsp(sc->sc_iobase, SB_DSP_RECORD_MONO) < 0) {
606 DPRINTF(("sbdsp_open: can't set mono mode\n"));
607 /* we'll readjust when it's time for DMA. */
608 }
609
610 /*
611 * Leave most things as they were; users must change things if
612 * the previous process didn't leave it they way they wanted.
613 * Looked at another way, it's easy to set up a configuration
614 * in one program and leave it for another to inherit.
615 */
616 DPRINTF(("sbdsp_open: opened\n"));
617
618 return 0;
619 }
620
621 void
622 sbdsp_close(addr)
623 void *addr;
624 {
625 struct sbdsp_softc *sc = addr;
626
627 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
628
629 sc->sc_open = 0;
630 sbdsp_spkroff(sc);
631 sc->spkr_state = SPKR_OFF;
632 sc->sc_mintr = 0;
633 sbdsp_haltdma(sc);
634
635 DPRINTF(("sbdsp_close: closed\n"));
636 }
637
638 /*
639 * Lower-level routines
640 */
641
642 /*
643 * Reset the card.
644 * Return non-zero if the card isn't detected.
645 */
646 int
647 sbdsp_reset(sc)
648 register struct sbdsp_softc *sc;
649 {
650 register int iobase = sc->sc_iobase;
651
652 sc->sc_intr = 0;
653 if (sc->sc_dmadir != SB_DMA_NONE) {
654 isa_dmaabort(sc->sc_drq);
655 sc->sc_dmadir = SB_DMA_NONE;
656 }
657 sc->sc_last_hs_size = 0;
658
659 /*
660 * See SBK, section 11.3.
661 * We pulse a reset signal into the card.
662 * Gee, what a brilliant hardware design.
663 */
664 outb(iobase + SBP_DSP_RESET, 1);
665 delay(10);
666 outb(iobase + SBP_DSP_RESET, 0);
667 delay(30);
668 if (sbdsp_rdsp(iobase) != SB_MAGIC)
669 return -1;
670
671 return 0;
672 }
673
674 /*
675 * Write a byte to the dsp.
676 * XXX We are at the mercy of the card as we use a
677 * polling loop and wait until it can take the byte.
678 */
679 int
680 sbdsp_wdsp(int iobase, int v)
681 {
682 register int i;
683
684 for (i = SBDSP_NPOLL; --i >= 0; ) {
685 register u_char x;
686 x = inb(iobase + SBP_DSP_WSTAT);
687 delay(10);
688 if ((x & SB_DSP_BUSY) != 0)
689 continue;
690 outb(iobase + SBP_DSP_WRITE, v);
691 delay(10);
692 return 0;
693 }
694 ++sberr.wdsp;
695 return -1;
696 }
697
698 /*
699 * Read a byte from the DSP, using polling.
700 */
701 int
702 sbdsp_rdsp(int iobase)
703 {
704 register int i;
705
706 for (i = SBDSP_NPOLL; --i >= 0; ) {
707 register u_char x;
708 x = inb(iobase + SBP_DSP_RSTAT);
709 delay(10);
710 if ((x & SB_DSP_READY) == 0)
711 continue;
712 x = inb(iobase + SBP_DSP_READ);
713 delay(10);
714 return x;
715 }
716 ++sberr.rdsp;
717 return -1;
718 }
719
720 /*
721 * Doing certain things (like toggling the speaker) make
722 * the SB hardware go away for a while, so pause a little.
723 */
724 void
725 sbdsp_to(arg)
726 void *arg;
727 {
728 wakeup(arg);
729 }
730
731 void
732 sbdsp_pause(sc)
733 struct sbdsp_softc *sc;
734 {
735 extern int hz;
736
737 timeout(sbdsp_to, sbdsp_to, hz/8);
738 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
739 }
740
741 /*
742 * Turn on the speaker. The SBK documention says this operation
743 * can take up to 1/10 of a second. Higher level layers should
744 * probably let the task sleep for this amount of time after
745 * calling here. Otherwise, things might not work (because
746 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
747 *
748 * These engineers had their heads up their ass when
749 * they designed this card.
750 */
751 void
752 sbdsp_spkron(sc)
753 struct sbdsp_softc *sc;
754 {
755 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
756 sbdsp_pause(sc);
757 }
758
759 /*
760 * Turn off the speaker; see comment above.
761 */
762 void
763 sbdsp_spkroff(sc)
764 struct sbdsp_softc *sc;
765 {
766 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
767 sbdsp_pause(sc);
768 }
769
770 /*
771 * Read the version number out of the card. Return major code
772 * in high byte, and minor code in low byte.
773 */
774 short
775 sbversion(sc)
776 struct sbdsp_softc *sc;
777 {
778 register int iobase = sc->sc_iobase;
779 short v;
780
781 if (sbdsp_wdsp(iobase, SB_DSP_VERSION) < 0)
782 return 0;
783 v = sbdsp_rdsp(iobase) << 8;
784 v |= sbdsp_rdsp(iobase);
785 return ((v >= 0) ? v : 0);
786 }
787
788 /*
789 * Halt a DMA in progress. A low-speed transfer can be
790 * resumed with sbdsp_contdma().
791 */
792 int
793 sbdsp_haltdma(addr)
794 void *addr;
795 {
796 register struct sbdsp_softc *sc = addr;
797
798 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
799
800 sbdsp_reset(sc);
801 return 0;
802 }
803
804 int
805 sbdsp_contdma(addr)
806 void *addr;
807 {
808 register struct sbdsp_softc *sc = addr;
809
810 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
811
812 /* XXX how do we reinitialize the DMA controller state? do we care? */
813 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_CONT);
814 return(0);
815 }
816
817 /*
818 * Convert a linear sampling rate into the DAC time constant.
819 * Set *mode to indicate the high/low-speed DMA operation.
820 * Because of limitations of the card, not all rates are possible.
821 * We return the time constant of the closest possible rate.
822 * The sampling rate limits are different for the DAC and ADC,
823 * so isdac indicates output, and !isdac indicates input.
824 */
825 int
826 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
827 register struct sbdsp_softc *sc;
828 int sr;
829 int isdac;
830 int *tcp, *modep;
831 {
832 int tc, mode;
833
834 if (sr == 0) {
835 tc = SB_LS_MIN;
836 mode = SB_ADAC_LS;
837 goto out;
838 }
839
840 tc = 256 - (1000000 / sr);
841
842 if (tc < SB_LS_MIN) {
843 tc = SB_LS_MIN;
844 mode = SB_ADAC_LS;
845 goto out;
846 } else if (isdac) {
847 if (tc <= SB_DAC_LS_MAX)
848 mode = SB_ADAC_LS;
849 else {
850 mode = SB_ADAC_HS;
851 if (tc > SB_DAC_HS_MAX)
852 tc = SB_DAC_HS_MAX;
853 }
854 } else {
855 int adc_ls_max, adc_hs_max;
856
857 /* XXX use better rounding--compare distance to nearest tc on both
858 sides of requested speed */
859 if (ISSBPROCLASS(sc)) {
860 adc_ls_max = SBPRO_ADC_LS_MAX;
861 adc_hs_max = SBPRO_ADC_HS_MAX;
862 } else {
863 adc_ls_max = SBCLA_ADC_LS_MAX;
864 adc_hs_max = SBCLA_ADC_HS_MAX;
865 }
866
867 if (tc <= adc_ls_max)
868 mode = SB_ADAC_LS;
869 else {
870 mode = SB_ADAC_HS;
871 if (tc > adc_hs_max)
872 tc = adc_hs_max;
873 }
874 }
875
876 out:
877 *tcp = tc;
878 *modep = mode;
879 return (0);
880 }
881
882 /*
883 * Convert a DAC time constant to a sampling rate.
884 * See SBK, section 12.
885 */
886 int
887 sbdsp_tctosr(sc, tc)
888 register struct sbdsp_softc *sc;
889 int tc;
890 {
891 int adc;
892
893 if (ISSBPROCLASS(sc))
894 adc = SBPRO_ADC_HS_MAX;
895 else
896 adc = SBCLA_ADC_HS_MAX;
897
898 if (tc > adc)
899 tc = adc;
900
901 return (1000000 / (256 - tc));
902 }
903
904 int
905 sbdsp_set_tc(sc, tc)
906 register struct sbdsp_softc *sc;
907 int tc;
908 {
909 register int iobase;
910
911 /*
912 * A SBPro in stereo mode uses time constants at double the
913 * actual rate.
914 */
915 if (ISSBPRO(sc) && sc->sc_chans == 2)
916 tc = 256 - ((256 - tc) / 2);
917
918 DPRINTF(("sbdsp_set_tc: sc=%p tc=%d\n", sc, tc));
919
920 iobase = sc->sc_iobase;
921 if (sbdsp_wdsp(iobase, SB_DSP_TIMECONST) < 0 ||
922 sbdsp_wdsp(iobase, tc) < 0)
923 return (EIO);
924
925 return (0);
926 }
927
928 int
929 sbdsp_dma_input(addr, p, cc, intr, arg)
930 void *addr;
931 void *p;
932 int cc;
933 void (*intr)();
934 void *arg;
935 {
936 register struct sbdsp_softc *sc = addr;
937 register int iobase;
938
939 #ifdef AUDIO_DEBUG
940 if (sbdspdebug > 1)
941 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
942 #endif
943 if (sc->sc_chans == 2 && (cc & 1)) {
944 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
945 return EIO;
946 }
947
948 iobase = sc->sc_iobase;
949 if (sc->sc_dmadir != SB_DMA_IN) {
950 if (ISSBPROCLASS(sc)) {
951 if (sc->sc_chans == 2) {
952 if (sbdsp_wdsp(iobase, SB_DSP_RECORD_STEREO) < 0)
953 goto badmode;
954 sbdsp_mix_write(sc, SBP_INFILTER,
955 (sbdsp_mix_read(sc, SBP_INFILTER) &
956 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
957 } else {
958 if (sbdsp_wdsp(iobase, SB_DSP_RECORD_MONO) < 0)
959 goto badmode;
960 sbdsp_mix_write(sc, SBP_INFILTER,
961 (sbdsp_mix_read(sc, SBP_INFILTER) &
962 ~SBP_IFILTER_MASK) | sc->in_filter);
963 }
964 }
965
966 sbdsp_set_tc(sc, sc->sc_itc);
967 sc->sc_dmadir = SB_DMA_IN;
968 }
969
970 isa_dmastart(B_READ, p, cc, sc->sc_drq);
971 sc->sc_intr = intr;
972 sc->sc_arg = arg;
973 sc->dmaflags = B_READ;
974 sc->dmaaddr = p;
975 sc->dmacnt = --cc; /* DMA controller is strange...? */
976
977 if (sc->sc_imode == SB_ADAC_LS) {
978 if (sbdsp_wdsp(iobase, SB_DSP_RDMA) < 0 ||
979 sbdsp_wdsp(iobase, cc) < 0 ||
980 sbdsp_wdsp(iobase, cc >> 8) < 0) {
981 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
982 goto giveup;
983 }
984 }
985 else {
986 if (cc != sc->sc_last_hs_size) {
987 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
988 sbdsp_wdsp(iobase, cc) < 0 ||
989 sbdsp_wdsp(iobase, cc >> 8) < 0) {
990 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
991 goto giveup;
992 }
993 sc->sc_last_hs_size = cc;
994 }
995 if (sbdsp_wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
996 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
997 goto giveup;
998 }
999 }
1000 return 0;
1001
1002 giveup:
1003 sbdsp_reset(sc);
1004 return EIO;
1005
1006 badmode:
1007 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1008 sc->sc_chans == 2 ? "stereo" : "mono"));
1009 return EIO;
1010 }
1011
1012 int
1013 sbdsp_dma_output(addr, p, cc, intr, arg)
1014 void *addr;
1015 void *p;
1016 int cc;
1017 void (*intr)();
1018 void *arg;
1019 {
1020 register struct sbdsp_softc *sc = addr;
1021 register int iobase;
1022
1023 #ifdef AUDIO_DEBUG
1024 if (sbdspdebug > 1)
1025 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1026 #endif
1027 if (sc->sc_chans == 2 && (cc & 1)) {
1028 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1029 return EIO;
1030 }
1031
1032 iobase = sc->sc_iobase;
1033 if (sc->sc_dmadir != SB_DMA_OUT) {
1034 if (ISSBPROCLASS(sc)) {
1035 /* make sure we re-set stereo mixer bit when we start
1036 output. */
1037 sbdsp_mix_write(sc, SBP_STEREO,
1038 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1039 (sc->sc_chans == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1040 }
1041
1042 sbdsp_set_tc(sc, sc->sc_otc);
1043 sc->sc_dmadir = SB_DMA_OUT;
1044 }
1045
1046 isa_dmastart(B_WRITE, p, cc, sc->sc_drq);
1047 sc->sc_intr = intr;
1048 sc->sc_arg = arg;
1049 sc->dmaflags = B_WRITE;
1050 sc->dmaaddr = p;
1051 sc->dmacnt = --cc; /* a vagary of how DMA works, apparently. */
1052
1053 if (sc->sc_omode == SB_ADAC_LS) {
1054 if (sbdsp_wdsp(iobase, SB_DSP_WDMA) < 0 ||
1055 sbdsp_wdsp(iobase, cc) < 0 ||
1056 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1057 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1058 goto giveup;
1059 }
1060 }
1061 else {
1062 if (cc != sc->sc_last_hs_size) {
1063 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
1064 sbdsp_wdsp(iobase, cc) < 0 ||
1065 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1066 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1067 goto giveup;
1068 }
1069 sc->sc_last_hs_size = cc;
1070 }
1071 if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
1072 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1073 goto giveup;
1074 }
1075 }
1076 return 0;
1077
1078 giveup:
1079 sbdsp_reset(sc);
1080 return EIO;
1081 }
1082
1083 /*
1084 * Only the DSP unit on the sound blaster generates interrupts.
1085 * There are three cases of interrupt: reception of a midi byte
1086 * (when mode is enabled), completion of dma transmission, or
1087 * completion of a dma reception. The three modes are mutually
1088 * exclusive so we know a priori which event has occurred.
1089 */
1090 int
1091 sbdsp_intr(arg)
1092 void *arg;
1093 {
1094 register struct sbdsp_softc *sc = arg;
1095 u_char x;
1096
1097 #ifdef AUDIO_DEBUG
1098 if (sbdspdebug > 1)
1099 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1100 #endif
1101 if (!isa_dmafinished(sc->sc_drq)) {
1102 #if 0
1103 printf("sbdsp_intr: not finished\n");
1104 #endif
1105 return 0;
1106 }
1107 sc->sc_interrupts++;
1108 /* clear interrupt */
1109 x = inb(sc->sc_iobase + SBP_DSP_RSTAT);
1110 delay(10);
1111 #if 0
1112 if (sc->sc_mintr != 0) {
1113 x = sbdsp_rdsp(sc->sc_iobase);
1114 (*sc->sc_mintr)(sc->sc_arg, x);
1115 } else
1116 #endif
1117 if (sc->sc_intr != 0) {
1118 /*
1119 * The SBPro used to develop and test this driver often
1120 * generated dma underruns--it interrupted to signal
1121 * completion of the DMA input recording block, but the
1122 * ISA DMA controller didn't think the channel was
1123 * finished. Maybe this is just a bus speed issue, I dunno,
1124 * but it seems strange and leads to channel-flipping with
1125 * stereo recording. Sigh.
1126 */
1127 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1128 (*sc->sc_intr)(sc->sc_arg);
1129 }
1130 else
1131 return 0;
1132 return 1;
1133 }
1134
1135 #if 0
1136 /*
1137 * Enter midi uart mode and arrange for read interrupts
1138 * to vector to `intr'. This puts the card in a mode
1139 * which allows only midi I/O; the card must be reset
1140 * to leave this mode. Unfortunately, the card does not
1141 * use transmit interrupts, so bytes must be output
1142 * using polling. To keep the polling overhead to a
1143 * minimum, output should be driven off a timer.
1144 * This is a little tricky since only 320us separate
1145 * consecutive midi bytes.
1146 */
1147 void
1148 sbdsp_set_midi_mode(sc, intr, arg)
1149 struct sbdsp_softc *sc;
1150 void (*intr)();
1151 void *arg;
1152 {
1153
1154 sbdsp_wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
1155 sc->sc_mintr = intr;
1156 sc->sc_intr = 0;
1157 sc->sc_arg = arg;
1158 }
1159
1160 /*
1161 * Write a byte to the midi port, when in midi uart mode.
1162 */
1163 void
1164 sbdsp_midi_output(sc, v)
1165 struct sbdsp_softc *sc;
1166 int v;
1167 {
1168
1169 if (sbdsp_wdsp(sc->sc_iobase, v) < 0)
1170 ++sberr.wmidi;
1171 }
1172 #endif
1173
1174 u_int
1175 sbdsp_get_silence(enc)
1176 int enc;
1177 {
1178 #define ULAW_SILENCE 0x7f
1179 #define LINEAR_SILENCE 0
1180 u_int auzero;
1181
1182 switch (enc) {
1183 case AUDIO_ENCODING_ULAW:
1184 auzero = ULAW_SILENCE;
1185 break;
1186 case AUDIO_ENCODING_PCM16:
1187 default:
1188 auzero = LINEAR_SILENCE;
1189 break;
1190 }
1191
1192 return (auzero);
1193 }
1194
1195 int
1196 sbdsp_setfd(addr, flag)
1197 void *addr;
1198 int flag;
1199 {
1200 /* Can't do full-duplex */
1201 return(ENOTTY);
1202 }
1203
1204 int
1205 sbdsp_mixer_set_port(addr, cp)
1206 void *addr;
1207 mixer_ctrl_t *cp;
1208 {
1209 register struct sbdsp_softc *sc = addr;
1210 int src, gain;
1211
1212 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1213 cp->un.value.num_channels));
1214
1215 if (!ISSBPROCLASS(sc))
1216 return EINVAL;
1217
1218 /*
1219 * Everything is a value except for SBPro BASS/TREBLE and
1220 * RECORD_SOURCE
1221 */
1222 switch (cp->dev) {
1223 case SB_SPEAKER:
1224 cp->dev = SB_MASTER_VOL;
1225 case SB_MIC_PORT:
1226 case SB_LINE_IN_PORT:
1227 case SB_DAC_PORT:
1228 case SB_FM_PORT:
1229 case SB_CD_PORT:
1230 case SB_MASTER_VOL:
1231 if (cp->type != AUDIO_MIXER_VALUE)
1232 return EINVAL;
1233
1234 /*
1235 * All the mixer ports are stereo except for the microphone.
1236 * If we get a single-channel gain value passed in, then we
1237 * duplicate it to both left and right channels.
1238 */
1239
1240 switch (cp->dev) {
1241 case SB_MIC_PORT:
1242 if (cp->un.value.num_channels != 1)
1243 return EINVAL;
1244
1245 /* handle funny microphone gain */
1246 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1247 break;
1248 case SB_LINE_IN_PORT:
1249 case SB_DAC_PORT:
1250 case SB_FM_PORT:
1251 case SB_CD_PORT:
1252 case SB_MASTER_VOL:
1253 switch (cp->un.value.num_channels) {
1254 case 1:
1255 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1256 break;
1257 case 2:
1258 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1259 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1260 break;
1261 default:
1262 return EINVAL;
1263 }
1264 break;
1265 }
1266
1267 switch (cp->dev) {
1268 case SB_MIC_PORT:
1269 src = SBP_MIC_VOL;
1270 break;
1271 case SB_MASTER_VOL:
1272 src = SBP_MASTER_VOL;
1273 break;
1274 case SB_LINE_IN_PORT:
1275 src = SBP_LINE_VOL;
1276 break;
1277 case SB_DAC_PORT:
1278 src = SBP_DAC_VOL;
1279 break;
1280 case SB_FM_PORT:
1281 src = SBP_FM_VOL;
1282 break;
1283 case SB_CD_PORT:
1284 src = SBP_CD_VOL;
1285 break;
1286 }
1287
1288 sbdsp_mix_write(sc, src, gain);
1289 sc->gain[cp->dev] = gain;
1290 break;
1291
1292 case SB_TREBLE:
1293 case SB_BASS:
1294 case SB_RECORD_SOURCE:
1295 if (cp->type != AUDIO_MIXER_ENUM)
1296 return EINVAL;
1297
1298 switch (cp->dev) {
1299 case SB_TREBLE:
1300 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1301 case SB_BASS:
1302 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1303 case SB_RECORD_SOURCE:
1304 return sbdsp_set_in_port(addr, cp->un.ord);
1305 }
1306
1307 break;
1308
1309 default:
1310 return EINVAL;
1311 }
1312
1313 return (0);
1314 }
1315
1316 int
1317 sbdsp_mixer_get_port(addr, cp)
1318 void *addr;
1319 mixer_ctrl_t *cp;
1320 {
1321 register struct sbdsp_softc *sc = addr;
1322 int gain;
1323
1324 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1325
1326 if (!ISSBPROCLASS(sc))
1327 return EINVAL;
1328
1329 switch (cp->dev) {
1330 case SB_SPEAKER:
1331 cp->dev = SB_MASTER_VOL;
1332 case SB_MIC_PORT:
1333 case SB_LINE_IN_PORT:
1334 case SB_DAC_PORT:
1335 case SB_FM_PORT:
1336 case SB_CD_PORT:
1337 case SB_MASTER_VOL:
1338 gain = sc->gain[cp->dev];
1339
1340 switch (cp->dev) {
1341 case SB_MIC_PORT:
1342 if (cp->un.value.num_channels != 1)
1343 return EINVAL;
1344
1345 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1346 break;
1347 case SB_LINE_IN_PORT:
1348 case SB_DAC_PORT:
1349 case SB_FM_PORT:
1350 case SB_CD_PORT:
1351 case SB_MASTER_VOL:
1352 switch (cp->un.value.num_channels) {
1353 case 1:
1354 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1355 break;
1356 case 2:
1357 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1358 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1359 break;
1360 default:
1361 return EINVAL;
1362 }
1363 break;
1364 }
1365
1366 break;
1367
1368 case SB_TREBLE:
1369 case SB_BASS:
1370 case SB_RECORD_SOURCE:
1371 switch (cp->dev) {
1372 case SB_TREBLE:
1373 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1374 return 0;
1375 case SB_BASS:
1376 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1377 return 0;
1378 case SB_RECORD_SOURCE:
1379 cp->un.ord = sbdsp_get_in_port(addr);
1380 return 0;
1381 }
1382
1383 break;
1384
1385 default:
1386 return EINVAL;
1387 }
1388
1389 return (0);
1390 }
1391
1392 int
1393 sbdsp_mixer_query_devinfo(addr, dip)
1394 void *addr;
1395 register mixer_devinfo_t *dip;
1396 {
1397 register struct sbdsp_softc *sc = addr;
1398
1399 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1400
1401 switch (dip->index) {
1402 case SB_MIC_PORT:
1403 dip->type = AUDIO_MIXER_VALUE;
1404 dip->mixer_class = SB_INPUT_CLASS;
1405 dip->prev = AUDIO_MIXER_LAST;
1406 dip->next = AUDIO_MIXER_LAST;
1407 strcpy(dip->label.name, AudioNmicrophone);
1408 dip->un.v.num_channels = 1;
1409 strcpy(dip->un.v.units.name, AudioNvolume);
1410 return 0;
1411
1412 case SB_SPEAKER:
1413 dip->type = AUDIO_MIXER_VALUE;
1414 dip->mixer_class = SB_OUTPUT_CLASS;
1415 dip->prev = AUDIO_MIXER_LAST;
1416 dip->next = AUDIO_MIXER_LAST;
1417 strcpy(dip->label.name, AudioNspeaker);
1418 dip->un.v.num_channels = 1;
1419 strcpy(dip->un.v.units.name, AudioNvolume);
1420 return 0;
1421
1422 case SB_INPUT_CLASS:
1423 dip->type = AUDIO_MIXER_CLASS;
1424 dip->mixer_class = SB_INPUT_CLASS;
1425 dip->next = dip->prev = AUDIO_MIXER_LAST;
1426 strcpy(dip->label.name, AudioCInputs);
1427 return 0;
1428
1429 case SB_OUTPUT_CLASS:
1430 dip->type = AUDIO_MIXER_CLASS;
1431 dip->mixer_class = SB_OUTPUT_CLASS;
1432 dip->next = dip->prev = AUDIO_MIXER_LAST;
1433 strcpy(dip->label.name, AudioCOutputs);
1434 return 0;
1435 }
1436
1437 if (ISSBPROCLASS(sc)) {
1438 switch (dip->index) {
1439 case SB_LINE_IN_PORT:
1440 dip->type = AUDIO_MIXER_VALUE;
1441 dip->mixer_class = SB_INPUT_CLASS;
1442 dip->prev = AUDIO_MIXER_LAST;
1443 dip->next = AUDIO_MIXER_LAST;
1444 strcpy(dip->label.name, AudioNline);
1445 dip->un.v.num_channels = 2;
1446 strcpy(dip->un.v.units.name, AudioNvolume);
1447 return 0;
1448
1449 case SB_DAC_PORT:
1450 dip->type = AUDIO_MIXER_VALUE;
1451 dip->mixer_class = SB_INPUT_CLASS;
1452 dip->prev = AUDIO_MIXER_LAST;
1453 dip->next = AUDIO_MIXER_LAST;
1454 strcpy(dip->label.name, AudioNdac);
1455 dip->un.v.num_channels = 2;
1456 strcpy(dip->un.v.units.name, AudioNvolume);
1457 return 0;
1458
1459 case SB_CD_PORT:
1460 dip->type = AUDIO_MIXER_VALUE;
1461 dip->mixer_class = SB_INPUT_CLASS;
1462 dip->prev = AUDIO_MIXER_LAST;
1463 dip->next = AUDIO_MIXER_LAST;
1464 strcpy(dip->label.name, AudioNcd);
1465 dip->un.v.num_channels = 2;
1466 strcpy(dip->un.v.units.name, AudioNvolume);
1467 return 0;
1468
1469 case SB_FM_PORT:
1470 dip->type = AUDIO_MIXER_VALUE;
1471 dip->mixer_class = SB_INPUT_CLASS;
1472 dip->prev = AUDIO_MIXER_LAST;
1473 dip->next = AUDIO_MIXER_LAST;
1474 strcpy(dip->label.name, AudioNfmsynth);
1475 dip->un.v.num_channels = 2;
1476 strcpy(dip->un.v.units.name, AudioNvolume);
1477 return 0;
1478
1479 case SB_MASTER_VOL:
1480 dip->type = AUDIO_MIXER_VALUE;
1481 dip->mixer_class = SB_OUTPUT_CLASS;
1482 dip->prev = AUDIO_MIXER_LAST;
1483 dip->next = AUDIO_MIXER_LAST;
1484 strcpy(dip->label.name, AudioNvolume);
1485 dip->un.v.num_channels = 2;
1486 strcpy(dip->un.v.units.name, AudioNvolume);
1487 return 0;
1488
1489 case SB_RECORD_SOURCE:
1490 dip->mixer_class = SB_RECORD_CLASS;
1491 dip->type = AUDIO_MIXER_ENUM;
1492 dip->prev = AUDIO_MIXER_LAST;
1493 dip->next = AUDIO_MIXER_LAST;
1494 strcpy(dip->label.name, AudioNsource);
1495 dip->un.e.num_mem = 3;
1496 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1497 dip->un.e.member[0].ord = SB_MIC_PORT;
1498 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1499 dip->un.e.member[1].ord = SB_CD_PORT;
1500 strcpy(dip->un.e.member[2].label.name, AudioNline);
1501 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1502 return 0;
1503
1504 case SB_BASS:
1505 dip->type = AUDIO_MIXER_ENUM;
1506 dip->mixer_class = SB_INPUT_CLASS;
1507 dip->prev = AUDIO_MIXER_LAST;
1508 dip->next = AUDIO_MIXER_LAST;
1509 strcpy(dip->label.name, AudioNbass);
1510 dip->un.e.num_mem = 2;
1511 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1512 dip->un.e.member[0].ord = 0;
1513 strcpy(dip->un.e.member[1].label.name, AudioNon);
1514 dip->un.e.member[1].ord = 1;
1515 return 0;
1516
1517 case SB_TREBLE:
1518 dip->type = AUDIO_MIXER_ENUM;
1519 dip->mixer_class = SB_INPUT_CLASS;
1520 dip->prev = AUDIO_MIXER_LAST;
1521 dip->next = AUDIO_MIXER_LAST;
1522 strcpy(dip->label.name, AudioNtreble);
1523 dip->un.e.num_mem = 2;
1524 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1525 dip->un.e.member[0].ord = 0;
1526 strcpy(dip->un.e.member[1].label.name, AudioNon);
1527 dip->un.e.member[1].ord = 1;
1528 return 0;
1529
1530 case SB_RECORD_CLASS: /* record source class */
1531 dip->type = AUDIO_MIXER_CLASS;
1532 dip->mixer_class = SB_RECORD_CLASS;
1533 dip->next = dip->prev = AUDIO_MIXER_LAST;
1534 strcpy(dip->label.name, AudioCRecord);
1535 return 0;
1536 }
1537 }
1538
1539 return ENXIO;
1540 }
1541