sbdsp.c revision 1.24 1 /* $NetBSD: sbdsp.c,v 1.24 1996/03/16 04:00:11 jtk Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/pio.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58
59 #include <dev/isa/isavar.h>
60 #include <dev/isa/isadmavar.h>
61 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
62
63 #include <dev/isa/sbreg.h>
64 #include <dev/isa/sbdspvar.h>
65
66 #ifdef AUDIO_DEBUG
67 extern void Dprintf __P((const char *, ...));
68 #define DPRINTF(x) if (sbdspdebug) Dprintf x
69 int sbdspdebug = 0;
70 #else
71 #define DPRINTF(x)
72 #endif
73
74 #ifndef SBDSP_NPOLL
75 #define SBDSP_NPOLL 3000
76 #endif
77
78 struct {
79 int wdsp;
80 int rdsp;
81 int wmidi;
82 } sberr;
83
84 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
85 int *tcp, int *modep));
86 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
87
88 /*
89 * Time constant routines follow. See SBK, section 12.
90 * Although they don't come out and say it (in the docs),
91 * the card clearly uses a 1MHz countdown timer, as the
92 * low-speed formula (p. 12-4) is:
93 * tc = 256 - 10^6 / sr
94 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
95 * and a 256MHz clock is used:
96 * tc = 65536 - 256 * 10^ 6 / sr
97 * Since we can only use the upper byte of the HS TC, the two formulae
98 * are equivalent. (Why didn't they say so?) E.g.,
99 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
100 *
101 * The crossover point (from low- to high-speed modes) is different
102 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
103 *
104 * SBPRO SB20
105 * ----- --------
106 * input ls min 4 KHz 4 KHz
107 * input ls max 23 KHz 13 KHz
108 * input hs max 44.1 KHz 15 KHz
109 * output ls min 4 KHz 4 KHz
110 * output ls max 23 KHz 23 KHz
111 * output hs max 44.1 KHz 44.1 KHz
112 */
113 #define SB_LS_MIN 0x06 /* 4000 Hz */
114 #define SB_8K 0x83 /* 8000 Hz */
115 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
116 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
117 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
118 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
119 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
120 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
121
122 #ifdef AUDIO_DEBUG
123 void
124 sb_printsc(struct sbdsp_softc *sc)
125 {
126 int i;
127
128 printf("open %d dmachan %d iobase %x\n",
129 sc->sc_open, sc->sc_drq, sc->sc_iobase);
130 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
131 sc->sc_irate, sc->sc_itc, sc->sc_imode,
132 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->encoding);
133 printf("outport %d inport %d spkron %d nintr %d\n",
134 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
135 printf("precision %d channels %d intr %x arg %x\n",
136 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
137 printf("gain: ");
138 for (i = 0; i < SB_NDEVS; i++)
139 printf("%d ", sc->gain[i]);
140 printf("\n");
141 }
142 #endif
143
144 /*
145 * Probe / attach routines.
146 */
147
148 /*
149 * Probe for the soundblaster hardware.
150 */
151 int
152 sbdsp_probe(sc)
153 struct sbdsp_softc *sc;
154 {
155 register int iobase = sc->sc_iobase;
156
157 if (sbdsp_reset(sc) < 0) {
158 DPRINTF(("sbdsp: couldn't reset card\n"));
159 return 0;
160 }
161 /* if flags set, go and probe the jazz16 stuff */
162 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
163 sc->sc_model = sbdsp_jazz16_probe(sc);
164 else
165 sc->sc_model = sbversion(sc);
166
167 return 1;
168 }
169
170 /*
171 * Try add-on stuff for Jazz16.
172 */
173 u_int
174 sbdsp_jazz16_probe(sc)
175 struct sbdsp_softc *sc;
176 {
177 static u_char jazz16_irq_conf[16] = {
178 -1, -1, 0x02, 0x03,
179 -1, 0x01, -1, 0x04,
180 -1, 0x02, 0x05, -1,
181 -1, -1, -1, 0x06};
182 static u_char jazz16_drq_conf[8] = {
183 -1, 0x01, -1, 0x02,
184 -1, 0x03, -1, 0x04};
185
186 u_int rval = sbversion(sc);
187 register int iobase = sc->sc_iobase;
188
189 if (jazz16_drq_conf[sc->sc_drq] == (u_char)-1 ||
190 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
191 return rval; /* give up, we can't do it. */
192 outb(JAZZ16_CONFIG_PORT, JAZZ16_WAKEUP);
193 delay(10000); /* delay 10 ms */
194 outb(JAZZ16_CONFIG_PORT, JAZZ16_SETBASE);
195 outb(JAZZ16_CONFIG_PORT, iobase & 0x70);
196
197 if (sbdsp_reset(sc) < 0)
198 return rval; /* XXX? what else could we do? */
199
200 if (sbdsp_wdsp(iobase, JAZZ16_READ_VER))
201 return rval;
202 if (sbdsp_rdsp(iobase) != JAZZ16_VER_JAZZ)
203 return rval;
204
205 if (sbdsp_wdsp(iobase, JAZZ16_SET_DMAINTR) ||
206 /* set both 8 & 16-bit drq to same channel, it works fine. */
207 sbdsp_wdsp(iobase,
208 (jazz16_drq_conf[sc->sc_drq] << 4) |
209 jazz16_drq_conf[sc->sc_drq]) ||
210 sbdsp_wdsp(iobase, jazz16_irq_conf[sc->sc_irq])) {
211 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
212 return rval;
213 }
214 return (rval | MODEL_JAZZ16);
215 }
216
217 /*
218 * Attach hardware to driver, attach hardware driver to audio
219 * pseudo-device driver .
220 */
221 void
222 sbdsp_attach(sc)
223 struct sbdsp_softc *sc;
224 {
225 register int iobase = sc->sc_iobase;
226
227 /* Set defaults */
228 if (ISSB16CLASS(sc))
229 sc->sc_irate = sc->sc_orate = 8000;
230 else if (ISSBPROCLASS(sc))
231 sc->sc_itc = sc->sc_otc = SB_8K;
232 else
233 sc->sc_itc = sc->sc_otc = SB_8K;
234 sc->sc_precision = 8;
235 sc->sc_channels = 1;
236 sc->encoding = AUDIO_ENCODING_ULAW;
237
238 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
239 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
240
241 if (ISSBPROCLASS(sc)) {
242 int i;
243
244 /* set mixer to default levels, by sending a mixer
245 reset command. */
246 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
247 /* then some adjustments :) */
248 sbdsp_mix_write(sc, SBP_CD_VOL,
249 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
250 sbdsp_mix_write(sc, SBP_DAC_VOL,
251 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
252 sbdsp_mix_write(sc, SBP_MASTER_VOL,
253 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
254 sbdsp_mix_write(sc, SBP_LINE_VOL,
255 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
256 for (i = 0; i < SB_NDEVS; i++)
257 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
258 sc->in_filter = 0; /* no filters turned on, please */
259 }
260
261 printf(": dsp v%d.%02d%s\n",
262 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
263 ISJAZZ16(sc) ? ": <Jazz16>" : "");
264
265 #ifdef notyet
266 sbdsp_mix_write(sc, SBP_SET_IRQ, 0x04);
267 sbdsp_mix_write(sc, SBP_SET_DRQ, 0x22);
268
269 printf("sbdsp_attach: irq=%02x, drq=%02x\n",
270 sbdsp_mix_read(sc, SBP_SET_IRQ),
271 sbdsp_mix_read(sc, SBP_SET_DRQ));
272 #else
273 if (ISSB16CLASS(sc))
274 sc->sc_model = 0x0300;
275 #endif
276 }
277
278 /*
279 * Various routines to interface to higher level audio driver
280 */
281
282 void
283 sbdsp_mix_write(sc, mixerport, val)
284 struct sbdsp_softc *sc;
285 int mixerport;
286 int val;
287 {
288 int iobase = sc->sc_iobase;
289 outb(iobase + SBP_MIXER_ADDR, mixerport);
290 delay(10);
291 outb(iobase + SBP_MIXER_DATA, val);
292 delay(30);
293 }
294
295 int
296 sbdsp_mix_read(sc, mixerport)
297 struct sbdsp_softc *sc;
298 int mixerport;
299 {
300 int iobase = sc->sc_iobase;
301 outb(iobase + SBP_MIXER_ADDR, mixerport);
302 delay(10);
303 return inb(iobase + SBP_MIXER_DATA);
304 }
305
306 int
307 sbdsp_set_in_sr(addr, sr)
308 void *addr;
309 u_long sr;
310 {
311 register struct sbdsp_softc *sc = addr;
312
313 if (ISSB16CLASS(sc))
314 return (sbdsp_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
315 else
316 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
317 }
318
319 u_long
320 sbdsp_get_in_sr(addr)
321 void *addr;
322 {
323 register struct sbdsp_softc *sc = addr;
324
325 if (ISSB16CLASS(sc))
326 return (sc->sc_irate);
327 else
328 return (sbdsp_tctosr(sc, sc->sc_itc));
329 }
330
331 int
332 sbdsp_set_out_sr(addr, sr)
333 void *addr;
334 u_long sr;
335 {
336 register struct sbdsp_softc *sc = addr;
337
338 if (ISSB16CLASS(sc))
339 return (sbdsp_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
340 else
341 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
342 }
343
344 u_long
345 sbdsp_get_out_sr(addr)
346 void *addr;
347 {
348 register struct sbdsp_softc *sc = addr;
349
350 if (ISSB16CLASS(sc))
351 return (sc->sc_orate);
352 else
353 return (sbdsp_tctosr(sc, sc->sc_otc));
354 }
355
356 int
357 sbdsp_query_encoding(addr, fp)
358 void *addr;
359 struct audio_encoding *fp;
360 {
361 register struct sbdsp_softc *sc = addr;
362
363 switch (fp->index) {
364 case 0:
365 strcpy(fp->name, AudioEmulaw);
366 fp->format_id = AUDIO_ENCODING_ULAW;
367 break;
368 case 1:
369 strcpy(fp->name, AudioEpcm16);
370 fp->format_id = AUDIO_ENCODING_PCM16;
371 break;
372 default:
373 return (EINVAL);
374 }
375 return (0);
376 }
377
378 int
379 sbdsp_set_encoding(addr, encoding)
380 void *addr;
381 u_int encoding;
382 {
383 register struct sbdsp_softc *sc = addr;
384
385 switch (encoding) {
386 case AUDIO_ENCODING_ULAW:
387 sc->encoding = AUDIO_ENCODING_ULAW;
388 break;
389 case AUDIO_ENCODING_LINEAR:
390 sc->encoding = AUDIO_ENCODING_LINEAR;
391 break;
392 default:
393 return (EINVAL);
394 }
395
396 return (0);
397 }
398
399 int
400 sbdsp_get_encoding(addr)
401 void *addr;
402 {
403 register struct sbdsp_softc *sc = addr;
404
405 return (sc->encoding);
406 }
407
408 int
409 sbdsp_set_precision(addr, precision)
410 void *addr;
411 u_int precision;
412 {
413 register struct sbdsp_softc *sc = addr;
414
415 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
416 if (precision != 16 && precision != 8)
417 return (EINVAL);
418 sc->sc_precision = precision;
419 } else {
420 if (precision != 8)
421 return (EINVAL);
422 sc->sc_precision = precision;
423 }
424
425 return (0);
426 }
427
428 int
429 sbdsp_get_precision(addr)
430 void *addr;
431 {
432 register struct sbdsp_softc *sc = addr;
433
434 return (sc->sc_precision);
435 }
436
437 int
438 sbdsp_set_channels(addr, channels)
439 void *addr;
440 int channels;
441 {
442 register struct sbdsp_softc *sc = addr;
443
444 if (ISSBPROCLASS(sc)) {
445 if (channels != 1 && channels != 2)
446 return (EINVAL);
447 sc->sc_channels = channels;
448 sc->sc_dmadir = SB_DMA_NONE;
449 /*
450 * XXXX
451 * With 2 channels, SBPro can't do more than 22kHz.
452 * No framework to check this.
453 */
454 } else {
455 if (channels != 1)
456 return (EINVAL);
457 sc->sc_channels = channels;
458 }
459
460 return (0);
461 }
462
463 int
464 sbdsp_get_channels(addr)
465 void *addr;
466 {
467 register struct sbdsp_softc *sc = addr;
468
469 return (sc->sc_channels);
470 }
471
472 int
473 sbdsp_set_ifilter(addr, which)
474 void *addr;
475 int which;
476 {
477 register struct sbdsp_softc *sc = addr;
478 int rval, mixval;
479
480 if (ISSBPROCLASS(sc)) {
481 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
482 switch (which) {
483 case 0:
484 mixval |= SBP_FILTER_OFF;
485 break;
486 case SBP_TREBLE_EQ:
487 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
488 break;
489 case SBP_BASS_EQ:
490 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
491 break;
492 default:
493 return (EINVAL);
494 }
495 sc->in_filter = mixval & SBP_IFILTER_MASK;
496 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
497 return (0);
498 } else
499 return (EINVAL);
500 }
501
502 int
503 sbdsp_get_ifilter(addr)
504 void *addr;
505 {
506 register struct sbdsp_softc *sc = addr;
507
508 if (ISSBPROCLASS(sc)) {
509 sc->in_filter =
510 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
511 switch (sc->in_filter) {
512 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
513 return (SBP_TREBLE_EQ);
514 case SBP_FILTER_ON|SBP_IFILTER_LOW:
515 return (SBP_BASS_EQ);
516 case SBP_FILTER_OFF:
517 default:
518 return (0);
519 }
520 } else
521 return (0);
522 }
523
524 int
525 sbdsp_set_out_port(addr, port)
526 void *addr;
527 int port;
528 {
529 register struct sbdsp_softc *sc = addr;
530
531 sc->out_port = port; /* Just record it */
532
533 return (0);
534 }
535
536 int
537 sbdsp_get_out_port(addr)
538 void *addr;
539 {
540 register struct sbdsp_softc *sc = addr;
541
542 return (sc->out_port);
543 }
544
545
546 int
547 sbdsp_set_in_port(addr, port)
548 void *addr;
549 int port;
550 {
551 register struct sbdsp_softc *sc = addr;
552 int mixport, sbport;
553
554 if (ISSBPROCLASS(sc)) {
555 switch (port) {
556 case SB_MIC_PORT:
557 sbport = SBP_FROM_MIC;
558 mixport = SBP_MIC_VOL;
559 break;
560 case SB_LINE_IN_PORT:
561 sbport = SBP_FROM_LINE;
562 mixport = SBP_LINE_VOL;
563 break;
564 case SB_CD_PORT:
565 sbport = SBP_FROM_CD;
566 mixport = SBP_CD_VOL;
567 break;
568 case SB_DAC_PORT:
569 case SB_FM_PORT:
570 default:
571 return (EINVAL);
572 }
573 } else {
574 switch (port) {
575 case SB_MIC_PORT:
576 sbport = SBP_FROM_MIC;
577 mixport = SBP_MIC_VOL;
578 break;
579 default:
580 return (EINVAL);
581 }
582 }
583
584 sc->in_port = port; /* Just record it */
585
586 if (ISSBPROCLASS(sc)) {
587 /* record from that port */
588 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
589 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
590 /* fetch gain from that port */
591 sc->gain[port] = sbdsp_mix_read(sc, mixport);
592 }
593
594 return (0);
595 }
596
597 int
598 sbdsp_get_in_port(addr)
599 void *addr;
600 {
601 register struct sbdsp_softc *sc = addr;
602
603 return (sc->in_port);
604 }
605
606
607 int
608 sbdsp_speaker_ctl(addr, newstate)
609 void *addr;
610 int newstate;
611 {
612 register struct sbdsp_softc *sc = addr;
613
614 if ((newstate == SPKR_ON) &&
615 (sc->spkr_state == SPKR_OFF)) {
616 sbdsp_spkron(sc);
617 sc->spkr_state = SPKR_ON;
618 }
619 if ((newstate == SPKR_OFF) &&
620 (sc->spkr_state == SPKR_ON)) {
621 sbdsp_spkroff(sc);
622 sc->spkr_state = SPKR_OFF;
623 }
624 return(0);
625 }
626
627 int
628 sbdsp_round_blocksize(addr, blk)
629 void *addr;
630 int blk;
631 {
632 register struct sbdsp_softc *sc = addr;
633
634 sc->sc_last_hs_size = 0;
635
636 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
637 if (blk < NBPG/4 || blk > NBPG/2) {
638 if (ISSB16CLASS(sc)) {
639 if (sc->sc_orate > 8000 || sc->sc_irate > 8000)
640 blk = NBPG/2;
641 } else {
642 if (sc->sc_otc > SB_8K || sc->sc_itc < SB_8K)
643 blk = NBPG/2;
644 }
645 }
646 /* don't try to DMA too much at once, though. */
647 if (blk > NBPG)
648 blk = NBPG;
649 if (sc->sc_channels == 2)
650 return (blk & ~1); /* must be even to preserve stereo separation */
651 else
652 return (blk); /* Anything goes :-) */
653 }
654
655 int
656 sbdsp_commit_settings(addr)
657 void *addr;
658 {
659 register struct sbdsp_softc *sc = addr;
660
661 /* due to potentially unfortunate ordering in the above layers,
662 re-do a few sets which may be important--input gains
663 (adjust the proper channels), number of input channels (hit the
664 record rate and set mode) */
665
666 if (ISSBPRO(sc)) {
667 /*
668 * With 2 channels, SBPro can't do more than 22kHz.
669 * Whack the rates down to speed if necessary.
670 * Reset the time constant anyway
671 * because it may have been adjusted with a different number
672 * of channels, which means it might have computed the wrong
673 * mode (low/high speed).
674 */
675 if (sc->sc_channels == 2 &&
676 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
677 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
678 &sc->sc_itc, &sc->sc_imode);
679 } else
680 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
681 SB_INPUT_RATE, &sc->sc_itc,
682 &sc->sc_imode);
683
684 if (sc->sc_channels == 2 &&
685 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
686 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
687 &sc->sc_otc, &sc->sc_omode);
688 } else
689 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
690 SB_OUTPUT_RATE, &sc->sc_otc,
691 &sc->sc_omode);
692 }
693 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
694 if (sc->encoding == AUDIO_ENCODING_ULAW &&
695 sc->sc_precision == 16) {
696 sc->sc_precision = 8;
697 return EINVAL; /* XXX what should we really do? */
698 }
699 }
700 /*
701 * XXX
702 * Should wait for chip to be idle.
703 */
704 sc->sc_dmadir = SB_DMA_NONE;
705
706 return 0;
707 }
708
709
710 int
711 sbdsp_open(sc, dev, flags)
712 register struct sbdsp_softc *sc;
713 dev_t dev;
714 int flags;
715 {
716 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
717
718 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
719 return ENXIO;
720
721 sc->sc_open = 1;
722 sc->sc_mintr = 0;
723 if (ISSBPROCLASS(sc) &&
724 sbdsp_wdsp(sc->sc_iobase, SB_DSP_RECORD_MONO) < 0) {
725 DPRINTF(("sbdsp_open: can't set mono mode\n"));
726 /* we'll readjust when it's time for DMA. */
727 }
728
729 /*
730 * Leave most things as they were; users must change things if
731 * the previous process didn't leave it they way they wanted.
732 * Looked at another way, it's easy to set up a configuration
733 * in one program and leave it for another to inherit.
734 */
735 DPRINTF(("sbdsp_open: opened\n"));
736
737 return 0;
738 }
739
740 void
741 sbdsp_close(addr)
742 void *addr;
743 {
744 struct sbdsp_softc *sc = addr;
745
746 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
747
748 sc->sc_open = 0;
749 sbdsp_spkroff(sc);
750 sc->spkr_state = SPKR_OFF;
751 sc->sc_mintr = 0;
752 sbdsp_haltdma(sc);
753
754 DPRINTF(("sbdsp_close: closed\n"));
755 }
756
757 /*
758 * Lower-level routines
759 */
760
761 /*
762 * Reset the card.
763 * Return non-zero if the card isn't detected.
764 */
765 int
766 sbdsp_reset(sc)
767 register struct sbdsp_softc *sc;
768 {
769 register int iobase = sc->sc_iobase;
770
771 sc->sc_intr = 0;
772 if (sc->sc_dmadir != SB_DMA_NONE) {
773 isa_dmaabort(sc->sc_drq);
774 sc->sc_dmadir = SB_DMA_NONE;
775 }
776 sc->sc_last_hs_size = 0;
777
778 /*
779 * See SBK, section 11.3.
780 * We pulse a reset signal into the card.
781 * Gee, what a brilliant hardware design.
782 */
783 outb(iobase + SBP_DSP_RESET, 1);
784 delay(10);
785 outb(iobase + SBP_DSP_RESET, 0);
786 delay(30);
787 if (sbdsp_rdsp(iobase) != SB_MAGIC)
788 return -1;
789
790 return 0;
791 }
792
793 int
794 sbdsp16_wait(iobase)
795 int iobase;
796 {
797 register int i;
798
799 for (i = SBDSP_NPOLL; --i >= 0; ) {
800 register u_char x;
801 x = inb(iobase + SBP_DSP_WSTAT);
802 delay(10);
803 if ((x & SB_DSP_BUSY) == 0)
804 continue;
805 return 0;
806 }
807 ++sberr.wdsp;
808 return -1;
809 }
810
811 /*
812 * Write a byte to the dsp.
813 * XXX We are at the mercy of the card as we use a
814 * polling loop and wait until it can take the byte.
815 */
816 int
817 sbdsp_wdsp(int iobase, int v)
818 {
819 register int i;
820
821 for (i = SBDSP_NPOLL; --i >= 0; ) {
822 register u_char x;
823 x = inb(iobase + SBP_DSP_WSTAT);
824 delay(10);
825 if ((x & SB_DSP_BUSY) != 0)
826 continue;
827 outb(iobase + SBP_DSP_WRITE, v);
828 delay(10);
829 return 0;
830 }
831 ++sberr.wdsp;
832 return -1;
833 }
834
835 /*
836 * Read a byte from the DSP, using polling.
837 */
838 int
839 sbdsp_rdsp(int iobase)
840 {
841 register int i;
842
843 for (i = SBDSP_NPOLL; --i >= 0; ) {
844 register u_char x;
845 x = inb(iobase + SBP_DSP_RSTAT);
846 delay(10);
847 if ((x & SB_DSP_READY) == 0)
848 continue;
849 x = inb(iobase + SBP_DSP_READ);
850 delay(10);
851 return x;
852 }
853 ++sberr.rdsp;
854 return -1;
855 }
856
857 /*
858 * Doing certain things (like toggling the speaker) make
859 * the SB hardware go away for a while, so pause a little.
860 */
861 void
862 sbdsp_to(arg)
863 void *arg;
864 {
865 wakeup(arg);
866 }
867
868 void
869 sbdsp_pause(sc)
870 struct sbdsp_softc *sc;
871 {
872 extern int hz;
873
874 timeout(sbdsp_to, sbdsp_to, hz/8);
875 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
876 }
877
878 /*
879 * Turn on the speaker. The SBK documention says this operation
880 * can take up to 1/10 of a second. Higher level layers should
881 * probably let the task sleep for this amount of time after
882 * calling here. Otherwise, things might not work (because
883 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
884 *
885 * These engineers had their heads up their ass when
886 * they designed this card.
887 */
888 void
889 sbdsp_spkron(sc)
890 struct sbdsp_softc *sc;
891 {
892 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
893 sbdsp_pause(sc);
894 }
895
896 /*
897 * Turn off the speaker; see comment above.
898 */
899 void
900 sbdsp_spkroff(sc)
901 struct sbdsp_softc *sc;
902 {
903 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
904 sbdsp_pause(sc);
905 }
906
907 /*
908 * Read the version number out of the card. Return major code
909 * in high byte, and minor code in low byte.
910 */
911 short
912 sbversion(sc)
913 struct sbdsp_softc *sc;
914 {
915 register int iobase = sc->sc_iobase;
916 short v;
917
918 if (sbdsp_wdsp(iobase, SB_DSP_VERSION) < 0)
919 return 0;
920 v = sbdsp_rdsp(iobase) << 8;
921 v |= sbdsp_rdsp(iobase);
922 return ((v >= 0) ? v : 0);
923 }
924
925 /*
926 * Halt a DMA in progress. A low-speed transfer can be
927 * resumed with sbdsp_contdma().
928 */
929 int
930 sbdsp_haltdma(addr)
931 void *addr;
932 {
933 register struct sbdsp_softc *sc = addr;
934
935 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
936
937 sbdsp_reset(sc);
938 return 0;
939 }
940
941 int
942 sbdsp_contdma(addr)
943 void *addr;
944 {
945 register struct sbdsp_softc *sc = addr;
946
947 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
948
949 /* XXX how do we reinitialize the DMA controller state? do we care? */
950 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_CONT);
951 return(0);
952 }
953
954 int
955 sbdsp_setrate(sc, sr, isdac, ratep)
956 register struct sbdsp_softc *sc;
957 int sr;
958 int isdac;
959 int *ratep;
960 {
961
962 /*
963 * XXXX
964 * More checks here?
965 */
966 if (sr < 5000 || sr > 44100)
967 return (EINVAL);
968 *ratep = sr;
969 return (0);
970 }
971
972 /*
973 * Convert a linear sampling rate into the DAC time constant.
974 * Set *mode to indicate the high/low-speed DMA operation.
975 * Because of limitations of the card, not all rates are possible.
976 * We return the time constant of the closest possible rate.
977 * The sampling rate limits are different for the DAC and ADC,
978 * so isdac indicates output, and !isdac indicates input.
979 */
980 int
981 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
982 register struct sbdsp_softc *sc;
983 int sr;
984 int isdac;
985 int *tcp, *modep;
986 {
987 int tc, realtc, mode;
988
989 /*
990 * Don't forget to compute which mode we'll be in based on whether
991 * we need to double the rate for stereo on SBPRO.
992 */
993
994 if (sr == 0) {
995 tc = SB_LS_MIN;
996 mode = SB_ADAC_LS;
997 goto out;
998 }
999
1000 tc = 256 - (1000000 / sr);
1001
1002 if (sc->sc_channels == 2 && ISSBPRO(sc))
1003 /* compute based on 2x sample rate when needed */
1004 realtc = 256 - ( 500000 / sr);
1005 else
1006 realtc = tc;
1007
1008 if (tc < SB_LS_MIN) {
1009 tc = SB_LS_MIN;
1010 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1011 * speed mode. */
1012 goto out;
1013 } else if (isdac) {
1014 if (realtc <= SB_DAC_LS_MAX)
1015 mode = SB_ADAC_LS;
1016 else {
1017 mode = SB_ADAC_HS;
1018 if (tc > SB_DAC_HS_MAX)
1019 tc = SB_DAC_HS_MAX;
1020 }
1021 } else {
1022 int adc_ls_max, adc_hs_max;
1023
1024 /* XXX use better rounding--compare distance to nearest tc on both
1025 sides of requested speed */
1026 if (ISSBPROCLASS(sc)) {
1027 adc_ls_max = SBPRO_ADC_LS_MAX;
1028 adc_hs_max = SBPRO_ADC_HS_MAX;
1029 } else {
1030 adc_ls_max = SBCLA_ADC_LS_MAX;
1031 adc_hs_max = SBCLA_ADC_HS_MAX;
1032 }
1033
1034 if (realtc <= adc_ls_max)
1035 mode = SB_ADAC_LS;
1036 else {
1037 mode = SB_ADAC_HS;
1038 if (tc > adc_hs_max)
1039 tc = adc_hs_max;
1040 }
1041 }
1042
1043 out:
1044 *tcp = tc;
1045 *modep = mode;
1046 return (0);
1047 }
1048
1049 /*
1050 * Convert a DAC time constant to a sampling rate.
1051 * See SBK, section 12.
1052 */
1053 int
1054 sbdsp_tctosr(sc, tc)
1055 register struct sbdsp_softc *sc;
1056 int tc;
1057 {
1058 int adc;
1059
1060 if (ISSBPROCLASS(sc))
1061 adc = SBPRO_ADC_HS_MAX;
1062 else
1063 adc = SBCLA_ADC_HS_MAX;
1064
1065 if (tc > adc)
1066 tc = adc;
1067
1068 return (1000000 / (256 - tc));
1069 }
1070
1071 int
1072 sbdsp_set_timeconst(sc, tc)
1073 register struct sbdsp_softc *sc;
1074 int tc;
1075 {
1076 register int iobase;
1077
1078 /*
1079 * A SBPro in stereo mode uses time constants at double the
1080 * actual rate.
1081 */
1082 if (ISSBPRO(sc) && sc->sc_channels == 2)
1083 tc = 256 - ((256 - tc) / 2);
1084
1085 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1086
1087 iobase = sc->sc_iobase;
1088 if (sbdsp_wdsp(iobase, SB_DSP_TIMECONST) < 0 ||
1089 sbdsp_wdsp(iobase, tc) < 0)
1090 return (EIO);
1091
1092 return (0);
1093 }
1094
1095 int
1096 sbdsp_dma_input(addr, p, cc, intr, arg)
1097 void *addr;
1098 void *p;
1099 int cc;
1100 void (*intr)();
1101 void *arg;
1102 {
1103 register struct sbdsp_softc *sc = addr;
1104 register int iobase;
1105
1106 #ifdef AUDIO_DEBUG
1107 if (sbdspdebug > 1)
1108 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1109 #endif
1110 if (sc->sc_channels == 2 && (cc & 1)) {
1111 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1112 return EIO;
1113 }
1114
1115 iobase = sc->sc_iobase;
1116 if (sc->sc_dmadir != SB_DMA_IN) {
1117 if (ISSBPRO(sc)) {
1118 if (sc->sc_channels == 2) {
1119 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1120 if (sbdsp_wdsp(iobase,
1121 JAZZ16_RECORD_STEREO) < 0) {
1122 goto badmode;
1123 }
1124 } else if (sbdsp_wdsp(iobase,
1125 SB_DSP_RECORD_STEREO) < 0)
1126 goto badmode;
1127 sbdsp_mix_write(sc, SBP_INFILTER,
1128 (sbdsp_mix_read(sc, SBP_INFILTER) &
1129 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1130 } else {
1131 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1132 if (sbdsp_wdsp(iobase,
1133 JAZZ16_RECORD_MONO) < 0)
1134 {
1135 goto badmode;
1136 }
1137 } else if (sbdsp_wdsp(iobase, SB_DSP_RECORD_MONO) < 0)
1138 goto badmode;
1139 sbdsp_mix_write(sc, SBP_INFILTER,
1140 (sbdsp_mix_read(sc, SBP_INFILTER) &
1141 ~SBP_IFILTER_MASK) | sc->in_filter);
1142 }
1143 }
1144
1145 if (ISSB16CLASS(sc)) {
1146 if (sbdsp_wdsp(iobase, SB_DSP16_INPUTRATE) < 0 ||
1147 sbdsp_wdsp(iobase, sc->sc_irate >> 8) < 0 ||
1148 sbdsp_wdsp(iobase, sc->sc_irate) < 0)
1149 goto giveup;
1150 } else
1151 sbdsp_set_timeconst(sc, sc->sc_itc);
1152 sc->sc_dmadir = SB_DMA_IN;
1153 }
1154
1155 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1156 sc->sc_intr = intr;
1157 sc->sc_arg = arg;
1158 sc->dmaflags = DMAMODE_READ;
1159 sc->dmaaddr = p;
1160 sc->dmacnt = cc; /* DMA controller is strange...? */
1161
1162 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1163 (ISJAZZ16(sc) && sc->sc_drq > 3))
1164 cc >>= 1;
1165 --cc;
1166 if (ISSB16CLASS(sc)) {
1167 if (sbdsp_wdsp(iobase, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1168 SB_DSP16_RDMA_8) < 0 ||
1169 sbdsp_wdsp(iobase, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1170 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1171 sbdsp16_wait(iobase) ||
1172 sbdsp_wdsp(iobase, cc) < 0 ||
1173 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1174 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1175 goto giveup;
1176 }
1177 } else if (sc->sc_imode == SB_ADAC_LS) {
1178 if (sbdsp_wdsp(iobase, SB_DSP_RDMA) < 0 ||
1179 sbdsp_wdsp(iobase, cc) < 0 ||
1180 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1181 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1182 goto giveup;
1183 }
1184 } else {
1185 if (cc != sc->sc_last_hs_size) {
1186 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
1187 sbdsp_wdsp(iobase, cc) < 0 ||
1188 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1189 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1190 goto giveup;
1191 }
1192 sc->sc_last_hs_size = cc;
1193 }
1194 if (sbdsp_wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
1195 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1196 goto giveup;
1197 }
1198 }
1199 return 0;
1200
1201 giveup:
1202 sbdsp_reset(sc);
1203 return EIO;
1204
1205 badmode:
1206 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1207 sc->sc_channels == 2 ? "stereo" : "mono"));
1208 return EIO;
1209 }
1210
1211 int
1212 sbdsp_dma_output(addr, p, cc, intr, arg)
1213 void *addr;
1214 void *p;
1215 int cc;
1216 void (*intr)();
1217 void *arg;
1218 {
1219 register struct sbdsp_softc *sc = addr;
1220 register int iobase;
1221
1222 #ifdef AUDIO_DEBUG
1223 if (sbdspdebug > 1)
1224 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1225 #endif
1226 if (sc->sc_channels == 2 && (cc & 1)) {
1227 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1228 return EIO;
1229 }
1230
1231 iobase = sc->sc_iobase;
1232 if (sc->sc_dmadir != SB_DMA_OUT) {
1233 if (ISSBPRO(sc)) {
1234 /* make sure we re-set stereo mixer bit when we start
1235 output. */
1236 sbdsp_mix_write(sc, SBP_STEREO,
1237 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1238 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1239 if (ISJAZZ16(sc)) {
1240 /* Yes, we write the record mode to set
1241 16-bit playback mode. weird, huh? */
1242 if (sc->sc_precision == 16) {
1243 sbdsp_wdsp(iobase,
1244 sc->sc_channels == 2 ?
1245 JAZZ16_RECORD_STEREO :
1246 JAZZ16_RECORD_MONO);
1247 } else {
1248 sbdsp_wdsp(iobase,
1249 sc->sc_channels == 2 ?
1250 SB_DSP_RECORD_STEREO :
1251 SB_DSP_RECORD_MONO);
1252 }
1253 }
1254 }
1255
1256 if (ISSB16CLASS(sc)) {
1257 if (sbdsp_wdsp(iobase, SB_DSP16_OUTPUTRATE) < 0 ||
1258 sbdsp_wdsp(iobase, sc->sc_orate >> 8) < 0 ||
1259 sbdsp_wdsp(iobase, sc->sc_orate) < 0)
1260 goto giveup;
1261 } else
1262 sbdsp_set_timeconst(sc, sc->sc_otc);
1263 sc->sc_dmadir = SB_DMA_OUT;
1264 }
1265
1266 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1267 sc->sc_intr = intr;
1268 sc->sc_arg = arg;
1269 sc->dmaflags = DMAMODE_WRITE;
1270 sc->dmaaddr = p;
1271 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1272
1273 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1274 (ISJAZZ16(sc) && sc->sc_drq > 3))
1275 cc >>= 1;
1276 --cc;
1277 if (ISSB16CLASS(sc)) {
1278 if (sbdsp_wdsp(iobase, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1279 SB_DSP16_WDMA_8) < 0 ||
1280 sbdsp_wdsp(iobase, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1281 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1282 sbdsp16_wait(iobase) ||
1283 sbdsp_wdsp(iobase, cc) < 0 ||
1284 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1285 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1286 goto giveup;
1287 }
1288 } else if (sc->sc_omode == SB_ADAC_LS) {
1289 if (sbdsp_wdsp(iobase, SB_DSP_WDMA) < 0 ||
1290 sbdsp_wdsp(iobase, cc) < 0 ||
1291 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1292 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1293 goto giveup;
1294 }
1295 } else {
1296 if (cc != sc->sc_last_hs_size) {
1297 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
1298 sbdsp_wdsp(iobase, cc) < 0 ||
1299 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1300 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1301 goto giveup;
1302 }
1303 sc->sc_last_hs_size = cc;
1304 }
1305 if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
1306 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1307 goto giveup;
1308 }
1309 }
1310 return 0;
1311
1312 giveup:
1313 sbdsp_reset(sc);
1314 return EIO;
1315 }
1316
1317 /*
1318 * Only the DSP unit on the sound blaster generates interrupts.
1319 * There are three cases of interrupt: reception of a midi byte
1320 * (when mode is enabled), completion of dma transmission, or
1321 * completion of a dma reception. The three modes are mutually
1322 * exclusive so we know a priori which event has occurred.
1323 */
1324 int
1325 sbdsp_intr(arg)
1326 void *arg;
1327 {
1328 register struct sbdsp_softc *sc = arg;
1329 u_char x;
1330
1331 #ifdef AUDIO_DEBUG
1332 if (sbdspdebug > 1)
1333 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1334 #endif
1335 if (!isa_dmafinished(sc->sc_drq)) {
1336 printf("sbdsp_intr: not finished\n");
1337 return 0;
1338 }
1339 sc->sc_interrupts++;
1340 /* clear interrupt */
1341 #ifdef notyet
1342 x = sbdsp_mix_read(sc, 0x82);
1343 x = inb(sc->sc_iobase + 15);
1344 #endif
1345 x = inb(sc->sc_iobase + SBP_DSP_RSTAT);
1346 delay(10);
1347 #if 0
1348 if (sc->sc_mintr != 0) {
1349 x = sbdsp_rdsp(sc->sc_iobase);
1350 (*sc->sc_mintr)(sc->sc_arg, x);
1351 } else
1352 #endif
1353 if (sc->sc_intr != 0) {
1354 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1355 (*sc->sc_intr)(sc->sc_arg);
1356 }
1357 else
1358 return 0;
1359 return 1;
1360 }
1361
1362 #if 0
1363 /*
1364 * Enter midi uart mode and arrange for read interrupts
1365 * to vector to `intr'. This puts the card in a mode
1366 * which allows only midi I/O; the card must be reset
1367 * to leave this mode. Unfortunately, the card does not
1368 * use transmit interrupts, so bytes must be output
1369 * using polling. To keep the polling overhead to a
1370 * minimum, output should be driven off a timer.
1371 * This is a little tricky since only 320us separate
1372 * consecutive midi bytes.
1373 */
1374 void
1375 sbdsp_set_midi_mode(sc, intr, arg)
1376 struct sbdsp_softc *sc;
1377 void (*intr)();
1378 void *arg;
1379 {
1380
1381 sbdsp_wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
1382 sc->sc_mintr = intr;
1383 sc->sc_intr = 0;
1384 sc->sc_arg = arg;
1385 }
1386
1387 /*
1388 * Write a byte to the midi port, when in midi uart mode.
1389 */
1390 void
1391 sbdsp_midi_output(sc, v)
1392 struct sbdsp_softc *sc;
1393 int v;
1394 {
1395
1396 if (sbdsp_wdsp(sc->sc_iobase, v) < 0)
1397 ++sberr.wmidi;
1398 }
1399 #endif
1400
1401 u_int
1402 sbdsp_get_silence(encoding)
1403 int encoding;
1404 {
1405 #define ULAW_SILENCE 0x7f
1406 #define LINEAR_SILENCE 0
1407 u_int auzero;
1408
1409 switch (encoding) {
1410 case AUDIO_ENCODING_ULAW:
1411 auzero = ULAW_SILENCE;
1412 break;
1413 case AUDIO_ENCODING_PCM16:
1414 default:
1415 auzero = LINEAR_SILENCE;
1416 break;
1417 }
1418
1419 return (auzero);
1420 }
1421
1422 int
1423 sbdsp_setfd(addr, flag)
1424 void *addr;
1425 int flag;
1426 {
1427 /* Can't do full-duplex */
1428 return(ENOTTY);
1429 }
1430
1431 int
1432 sbdsp_mixer_set_port(addr, cp)
1433 void *addr;
1434 mixer_ctrl_t *cp;
1435 {
1436 register struct sbdsp_softc *sc = addr;
1437 int src, gain;
1438
1439 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1440 cp->un.value.num_channels));
1441
1442 if (!ISSBPROCLASS(sc))
1443 return EINVAL;
1444
1445 /*
1446 * Everything is a value except for SBPro BASS/TREBLE and
1447 * RECORD_SOURCE
1448 */
1449 switch (cp->dev) {
1450 case SB_SPEAKER:
1451 cp->dev = SB_MASTER_VOL;
1452 case SB_MIC_PORT:
1453 case SB_LINE_IN_PORT:
1454 case SB_DAC_PORT:
1455 case SB_FM_PORT:
1456 case SB_CD_PORT:
1457 case SB_MASTER_VOL:
1458 if (cp->type != AUDIO_MIXER_VALUE)
1459 return EINVAL;
1460
1461 /*
1462 * All the mixer ports are stereo except for the microphone.
1463 * If we get a single-channel gain value passed in, then we
1464 * duplicate it to both left and right channels.
1465 */
1466
1467 switch (cp->dev) {
1468 case SB_MIC_PORT:
1469 if (cp->un.value.num_channels != 1)
1470 return EINVAL;
1471
1472 /* handle funny microphone gain */
1473 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1474 break;
1475 case SB_LINE_IN_PORT:
1476 case SB_DAC_PORT:
1477 case SB_FM_PORT:
1478 case SB_CD_PORT:
1479 case SB_MASTER_VOL:
1480 switch (cp->un.value.num_channels) {
1481 case 1:
1482 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1483 break;
1484 case 2:
1485 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1486 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1487 break;
1488 default:
1489 return EINVAL;
1490 }
1491 break;
1492 }
1493
1494 switch (cp->dev) {
1495 case SB_MIC_PORT:
1496 src = SBP_MIC_VOL;
1497 break;
1498 case SB_MASTER_VOL:
1499 src = SBP_MASTER_VOL;
1500 break;
1501 case SB_LINE_IN_PORT:
1502 src = SBP_LINE_VOL;
1503 break;
1504 case SB_DAC_PORT:
1505 src = SBP_DAC_VOL;
1506 break;
1507 case SB_FM_PORT:
1508 src = SBP_FM_VOL;
1509 break;
1510 case SB_CD_PORT:
1511 src = SBP_CD_VOL;
1512 break;
1513 }
1514
1515 sbdsp_mix_write(sc, src, gain);
1516 sc->gain[cp->dev] = gain;
1517 break;
1518
1519 case SB_TREBLE:
1520 case SB_BASS:
1521 case SB_RECORD_SOURCE:
1522 if (cp->type != AUDIO_MIXER_ENUM)
1523 return EINVAL;
1524
1525 switch (cp->dev) {
1526 case SB_TREBLE:
1527 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1528 case SB_BASS:
1529 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1530 case SB_RECORD_SOURCE:
1531 return sbdsp_set_in_port(addr, cp->un.ord);
1532 }
1533
1534 break;
1535
1536 default:
1537 return EINVAL;
1538 }
1539
1540 return (0);
1541 }
1542
1543 int
1544 sbdsp_mixer_get_port(addr, cp)
1545 void *addr;
1546 mixer_ctrl_t *cp;
1547 {
1548 register struct sbdsp_softc *sc = addr;
1549 int gain;
1550
1551 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1552
1553 if (!ISSBPROCLASS(sc))
1554 return EINVAL;
1555
1556 switch (cp->dev) {
1557 case SB_SPEAKER:
1558 cp->dev = SB_MASTER_VOL;
1559 case SB_MIC_PORT:
1560 case SB_LINE_IN_PORT:
1561 case SB_DAC_PORT:
1562 case SB_FM_PORT:
1563 case SB_CD_PORT:
1564 case SB_MASTER_VOL:
1565 gain = sc->gain[cp->dev];
1566
1567 switch (cp->dev) {
1568 case SB_MIC_PORT:
1569 if (cp->un.value.num_channels != 1)
1570 return EINVAL;
1571
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1573 break;
1574 case SB_LINE_IN_PORT:
1575 case SB_DAC_PORT:
1576 case SB_FM_PORT:
1577 case SB_CD_PORT:
1578 case SB_MASTER_VOL:
1579 switch (cp->un.value.num_channels) {
1580 case 1:
1581 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1582 break;
1583 case 2:
1584 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1585 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1586 break;
1587 default:
1588 return EINVAL;
1589 }
1590 break;
1591 }
1592
1593 break;
1594
1595 case SB_TREBLE:
1596 case SB_BASS:
1597 case SB_RECORD_SOURCE:
1598 switch (cp->dev) {
1599 case SB_TREBLE:
1600 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1601 return 0;
1602 case SB_BASS:
1603 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1604 return 0;
1605 case SB_RECORD_SOURCE:
1606 cp->un.ord = sbdsp_get_in_port(addr);
1607 return 0;
1608 }
1609
1610 break;
1611
1612 default:
1613 return EINVAL;
1614 }
1615
1616 return (0);
1617 }
1618
1619 int
1620 sbdsp_mixer_query_devinfo(addr, dip)
1621 void *addr;
1622 register mixer_devinfo_t *dip;
1623 {
1624 register struct sbdsp_softc *sc = addr;
1625
1626 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1627
1628 switch (dip->index) {
1629 case SB_MIC_PORT:
1630 dip->type = AUDIO_MIXER_VALUE;
1631 dip->mixer_class = SB_INPUT_CLASS;
1632 dip->prev = AUDIO_MIXER_LAST;
1633 dip->next = AUDIO_MIXER_LAST;
1634 strcpy(dip->label.name, AudioNmicrophone);
1635 dip->un.v.num_channels = 1;
1636 strcpy(dip->un.v.units.name, AudioNvolume);
1637 return 0;
1638
1639 case SB_SPEAKER:
1640 dip->type = AUDIO_MIXER_VALUE;
1641 dip->mixer_class = SB_OUTPUT_CLASS;
1642 dip->prev = AUDIO_MIXER_LAST;
1643 dip->next = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioNspeaker);
1645 dip->un.v.num_channels = 1;
1646 strcpy(dip->un.v.units.name, AudioNvolume);
1647 return 0;
1648
1649 case SB_INPUT_CLASS:
1650 dip->type = AUDIO_MIXER_CLASS;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->next = dip->prev = AUDIO_MIXER_LAST;
1653 strcpy(dip->label.name, AudioCInputs);
1654 return 0;
1655
1656 case SB_OUTPUT_CLASS:
1657 dip->type = AUDIO_MIXER_CLASS;
1658 dip->mixer_class = SB_OUTPUT_CLASS;
1659 dip->next = dip->prev = AUDIO_MIXER_LAST;
1660 strcpy(dip->label.name, AudioCOutputs);
1661 return 0;
1662 }
1663
1664 if (ISSBPROCLASS(sc)) {
1665 switch (dip->index) {
1666 case SB_LINE_IN_PORT:
1667 dip->type = AUDIO_MIXER_VALUE;
1668 dip->mixer_class = SB_INPUT_CLASS;
1669 dip->prev = AUDIO_MIXER_LAST;
1670 dip->next = AUDIO_MIXER_LAST;
1671 strcpy(dip->label.name, AudioNline);
1672 dip->un.v.num_channels = 2;
1673 strcpy(dip->un.v.units.name, AudioNvolume);
1674 return 0;
1675
1676 case SB_DAC_PORT:
1677 dip->type = AUDIO_MIXER_VALUE;
1678 dip->mixer_class = SB_INPUT_CLASS;
1679 dip->prev = AUDIO_MIXER_LAST;
1680 dip->next = AUDIO_MIXER_LAST;
1681 strcpy(dip->label.name, AudioNdac);
1682 dip->un.v.num_channels = 2;
1683 strcpy(dip->un.v.units.name, AudioNvolume);
1684 return 0;
1685
1686 case SB_CD_PORT:
1687 dip->type = AUDIO_MIXER_VALUE;
1688 dip->mixer_class = SB_INPUT_CLASS;
1689 dip->prev = AUDIO_MIXER_LAST;
1690 dip->next = AUDIO_MIXER_LAST;
1691 strcpy(dip->label.name, AudioNcd);
1692 dip->un.v.num_channels = 2;
1693 strcpy(dip->un.v.units.name, AudioNvolume);
1694 return 0;
1695
1696 case SB_FM_PORT:
1697 dip->type = AUDIO_MIXER_VALUE;
1698 dip->mixer_class = SB_INPUT_CLASS;
1699 dip->prev = AUDIO_MIXER_LAST;
1700 dip->next = AUDIO_MIXER_LAST;
1701 strcpy(dip->label.name, AudioNfmsynth);
1702 dip->un.v.num_channels = 2;
1703 strcpy(dip->un.v.units.name, AudioNvolume);
1704 return 0;
1705
1706 case SB_MASTER_VOL:
1707 dip->type = AUDIO_MIXER_VALUE;
1708 dip->mixer_class = SB_OUTPUT_CLASS;
1709 dip->prev = AUDIO_MIXER_LAST;
1710 dip->next = AUDIO_MIXER_LAST;
1711 strcpy(dip->label.name, AudioNvolume);
1712 dip->un.v.num_channels = 2;
1713 strcpy(dip->un.v.units.name, AudioNvolume);
1714 return 0;
1715
1716 case SB_RECORD_SOURCE:
1717 dip->mixer_class = SB_RECORD_CLASS;
1718 dip->type = AUDIO_MIXER_ENUM;
1719 dip->prev = AUDIO_MIXER_LAST;
1720 dip->next = AUDIO_MIXER_LAST;
1721 strcpy(dip->label.name, AudioNsource);
1722 dip->un.e.num_mem = 3;
1723 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1724 dip->un.e.member[0].ord = SB_MIC_PORT;
1725 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1726 dip->un.e.member[1].ord = SB_CD_PORT;
1727 strcpy(dip->un.e.member[2].label.name, AudioNline);
1728 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1729 return 0;
1730
1731 case SB_BASS:
1732 dip->type = AUDIO_MIXER_ENUM;
1733 dip->mixer_class = SB_INPUT_CLASS;
1734 dip->prev = AUDIO_MIXER_LAST;
1735 dip->next = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioNbass);
1737 dip->un.e.num_mem = 2;
1738 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1739 dip->un.e.member[0].ord = 0;
1740 strcpy(dip->un.e.member[1].label.name, AudioNon);
1741 dip->un.e.member[1].ord = 1;
1742 return 0;
1743
1744 case SB_TREBLE:
1745 dip->type = AUDIO_MIXER_ENUM;
1746 dip->mixer_class = SB_INPUT_CLASS;
1747 dip->prev = AUDIO_MIXER_LAST;
1748 dip->next = AUDIO_MIXER_LAST;
1749 strcpy(dip->label.name, AudioNtreble);
1750 dip->un.e.num_mem = 2;
1751 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1752 dip->un.e.member[0].ord = 0;
1753 strcpy(dip->un.e.member[1].label.name, AudioNon);
1754 dip->un.e.member[1].ord = 1;
1755 return 0;
1756
1757 case SB_RECORD_CLASS: /* record source class */
1758 dip->type = AUDIO_MIXER_CLASS;
1759 dip->mixer_class = SB_RECORD_CLASS;
1760 dip->next = dip->prev = AUDIO_MIXER_LAST;
1761 strcpy(dip->label.name, AudioCRecord);
1762 return 0;
1763 }
1764 }
1765
1766 return ENXIO;
1767 }
1768