sbdsp.c revision 1.34 1 /* $NetBSD: sbdsp.c,v 1.34 1997/03/20 06:48:58 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56
57 #include <sys/audioio.h>
58 #include <dev/audio_if.h>
59
60 #include <dev/isa/isavar.h>
61 #include <dev/isa/isadmavar.h>
62 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
63
64 #include <dev/isa/sbreg.h>
65 #include <dev/isa/sbdspvar.h>
66
67 #ifdef AUDIO_DEBUG
68 extern void Dprintf __P((const char *, ...));
69 #define DPRINTF(x) if (sbdspdebug) Dprintf x
70 int sbdspdebug = 0;
71 #else
72 #define DPRINTF(x)
73 #endif
74
75 #ifndef SBDSP_NPOLL
76 #define SBDSP_NPOLL 3000
77 #endif
78
79 struct {
80 int wdsp;
81 int rdsp;
82 int wmidi;
83 } sberr;
84
85 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
86 int *tcp, int *modep));
87 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 #define SB_LS_MIN 0x06 /* 4000 Hz */
115 #define SB_8K 0x83 /* 8000 Hz */
116 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
117 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
118 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
119 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
120 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
121 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
122
123 int sbdsp16_wait __P((struct sbdsp_softc *));
124 void sbdsp_to __P((void *));
125 void sbdsp_pause __P((struct sbdsp_softc *));
126 int sbdsp_setrate __P((struct sbdsp_softc *, int, int, int *));
127 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
128 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
129
130 #ifdef AUDIO_DEBUG
131 void sb_printsc __P((struct sbdsp_softc *));
132 #endif
133
134 #ifdef AUDIO_DEBUG
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d iobase %x\n",
142 sc->sc_open, sc->sc_drq, sc->sc_iobase);
143 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
144 sc->sc_irate, sc->sc_itc, sc->sc_imode,
145 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->sc_encoding);
146 printf("outport %d inport %d spkron %d nintr %lu\n",
147 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
148 printf("precision %d channels %d intr %p arg %p\n",
149 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
150 printf("gain: ");
151 for (i = 0; i < SB_NDEVS; i++)
152 printf("%d ", sc->gain[i]);
153 printf("\n");
154 }
155 #endif
156
157 /*
158 * Probe / attach routines.
159 */
160
161 /*
162 * Probe for the soundblaster hardware.
163 */
164 int
165 sbdsp_probe(sc)
166 struct sbdsp_softc *sc;
167 {
168
169 if (sbdsp_reset(sc) < 0) {
170 DPRINTF(("sbdsp: couldn't reset card\n"));
171 return 0;
172 }
173 /* if flags set, go and probe the jazz16 stuff */
174 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
175 sc->sc_model = sbdsp_jazz16_probe(sc);
176 else
177 sc->sc_model = sbversion(sc);
178
179 return 1;
180 }
181
182 /*
183 * Try add-on stuff for Jazz16.
184 */
185 u_int
186 sbdsp_jazz16_probe(sc)
187 struct sbdsp_softc *sc;
188 {
189 static u_char jazz16_irq_conf[16] = {
190 -1, -1, 0x02, 0x03,
191 -1, 0x01, -1, 0x04,
192 -1, 0x02, 0x05, -1,
193 -1, -1, -1, 0x06};
194 static u_char jazz16_drq_conf[8] = {
195 -1, 0x01, -1, 0x02,
196 -1, 0x03, -1, 0x04};
197
198 u_int rval = sbversion(sc);
199 bus_space_tag_t iot = sc->sc_iot;
200 bus_space_handle_t ioh;
201
202 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh))
203 return rval;
204
205 if (jazz16_drq_conf[sc->sc_drq] == (u_char)-1 ||
206 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
207 goto done; /* give up, we can't do it. */
208
209 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
210 delay(10000); /* delay 10 ms */
211 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
212 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
213
214 if (sbdsp_reset(sc) < 0)
215 goto done; /* XXX? what else could we do? */
216
217 if (sbdsp_wdsp(sc, JAZZ16_READ_VER))
218 goto done;
219
220 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ)
221 goto done;
222
223 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
224 /* set both 8 & 16-bit drq to same channel, it works fine. */
225 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq] << 4) |
226 jazz16_drq_conf[sc->sc_drq]) ||
227 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq]))
228 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
229 else
230 rval |= MODEL_JAZZ16;
231
232 done:
233 bus_space_unmap(iot, ioh, 1);
234 return rval;
235 }
236
237 /*
238 * Attach hardware to driver, attach hardware driver to audio
239 * pseudo-device driver .
240 */
241 void
242 sbdsp_attach(sc)
243 struct sbdsp_softc *sc;
244 {
245
246 /* Set defaults */
247 if (ISSB16CLASS(sc))
248 sc->sc_irate = sc->sc_orate = 8000;
249 else if (ISSBPROCLASS(sc))
250 sc->sc_itc = sc->sc_otc = SB_8K;
251 else
252 sc->sc_itc = sc->sc_otc = SB_8K;
253 sc->sc_encoding = AUDIO_ENCODING_ULAW;
254 sc->sc_precision = 8;
255 sc->sc_channels = 1;
256
257 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
258 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
259
260 if (ISSBPROCLASS(sc)) {
261 int i;
262
263 /* set mixer to default levels, by sending a mixer
264 reset command. */
265 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
266 /* then some adjustments :) */
267 sbdsp_mix_write(sc, SBP_CD_VOL,
268 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
269 sbdsp_mix_write(sc, SBP_DAC_VOL,
270 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
271 sbdsp_mix_write(sc, SBP_MASTER_VOL,
272 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
273 sbdsp_mix_write(sc, SBP_LINE_VOL,
274 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
275 for (i = 0; i < SB_NDEVS; i++)
276 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
277 sc->in_filter = 0; /* no filters turned on, please */
278 }
279
280 printf(": dsp v%d.%02d%s\n",
281 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
282 ISJAZZ16(sc) ? ": <Jazz16>" : "");
283
284 #ifdef notyet
285 sbdsp_mix_write(sc, SBP_SET_IRQ, 0x04);
286 sbdsp_mix_write(sc, SBP_SET_DRQ, 0x22);
287
288 printf("sbdsp_attach: irq=%02x, drq=%02x\n",
289 sbdsp_mix_read(sc, SBP_SET_IRQ),
290 sbdsp_mix_read(sc, SBP_SET_DRQ));
291 #else
292 if (ISSB16CLASS(sc))
293 sc->sc_model = 0x0300;
294 #endif
295 }
296
297 /*
298 * Various routines to interface to higher level audio driver
299 */
300
301 void
302 sbdsp_mix_write(sc, mixerport, val)
303 struct sbdsp_softc *sc;
304 int mixerport;
305 int val;
306 {
307 bus_space_tag_t iot = sc->sc_iot;
308 bus_space_handle_t ioh = sc->sc_ioh;
309
310 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
311 delay(10);
312 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
313 delay(30);
314 }
315
316 int
317 sbdsp_mix_read(sc, mixerport)
318 struct sbdsp_softc *sc;
319 int mixerport;
320 {
321 bus_space_tag_t iot = sc->sc_iot;
322 bus_space_handle_t ioh = sc->sc_ioh;
323
324 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
325 delay(10);
326 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
327 }
328
329 int
330 sbdsp_set_in_sr(addr, sr)
331 void *addr;
332 u_long sr;
333 {
334 register struct sbdsp_softc *sc = addr;
335
336 if (ISSB16CLASS(sc))
337 return (sbdsp_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
338 else
339 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
340 }
341
342 u_long
343 sbdsp_get_in_sr(addr)
344 void *addr;
345 {
346 register struct sbdsp_softc *sc = addr;
347
348 if (ISSB16CLASS(sc))
349 return (sc->sc_irate);
350 else
351 return (sbdsp_tctosr(sc, sc->sc_itc));
352 }
353
354 int
355 sbdsp_set_out_sr(addr, sr)
356 void *addr;
357 u_long sr;
358 {
359 register struct sbdsp_softc *sc = addr;
360
361 if (ISSB16CLASS(sc))
362 return (sbdsp_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
363 else
364 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
365 }
366
367 u_long
368 sbdsp_get_out_sr(addr)
369 void *addr;
370 {
371 register struct sbdsp_softc *sc = addr;
372
373 if (ISSB16CLASS(sc))
374 return (sc->sc_orate);
375 else
376 return (sbdsp_tctosr(sc, sc->sc_otc));
377 }
378
379 int
380 sbdsp_query_encoding(addr, fp)
381 void *addr;
382 struct audio_encoding *fp;
383 {
384 switch (fp->index) {
385 case 0:
386 strcpy(fp->name, AudioEmulaw);
387 fp->format_id = AUDIO_ENCODING_ULAW;
388 break;
389 case 1:
390 strcpy(fp->name, AudioEpcm16);
391 fp->format_id = AUDIO_ENCODING_PCM16;
392 break;
393 default:
394 return (EINVAL);
395 }
396 return (0);
397 }
398
399 int
400 sbdsp_set_format(addr, encoding, precision)
401 void *addr;
402 u_int encoding, precision;
403 {
404 register struct sbdsp_softc *sc = addr;
405
406 switch (encoding) {
407 case AUDIO_ENCODING_ULAW:
408 case AUDIO_ENCODING_PCM16:
409 case AUDIO_ENCODING_PCM8:
410 break;
411 default:
412 return (EINVAL);
413 }
414
415 if (precision == 16)
416 if (!ISSB16CLASS(sc) && !ISJAZZ16(sc))
417 return (EINVAL);
418
419 sc->sc_encoding = encoding;
420 sc->sc_precision = precision;
421
422 return (0);
423 }
424
425 int
426 sbdsp_get_encoding(addr)
427 void *addr;
428 {
429 register struct sbdsp_softc *sc = addr;
430
431 return (sc->sc_encoding);
432 }
433
434 int
435 sbdsp_get_precision(addr)
436 void *addr;
437 {
438 register struct sbdsp_softc *sc = addr;
439
440 return (sc->sc_precision);
441 }
442
443 int
444 sbdsp_set_channels(addr, channels)
445 void *addr;
446 int channels;
447 {
448 register struct sbdsp_softc *sc = addr;
449
450 if (ISSBPROCLASS(sc)) {
451 if (channels != 1 && channels != 2)
452 return (EINVAL);
453 sc->sc_channels = channels;
454 sc->sc_dmadir = SB_DMA_NONE;
455 /*
456 * XXXX
457 * With 2 channels, SBPro can't do more than 22kHz.
458 * No framework to check this.
459 */
460 } else {
461 if (channels != 1)
462 return (EINVAL);
463 sc->sc_channels = channels;
464 }
465
466 return (0);
467 }
468
469 int
470 sbdsp_get_channels(addr)
471 void *addr;
472 {
473 register struct sbdsp_softc *sc = addr;
474
475 return (sc->sc_channels);
476 }
477
478 int
479 sbdsp_set_ifilter(addr, which)
480 void *addr;
481 int which;
482 {
483 register struct sbdsp_softc *sc = addr;
484 int mixval;
485
486 if (ISSBPROCLASS(sc)) {
487 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
488 switch (which) {
489 case 0:
490 mixval |= SBP_FILTER_OFF;
491 break;
492 case SBP_TREBLE_EQ:
493 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
494 break;
495 case SBP_BASS_EQ:
496 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
497 break;
498 default:
499 return (EINVAL);
500 }
501 sc->in_filter = mixval & SBP_IFILTER_MASK;
502 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
503 return (0);
504 } else
505 return (EINVAL);
506 }
507
508 int
509 sbdsp_get_ifilter(addr)
510 void *addr;
511 {
512 register struct sbdsp_softc *sc = addr;
513
514 if (ISSBPROCLASS(sc)) {
515 sc->in_filter =
516 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
517 switch (sc->in_filter) {
518 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
519 return (SBP_TREBLE_EQ);
520 case SBP_FILTER_ON|SBP_IFILTER_LOW:
521 return (SBP_BASS_EQ);
522 case SBP_FILTER_OFF:
523 default:
524 return (0);
525 }
526 } else
527 return (0);
528 }
529
530 int
531 sbdsp_set_out_port(addr, port)
532 void *addr;
533 int port;
534 {
535 register struct sbdsp_softc *sc = addr;
536
537 sc->out_port = port; /* Just record it */
538
539 return (0);
540 }
541
542 int
543 sbdsp_get_out_port(addr)
544 void *addr;
545 {
546 register struct sbdsp_softc *sc = addr;
547
548 return (sc->out_port);
549 }
550
551
552 int
553 sbdsp_set_in_port(addr, port)
554 void *addr;
555 int port;
556 {
557 register struct sbdsp_softc *sc = addr;
558 int mixport, sbport;
559
560 if (ISSBPROCLASS(sc)) {
561 switch (port) {
562 case SB_MIC_PORT:
563 sbport = SBP_FROM_MIC;
564 mixport = SBP_MIC_VOL;
565 break;
566 case SB_LINE_IN_PORT:
567 sbport = SBP_FROM_LINE;
568 mixport = SBP_LINE_VOL;
569 break;
570 case SB_CD_PORT:
571 sbport = SBP_FROM_CD;
572 mixport = SBP_CD_VOL;
573 break;
574 case SB_DAC_PORT:
575 case SB_FM_PORT:
576 default:
577 return (EINVAL);
578 }
579 } else {
580 switch (port) {
581 case SB_MIC_PORT:
582 sbport = SBP_FROM_MIC;
583 mixport = SBP_MIC_VOL;
584 break;
585 default:
586 return (EINVAL);
587 }
588 }
589
590 sc->in_port = port; /* Just record it */
591
592 if (ISSBPROCLASS(sc)) {
593 /* record from that port */
594 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
595 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
596 /* fetch gain from that port */
597 sc->gain[port] = sbdsp_mix_read(sc, mixport);
598 }
599
600 return (0);
601 }
602
603 int
604 sbdsp_get_in_port(addr)
605 void *addr;
606 {
607 register struct sbdsp_softc *sc = addr;
608
609 return (sc->in_port);
610 }
611
612
613 int
614 sbdsp_speaker_ctl(addr, newstate)
615 void *addr;
616 int newstate;
617 {
618 register struct sbdsp_softc *sc = addr;
619
620 if ((newstate == SPKR_ON) &&
621 (sc->spkr_state == SPKR_OFF)) {
622 sbdsp_spkron(sc);
623 sc->spkr_state = SPKR_ON;
624 }
625 if ((newstate == SPKR_OFF) &&
626 (sc->spkr_state == SPKR_ON)) {
627 sbdsp_spkroff(sc);
628 sc->spkr_state = SPKR_OFF;
629 }
630 return(0);
631 }
632
633 int
634 sbdsp_round_blocksize(addr, blk)
635 void *addr;
636 int blk;
637 {
638 register struct sbdsp_softc *sc = addr;
639
640 sc->sc_last_hs_size = 0;
641
642 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
643 if (blk < NBPG/4 || blk > NBPG/2) {
644 if (ISSB16CLASS(sc)) {
645 if (sc->sc_orate > 8000 || sc->sc_irate > 8000)
646 blk = NBPG/2;
647 } else {
648 if (sc->sc_otc > SB_8K || sc->sc_itc < SB_8K)
649 blk = NBPG/2;
650 }
651 }
652 /* don't try to DMA too much at once, though. */
653 if (blk > NBPG)
654 blk = NBPG;
655 if (sc->sc_channels == 2)
656 return (blk & ~1); /* must be even to preserve stereo separation */
657 else
658 return (blk); /* Anything goes :-) */
659 }
660
661 int
662 sbdsp_commit_settings(addr)
663 void *addr;
664 {
665 register struct sbdsp_softc *sc = addr;
666
667 /* due to potentially unfortunate ordering in the above layers,
668 re-do a few sets which may be important--input gains
669 (adjust the proper channels), number of input channels (hit the
670 record rate and set mode) */
671
672 if (ISSBPRO(sc)) {
673 /*
674 * With 2 channels, SBPro can't do more than 22kHz.
675 * Whack the rates down to speed if necessary.
676 * Reset the time constant anyway
677 * because it may have been adjusted with a different number
678 * of channels, which means it might have computed the wrong
679 * mode (low/high speed).
680 */
681 if (sc->sc_channels == 2 &&
682 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
683 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
684 &sc->sc_itc, &sc->sc_imode);
685 } else
686 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
687 SB_INPUT_RATE, &sc->sc_itc,
688 &sc->sc_imode);
689
690 if (sc->sc_channels == 2 &&
691 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
692 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
693 &sc->sc_otc, &sc->sc_omode);
694 } else
695 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
696 SB_OUTPUT_RATE, &sc->sc_otc,
697 &sc->sc_omode);
698 }
699
700 /*
701 * XXX
702 * Should wait for chip to be idle.
703 */
704 sc->sc_dmadir = SB_DMA_NONE;
705
706 return 0;
707 }
708
709
710 int
711 sbdsp_open(sc, dev, flags)
712 register struct sbdsp_softc *sc;
713 dev_t dev;
714 int flags;
715 {
716 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
717
718 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
719 return ENXIO;
720
721 sc->sc_open = 1;
722 sc->sc_mintr = 0;
723 if (ISSBPROCLASS(sc) &&
724 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
725 DPRINTF(("sbdsp_open: can't set mono mode\n"));
726 /* we'll readjust when it's time for DMA. */
727 }
728
729 /*
730 * Leave most things as they were; users must change things if
731 * the previous process didn't leave it they way they wanted.
732 * Looked at another way, it's easy to set up a configuration
733 * in one program and leave it for another to inherit.
734 */
735 DPRINTF(("sbdsp_open: opened\n"));
736
737 return 0;
738 }
739
740 void
741 sbdsp_close(addr)
742 void *addr;
743 {
744 struct sbdsp_softc *sc = addr;
745
746 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
747
748 sc->sc_open = 0;
749 sbdsp_spkroff(sc);
750 sc->spkr_state = SPKR_OFF;
751 sc->sc_mintr = 0;
752 sbdsp_haltdma(sc);
753
754 DPRINTF(("sbdsp_close: closed\n"));
755 }
756
757 /*
758 * Lower-level routines
759 */
760
761 /*
762 * Reset the card.
763 * Return non-zero if the card isn't detected.
764 */
765 int
766 sbdsp_reset(sc)
767 register struct sbdsp_softc *sc;
768 {
769 bus_space_tag_t iot = sc->sc_iot;
770 bus_space_handle_t ioh = sc->sc_ioh;
771
772 sc->sc_intr = 0;
773 if (sc->sc_dmadir != SB_DMA_NONE) {
774 isa_dmaabort(sc->sc_drq);
775 sc->sc_dmadir = SB_DMA_NONE;
776 }
777 sc->sc_last_hs_size = 0;
778
779 /*
780 * See SBK, section 11.3.
781 * We pulse a reset signal into the card.
782 * Gee, what a brilliant hardware design.
783 */
784 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
785 delay(10);
786 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
787 delay(30);
788 if (sbdsp_rdsp(sc) != SB_MAGIC)
789 return -1;
790
791 return 0;
792 }
793
794 int
795 sbdsp16_wait(sc)
796 struct sbdsp_softc *sc;
797 {
798 bus_space_tag_t iot = sc->sc_iot;
799 bus_space_handle_t ioh = sc->sc_ioh;
800 register int i;
801
802 for (i = SBDSP_NPOLL; --i >= 0; ) {
803 register u_char x;
804 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
805 delay(10);
806 if ((x & SB_DSP_BUSY) == 0)
807 continue;
808 return 0;
809 }
810 ++sberr.wdsp;
811 return -1;
812 }
813
814 /*
815 * Write a byte to the dsp.
816 * XXX We are at the mercy of the card as we use a
817 * polling loop and wait until it can take the byte.
818 */
819 int
820 sbdsp_wdsp(sc, v)
821 struct sbdsp_softc *sc;
822 int v;
823 {
824 bus_space_tag_t iot = sc->sc_iot;
825 bus_space_handle_t ioh = sc->sc_ioh;
826 register int i;
827
828 for (i = SBDSP_NPOLL; --i >= 0; ) {
829 register u_char x;
830 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
831 delay(10);
832 if ((x & SB_DSP_BUSY) != 0)
833 continue;
834 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
835 delay(10);
836 return 0;
837 }
838 ++sberr.wdsp;
839 return -1;
840 }
841
842 /*
843 * Read a byte from the DSP, using polling.
844 */
845 int
846 sbdsp_rdsp(sc)
847 struct sbdsp_softc *sc;
848 {
849 bus_space_tag_t iot = sc->sc_iot;
850 bus_space_handle_t ioh = sc->sc_ioh;
851 register int i;
852
853 for (i = SBDSP_NPOLL; --i >= 0; ) {
854 register u_char x;
855 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
856 delay(10);
857 if ((x & SB_DSP_READY) == 0)
858 continue;
859 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
860 delay(10);
861 return x;
862 }
863 ++sberr.rdsp;
864 return -1;
865 }
866
867 /*
868 * Doing certain things (like toggling the speaker) make
869 * the SB hardware go away for a while, so pause a little.
870 */
871 void
872 sbdsp_to(arg)
873 void *arg;
874 {
875 wakeup(arg);
876 }
877
878 void
879 sbdsp_pause(sc)
880 struct sbdsp_softc *sc;
881 {
882 extern int hz;
883
884 timeout(sbdsp_to, sbdsp_to, hz/8);
885 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
886 }
887
888 /*
889 * Turn on the speaker. The SBK documention says this operation
890 * can take up to 1/10 of a second. Higher level layers should
891 * probably let the task sleep for this amount of time after
892 * calling here. Otherwise, things might not work (because
893 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
894 *
895 * These engineers had their heads up their ass when
896 * they designed this card.
897 */
898 void
899 sbdsp_spkron(sc)
900 struct sbdsp_softc *sc;
901 {
902 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
903 sbdsp_pause(sc);
904 }
905
906 /*
907 * Turn off the speaker; see comment above.
908 */
909 void
910 sbdsp_spkroff(sc)
911 struct sbdsp_softc *sc;
912 {
913 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
914 sbdsp_pause(sc);
915 }
916
917 /*
918 * Read the version number out of the card. Return major code
919 * in high byte, and minor code in low byte.
920 */
921 short
922 sbversion(sc)
923 struct sbdsp_softc *sc;
924 {
925 short v;
926
927 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
928 return 0;
929 v = sbdsp_rdsp(sc) << 8;
930 v |= sbdsp_rdsp(sc);
931 return ((v >= 0) ? v : 0);
932 }
933
934 /*
935 * Halt a DMA in progress. A low-speed transfer can be
936 * resumed with sbdsp_contdma().
937 */
938 int
939 sbdsp_haltdma(addr)
940 void *addr;
941 {
942 register struct sbdsp_softc *sc = addr;
943
944 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
945
946 sbdsp_reset(sc);
947 return 0;
948 }
949
950 int
951 sbdsp_contdma(addr)
952 void *addr;
953 {
954 register struct sbdsp_softc *sc = addr;
955
956 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
957
958 /* XXX how do we reinitialize the DMA controller state? do we care? */
959 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
960 return(0);
961 }
962
963 int
964 sbdsp_setrate(sc, sr, isdac, ratep)
965 register struct sbdsp_softc *sc;
966 int sr;
967 int isdac;
968 int *ratep;
969 {
970
971 /*
972 * XXXX
973 * More checks here?
974 */
975 if (sr < 5000 || sr > 44100)
976 return (EINVAL);
977 *ratep = sr;
978 return (0);
979 }
980
981 /*
982 * Convert a linear sampling rate into the DAC time constant.
983 * Set *mode to indicate the high/low-speed DMA operation.
984 * Because of limitations of the card, not all rates are possible.
985 * We return the time constant of the closest possible rate.
986 * The sampling rate limits are different for the DAC and ADC,
987 * so isdac indicates output, and !isdac indicates input.
988 */
989 int
990 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
991 register struct sbdsp_softc *sc;
992 int sr;
993 int isdac;
994 int *tcp, *modep;
995 {
996 int tc, realtc, mode;
997
998 /*
999 * Don't forget to compute which mode we'll be in based on whether
1000 * we need to double the rate for stereo on SBPRO.
1001 */
1002
1003 if (sr == 0) {
1004 tc = SB_LS_MIN;
1005 mode = SB_ADAC_LS;
1006 goto out;
1007 }
1008
1009 tc = 256 - (1000000 / sr);
1010
1011 if (sc->sc_channels == 2 && ISSBPRO(sc))
1012 /* compute based on 2x sample rate when needed */
1013 realtc = 256 - ( 500000 / sr);
1014 else
1015 realtc = tc;
1016
1017 if (tc < SB_LS_MIN) {
1018 tc = SB_LS_MIN;
1019 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1020 * speed mode. */
1021 goto out;
1022 } else if (isdac) {
1023 if (realtc <= SB_DAC_LS_MAX)
1024 mode = SB_ADAC_LS;
1025 else {
1026 mode = SB_ADAC_HS;
1027 if (tc > SB_DAC_HS_MAX)
1028 tc = SB_DAC_HS_MAX;
1029 }
1030 } else {
1031 int adc_ls_max, adc_hs_max;
1032
1033 /* XXX use better rounding--compare distance to nearest tc on both
1034 sides of requested speed */
1035 if (ISSBPROCLASS(sc)) {
1036 adc_ls_max = SBPRO_ADC_LS_MAX;
1037 adc_hs_max = SBPRO_ADC_HS_MAX;
1038 } else {
1039 adc_ls_max = SBCLA_ADC_LS_MAX;
1040 adc_hs_max = SBCLA_ADC_HS_MAX;
1041 }
1042
1043 if (realtc <= adc_ls_max)
1044 mode = SB_ADAC_LS;
1045 else {
1046 mode = SB_ADAC_HS;
1047 if (tc > adc_hs_max)
1048 tc = adc_hs_max;
1049 }
1050 }
1051
1052 out:
1053 *tcp = tc;
1054 *modep = mode;
1055 return (0);
1056 }
1057
1058 /*
1059 * Convert a DAC time constant to a sampling rate.
1060 * See SBK, section 12.
1061 */
1062 int
1063 sbdsp_tctosr(sc, tc)
1064 register struct sbdsp_softc *sc;
1065 int tc;
1066 {
1067 int adc;
1068
1069 if (ISSBPROCLASS(sc))
1070 adc = SBPRO_ADC_HS_MAX;
1071 else
1072 adc = SBCLA_ADC_HS_MAX;
1073
1074 if (tc > adc)
1075 tc = adc;
1076
1077 return (1000000 / (256 - tc));
1078 }
1079
1080 int
1081 sbdsp_set_timeconst(sc, tc)
1082 register struct sbdsp_softc *sc;
1083 int tc;
1084 {
1085 /*
1086 * A SBPro in stereo mode uses time constants at double the
1087 * actual rate.
1088 */
1089 if (ISSBPRO(sc) && sc->sc_channels == 2)
1090 tc = 256 - ((256 - tc) / 2);
1091
1092 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1093
1094 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1095 sbdsp_wdsp(sc, tc) < 0)
1096 return (EIO);
1097
1098 return (0);
1099 }
1100
1101 int
1102 sbdsp_dma_input(addr, p, cc, intr, arg)
1103 void *addr;
1104 void *p;
1105 int cc;
1106 void (*intr) __P((void *));
1107 void *arg;
1108 {
1109 register struct sbdsp_softc *sc = addr;
1110
1111 #ifdef AUDIO_DEBUG
1112 if (sbdspdebug > 1)
1113 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1114 #endif
1115 if (sc->sc_channels == 2 && (cc & 1)) {
1116 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1117 return EIO;
1118 }
1119
1120 if (sc->sc_dmadir != SB_DMA_IN) {
1121 if (ISSBPRO(sc)) {
1122 if (sc->sc_channels == 2) {
1123 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1124 if (sbdsp_wdsp(sc,
1125 JAZZ16_RECORD_STEREO) < 0) {
1126 goto badmode;
1127 }
1128 } else if (sbdsp_wdsp(sc,
1129 SB_DSP_RECORD_STEREO) < 0)
1130 goto badmode;
1131 sbdsp_mix_write(sc, SBP_INFILTER,
1132 (sbdsp_mix_read(sc, SBP_INFILTER) &
1133 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1134 } else {
1135 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1136 if (sbdsp_wdsp(sc,
1137 JAZZ16_RECORD_MONO) < 0)
1138 {
1139 goto badmode;
1140 }
1141 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1142 goto badmode;
1143 sbdsp_mix_write(sc, SBP_INFILTER,
1144 (sbdsp_mix_read(sc, SBP_INFILTER) &
1145 ~SBP_IFILTER_MASK) | sc->in_filter);
1146 }
1147 }
1148
1149 if (ISSB16CLASS(sc)) {
1150 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1151 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1152 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1153 goto giveup;
1154 } else
1155 sbdsp_set_timeconst(sc, sc->sc_itc);
1156 sc->sc_dmadir = SB_DMA_IN;
1157 }
1158
1159 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1160 sc->sc_intr = intr;
1161 sc->sc_arg = arg;
1162 sc->dmaflags = DMAMODE_READ;
1163 sc->dmaaddr = p;
1164 sc->dmacnt = cc; /* DMA controller is strange...? */
1165
1166 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1167 (ISJAZZ16(sc) && sc->sc_drq > 3))
1168 cc >>= 1;
1169 --cc;
1170 if (ISSB16CLASS(sc)) {
1171 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1172 SB_DSP16_RDMA_8) < 0 ||
1173 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1174 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1175 sbdsp16_wait(sc) ||
1176 sbdsp_wdsp(sc, cc) < 0 ||
1177 sbdsp_wdsp(sc, cc >> 8) < 0) {
1178 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1179 goto giveup;
1180 }
1181 } else if (sc->sc_imode == SB_ADAC_LS) {
1182 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1183 sbdsp_wdsp(sc, cc) < 0 ||
1184 sbdsp_wdsp(sc, cc >> 8) < 0) {
1185 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1186 goto giveup;
1187 }
1188 } else {
1189 if (cc != sc->sc_last_hs_size) {
1190 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1191 sbdsp_wdsp(sc, cc) < 0 ||
1192 sbdsp_wdsp(sc, cc >> 8) < 0) {
1193 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1194 goto giveup;
1195 }
1196 sc->sc_last_hs_size = cc;
1197 }
1198 if (sbdsp_wdsp(sc, SB_DSP_HS_INPUT) < 0) {
1199 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1200 goto giveup;
1201 }
1202 }
1203 return 0;
1204
1205 giveup:
1206 sbdsp_reset(sc);
1207 return EIO;
1208
1209 badmode:
1210 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1211 sc->sc_channels == 2 ? "stereo" : "mono"));
1212 return EIO;
1213 }
1214
1215 int
1216 sbdsp_dma_output(addr, p, cc, intr, arg)
1217 void *addr;
1218 void *p;
1219 int cc;
1220 void (*intr) __P((void *));
1221 void *arg;
1222 {
1223 register struct sbdsp_softc *sc = addr;
1224
1225 #ifdef AUDIO_DEBUG
1226 if (sbdspdebug > 1)
1227 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1228 #endif
1229 if (sc->sc_channels == 2 && (cc & 1)) {
1230 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1231 return EIO;
1232 }
1233
1234 if (sc->sc_dmadir != SB_DMA_OUT) {
1235 if (ISSBPRO(sc)) {
1236 /* make sure we re-set stereo mixer bit when we start
1237 output. */
1238 sbdsp_mix_write(sc, SBP_STEREO,
1239 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1240 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1241 if (ISJAZZ16(sc)) {
1242 /* Yes, we write the record mode to set
1243 16-bit playback mode. weird, huh? */
1244 if (sc->sc_precision == 16) {
1245 sbdsp_wdsp(sc,
1246 sc->sc_channels == 2 ?
1247 JAZZ16_RECORD_STEREO :
1248 JAZZ16_RECORD_MONO);
1249 } else {
1250 sbdsp_wdsp(sc,
1251 sc->sc_channels == 2 ?
1252 SB_DSP_RECORD_STEREO :
1253 SB_DSP_RECORD_MONO);
1254 }
1255 }
1256 }
1257
1258 if (ISSB16CLASS(sc)) {
1259 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1260 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1261 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1262 goto giveup;
1263 } else
1264 sbdsp_set_timeconst(sc, sc->sc_otc);
1265 sc->sc_dmadir = SB_DMA_OUT;
1266 }
1267
1268 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1269 sc->sc_intr = intr;
1270 sc->sc_arg = arg;
1271 sc->dmaflags = DMAMODE_WRITE;
1272 sc->dmaaddr = p;
1273 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1274
1275 if ((ISSB16CLASS(sc) && sc->sc_precision == 16) ||
1276 (ISJAZZ16(sc) && sc->sc_drq > 3))
1277 cc >>= 1;
1278 --cc;
1279 if (ISSB16CLASS(sc)) {
1280 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1281 SB_DSP16_WDMA_8) < 0 ||
1282 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1283 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1284 sbdsp16_wait(sc) ||
1285 sbdsp_wdsp(sc, cc) < 0 ||
1286 sbdsp_wdsp(sc, cc >> 8) < 0) {
1287 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1288 goto giveup;
1289 }
1290 } else if (sc->sc_omode == SB_ADAC_LS) {
1291 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1292 sbdsp_wdsp(sc, cc) < 0 ||
1293 sbdsp_wdsp(sc, cc >> 8) < 0) {
1294 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1295 goto giveup;
1296 }
1297 } else {
1298 if (cc != sc->sc_last_hs_size) {
1299 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1300 sbdsp_wdsp(sc, cc) < 0 ||
1301 sbdsp_wdsp(sc, cc >> 8) < 0) {
1302 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1303 goto giveup;
1304 }
1305 sc->sc_last_hs_size = cc;
1306 }
1307 if (sbdsp_wdsp(sc, SB_DSP_HS_OUTPUT) < 0) {
1308 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1309 goto giveup;
1310 }
1311 }
1312 return 0;
1313
1314 giveup:
1315 sbdsp_reset(sc);
1316 return EIO;
1317 }
1318
1319 /*
1320 * Only the DSP unit on the sound blaster generates interrupts.
1321 * There are three cases of interrupt: reception of a midi byte
1322 * (when mode is enabled), completion of dma transmission, or
1323 * completion of a dma reception. The three modes are mutually
1324 * exclusive so we know a priori which event has occurred.
1325 */
1326 int
1327 sbdsp_intr(arg)
1328 void *arg;
1329 {
1330 register struct sbdsp_softc *sc = arg;
1331 u_char x;
1332
1333 #ifdef AUDIO_DEBUG
1334 if (sbdspdebug > 1)
1335 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1336 #endif
1337 if (!isa_dmafinished(sc->sc_drq)) {
1338 #ifdef AUDIO_DEBUG
1339 printf("sbdsp_intr: not finished\n");
1340 #endif
1341 return 0;
1342 }
1343 sc->sc_interrupts++;
1344 /* clear interrupt */
1345 #ifdef notyet
1346 x = sbdsp_mix_read(sc, 0x82);
1347 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh, 15);
1348 #endif
1349 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_RSTAT);
1350 delay(10);
1351 #if 0
1352 if (sc->sc_mintr != 0) {
1353 x = sbdsp_rdsp(sc);
1354 (*sc->sc_mintr)(sc->sc_arg, x);
1355 } else
1356 #endif
1357 if (sc->sc_intr != 0) {
1358 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1359 (*sc->sc_intr)(sc->sc_arg);
1360 }
1361 else
1362 return 0;
1363 return 1;
1364 }
1365
1366 #if 0
1367 /*
1368 * Enter midi uart mode and arrange for read interrupts
1369 * to vector to `intr'. This puts the card in a mode
1370 * which allows only midi I/O; the card must be reset
1371 * to leave this mode. Unfortunately, the card does not
1372 * use transmit interrupts, so bytes must be output
1373 * using polling. To keep the polling overhead to a
1374 * minimum, output should be driven off a timer.
1375 * This is a little tricky since only 320us separate
1376 * consecutive midi bytes.
1377 */
1378 void
1379 sbdsp_set_midi_mode(sc, intr, arg)
1380 struct sbdsp_softc *sc;
1381 void (*intr)();
1382 void *arg;
1383 {
1384
1385 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1386 sc->sc_mintr = intr;
1387 sc->sc_intr = 0;
1388 sc->sc_arg = arg;
1389 }
1390
1391 /*
1392 * Write a byte to the midi port, when in midi uart mode.
1393 */
1394 void
1395 sbdsp_midi_output(sc, v)
1396 struct sbdsp_softc *sc;
1397 int v;
1398 {
1399
1400 if (sbdsp_wdsp(sc, v) < 0)
1401 ++sberr.wmidi;
1402 }
1403 #endif
1404
1405 int
1406 sbdsp_setfd(addr, flag)
1407 void *addr;
1408 int flag;
1409 {
1410 /* Can't do full-duplex */
1411 return(ENOTTY);
1412 }
1413
1414 int
1415 sbdsp_mixer_set_port(addr, cp)
1416 void *addr;
1417 mixer_ctrl_t *cp;
1418 {
1419 register struct sbdsp_softc *sc = addr;
1420 int src, gain;
1421
1422 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1423 cp->un.value.num_channels));
1424
1425 if (!ISSBPROCLASS(sc))
1426 return EINVAL;
1427
1428 /*
1429 * Everything is a value except for SBPro BASS/TREBLE and
1430 * RECORD_SOURCE
1431 */
1432 switch (cp->dev) {
1433 case SB_SPEAKER:
1434 cp->dev = SB_MASTER_VOL;
1435 case SB_MIC_PORT:
1436 case SB_LINE_IN_PORT:
1437 case SB_DAC_PORT:
1438 case SB_FM_PORT:
1439 case SB_CD_PORT:
1440 case SB_MASTER_VOL:
1441 if (cp->type != AUDIO_MIXER_VALUE)
1442 return EINVAL;
1443
1444 /*
1445 * All the mixer ports are stereo except for the microphone.
1446 * If we get a single-channel gain value passed in, then we
1447 * duplicate it to both left and right channels.
1448 */
1449
1450 switch (cp->dev) {
1451 case SB_MIC_PORT:
1452 if (cp->un.value.num_channels != 1)
1453 return EINVAL;
1454
1455 /* handle funny microphone gain */
1456 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1457 break;
1458 case SB_LINE_IN_PORT:
1459 case SB_DAC_PORT:
1460 case SB_FM_PORT:
1461 case SB_CD_PORT:
1462 case SB_MASTER_VOL:
1463 switch (cp->un.value.num_channels) {
1464 case 1:
1465 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1466 break;
1467 case 2:
1468 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1469 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1470 break;
1471 default:
1472 return EINVAL;
1473 }
1474 break;
1475 default:
1476 return EINVAL;
1477 }
1478
1479 switch (cp->dev) {
1480 case SB_MIC_PORT:
1481 src = SBP_MIC_VOL;
1482 break;
1483 case SB_MASTER_VOL:
1484 src = SBP_MASTER_VOL;
1485 break;
1486 case SB_LINE_IN_PORT:
1487 src = SBP_LINE_VOL;
1488 break;
1489 case SB_DAC_PORT:
1490 src = SBP_DAC_VOL;
1491 break;
1492 case SB_FM_PORT:
1493 src = SBP_FM_VOL;
1494 break;
1495 case SB_CD_PORT:
1496 src = SBP_CD_VOL;
1497 break;
1498 default:
1499 return EINVAL;
1500 }
1501
1502 sbdsp_mix_write(sc, src, gain);
1503 sc->gain[cp->dev] = gain;
1504 break;
1505
1506 case SB_TREBLE:
1507 case SB_BASS:
1508 case SB_RECORD_SOURCE:
1509 if (cp->type != AUDIO_MIXER_ENUM)
1510 return EINVAL;
1511
1512 switch (cp->dev) {
1513 case SB_TREBLE:
1514 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1515 case SB_BASS:
1516 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1517 case SB_RECORD_SOURCE:
1518 return sbdsp_set_in_port(addr, cp->un.ord);
1519 }
1520
1521 break;
1522
1523 default:
1524 return EINVAL;
1525 }
1526
1527 return (0);
1528 }
1529
1530 int
1531 sbdsp_mixer_get_port(addr, cp)
1532 void *addr;
1533 mixer_ctrl_t *cp;
1534 {
1535 register struct sbdsp_softc *sc = addr;
1536 int gain;
1537
1538 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1539
1540 if (!ISSBPROCLASS(sc))
1541 return EINVAL;
1542
1543 switch (cp->dev) {
1544 case SB_SPEAKER:
1545 cp->dev = SB_MASTER_VOL;
1546 case SB_MIC_PORT:
1547 case SB_LINE_IN_PORT:
1548 case SB_DAC_PORT:
1549 case SB_FM_PORT:
1550 case SB_CD_PORT:
1551 case SB_MASTER_VOL:
1552 gain = sc->gain[cp->dev];
1553
1554 switch (cp->dev) {
1555 case SB_MIC_PORT:
1556 if (cp->un.value.num_channels != 1)
1557 return EINVAL;
1558
1559 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1560 break;
1561 case SB_LINE_IN_PORT:
1562 case SB_DAC_PORT:
1563 case SB_FM_PORT:
1564 case SB_CD_PORT:
1565 case SB_MASTER_VOL:
1566 switch (cp->un.value.num_channels) {
1567 case 1:
1568 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1569 break;
1570 case 2:
1571 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1573 break;
1574 default:
1575 return EINVAL;
1576 }
1577 break;
1578 }
1579
1580 break;
1581
1582 case SB_TREBLE:
1583 case SB_BASS:
1584 case SB_RECORD_SOURCE:
1585 switch (cp->dev) {
1586 case SB_TREBLE:
1587 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1588 return 0;
1589 case SB_BASS:
1590 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1591 return 0;
1592 case SB_RECORD_SOURCE:
1593 cp->un.ord = sbdsp_get_in_port(addr);
1594 return 0;
1595 }
1596
1597 break;
1598
1599 default:
1600 return EINVAL;
1601 }
1602
1603 return (0);
1604 }
1605
1606 int
1607 sbdsp_mixer_query_devinfo(addr, dip)
1608 void *addr;
1609 register mixer_devinfo_t *dip;
1610 {
1611 register struct sbdsp_softc *sc = addr;
1612
1613 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1614
1615 switch (dip->index) {
1616 case SB_MIC_PORT:
1617 dip->type = AUDIO_MIXER_VALUE;
1618 dip->mixer_class = SB_INPUT_CLASS;
1619 dip->prev = AUDIO_MIXER_LAST;
1620 dip->next = AUDIO_MIXER_LAST;
1621 strcpy(dip->label.name, AudioNmicrophone);
1622 dip->un.v.num_channels = 1;
1623 strcpy(dip->un.v.units.name, AudioNvolume);
1624 return 0;
1625
1626 case SB_SPEAKER:
1627 dip->type = AUDIO_MIXER_VALUE;
1628 dip->mixer_class = SB_OUTPUT_CLASS;
1629 dip->prev = AUDIO_MIXER_LAST;
1630 dip->next = AUDIO_MIXER_LAST;
1631 strcpy(dip->label.name, AudioNspeaker);
1632 dip->un.v.num_channels = 1;
1633 strcpy(dip->un.v.units.name, AudioNvolume);
1634 return 0;
1635
1636 case SB_INPUT_CLASS:
1637 dip->type = AUDIO_MIXER_CLASS;
1638 dip->mixer_class = SB_INPUT_CLASS;
1639 dip->next = dip->prev = AUDIO_MIXER_LAST;
1640 strcpy(dip->label.name, AudioCInputs);
1641 return 0;
1642
1643 case SB_OUTPUT_CLASS:
1644 dip->type = AUDIO_MIXER_CLASS;
1645 dip->mixer_class = SB_OUTPUT_CLASS;
1646 dip->next = dip->prev = AUDIO_MIXER_LAST;
1647 strcpy(dip->label.name, AudioCOutputs);
1648 return 0;
1649 }
1650
1651 if (ISSBPROCLASS(sc)) {
1652 switch (dip->index) {
1653 case SB_LINE_IN_PORT:
1654 dip->type = AUDIO_MIXER_VALUE;
1655 dip->mixer_class = SB_INPUT_CLASS;
1656 dip->prev = AUDIO_MIXER_LAST;
1657 dip->next = AUDIO_MIXER_LAST;
1658 strcpy(dip->label.name, AudioNline);
1659 dip->un.v.num_channels = 2;
1660 strcpy(dip->un.v.units.name, AudioNvolume);
1661 return 0;
1662
1663 case SB_DAC_PORT:
1664 dip->type = AUDIO_MIXER_VALUE;
1665 dip->mixer_class = SB_INPUT_CLASS;
1666 dip->prev = AUDIO_MIXER_LAST;
1667 dip->next = AUDIO_MIXER_LAST;
1668 strcpy(dip->label.name, AudioNdac);
1669 dip->un.v.num_channels = 2;
1670 strcpy(dip->un.v.units.name, AudioNvolume);
1671 return 0;
1672
1673 case SB_CD_PORT:
1674 dip->type = AUDIO_MIXER_VALUE;
1675 dip->mixer_class = SB_INPUT_CLASS;
1676 dip->prev = AUDIO_MIXER_LAST;
1677 dip->next = AUDIO_MIXER_LAST;
1678 strcpy(dip->label.name, AudioNcd);
1679 dip->un.v.num_channels = 2;
1680 strcpy(dip->un.v.units.name, AudioNvolume);
1681 return 0;
1682
1683 case SB_FM_PORT:
1684 dip->type = AUDIO_MIXER_VALUE;
1685 dip->mixer_class = SB_INPUT_CLASS;
1686 dip->prev = AUDIO_MIXER_LAST;
1687 dip->next = AUDIO_MIXER_LAST;
1688 strcpy(dip->label.name, AudioNfmsynth);
1689 dip->un.v.num_channels = 2;
1690 strcpy(dip->un.v.units.name, AudioNvolume);
1691 return 0;
1692
1693 case SB_MASTER_VOL:
1694 dip->type = AUDIO_MIXER_VALUE;
1695 dip->mixer_class = SB_OUTPUT_CLASS;
1696 dip->prev = AUDIO_MIXER_LAST;
1697 dip->next = AUDIO_MIXER_LAST;
1698 strcpy(dip->label.name, AudioNvolume);
1699 dip->un.v.num_channels = 2;
1700 strcpy(dip->un.v.units.name, AudioNvolume);
1701 return 0;
1702
1703 case SB_RECORD_SOURCE:
1704 dip->mixer_class = SB_RECORD_CLASS;
1705 dip->type = AUDIO_MIXER_ENUM;
1706 dip->prev = AUDIO_MIXER_LAST;
1707 dip->next = AUDIO_MIXER_LAST;
1708 strcpy(dip->label.name, AudioNsource);
1709 dip->un.e.num_mem = 3;
1710 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1711 dip->un.e.member[0].ord = SB_MIC_PORT;
1712 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1713 dip->un.e.member[1].ord = SB_CD_PORT;
1714 strcpy(dip->un.e.member[2].label.name, AudioNline);
1715 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1716 return 0;
1717
1718 case SB_BASS:
1719 dip->type = AUDIO_MIXER_ENUM;
1720 dip->mixer_class = SB_INPUT_CLASS;
1721 dip->prev = AUDIO_MIXER_LAST;
1722 dip->next = AUDIO_MIXER_LAST;
1723 strcpy(dip->label.name, AudioNbass);
1724 dip->un.e.num_mem = 2;
1725 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1726 dip->un.e.member[0].ord = 0;
1727 strcpy(dip->un.e.member[1].label.name, AudioNon);
1728 dip->un.e.member[1].ord = 1;
1729 return 0;
1730
1731 case SB_TREBLE:
1732 dip->type = AUDIO_MIXER_ENUM;
1733 dip->mixer_class = SB_INPUT_CLASS;
1734 dip->prev = AUDIO_MIXER_LAST;
1735 dip->next = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioNtreble);
1737 dip->un.e.num_mem = 2;
1738 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1739 dip->un.e.member[0].ord = 0;
1740 strcpy(dip->un.e.member[1].label.name, AudioNon);
1741 dip->un.e.member[1].ord = 1;
1742 return 0;
1743
1744 case SB_RECORD_CLASS: /* record source class */
1745 dip->type = AUDIO_MIXER_CLASS;
1746 dip->mixer_class = SB_RECORD_CLASS;
1747 dip->next = dip->prev = AUDIO_MIXER_LAST;
1748 strcpy(dip->label.name, AudioCRecord);
1749 return 0;
1750 }
1751 }
1752
1753 return ENXIO;
1754 }
1755