sbdsp.c revision 1.25 1 /* $NetBSD: sbdsp.c,v 1.25 1996/04/29 20:03:31 christos Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/pio.h>
55
56 #include <sys/audioio.h>
57 #include <dev/audio_if.h>
58
59 #include <dev/isa/isavar.h>
60 #include <dev/isa/isadmavar.h>
61 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
62
63 #include <dev/isa/sbreg.h>
64 #include <dev/isa/sbdspvar.h>
65
66 #ifdef AUDIO_DEBUG
67 extern void Dprintf __P((const char *, ...));
68 #define DPRINTF(x) if (sbdspdebug) Dprintf x
69 int sbdspdebug = 0;
70 #else
71 #define DPRINTF(x)
72 #endif
73
74 #ifndef SBDSP_NPOLL
75 #define SBDSP_NPOLL 3000
76 #endif
77
78 struct {
79 int wdsp;
80 int rdsp;
81 int wmidi;
82 } sberr;
83
84 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
85 int *tcp, int *modep));
86 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
87
88 /*
89 * Time constant routines follow. See SBK, section 12.
90 * Although they don't come out and say it (in the docs),
91 * the card clearly uses a 1MHz countdown timer, as the
92 * low-speed formula (p. 12-4) is:
93 * tc = 256 - 10^6 / sr
94 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
95 * and a 256MHz clock is used:
96 * tc = 65536 - 256 * 10^ 6 / sr
97 * Since we can only use the upper byte of the HS TC, the two formulae
98 * are equivalent. (Why didn't they say so?) E.g.,
99 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
100 *
101 * The crossover point (from low- to high-speed modes) is different
102 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
103 *
104 * SBPRO SB20
105 * ----- --------
106 * input ls min 4 KHz 4 KHz
107 * input ls max 23 KHz 13 KHz
108 * input hs max 44.1 KHz 15 KHz
109 * output ls min 4 KHz 4 KHz
110 * output ls max 23 KHz 23 KHz
111 * output hs max 44.1 KHz 44.1 KHz
112 */
113 #define SB_LS_MIN 0x06 /* 4000 Hz */
114 #define SB_8K 0x83 /* 8000 Hz */
115 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
116 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
117 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
118 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
119 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
120 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
121
122 int sbdsp16_wait __P((int));
123 void sbdsp_to __P((void *));
124 void sbdsp_pause __P((struct sbdsp_softc *));
125 int sbdsp_setrate __P((struct sbdsp_softc *, int, int, int *));
126 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
127 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
128
129 #ifdef AUDIO_DEBUG
130 void sb_printsc __P((struct sbdsp_softc *));
131 #endif
132
133 #ifdef AUDIO_DEBUG
134 void
135 sb_printsc(sc)
136 struct sbdsp_softc *sc;
137 {
138 int i;
139
140 printf("open %d dmachan %d iobase %x\n",
141 sc->sc_open, sc->sc_drq, sc->sc_iobase);
142 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
143 sc->sc_irate, sc->sc_itc, sc->sc_imode,
144 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->encoding);
145 printf("outport %d inport %d spkron %d nintr %d\n",
146 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
147 printf("precision %d channels %d intr %x arg %x\n",
148 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
149 printf("gain: ");
150 for (i = 0; i < SB_NDEVS; i++)
151 printf("%d ", sc->gain[i]);
152 printf("\n");
153 }
154 #endif
155
156 /*
157 * Probe / attach routines.
158 */
159
160 /*
161 * Probe for the soundblaster hardware.
162 */
163 int
164 sbdsp_probe(sc)
165 struct sbdsp_softc *sc;
166 {
167
168 if (sbdsp_reset(sc) < 0) {
169 DPRINTF(("sbdsp: couldn't reset card\n"));
170 return 0;
171 }
172 /* if flags set, go and probe the jazz16 stuff */
173 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
174 sc->sc_model = sbdsp_jazz16_probe(sc);
175 else
176 sc->sc_model = sbversion(sc);
177
178 return 1;
179 }
180
181 /*
182 * Try add-on stuff for Jazz16.
183 */
184 u_int
185 sbdsp_jazz16_probe(sc)
186 struct sbdsp_softc *sc;
187 {
188 static u_char jazz16_irq_conf[16] = {
189 -1, -1, 0x02, 0x03,
190 -1, 0x01, -1, 0x04,
191 -1, 0x02, 0x05, -1,
192 -1, -1, -1, 0x06};
193 static u_char jazz16_drq_conf[8] = {
194 -1, 0x01, -1, 0x02,
195 -1, 0x03, -1, 0x04};
196
197 u_int rval = sbversion(sc);
198 register int iobase = sc->sc_iobase;
199
200 if (jazz16_drq_conf[sc->sc_drq] == (u_char)-1 ||
201 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
202 return rval; /* give up, we can't do it. */
203 outb(JAZZ16_CONFIG_PORT, JAZZ16_WAKEUP);
204 delay(10000); /* delay 10 ms */
205 outb(JAZZ16_CONFIG_PORT, JAZZ16_SETBASE);
206 outb(JAZZ16_CONFIG_PORT, iobase & 0x70);
207
208 if (sbdsp_reset(sc) < 0)
209 return rval; /* XXX? what else could we do? */
210
211 if (sbdsp_wdsp(iobase, JAZZ16_READ_VER))
212 return rval;
213 if (sbdsp_rdsp(iobase) != JAZZ16_VER_JAZZ)
214 return rval;
215
216 if (sbdsp_wdsp(iobase, JAZZ16_SET_DMAINTR) ||
217 /* set both 8 & 16-bit drq to same channel, it works fine. */
218 sbdsp_wdsp(iobase,
219 (jazz16_drq_conf[sc->sc_drq] << 4) |
220 jazz16_drq_conf[sc->sc_drq]) ||
221 sbdsp_wdsp(iobase, jazz16_irq_conf[sc->sc_irq])) {
222 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
223 return rval;
224 }
225 return (rval | MODEL_JAZZ16);
226 }
227
228 /*
229 * Attach hardware to driver, attach hardware driver to audio
230 * pseudo-device driver .
231 */
232 void
233 sbdsp_attach(sc)
234 struct sbdsp_softc *sc;
235 {
236
237 /* Set defaults */
238 if (ISSB16CLASS(sc))
239 sc->sc_irate = sc->sc_orate = 8000;
240 else if (ISSBPROCLASS(sc))
241 sc->sc_itc = sc->sc_otc = SB_8K;
242 else
243 sc->sc_itc = sc->sc_otc = SB_8K;
244 sc->sc_precision = 8;
245 sc->sc_channels = 1;
246 sc->encoding = AUDIO_ENCODING_ULAW;
247
248 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
249 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
250
251 if (ISSBPROCLASS(sc)) {
252 int i;
253
254 /* set mixer to default levels, by sending a mixer
255 reset command. */
256 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
257 /* then some adjustments :) */
258 sbdsp_mix_write(sc, SBP_CD_VOL,
259 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
260 sbdsp_mix_write(sc, SBP_DAC_VOL,
261 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
262 sbdsp_mix_write(sc, SBP_MASTER_VOL,
263 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
264 sbdsp_mix_write(sc, SBP_LINE_VOL,
265 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
266 for (i = 0; i < SB_NDEVS; i++)
267 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
268 sc->in_filter = 0; /* no filters turned on, please */
269 }
270
271 printf(": dsp v%d.%02d%s\n",
272 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
273 ISJAZZ16(sc) ? ": <Jazz16>" : "");
274
275 #ifdef notyet
276 sbdsp_mix_write(sc, SBP_SET_IRQ, 0x04);
277 sbdsp_mix_write(sc, SBP_SET_DRQ, 0x22);
278
279 printf("sbdsp_attach: irq=%02x, drq=%02x\n",
280 sbdsp_mix_read(sc, SBP_SET_IRQ),
281 sbdsp_mix_read(sc, SBP_SET_DRQ));
282 #else
283 if (ISSB16CLASS(sc))
284 sc->sc_model = 0x0300;
285 #endif
286 }
287
288 /*
289 * Various routines to interface to higher level audio driver
290 */
291
292 void
293 sbdsp_mix_write(sc, mixerport, val)
294 struct sbdsp_softc *sc;
295 int mixerport;
296 int val;
297 {
298 int iobase = sc->sc_iobase;
299 outb(iobase + SBP_MIXER_ADDR, mixerport);
300 delay(10);
301 outb(iobase + SBP_MIXER_DATA, val);
302 delay(30);
303 }
304
305 int
306 sbdsp_mix_read(sc, mixerport)
307 struct sbdsp_softc *sc;
308 int mixerport;
309 {
310 int iobase = sc->sc_iobase;
311 outb(iobase + SBP_MIXER_ADDR, mixerport);
312 delay(10);
313 return inb(iobase + SBP_MIXER_DATA);
314 }
315
316 int
317 sbdsp_set_in_sr(addr, sr)
318 void *addr;
319 u_long sr;
320 {
321 register struct sbdsp_softc *sc = addr;
322
323 if (ISSB16CLASS(sc))
324 return (sbdsp_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
325 else
326 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
327 }
328
329 u_long
330 sbdsp_get_in_sr(addr)
331 void *addr;
332 {
333 register struct sbdsp_softc *sc = addr;
334
335 if (ISSB16CLASS(sc))
336 return (sc->sc_irate);
337 else
338 return (sbdsp_tctosr(sc, sc->sc_itc));
339 }
340
341 int
342 sbdsp_set_out_sr(addr, sr)
343 void *addr;
344 u_long sr;
345 {
346 register struct sbdsp_softc *sc = addr;
347
348 if (ISSB16CLASS(sc))
349 return (sbdsp_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
350 else
351 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
352 }
353
354 u_long
355 sbdsp_get_out_sr(addr)
356 void *addr;
357 {
358 register struct sbdsp_softc *sc = addr;
359
360 if (ISSB16CLASS(sc))
361 return (sc->sc_orate);
362 else
363 return (sbdsp_tctosr(sc, sc->sc_otc));
364 }
365
366 int
367 sbdsp_query_encoding(addr, fp)
368 void *addr;
369 struct audio_encoding *fp;
370 {
371 switch (fp->index) {
372 case 0:
373 strcpy(fp->name, AudioEmulaw);
374 fp->format_id = AUDIO_ENCODING_ULAW;
375 break;
376 case 1:
377 strcpy(fp->name, AudioEpcm16);
378 fp->format_id = AUDIO_ENCODING_PCM16;
379 break;
380 default:
381 return (EINVAL);
382 }
383 return (0);
384 }
385
386 int
387 sbdsp_set_encoding(addr, encoding)
388 void *addr;
389 u_int encoding;
390 {
391 register struct sbdsp_softc *sc = addr;
392
393 switch (encoding) {
394 case AUDIO_ENCODING_ULAW:
395 sc->encoding = AUDIO_ENCODING_ULAW;
396 break;
397 case AUDIO_ENCODING_LINEAR:
398 sc->encoding = AUDIO_ENCODING_LINEAR;
399 break;
400 default:
401 return (EINVAL);
402 }
403
404 return (0);
405 }
406
407 int
408 sbdsp_get_encoding(addr)
409 void *addr;
410 {
411 register struct sbdsp_softc *sc = addr;
412
413 return (sc->encoding);
414 }
415
416 int
417 sbdsp_set_precision(addr, precision)
418 void *addr;
419 u_int precision;
420 {
421 register struct sbdsp_softc *sc = addr;
422
423 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
424 if (precision != 16 && precision != 8)
425 return (EINVAL);
426 sc->sc_precision = precision;
427 } else {
428 if (precision != 8)
429 return (EINVAL);
430 sc->sc_precision = precision;
431 }
432
433 return (0);
434 }
435
436 int
437 sbdsp_get_precision(addr)
438 void *addr;
439 {
440 register struct sbdsp_softc *sc = addr;
441
442 return (sc->sc_precision);
443 }
444
445 int
446 sbdsp_set_channels(addr, channels)
447 void *addr;
448 int channels;
449 {
450 register struct sbdsp_softc *sc = addr;
451
452 if (ISSBPROCLASS(sc)) {
453 if (channels != 1 && channels != 2)
454 return (EINVAL);
455 sc->sc_channels = channels;
456 sc->sc_dmadir = SB_DMA_NONE;
457 /*
458 * XXXX
459 * With 2 channels, SBPro can't do more than 22kHz.
460 * No framework to check this.
461 */
462 } else {
463 if (channels != 1)
464 return (EINVAL);
465 sc->sc_channels = channels;
466 }
467
468 return (0);
469 }
470
471 int
472 sbdsp_get_channels(addr)
473 void *addr;
474 {
475 register struct sbdsp_softc *sc = addr;
476
477 return (sc->sc_channels);
478 }
479
480 int
481 sbdsp_set_ifilter(addr, which)
482 void *addr;
483 int which;
484 {
485 register struct sbdsp_softc *sc = addr;
486 int mixval;
487
488 if (ISSBPROCLASS(sc)) {
489 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
490 switch (which) {
491 case 0:
492 mixval |= SBP_FILTER_OFF;
493 break;
494 case SBP_TREBLE_EQ:
495 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
496 break;
497 case SBP_BASS_EQ:
498 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
499 break;
500 default:
501 return (EINVAL);
502 }
503 sc->in_filter = mixval & SBP_IFILTER_MASK;
504 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
505 return (0);
506 } else
507 return (EINVAL);
508 }
509
510 int
511 sbdsp_get_ifilter(addr)
512 void *addr;
513 {
514 register struct sbdsp_softc *sc = addr;
515
516 if (ISSBPROCLASS(sc)) {
517 sc->in_filter =
518 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
519 switch (sc->in_filter) {
520 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
521 return (SBP_TREBLE_EQ);
522 case SBP_FILTER_ON|SBP_IFILTER_LOW:
523 return (SBP_BASS_EQ);
524 case SBP_FILTER_OFF:
525 default:
526 return (0);
527 }
528 } else
529 return (0);
530 }
531
532 int
533 sbdsp_set_out_port(addr, port)
534 void *addr;
535 int port;
536 {
537 register struct sbdsp_softc *sc = addr;
538
539 sc->out_port = port; /* Just record it */
540
541 return (0);
542 }
543
544 int
545 sbdsp_get_out_port(addr)
546 void *addr;
547 {
548 register struct sbdsp_softc *sc = addr;
549
550 return (sc->out_port);
551 }
552
553
554 int
555 sbdsp_set_in_port(addr, port)
556 void *addr;
557 int port;
558 {
559 register struct sbdsp_softc *sc = addr;
560 int mixport, sbport;
561
562 if (ISSBPROCLASS(sc)) {
563 switch (port) {
564 case SB_MIC_PORT:
565 sbport = SBP_FROM_MIC;
566 mixport = SBP_MIC_VOL;
567 break;
568 case SB_LINE_IN_PORT:
569 sbport = SBP_FROM_LINE;
570 mixport = SBP_LINE_VOL;
571 break;
572 case SB_CD_PORT:
573 sbport = SBP_FROM_CD;
574 mixport = SBP_CD_VOL;
575 break;
576 case SB_DAC_PORT:
577 case SB_FM_PORT:
578 default:
579 return (EINVAL);
580 }
581 } else {
582 switch (port) {
583 case SB_MIC_PORT:
584 sbport = SBP_FROM_MIC;
585 mixport = SBP_MIC_VOL;
586 break;
587 default:
588 return (EINVAL);
589 }
590 }
591
592 sc->in_port = port; /* Just record it */
593
594 if (ISSBPROCLASS(sc)) {
595 /* record from that port */
596 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
597 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
598 /* fetch gain from that port */
599 sc->gain[port] = sbdsp_mix_read(sc, mixport);
600 }
601
602 return (0);
603 }
604
605 int
606 sbdsp_get_in_port(addr)
607 void *addr;
608 {
609 register struct sbdsp_softc *sc = addr;
610
611 return (sc->in_port);
612 }
613
614
615 int
616 sbdsp_speaker_ctl(addr, newstate)
617 void *addr;
618 int newstate;
619 {
620 register struct sbdsp_softc *sc = addr;
621
622 if ((newstate == SPKR_ON) &&
623 (sc->spkr_state == SPKR_OFF)) {
624 sbdsp_spkron(sc);
625 sc->spkr_state = SPKR_ON;
626 }
627 if ((newstate == SPKR_OFF) &&
628 (sc->spkr_state == SPKR_ON)) {
629 sbdsp_spkroff(sc);
630 sc->spkr_state = SPKR_OFF;
631 }
632 return(0);
633 }
634
635 int
636 sbdsp_round_blocksize(addr, blk)
637 void *addr;
638 int blk;
639 {
640 register struct sbdsp_softc *sc = addr;
641
642 sc->sc_last_hs_size = 0;
643
644 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
645 if (blk < NBPG/4 || blk > NBPG/2) {
646 if (ISSB16CLASS(sc)) {
647 if (sc->sc_orate > 8000 || sc->sc_irate > 8000)
648 blk = NBPG/2;
649 } else {
650 if (sc->sc_otc > SB_8K || sc->sc_itc < SB_8K)
651 blk = NBPG/2;
652 }
653 }
654 /* don't try to DMA too much at once, though. */
655 if (blk > NBPG)
656 blk = NBPG;
657 if (sc->sc_channels == 2)
658 return (blk & ~1); /* must be even to preserve stereo separation */
659 else
660 return (blk); /* Anything goes :-) */
661 }
662
663 int
664 sbdsp_commit_settings(addr)
665 void *addr;
666 {
667 register struct sbdsp_softc *sc = addr;
668
669 /* due to potentially unfortunate ordering in the above layers,
670 re-do a few sets which may be important--input gains
671 (adjust the proper channels), number of input channels (hit the
672 record rate and set mode) */
673
674 if (ISSBPRO(sc)) {
675 /*
676 * With 2 channels, SBPro can't do more than 22kHz.
677 * Whack the rates down to speed if necessary.
678 * Reset the time constant anyway
679 * because it may have been adjusted with a different number
680 * of channels, which means it might have computed the wrong
681 * mode (low/high speed).
682 */
683 if (sc->sc_channels == 2 &&
684 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
685 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
686 &sc->sc_itc, &sc->sc_imode);
687 } else
688 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
689 SB_INPUT_RATE, &sc->sc_itc,
690 &sc->sc_imode);
691
692 if (sc->sc_channels == 2 &&
693 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
694 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
695 &sc->sc_otc, &sc->sc_omode);
696 } else
697 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
698 SB_OUTPUT_RATE, &sc->sc_otc,
699 &sc->sc_omode);
700 }
701 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
702 if (sc->encoding == AUDIO_ENCODING_ULAW &&
703 sc->sc_precision == 16) {
704 sc->sc_precision = 8;
705 return EINVAL; /* XXX what should we really do? */
706 }
707 }
708 /*
709 * XXX
710 * Should wait for chip to be idle.
711 */
712 sc->sc_dmadir = SB_DMA_NONE;
713
714 return 0;
715 }
716
717
718 int
719 sbdsp_open(sc, dev, flags)
720 register struct sbdsp_softc *sc;
721 dev_t dev;
722 int flags;
723 {
724 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
725
726 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
727 return ENXIO;
728
729 sc->sc_open = 1;
730 sc->sc_mintr = 0;
731 if (ISSBPROCLASS(sc) &&
732 sbdsp_wdsp(sc->sc_iobase, SB_DSP_RECORD_MONO) < 0) {
733 DPRINTF(("sbdsp_open: can't set mono mode\n"));
734 /* we'll readjust when it's time for DMA. */
735 }
736
737 /*
738 * Leave most things as they were; users must change things if
739 * the previous process didn't leave it they way they wanted.
740 * Looked at another way, it's easy to set up a configuration
741 * in one program and leave it for another to inherit.
742 */
743 DPRINTF(("sbdsp_open: opened\n"));
744
745 return 0;
746 }
747
748 void
749 sbdsp_close(addr)
750 void *addr;
751 {
752 struct sbdsp_softc *sc = addr;
753
754 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
755
756 sc->sc_open = 0;
757 sbdsp_spkroff(sc);
758 sc->spkr_state = SPKR_OFF;
759 sc->sc_mintr = 0;
760 sbdsp_haltdma(sc);
761
762 DPRINTF(("sbdsp_close: closed\n"));
763 }
764
765 /*
766 * Lower-level routines
767 */
768
769 /*
770 * Reset the card.
771 * Return non-zero if the card isn't detected.
772 */
773 int
774 sbdsp_reset(sc)
775 register struct sbdsp_softc *sc;
776 {
777 register int iobase = sc->sc_iobase;
778
779 sc->sc_intr = 0;
780 if (sc->sc_dmadir != SB_DMA_NONE) {
781 isa_dmaabort(sc->sc_drq);
782 sc->sc_dmadir = SB_DMA_NONE;
783 }
784 sc->sc_last_hs_size = 0;
785
786 /*
787 * See SBK, section 11.3.
788 * We pulse a reset signal into the card.
789 * Gee, what a brilliant hardware design.
790 */
791 outb(iobase + SBP_DSP_RESET, 1);
792 delay(10);
793 outb(iobase + SBP_DSP_RESET, 0);
794 delay(30);
795 if (sbdsp_rdsp(iobase) != SB_MAGIC)
796 return -1;
797
798 return 0;
799 }
800
801 int
802 sbdsp16_wait(iobase)
803 int iobase;
804 {
805 register int i;
806
807 for (i = SBDSP_NPOLL; --i >= 0; ) {
808 register u_char x;
809 x = inb(iobase + SBP_DSP_WSTAT);
810 delay(10);
811 if ((x & SB_DSP_BUSY) == 0)
812 continue;
813 return 0;
814 }
815 ++sberr.wdsp;
816 return -1;
817 }
818
819 /*
820 * Write a byte to the dsp.
821 * XXX We are at the mercy of the card as we use a
822 * polling loop and wait until it can take the byte.
823 */
824 int
825 sbdsp_wdsp(int iobase, int v)
826 {
827 register int i;
828
829 for (i = SBDSP_NPOLL; --i >= 0; ) {
830 register u_char x;
831 x = inb(iobase + SBP_DSP_WSTAT);
832 delay(10);
833 if ((x & SB_DSP_BUSY) != 0)
834 continue;
835 outb(iobase + SBP_DSP_WRITE, v);
836 delay(10);
837 return 0;
838 }
839 ++sberr.wdsp;
840 return -1;
841 }
842
843 /*
844 * Read a byte from the DSP, using polling.
845 */
846 int
847 sbdsp_rdsp(int iobase)
848 {
849 register int i;
850
851 for (i = SBDSP_NPOLL; --i >= 0; ) {
852 register u_char x;
853 x = inb(iobase + SBP_DSP_RSTAT);
854 delay(10);
855 if ((x & SB_DSP_READY) == 0)
856 continue;
857 x = inb(iobase + SBP_DSP_READ);
858 delay(10);
859 return x;
860 }
861 ++sberr.rdsp;
862 return -1;
863 }
864
865 /*
866 * Doing certain things (like toggling the speaker) make
867 * the SB hardware go away for a while, so pause a little.
868 */
869 void
870 sbdsp_to(arg)
871 void *arg;
872 {
873 wakeup(arg);
874 }
875
876 void
877 sbdsp_pause(sc)
878 struct sbdsp_softc *sc;
879 {
880 extern int hz;
881
882 timeout(sbdsp_to, sbdsp_to, hz/8);
883 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
884 }
885
886 /*
887 * Turn on the speaker. The SBK documention says this operation
888 * can take up to 1/10 of a second. Higher level layers should
889 * probably let the task sleep for this amount of time after
890 * calling here. Otherwise, things might not work (because
891 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
892 *
893 * These engineers had their heads up their ass when
894 * they designed this card.
895 */
896 void
897 sbdsp_spkron(sc)
898 struct sbdsp_softc *sc;
899 {
900 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_ON);
901 sbdsp_pause(sc);
902 }
903
904 /*
905 * Turn off the speaker; see comment above.
906 */
907 void
908 sbdsp_spkroff(sc)
909 struct sbdsp_softc *sc;
910 {
911 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_SPKR_OFF);
912 sbdsp_pause(sc);
913 }
914
915 /*
916 * Read the version number out of the card. Return major code
917 * in high byte, and minor code in low byte.
918 */
919 short
920 sbversion(sc)
921 struct sbdsp_softc *sc;
922 {
923 register int iobase = sc->sc_iobase;
924 short v;
925
926 if (sbdsp_wdsp(iobase, SB_DSP_VERSION) < 0)
927 return 0;
928 v = sbdsp_rdsp(iobase) << 8;
929 v |= sbdsp_rdsp(iobase);
930 return ((v >= 0) ? v : 0);
931 }
932
933 /*
934 * Halt a DMA in progress. A low-speed transfer can be
935 * resumed with sbdsp_contdma().
936 */
937 int
938 sbdsp_haltdma(addr)
939 void *addr;
940 {
941 register struct sbdsp_softc *sc = addr;
942
943 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
944
945 sbdsp_reset(sc);
946 return 0;
947 }
948
949 int
950 sbdsp_contdma(addr)
951 void *addr;
952 {
953 register struct sbdsp_softc *sc = addr;
954
955 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
956
957 /* XXX how do we reinitialize the DMA controller state? do we care? */
958 (void)sbdsp_wdsp(sc->sc_iobase, SB_DSP_CONT);
959 return(0);
960 }
961
962 int
963 sbdsp_setrate(sc, sr, isdac, ratep)
964 register struct sbdsp_softc *sc;
965 int sr;
966 int isdac;
967 int *ratep;
968 {
969
970 /*
971 * XXXX
972 * More checks here?
973 */
974 if (sr < 5000 || sr > 44100)
975 return (EINVAL);
976 *ratep = sr;
977 return (0);
978 }
979
980 /*
981 * Convert a linear sampling rate into the DAC time constant.
982 * Set *mode to indicate the high/low-speed DMA operation.
983 * Because of limitations of the card, not all rates are possible.
984 * We return the time constant of the closest possible rate.
985 * The sampling rate limits are different for the DAC and ADC,
986 * so isdac indicates output, and !isdac indicates input.
987 */
988 int
989 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
990 register struct sbdsp_softc *sc;
991 int sr;
992 int isdac;
993 int *tcp, *modep;
994 {
995 int tc, realtc, mode;
996
997 /*
998 * Don't forget to compute which mode we'll be in based on whether
999 * we need to double the rate for stereo on SBPRO.
1000 */
1001
1002 if (sr == 0) {
1003 tc = SB_LS_MIN;
1004 mode = SB_ADAC_LS;
1005 goto out;
1006 }
1007
1008 tc = 256 - (1000000 / sr);
1009
1010 if (sc->sc_channels == 2 && ISSBPRO(sc))
1011 /* compute based on 2x sample rate when needed */
1012 realtc = 256 - ( 500000 / sr);
1013 else
1014 realtc = tc;
1015
1016 if (tc < SB_LS_MIN) {
1017 tc = SB_LS_MIN;
1018 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1019 * speed mode. */
1020 goto out;
1021 } else if (isdac) {
1022 if (realtc <= SB_DAC_LS_MAX)
1023 mode = SB_ADAC_LS;
1024 else {
1025 mode = SB_ADAC_HS;
1026 if (tc > SB_DAC_HS_MAX)
1027 tc = SB_DAC_HS_MAX;
1028 }
1029 } else {
1030 int adc_ls_max, adc_hs_max;
1031
1032 /* XXX use better rounding--compare distance to nearest tc on both
1033 sides of requested speed */
1034 if (ISSBPROCLASS(sc)) {
1035 adc_ls_max = SBPRO_ADC_LS_MAX;
1036 adc_hs_max = SBPRO_ADC_HS_MAX;
1037 } else {
1038 adc_ls_max = SBCLA_ADC_LS_MAX;
1039 adc_hs_max = SBCLA_ADC_HS_MAX;
1040 }
1041
1042 if (realtc <= adc_ls_max)
1043 mode = SB_ADAC_LS;
1044 else {
1045 mode = SB_ADAC_HS;
1046 if (tc > adc_hs_max)
1047 tc = adc_hs_max;
1048 }
1049 }
1050
1051 out:
1052 *tcp = tc;
1053 *modep = mode;
1054 return (0);
1055 }
1056
1057 /*
1058 * Convert a DAC time constant to a sampling rate.
1059 * See SBK, section 12.
1060 */
1061 int
1062 sbdsp_tctosr(sc, tc)
1063 register struct sbdsp_softc *sc;
1064 int tc;
1065 {
1066 int adc;
1067
1068 if (ISSBPROCLASS(sc))
1069 adc = SBPRO_ADC_HS_MAX;
1070 else
1071 adc = SBCLA_ADC_HS_MAX;
1072
1073 if (tc > adc)
1074 tc = adc;
1075
1076 return (1000000 / (256 - tc));
1077 }
1078
1079 int
1080 sbdsp_set_timeconst(sc, tc)
1081 register struct sbdsp_softc *sc;
1082 int tc;
1083 {
1084 register int iobase;
1085
1086 /*
1087 * A SBPro in stereo mode uses time constants at double the
1088 * actual rate.
1089 */
1090 if (ISSBPRO(sc) && sc->sc_channels == 2)
1091 tc = 256 - ((256 - tc) / 2);
1092
1093 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1094
1095 iobase = sc->sc_iobase;
1096 if (sbdsp_wdsp(iobase, SB_DSP_TIMECONST) < 0 ||
1097 sbdsp_wdsp(iobase, tc) < 0)
1098 return (EIO);
1099
1100 return (0);
1101 }
1102
1103 int
1104 sbdsp_dma_input(addr, p, cc, intr, arg)
1105 void *addr;
1106 void *p;
1107 int cc;
1108 void (*intr) __P((void *));
1109 void *arg;
1110 {
1111 register struct sbdsp_softc *sc = addr;
1112 register int iobase;
1113
1114 #ifdef AUDIO_DEBUG
1115 if (sbdspdebug > 1)
1116 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1117 #endif
1118 if (sc->sc_channels == 2 && (cc & 1)) {
1119 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1120 return EIO;
1121 }
1122
1123 iobase = sc->sc_iobase;
1124 if (sc->sc_dmadir != SB_DMA_IN) {
1125 if (ISSBPRO(sc)) {
1126 if (sc->sc_channels == 2) {
1127 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1128 if (sbdsp_wdsp(iobase,
1129 JAZZ16_RECORD_STEREO) < 0) {
1130 goto badmode;
1131 }
1132 } else if (sbdsp_wdsp(iobase,
1133 SB_DSP_RECORD_STEREO) < 0)
1134 goto badmode;
1135 sbdsp_mix_write(sc, SBP_INFILTER,
1136 (sbdsp_mix_read(sc, SBP_INFILTER) &
1137 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1138 } else {
1139 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1140 if (sbdsp_wdsp(iobase,
1141 JAZZ16_RECORD_MONO) < 0)
1142 {
1143 goto badmode;
1144 }
1145 } else if (sbdsp_wdsp(iobase, SB_DSP_RECORD_MONO) < 0)
1146 goto badmode;
1147 sbdsp_mix_write(sc, SBP_INFILTER,
1148 (sbdsp_mix_read(sc, SBP_INFILTER) &
1149 ~SBP_IFILTER_MASK) | sc->in_filter);
1150 }
1151 }
1152
1153 if (ISSB16CLASS(sc)) {
1154 if (sbdsp_wdsp(iobase, SB_DSP16_INPUTRATE) < 0 ||
1155 sbdsp_wdsp(iobase, sc->sc_irate >> 8) < 0 ||
1156 sbdsp_wdsp(iobase, sc->sc_irate) < 0)
1157 goto giveup;
1158 } else
1159 sbdsp_set_timeconst(sc, sc->sc_itc);
1160 sc->sc_dmadir = SB_DMA_IN;
1161 }
1162
1163 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1164 sc->sc_intr = intr;
1165 sc->sc_arg = arg;
1166 sc->dmaflags = DMAMODE_READ;
1167 sc->dmaaddr = p;
1168 sc->dmacnt = cc; /* DMA controller is strange...? */
1169
1170 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1171 (ISJAZZ16(sc) && sc->sc_drq > 3))
1172 cc >>= 1;
1173 --cc;
1174 if (ISSB16CLASS(sc)) {
1175 if (sbdsp_wdsp(iobase, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1176 SB_DSP16_RDMA_8) < 0 ||
1177 sbdsp_wdsp(iobase, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1178 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1179 sbdsp16_wait(iobase) ||
1180 sbdsp_wdsp(iobase, cc) < 0 ||
1181 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1182 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1183 goto giveup;
1184 }
1185 } else if (sc->sc_imode == SB_ADAC_LS) {
1186 if (sbdsp_wdsp(iobase, SB_DSP_RDMA) < 0 ||
1187 sbdsp_wdsp(iobase, cc) < 0 ||
1188 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1189 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1190 goto giveup;
1191 }
1192 } else {
1193 if (cc != sc->sc_last_hs_size) {
1194 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
1195 sbdsp_wdsp(iobase, cc) < 0 ||
1196 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1197 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1198 goto giveup;
1199 }
1200 sc->sc_last_hs_size = cc;
1201 }
1202 if (sbdsp_wdsp(iobase, SB_DSP_HS_INPUT) < 0) {
1203 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1204 goto giveup;
1205 }
1206 }
1207 return 0;
1208
1209 giveup:
1210 sbdsp_reset(sc);
1211 return EIO;
1212
1213 badmode:
1214 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1215 sc->sc_channels == 2 ? "stereo" : "mono"));
1216 return EIO;
1217 }
1218
1219 int
1220 sbdsp_dma_output(addr, p, cc, intr, arg)
1221 void *addr;
1222 void *p;
1223 int cc;
1224 void (*intr) __P((void *));
1225 void *arg;
1226 {
1227 register struct sbdsp_softc *sc = addr;
1228 register int iobase;
1229
1230 #ifdef AUDIO_DEBUG
1231 if (sbdspdebug > 1)
1232 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1233 #endif
1234 if (sc->sc_channels == 2 && (cc & 1)) {
1235 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1236 return EIO;
1237 }
1238
1239 iobase = sc->sc_iobase;
1240 if (sc->sc_dmadir != SB_DMA_OUT) {
1241 if (ISSBPRO(sc)) {
1242 /* make sure we re-set stereo mixer bit when we start
1243 output. */
1244 sbdsp_mix_write(sc, SBP_STEREO,
1245 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1246 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1247 if (ISJAZZ16(sc)) {
1248 /* Yes, we write the record mode to set
1249 16-bit playback mode. weird, huh? */
1250 if (sc->sc_precision == 16) {
1251 sbdsp_wdsp(iobase,
1252 sc->sc_channels == 2 ?
1253 JAZZ16_RECORD_STEREO :
1254 JAZZ16_RECORD_MONO);
1255 } else {
1256 sbdsp_wdsp(iobase,
1257 sc->sc_channels == 2 ?
1258 SB_DSP_RECORD_STEREO :
1259 SB_DSP_RECORD_MONO);
1260 }
1261 }
1262 }
1263
1264 if (ISSB16CLASS(sc)) {
1265 if (sbdsp_wdsp(iobase, SB_DSP16_OUTPUTRATE) < 0 ||
1266 sbdsp_wdsp(iobase, sc->sc_orate >> 8) < 0 ||
1267 sbdsp_wdsp(iobase, sc->sc_orate) < 0)
1268 goto giveup;
1269 } else
1270 sbdsp_set_timeconst(sc, sc->sc_otc);
1271 sc->sc_dmadir = SB_DMA_OUT;
1272 }
1273
1274 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1275 sc->sc_intr = intr;
1276 sc->sc_arg = arg;
1277 sc->dmaflags = DMAMODE_WRITE;
1278 sc->dmaaddr = p;
1279 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1280
1281 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1282 (ISJAZZ16(sc) && sc->sc_drq > 3))
1283 cc >>= 1;
1284 --cc;
1285 if (ISSB16CLASS(sc)) {
1286 if (sbdsp_wdsp(iobase, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1287 SB_DSP16_WDMA_8) < 0 ||
1288 sbdsp_wdsp(iobase, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1289 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1290 sbdsp16_wait(iobase) ||
1291 sbdsp_wdsp(iobase, cc) < 0 ||
1292 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1293 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1294 goto giveup;
1295 }
1296 } else if (sc->sc_omode == SB_ADAC_LS) {
1297 if (sbdsp_wdsp(iobase, SB_DSP_WDMA) < 0 ||
1298 sbdsp_wdsp(iobase, cc) < 0 ||
1299 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1300 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1301 goto giveup;
1302 }
1303 } else {
1304 if (cc != sc->sc_last_hs_size) {
1305 if (sbdsp_wdsp(iobase, SB_DSP_BLOCKSIZE) < 0 ||
1306 sbdsp_wdsp(iobase, cc) < 0 ||
1307 sbdsp_wdsp(iobase, cc >> 8) < 0) {
1308 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1309 goto giveup;
1310 }
1311 sc->sc_last_hs_size = cc;
1312 }
1313 if (sbdsp_wdsp(iobase, SB_DSP_HS_OUTPUT) < 0) {
1314 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1315 goto giveup;
1316 }
1317 }
1318 return 0;
1319
1320 giveup:
1321 sbdsp_reset(sc);
1322 return EIO;
1323 }
1324
1325 /*
1326 * Only the DSP unit on the sound blaster generates interrupts.
1327 * There are three cases of interrupt: reception of a midi byte
1328 * (when mode is enabled), completion of dma transmission, or
1329 * completion of a dma reception. The three modes are mutually
1330 * exclusive so we know a priori which event has occurred.
1331 */
1332 int
1333 sbdsp_intr(arg)
1334 void *arg;
1335 {
1336 register struct sbdsp_softc *sc = arg;
1337 u_char x;
1338
1339 #ifdef AUDIO_DEBUG
1340 if (sbdspdebug > 1)
1341 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1342 #endif
1343 if (!isa_dmafinished(sc->sc_drq)) {
1344 printf("sbdsp_intr: not finished\n");
1345 return 0;
1346 }
1347 sc->sc_interrupts++;
1348 /* clear interrupt */
1349 #ifdef notyet
1350 x = sbdsp_mix_read(sc, 0x82);
1351 x = inb(sc->sc_iobase + 15);
1352 #endif
1353 x = inb(sc->sc_iobase + SBP_DSP_RSTAT);
1354 delay(10);
1355 #if 0
1356 if (sc->sc_mintr != 0) {
1357 x = sbdsp_rdsp(sc->sc_iobase);
1358 (*sc->sc_mintr)(sc->sc_arg, x);
1359 } else
1360 #endif
1361 if (sc->sc_intr != 0) {
1362 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1363 (*sc->sc_intr)(sc->sc_arg);
1364 }
1365 else
1366 return 0;
1367 return 1;
1368 }
1369
1370 #if 0
1371 /*
1372 * Enter midi uart mode and arrange for read interrupts
1373 * to vector to `intr'. This puts the card in a mode
1374 * which allows only midi I/O; the card must be reset
1375 * to leave this mode. Unfortunately, the card does not
1376 * use transmit interrupts, so bytes must be output
1377 * using polling. To keep the polling overhead to a
1378 * minimum, output should be driven off a timer.
1379 * This is a little tricky since only 320us separate
1380 * consecutive midi bytes.
1381 */
1382 void
1383 sbdsp_set_midi_mode(sc, intr, arg)
1384 struct sbdsp_softc *sc;
1385 void (*intr)();
1386 void *arg;
1387 {
1388
1389 sbdsp_wdsp(sc->sc_iobase, SB_MIDI_UART_INTR);
1390 sc->sc_mintr = intr;
1391 sc->sc_intr = 0;
1392 sc->sc_arg = arg;
1393 }
1394
1395 /*
1396 * Write a byte to the midi port, when in midi uart mode.
1397 */
1398 void
1399 sbdsp_midi_output(sc, v)
1400 struct sbdsp_softc *sc;
1401 int v;
1402 {
1403
1404 if (sbdsp_wdsp(sc->sc_iobase, v) < 0)
1405 ++sberr.wmidi;
1406 }
1407 #endif
1408
1409 u_int
1410 sbdsp_get_silence(encoding)
1411 int encoding;
1412 {
1413 #define ULAW_SILENCE 0x7f
1414 #define LINEAR_SILENCE 0
1415 u_int auzero;
1416
1417 switch (encoding) {
1418 case AUDIO_ENCODING_ULAW:
1419 auzero = ULAW_SILENCE;
1420 break;
1421 case AUDIO_ENCODING_PCM16:
1422 default:
1423 auzero = LINEAR_SILENCE;
1424 break;
1425 }
1426
1427 return (auzero);
1428 }
1429
1430 int
1431 sbdsp_setfd(addr, flag)
1432 void *addr;
1433 int flag;
1434 {
1435 /* Can't do full-duplex */
1436 return(ENOTTY);
1437 }
1438
1439 int
1440 sbdsp_mixer_set_port(addr, cp)
1441 void *addr;
1442 mixer_ctrl_t *cp;
1443 {
1444 register struct sbdsp_softc *sc = addr;
1445 int src, gain;
1446
1447 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1448 cp->un.value.num_channels));
1449
1450 if (!ISSBPROCLASS(sc))
1451 return EINVAL;
1452
1453 /*
1454 * Everything is a value except for SBPro BASS/TREBLE and
1455 * RECORD_SOURCE
1456 */
1457 switch (cp->dev) {
1458 case SB_SPEAKER:
1459 cp->dev = SB_MASTER_VOL;
1460 case SB_MIC_PORT:
1461 case SB_LINE_IN_PORT:
1462 case SB_DAC_PORT:
1463 case SB_FM_PORT:
1464 case SB_CD_PORT:
1465 case SB_MASTER_VOL:
1466 if (cp->type != AUDIO_MIXER_VALUE)
1467 return EINVAL;
1468
1469 /*
1470 * All the mixer ports are stereo except for the microphone.
1471 * If we get a single-channel gain value passed in, then we
1472 * duplicate it to both left and right channels.
1473 */
1474
1475 switch (cp->dev) {
1476 case SB_MIC_PORT:
1477 if (cp->un.value.num_channels != 1)
1478 return EINVAL;
1479
1480 /* handle funny microphone gain */
1481 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1482 break;
1483 case SB_LINE_IN_PORT:
1484 case SB_DAC_PORT:
1485 case SB_FM_PORT:
1486 case SB_CD_PORT:
1487 case SB_MASTER_VOL:
1488 switch (cp->un.value.num_channels) {
1489 case 1:
1490 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1491 break;
1492 case 2:
1493 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1494 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1495 break;
1496 default:
1497 return EINVAL;
1498 }
1499 break;
1500 default:
1501 return EINVAL;
1502 }
1503
1504 switch (cp->dev) {
1505 case SB_MIC_PORT:
1506 src = SBP_MIC_VOL;
1507 break;
1508 case SB_MASTER_VOL:
1509 src = SBP_MASTER_VOL;
1510 break;
1511 case SB_LINE_IN_PORT:
1512 src = SBP_LINE_VOL;
1513 break;
1514 case SB_DAC_PORT:
1515 src = SBP_DAC_VOL;
1516 break;
1517 case SB_FM_PORT:
1518 src = SBP_FM_VOL;
1519 break;
1520 case SB_CD_PORT:
1521 src = SBP_CD_VOL;
1522 break;
1523 default:
1524 return EINVAL;
1525 }
1526
1527 sbdsp_mix_write(sc, src, gain);
1528 sc->gain[cp->dev] = gain;
1529 break;
1530
1531 case SB_TREBLE:
1532 case SB_BASS:
1533 case SB_RECORD_SOURCE:
1534 if (cp->type != AUDIO_MIXER_ENUM)
1535 return EINVAL;
1536
1537 switch (cp->dev) {
1538 case SB_TREBLE:
1539 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1540 case SB_BASS:
1541 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1542 case SB_RECORD_SOURCE:
1543 return sbdsp_set_in_port(addr, cp->un.ord);
1544 }
1545
1546 break;
1547
1548 default:
1549 return EINVAL;
1550 }
1551
1552 return (0);
1553 }
1554
1555 int
1556 sbdsp_mixer_get_port(addr, cp)
1557 void *addr;
1558 mixer_ctrl_t *cp;
1559 {
1560 register struct sbdsp_softc *sc = addr;
1561 int gain;
1562
1563 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1564
1565 if (!ISSBPROCLASS(sc))
1566 return EINVAL;
1567
1568 switch (cp->dev) {
1569 case SB_SPEAKER:
1570 cp->dev = SB_MASTER_VOL;
1571 case SB_MIC_PORT:
1572 case SB_LINE_IN_PORT:
1573 case SB_DAC_PORT:
1574 case SB_FM_PORT:
1575 case SB_CD_PORT:
1576 case SB_MASTER_VOL:
1577 gain = sc->gain[cp->dev];
1578
1579 switch (cp->dev) {
1580 case SB_MIC_PORT:
1581 if (cp->un.value.num_channels != 1)
1582 return EINVAL;
1583
1584 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1585 break;
1586 case SB_LINE_IN_PORT:
1587 case SB_DAC_PORT:
1588 case SB_FM_PORT:
1589 case SB_CD_PORT:
1590 case SB_MASTER_VOL:
1591 switch (cp->un.value.num_channels) {
1592 case 1:
1593 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1594 break;
1595 case 2:
1596 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1597 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1598 break;
1599 default:
1600 return EINVAL;
1601 }
1602 break;
1603 }
1604
1605 break;
1606
1607 case SB_TREBLE:
1608 case SB_BASS:
1609 case SB_RECORD_SOURCE:
1610 switch (cp->dev) {
1611 case SB_TREBLE:
1612 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1613 return 0;
1614 case SB_BASS:
1615 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1616 return 0;
1617 case SB_RECORD_SOURCE:
1618 cp->un.ord = sbdsp_get_in_port(addr);
1619 return 0;
1620 }
1621
1622 break;
1623
1624 default:
1625 return EINVAL;
1626 }
1627
1628 return (0);
1629 }
1630
1631 int
1632 sbdsp_mixer_query_devinfo(addr, dip)
1633 void *addr;
1634 register mixer_devinfo_t *dip;
1635 {
1636 register struct sbdsp_softc *sc = addr;
1637
1638 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1639
1640 switch (dip->index) {
1641 case SB_MIC_PORT:
1642 dip->type = AUDIO_MIXER_VALUE;
1643 dip->mixer_class = SB_INPUT_CLASS;
1644 dip->prev = AUDIO_MIXER_LAST;
1645 dip->next = AUDIO_MIXER_LAST;
1646 strcpy(dip->label.name, AudioNmicrophone);
1647 dip->un.v.num_channels = 1;
1648 strcpy(dip->un.v.units.name, AudioNvolume);
1649 return 0;
1650
1651 case SB_SPEAKER:
1652 dip->type = AUDIO_MIXER_VALUE;
1653 dip->mixer_class = SB_OUTPUT_CLASS;
1654 dip->prev = AUDIO_MIXER_LAST;
1655 dip->next = AUDIO_MIXER_LAST;
1656 strcpy(dip->label.name, AudioNspeaker);
1657 dip->un.v.num_channels = 1;
1658 strcpy(dip->un.v.units.name, AudioNvolume);
1659 return 0;
1660
1661 case SB_INPUT_CLASS:
1662 dip->type = AUDIO_MIXER_CLASS;
1663 dip->mixer_class = SB_INPUT_CLASS;
1664 dip->next = dip->prev = AUDIO_MIXER_LAST;
1665 strcpy(dip->label.name, AudioCInputs);
1666 return 0;
1667
1668 case SB_OUTPUT_CLASS:
1669 dip->type = AUDIO_MIXER_CLASS;
1670 dip->mixer_class = SB_OUTPUT_CLASS;
1671 dip->next = dip->prev = AUDIO_MIXER_LAST;
1672 strcpy(dip->label.name, AudioCOutputs);
1673 return 0;
1674 }
1675
1676 if (ISSBPROCLASS(sc)) {
1677 switch (dip->index) {
1678 case SB_LINE_IN_PORT:
1679 dip->type = AUDIO_MIXER_VALUE;
1680 dip->mixer_class = SB_INPUT_CLASS;
1681 dip->prev = AUDIO_MIXER_LAST;
1682 dip->next = AUDIO_MIXER_LAST;
1683 strcpy(dip->label.name, AudioNline);
1684 dip->un.v.num_channels = 2;
1685 strcpy(dip->un.v.units.name, AudioNvolume);
1686 return 0;
1687
1688 case SB_DAC_PORT:
1689 dip->type = AUDIO_MIXER_VALUE;
1690 dip->mixer_class = SB_INPUT_CLASS;
1691 dip->prev = AUDIO_MIXER_LAST;
1692 dip->next = AUDIO_MIXER_LAST;
1693 strcpy(dip->label.name, AudioNdac);
1694 dip->un.v.num_channels = 2;
1695 strcpy(dip->un.v.units.name, AudioNvolume);
1696 return 0;
1697
1698 case SB_CD_PORT:
1699 dip->type = AUDIO_MIXER_VALUE;
1700 dip->mixer_class = SB_INPUT_CLASS;
1701 dip->prev = AUDIO_MIXER_LAST;
1702 dip->next = AUDIO_MIXER_LAST;
1703 strcpy(dip->label.name, AudioNcd);
1704 dip->un.v.num_channels = 2;
1705 strcpy(dip->un.v.units.name, AudioNvolume);
1706 return 0;
1707
1708 case SB_FM_PORT:
1709 dip->type = AUDIO_MIXER_VALUE;
1710 dip->mixer_class = SB_INPUT_CLASS;
1711 dip->prev = AUDIO_MIXER_LAST;
1712 dip->next = AUDIO_MIXER_LAST;
1713 strcpy(dip->label.name, AudioNfmsynth);
1714 dip->un.v.num_channels = 2;
1715 strcpy(dip->un.v.units.name, AudioNvolume);
1716 return 0;
1717
1718 case SB_MASTER_VOL:
1719 dip->type = AUDIO_MIXER_VALUE;
1720 dip->mixer_class = SB_OUTPUT_CLASS;
1721 dip->prev = AUDIO_MIXER_LAST;
1722 dip->next = AUDIO_MIXER_LAST;
1723 strcpy(dip->label.name, AudioNvolume);
1724 dip->un.v.num_channels = 2;
1725 strcpy(dip->un.v.units.name, AudioNvolume);
1726 return 0;
1727
1728 case SB_RECORD_SOURCE:
1729 dip->mixer_class = SB_RECORD_CLASS;
1730 dip->type = AUDIO_MIXER_ENUM;
1731 dip->prev = AUDIO_MIXER_LAST;
1732 dip->next = AUDIO_MIXER_LAST;
1733 strcpy(dip->label.name, AudioNsource);
1734 dip->un.e.num_mem = 3;
1735 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1736 dip->un.e.member[0].ord = SB_MIC_PORT;
1737 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1738 dip->un.e.member[1].ord = SB_CD_PORT;
1739 strcpy(dip->un.e.member[2].label.name, AudioNline);
1740 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1741 return 0;
1742
1743 case SB_BASS:
1744 dip->type = AUDIO_MIXER_ENUM;
1745 dip->mixer_class = SB_INPUT_CLASS;
1746 dip->prev = AUDIO_MIXER_LAST;
1747 dip->next = AUDIO_MIXER_LAST;
1748 strcpy(dip->label.name, AudioNbass);
1749 dip->un.e.num_mem = 2;
1750 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1751 dip->un.e.member[0].ord = 0;
1752 strcpy(dip->un.e.member[1].label.name, AudioNon);
1753 dip->un.e.member[1].ord = 1;
1754 return 0;
1755
1756 case SB_TREBLE:
1757 dip->type = AUDIO_MIXER_ENUM;
1758 dip->mixer_class = SB_INPUT_CLASS;
1759 dip->prev = AUDIO_MIXER_LAST;
1760 dip->next = AUDIO_MIXER_LAST;
1761 strcpy(dip->label.name, AudioNtreble);
1762 dip->un.e.num_mem = 2;
1763 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1764 dip->un.e.member[0].ord = 0;
1765 strcpy(dip->un.e.member[1].label.name, AudioNon);
1766 dip->un.e.member[1].ord = 1;
1767 return 0;
1768
1769 case SB_RECORD_CLASS: /* record source class */
1770 dip->type = AUDIO_MIXER_CLASS;
1771 dip->mixer_class = SB_RECORD_CLASS;
1772 dip->next = dip->prev = AUDIO_MIXER_LAST;
1773 strcpy(dip->label.name, AudioCRecord);
1774 return 0;
1775 }
1776 }
1777
1778 return ENXIO;
1779 }
1780